Safe and Fair Machine Learning

In this project we study how the user of a machine learning (ML) algorithm (method) can place constraints on the algorithm’s behavior. We contend that standard ML algorithms are not user-friendly, in that they can require ML and data science expertise to apply responsibly to real-world applications. We present a new type of ML algorithm that shifts, from the user of the algorithm to the researcher who designs the algorithm, many of the challenges associated with ensuring that the ML method is safe to use. The resulting algorithms provide a simple interface for specifying what constitutes undesirable behavior of the ML algorithm, and provide high-probability guarantees that it will not produce this undesirable behavior.