
Akamai DNS: Providing Authoritative Answers to the World’s
Queries

Kyle Schomp†, Onkar Bhardwaj†, Eymen Kurdoglu†, Mashooq Muhaimen†, Ramesh K. Sitaraman†‡

†Akamai Technologies
kschomp,obhardwa,ekurdogl,mmuhaime,ramesh@akamai.com

‡University of Massachusetts at Amherst
ramesh@cs.umass.edu

ABSTRACT
We present Akamai DNS, one of the largest authoritative DNS
infrastructures in the world, that supports the Akamai content de-
livery network (CDN) as well as authoritative DNS hosting and
DNS-based load balancing services for many enterprises. As the
starting point for a significant fraction of the world’s Internet in-
teractions, Akamai DNS serves millions of queries each second
and must be resilient to avoid disrupting myriad online services,
scalable to meet the ever increasing volume of DNS queries, per-
formant to prevent user-perceivable performance degradation, and
reconfigurable to react quickly to shifts in network conditions and
attacks. We outline the design principles and architecture used to
achieve Akamai DNS’s goals, relating the design choices to the
system workload and quantifying the effectiveness of those designs.
Further, we convey insights from operating the production system
that are of value to the broader research community.

CCS CONCEPTS
• Networks → Application layer protocols; Naming and ad-
dressing;

KEYWORDS
DNS, Distributed Systems

ACM Reference Format:
Kyle Schomp†, Onkar Bhardwaj†, Eymen Kurdoglu†, Mashooq Muhaimen†,
Ramesh K. Sitaraman†‡. 2020. Akamai DNS: Providing Authoritative An-
swers to theWorld’s Queries. InAnnual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architec-
tures, and protocols for computer communication (SIGCOMM ’20), August
10–14, 2020, Virtual Event, NY, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3387514.3405881

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3405881

1 INTRODUCTION
Naming is a central service of the Internet and is primarily ad-
dressed by the Domain Name System (DNS). Originally described
in 1983 [31], DNS enables the mapping of human-legible hierarchi-
cal names to arbitrary records, most notably IP addresses. Thus, we
refer to websites as “example.com” instead of “12.23.34.45”. From
its original design, DNS has expanded and grown in complex-
ity [37, 46, 50] and continues to be an area of innovation today
[13, 19, 21].

DNS consists of two types of systems that coordinate to provide
domain name translations for end-users. The client-side system pri-
marily consists of recursive resolvers that are charged with resolving
queries from end-users. A request from an end-user for a domain
name translation is first sent to its assigned resolver. If a valid trans-
lation is not found in the resolver’s cache, the resolver obtains the
answer by querying a system of authoritative nameservers for the
requested name. The authoritative system stores the associations
of domain names to records and provides definitive answers to
queries.

The authoritative system is organized hierarchically in accor-
dance with the name hierarchy. At the top, “root” nameservers
are responsible for the empty label “.” while one level down the
“toplevel domain” nameservers are responsible for the labels under
the root (e.g., “com”). Below that, organizations operate authorita-
tive nameservers for their respective domains, e.g., “google.com” is
served by Google’s nameservers. To obtain an answer to a query,
recursive resolvers iteratively search starting at the root and fol-
lowing delegations down the naming hierarchy, until reaching a
nameserver that is responsible for the domain of the query and re-
turns an answer. Nameservers include a Time-To-Live (TTL) field in
answers, allowing the resolver to cache the answer for a prescribed
amount of time, a feature that greatly improves performance and
decreases DNS traffic.

We present Akamai DNS, one of the largest authoritative DNS
infrastructures in the world, providing insights into its architecture,
algorithms, design principles, and operation. We start by describing
the services that it supports.

Authoritative DNS Services: Akamai DNS supports three au-
thoritative DNS services. The first is an authoritative DNS hosting
service (ADHS) that allows enterprises to host their DNS domains
on Akamai. The second service is global traffic management (GTM)
that allows DNS-based load-balancing among server deployments
owned by an enterprise. Third, Akamai DNS is a component of
Akamai’s CDN service, serving 15-20% of all web traffic [36], and

https://doi.org/10.1145/3387514.3405881
https://doi.org/10.1145/3387514.3405881

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Schomp et al.

Sun Mon Tue Wed Thu Fri Sat Sun
3.5m

4m

4.5m

5m

5.5m

6m

qu
er

ie
s p

er
 se

co
nd

Figure 1: Queries per second served by Akamai DNS.

allows enterprises to outsource their entire content and application
delivery infrastructure to Akamai. While these services impose
differing requirements on the design of Akamai DNS, they can also
be used together by a single enterprise, e.g., DNS hosting for their
domains, GTM for their datacenters, and CDN services for edge
delivery of their content fetched from those datacenters.

Design Requirements: Akamai DNS is the starting point for
a significant fraction of the world’s interactions with the Internet,
whether it be end-users downloading web pages, watching videos,
shopping online, downloading software, or accessing social net-
works. Given its critical role in the Internet ecosystem, the first
and foremost requirement is 24/7 availability of the services that it
supports. Because DNS translations preface the majority of Inter-
net connections [45], even a minor disruption in Akamai DNS can
cause a worldwide disruption in online services, severely impacting
the conduct of commerce, business, and government around the
globe. Yet, server and network failures are common in distributed
systems. Also, due to the central role of DNS and high visibility
when it fails, DNS has become a popular target of distributed denial
of service (DDoS) attacks. Thus, Akamai DNS is architected to be
resilient to both failures and attacks.

Since querying Akamai DNS forms the first step in an end-user’s
interaction with many online services, the answers must be pro-
vided quickly, so as not to increase the response times experienced
by end-users. The system must also serve millions of queries per
second (see Figure 1), with query volumes increasing (an 18% in-
crease in the past year) in proportion to global Internet usage. Thus,
Akamai DNS is architected for both scalability and performance.

Finally, the authoritative answers provided by Akamai DNSmust
adapt rapidly to changes in enterprise configurations, server live-
ness and load, and Internet conditions. For instance, to provide GTM
and CDN services, Akamai DNS must always resolve an end-user’s
query to a proximal server that can deliver the content with low
latency to the end-user [36]. When server or network conditions
degrade, new DNS records are computed by Akamai’s mapping sys-
tem [11] and propagated to resolvers through Akamai DNS within
seconds, so as to reroute end-user requests and prevent perfor-
mance degradation. Unlike traditional authoritative DNS whose
translations remain relatively static, Akamai DNS is architected for
rapid reconfigurability.

Our Contributions: Our work is the first in-depth view of the
architecture and capabilities of one of the world’s largest authori-
tative DNS infrastructures that is a key part of the global Internet
ecosystem. Specific contributions follow.
(1) We characterize how domain names are queried by resolvers

around the world from the unique vantage point of Akamai
DNS. We show that 3% of resolvers generate 80% of the DNS
queries and that those same resolvers consistently send high
volumes of DNS queries for periods of weeks to months.

(2) We outline the system architecture of Akamai DNS, including
key features such as its wide-area deployment, its use of anycast
to distribute DNS queries among locations, its software and
server architecture within each location to provide resiliency,
and its two-tier delegation system to provide rapid answers
with low TTLs.

(3) We describe our anycast failover mechanism for resilience. We
measure how long failover from one location to another takes
when advertising or withdrawing routes via BGP. We show that
in most scenarios failover is rapid – less than 1 sec in 76% of
measurements.

(4) We present the system design elements that provide resiliency
to network, hardware, and software failures andmalicious DDoS
attacks. We present a taxonomy of attack scenarios and the
mitigations designed to thwart them.

(5) We show how Akamai DNS provides high performance by
anycast traffic engineering and two-tier delegation. Wemeasure
the performance of two-tier delegation and show that it reduces
DNS times for 87-98% of resolutions over a single-tier.
Roadmap: The rest of the paper is laid out as follows. In §2, we

characterize the workload that Akamai DNS supports. Then in §3,
we present the system architecture. Next, §4 and §5 describe the
architectural features and algorithms that provide failure resilience,
attack resilience, and performance. Finally, we list related work (§6)
and conclude (§7). This work does not raise any ethical issues.

2 CHARACTERIZING QUERY TRAFFIC
We analyze the DNS queries served by Akamai DNS to understand
its basic properties and to justify the design decisions we made in
architecting Akamai DNS as described in this paper. Further, since
Akamai DNS serves a wide cross-section of the Internet ecosystem,
its query traffic is representative of how end-users across the world
access DNS as a prelude to accessing content and applications.

We analyze traffic served by Akamai DNS over a typical week
in December 2019. In this period, Akamai DNS served ∼360B DNS
queries per day originating from over 5.4M source IP addresses. As
shown in Figure 1, the rate of queries received varies diurnally from
3.9M to 5.6M queries per second (qps), with weekend-weekday vari-
ations. Using the EdgeScape geolocation service [3], we geolocate
the source IP addresses of DNS queries. While we observe DNS
queries from all around the globe, 92% of queries arrive from source
IP addresses in North America, Europe, and Asia.

We now examine how the DNS queries are distributed among
source IP addresses of resolvers. Figure 2 in line “IPs” shows a CDF
of what percent of resolver IP addresses account for what percent
of the total DNS traffic. The 3% of resolver IP addresses that drive
the most DNS queries account for 80% of all DNS queries, similar to

Akamai DNS SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

0.01% 0.1% 1% 10% 100%
percent zones/ASNs/IPs ordered by DNS queries (log)

0%

20%

40%

60%

80%

100%

cu
m

ul
at

iv
e

pe
rc

en
t D

NS
 q

ue
rie

s

zones
ASNs
IPs

Figure 2: Percent of queries for/from percent of zones, ASNs,
and source IP addresses.

observations in [17]. The resolvers that drive the most DNS queries
to Akamai DNS are also highly consistent over time. Using a list of
the top 3% of resolvers by DNS queries constructed weekly over 69
weeks, we find that week-to-week the lists contain 85-98% (mean
92%) of the same resolvers and month-to-month 79-98% (mean 88%).
The “ASNs” line shows that 1% of ASNs account for 83% of DNS
queries. The top 6 ASNs include 3 public DNS services, 2 major ISPs,
and Akamai itself. Both highly-skewed distributions demonstrate
that a small and relatively stable set of resolvers drive the majority
of DNS queries. The relatively stable access patterns observed here
allow us to detect and filter anomalous traffic as described in §4.3.4.

We breakdown the queries by domain requested in our domain
hosting service (ADHS)1. Figure 2 shows that the top 1% of the
zones account for 88% of all DNS queries, with one zone receiving
5.5% of all DNS queries and many infrequently-accessed zones.

Next, we examine the workload on individual authoritative
nameservers. Figure 3 shows the queries received by one specific,
modestly-loaded nameserver from 60K resolvers. The distribution
is highly skewed with most resolvers sending very few queries –
less than 1% sent greater than 1 qps on average. Further, we observe
that the workload exhibits bursty behavior with the highest aver-
age being only 173 qps while the maximum qps observed is 2,352.
These observations inform the design of filters that use historically-
observed query rates of resolvers to detect and flag anomalous
requests, e.g., the rate limiting filter described in §4.3.4.

We also observe that the resolvers sending the most DNS queries
to an individual nameserver are consistent over time. Taking two
one-hour samples of DNS queries exactly one week apart, we
compute per resolver the percent difference in DNS queries sent
during the two samples. Figure 4 shows the PDF of the differ-
ences, weighted by DNS queries sent. We observed that 53% of
the weighted resolvers differed by less than ±10%, indicating the
resolvers that send the most DNS queries predominantly continued
to do so a week later.

3 SYSTEM ARCHITECTURE
Akamai DNS consists of authoritative DNS nameservers that answer
DNS queries and supporting components that handle tasks such
1CDN and GTM use specific zones owned by Akamai and traffic patterns are likely
unique to Akamai. ADHS, on the other hand, hosts generic third-party zones that
enterprises may create for any purpose.

10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

queries per second over 24-hours (log)
0.0

0.2

0.4

0.6

0.8

1.0

cd
f p

er
 IP

 a
dd

re
ss

avg
max

Figure 3: The avg/max queries per second per resolver.

 -100% -50% 0% 50% 100%
percent gain or loss in DNS queries

0.00

0.05

0.10

0.15

0.20

0.25

pd
f o

f w
ei

gh
te

d
IP

 a
dd

re
ss

es

Figure 4: Change in query rate of resolvers in a week.

as metadata processing and transmission, monitoring and analysis,
and complex control and business logic. Figure 5 shows the high-
level architecture whose components we describe below.

3.1 Authoritative Nameservers
To provide quick responses to DNS queries received from resolvers
all around the world, Akamai’s authoritative nameservers number
in the tens of thousands and are distributed among hundreds of
points of presence (PoPs) in 157 countries. Like many other large
DNS platforms [12, 18, 39], Akamai relies heavily on IP anycast
to distribute load among the PoPs and to reduce the round-trip-
time (RTT) between resolvers and the authoritative nameservers.
We use a total of 24 distinct IPv4-IPv6 anycast prefix pairs for the
authoritative service. Each prefix pair forms an “anycast cloud” of
PoPs, from which they are advertised. To provide resiliency to PoP
failures, each of the 24 clouds are distributed among the PoPs, with
no PoP advertising more than two clouds.

PoP Architecture: Each PoP (Figure 6) consists of a router in
front of one or more purpose-built machines running our special-
ized nameserver software. Besides the nameserver, each machine
also runs a BGP-speaker that establishes a session with the PoP
router and advertises the clouds assigned to the PoP over that
session. The machines also run a local monitoring agent which con-
tinuously tests the nameserver’s health. If an problem is detected,
the BGP-speaker [40] withdraws the advertisement of the anycast
clouds, as further discussed in §4.2. When the router receives a
BGP advertisement of a cloud from at least one machine within the

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Schomp et al.

Mapping
Intelligence

Akamai NOCC

Data Collection/
Aggregation

Authoritative
Nameserver

Management
Portal

Monitoring/Automated
Recovery

Enterprise

Communication/Control System

UI/API Updates

End-User
Recursive
Resolver

Traffic Reports

Alerts

DNS

Zone Data

Control

Figure 5: Akamai DNS high-level architecture.

Machine

BGP-speaker

Nameserver Monitoring
Agent

Machine

BGP-speaker

Nameserver

Monitoring
Agent

PoP Router
Peers

DNS
BGP

Figure 6: Architecture of a point of presence (PoP).

PoP, it advertises the cloud to the PoP’s BGP neighbors, or peers.
The number of peers per PoP varies from PoPs within eyeball net-
works peering with only that network to PoPs in Internet exchange
points (IXPs) having hundreds of peers. Features of BGP advertise-
ments, e.g., AS Path and BGP Communities [10], are controlled on
a per-peer basis.

Packets arriving at the router destined for one of the anycast
prefixes are forwarded to only one of the machines within the PoP
that advertises the prefix to the router using Equal-Cost-MultiPath
(ECMP) [20] by creating a hash from the tuple of (source IP ad-
dress/port, destination IP address/port). Because most resolvers use
a random ephemeral source port per DNS query [47], each DNS
query from the resolver may be routed to any of the machines in
the PoP advertising the prefix. DNS traffic spreads approximately

uniformly across the machines at sufficiently large volumes. How-
ever, resolvers that do not use a random ephemeral source port will
always be forwarded to the same machine.

Authoritative DNS Services: The authoritative nameservers
support the Authoritative DNS Hosting Service (ADHS). Enterprises
who wish to host their own DNS zones (e.g., “ex.com”) on Akamai’s
infrastructure are assigned a unique set of 6 different clouds called
a delegation set from the total 24 clouds, enabling the architecture
to support up to

(24
6
)
enterprises before adding additional clouds.

Enterprises add NS records, each corresponding to a cloud in the
delegation set, to every zone they own, along with the respective
parent zone in the DNS hierarchy. Adding the NS records to the
parent zone ensures that resolvers are directed to Akamai DNS, and
will query one of the 6 clouds to obtain an answer to DNS queries
for the enterprise’s zones. We discuss the design decision to use
unique delegation sets in §4.3.1.

The nameservers also host domains for the Content Delivery Ser-
vice (CDN). Enterprises using the CDN redirect a hostname in their
zone to Akamai DNS, e.g., “www.ex.com”⇒ “ex.edgesuite.net”, The
domain “edgesuite.net” is an entry point to the Akamai CDN and is
delegated to 13 anycast clouds2 because of its cross-enterprise role.
These human-readable hostnames are themselves redirected to host-
names used by the CDN– e.g., “ex.edgesuite.net”⇒ “a1.w10.akamai.net”
– to add an additional layer of indirection and control. Hostnames
like “a1.w10.akamai.net” resolve to the CDN edge servers that serve
content. Domains like “w10.akamai.net” take advantage of name-
servers co-located with the wide CDN footprint – which is deployed
within 1,600 networks worldwide [54] – to accelerate resolution of
hostnames, as discussed in §5.2. Integration with the GTM service
is similar to CDN.

3.2 Supporting Components
We describe other components in Figure 5 that either publish meta-
data to authoritative nameservers or monitor them.

Mapping Intelligence: The Akamai mapping system [11, 36]
determines to which edge servers end-users are directed for content
delivery. Towards this end, Akamai DNS changes the IP address re-
turned for a hostname, in response to the query’s source IP address
or EDNS-Client-Subnet option [13]. While the mapping intelligence
determines what IP addresses should be returned, the nameservers
are charged with delivering that answer. In practice, this means the
mapping system publishes frequent metadata updates in reaction
to changing conditions, to which the nameservers subscribe.

Management Portal: Enterprises make modifications to their
DNS zones, GTM configurations, and CDN properties through the
Management Portal via the website or API, while DNS zones can
also be updated through zone transfers [29]. The Management
Portal validates the metadata and publishes it for consumption by
the nameservers.

Communication/Control System:This system provides generic
metadata delivery services using a publish/subscribe model. The
Mapping Intelligence and Management Portal publish metadata to
these systems and the nameservers request subscription from these
systems. Enterprise DNS zone files and configuration are delivered

2We chose 13 delegations to match the model used by the root and many critical
toplevel domains.

Akamai DNS SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

via Akamai’s CDN using a proprietary protocol built upon HTTP.
Mapping intelligence requires near real-time delivery for rapid reac-
tion to changing network conditions and so uses Akamai’s overlay
multicast network [4, 25].

Monitoring/Automated Recovery: This system aggregates
health data across nameservers, tracks trends, and alerts human
operators in the Network Operations & Control Center (NOCC)
when anomalies occur. But, the speed of this process is bounded
by human operations, and our goal is to mitigate impact as quickly
as possible. Thus, a monitoring agent is deployed with each name-
server to continually detect and mitigate a variety of issues (§4.2).

Data Collection/Aggregation: Finally, metrics published by
nameservers are also compiled into reports displayed to enterprises
through the Management Portal.

4 RESILIENCY
Akamai DNS is a crucial component of the global Internet ecosys-
tem. As such, resiliency is factored into every aspect of its design.
We consider two types of resiliency: failure resiliency which is the
ability of the systems to tolerate failures either of the systems them-
selves or the underlying network (§4.2), and attack resiliency which
is the systems ability to protect itself from malicious attack (§4.3).

4.1 Anycast Failover Mechanism
Anycast failover is a key mitigation mechanism for events such
as a PoP failure. By withdrawing a prefix from one PoP, it allows
traffic to be rerouted to another PoP within the same cloud. The
time for such rerouting to occur is called failover time. We show
that failover time is small enough to justify its use in our system.

Experimental Methodology:We conduct experiments to mea-
sure failover time for two cases: advertising a prefix and withdraw-
ing a prefix in a 2-PoP anycast cloud (Figure 7). We select 267 CDN
edge servers – selected to roughly cover our geographic footprint –
to use as vantage points and instrument them to send DNS queries
to an IP address within a test prefix every 100 msec. When a name-
server receives one of these DNS queries, it responds uniquely
identifying its PoP. The vantage points log the time that the DNS
queries are sent and the response that was received (or timeout if
no response received).

Figure 7(a) shows our setup for measuring the impact of a new
advertisement. A nameserver within PoP Y is already advertising
the prefix and all vantage points are routed toY . Next, a nameserver
in PoP X is instructed to advertise the prefix and the BGP-speaker
resident with the nameserver advertises the prefix to X ’s router
shortly there after, triggering the router to update it’s routing table
and propagate the advertisement to its peers.Within 100msec ofX ’s
router updating its routing table, the local vantage point within X
will issue a DNS query, receive a response identifyingX , and log the
time the query was sent, tL . As the BGP update propagates through
the Internet, remote vantage points will also receive DNS responses
identifying X and log the time tX . We estimate failover time as
the time from the BGP advertisement to when the application is
routed to X as tX − tL . This calculation uses two different clocks.
All vantage points sync with the same set of NTP servers and we
estimate that the clock discrepancy is 7.4 msec average and 46ms in
the worst case across all pairs of vantage points. Combined with the

Internet

W Authoritative
Nameserver

t∅
Remote Vantage

Point

Authoritative
Nameserver

PoP Routers

✕

tY
(b)

Internet
Authoritative
NameservertX

Remote Vantage
Point

Authoritative
Nameserver

(a)

X

Y

Local Vantage PointtL

A

BGP
DNS

X

Y

Figure 7: Experimental setup for evaluating failover times
for prefix (a) advertisement and (b) withdrawal.

100 msec measurement frequency, our measurements are accurate
to within [−50, 250]msec and overestimate failover time by 100±7.4
msec on average.

Figure 7(b) shows our setup for prefix withdrawal. The name-
server in PoP X withdraws the advertisement while PoP Y contin-
ues to advertise. Unlike with the advertisement experiment above
where it took some time for vantage points to be routed away
from Y , with withdrawals the vantage points stop receiving DNS
responses from X immediately. This is because at some point along
the path between the vantage point and X , the packet traverses a
router that has already updated its routing table. At that point, one
of two things can happen: (i) the packet will be re-routed eventu-
ally reaching Y , or (ii) the packet will bounce between routers with
divergent routing tables and ultimately be discarded when IP TTL
= 0. The former case results in instantaneous failover, while the
latter results in timeouts until the BGP routing tables converge. We
measure the failover time in the latter case as the time tϕ when the
vantage point sends the first DNS query that results in a timeout
to the time tY when the vantage point sends the first DNS query
that gets an answer from Y . This calculation depends upon a single
clock, making clock sync irrelevant.

For both the new advertisement and withdrawal experiments
above, we cycled through a random permutation of the 267 PoPs,
advertising and withdrawing the test prefix from each PoP X , using
the previous PoP in the permutation as Y , and measuring failover
time using the remaining PoPs as the vantage points. In each ex-
periment, we waited 5 minutes for the vantage points to fail over,
before continuing to the next PoP. Finally, to understand failover
for larger anycast clouds, we reran our experiments again cycling
through all 267 PoPs, and randomly selecting 20 other PoPs to act
as Y , rather than using a single PoP as in the first experiment.

Experimental Results: Figure 8 shows the failover time for
a new advertisement in the line “advertise 2 PoPs”. In 76% of the
measurements, failover time is under 1 sec. Further, some vantage
points experienced timeouts, i.e., were not routed to either Y or
X , but this occurred in only 3% of measurements. We also see
that the failover time for withdrawals is similar to that of a new
advertisement in line “withdraw 2 PoPs”3. However, the failover
time has a significant tail with 5.8% of the measurements taking 10

3The withdraw line has steps at our measurement granularity unlike the advertise line
which is smoothed due to clock jitter.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Schomp et al.

10-1 100 101 102

failover time (seconds)
0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 m

ea
su

re
m

en
ts

withdraw 21 PoPs
advertise 21 PoPs
withdraw 2 PoPs
advertise 2 PoPs

Figure 8: Failover time for clouds with 2 and 21 PoPs.

seconds or more. The tail includes measurements using 19% of PoPs
and all vantage points, so we conclude that it is likely not driven
by localized network issues at the time of our measurements.

Figure 8 also shows the results for 21-PoP experiments. The me-
dian failover time for both advertising and withdrawing decreases
by 200 msec in comparison with the 2-PoP case. The reason is that
the set of vantage points in the catchment of a PoP and the topologi-
cal distance a BGP update must travel from a PoP to a vantage point
are both smaller when the number of PoPs is larger. Thus, 2-PoP
failover likely captures the worst-case times for anycast failover.

Finally, because we wait 5 minutes for vantage points to failover,
it is possible that we do not observe failovers that take longer
than 5 minutes. We note, however, that in the 21 PoP withdraw
experiment we observed 0 vantage points that timed out for ≥5
minutes, indicating that very long failover times are extremely
unlikely. In conclusion, these results suggest that most resolvers
would failover within a second. Thus, anycast failover is a suitable
mechanism for making Akamai DNS failure resilient.

Relation to Prior Work: BGP update propagation through the
Internet has been studied before. In 2000, [27] observes that BGP
convergence for route advertisements typically takes 1-2 minutes
and route withdrawals greater than 2 minutes, with the time re-
quired varying among 5 different ISPs. More recently in 2011, [5]
measured propagation of a route advertisement from the Amster-
dam Internet Exchange (AMS-IX) to 90 vantage points around the
globe and observed an advertisement propagating to all in 38 sec-
onds and a withdrawal in 3 minutes. We complement these existing
studies by (i) updating findings to the state of BGP propagation as
of 2020, and (ii) covering the case of anycast advertisements where
the same prefix is advertised from multiple PoPs. Importantly, our
experiments are also the first to measure application-layer failover
for DNS resolutions rather than BGP convergence. Previous stud-
ies demonstrate that BGP convergence can take minutes, whereas
we demonstrate that failover between the PoPs at the application
layer is much faster. This is because failover does not require full
propagation of the BGP updates to the entire Internet.

4.2 Failure Resiliency
Akamai DNS must be resilient to all sources of failure, including
the software, hardware, and network. While software releases are
vetted via a thorough QA process and extensive effort is made to val-
idate inputs, some problems may only present at the nameservers

themselves. Thus, Akamai DNS is built to tolerate failures and con-
tinue to operate – even if in a degraded state – until fully recovered.
Here, we cover a few specific failures and how the design mitigates
them, allowing Akamai DNS to continue answering DNS queries.

4.2.1 Machine-Level Failures. In large distributed networks like
Akamai DNS, it is not unusual for a small number of machines
to experience software or hardware failures at any given time.
Therefore, Akamai DNS is built to identify failures and shift DNS
query traffic to healthy machines.

The most common failure mode we observe is disk failure, but
any hardware subsystem (e.g. memory, network card) can fail. Hard-
ware failures often manifest in the nameserver software not re-
sponding to DNS requests, or responding slowly, or responding
with incorrect answers (e.g. answering based on stale data). Also,
despite our rigorous QA process, some bugs are only observable
in production due to a confluence of unpredictable events. These
bugs can manifest themselves in ways similar to hardware failures.

We deploy a common mitigation strategy to handle localized
failures. Every nameserver is monitored by an on-machine moni-
toring agent (Figure 6) that continually runs a suite of tests against
the nameserver and detects incorrect or missing responses. The
test suite includes DNS queries for each DNS zone and regression
tests for known failure cases. If a failure is detected, that machine is
self-suspended, the monitoring agent instructs the BGP-speaker to
withdraw anycast advertisement, resulting in traffic shifting to other
healthy machines. If all machines within a PoP are self-suspended,
the anycast failover mechanism of §4.1 will route the DNS requests
to other PoPs. But, there is a danger to self-suspension if the name-
server failure is widespread or the bug is in the monitoring agent
itself. Either could lead to widespread self-suspension, significantly
reducing capacity. The Monitoring/Automated Recovery system
(Figure 5) prevents such scenarios by limiting concurrent name-
server suspensions using a distributed consensus algorithm, and
preventing self-suspension on some nameservers (§4.2.3). In this
way, Akamai DNS is designed to always return an answer, even if
there are widespread failures.

4.2.2 Stale State. The metadata on which nameservers base
their answers can change rapidly, particularly the Mapping Intelli-
gence metadata (§3.2). The consequence of serving DNS answers
based on stale metadata can be poor performance or an outage for
end-users.

Typically, updates propagate in less than 1 second, however we
observe a small fraction of nameservers with stale metadata at any
time. Stale state can be caused by the scenarios described in §4.2.1,
but it can also occur for reasons independent of machine level
faults. One common cause of stale state is isolated connectivity
issues. Similar to hardware failure, isolated connectivity failures
are common in large networks with causes including hardware
failures in switches/routers, cable cuts, andmisconfigurations. Once
connectivity is restored, the nameserver will have stale state for a
brief period until catching up. During this time, DNS queries could
be answered incorrectly, if not mitigated.

A particularly insidious case is a partial connectivity failure,
causing the nameservers to be unable to receive metadata from the
Akamai network, yet still able to receive DNS queries from some
subset of the Internet. The most common such failure mode is when

Akamai DNS SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

the transit links – typically the links over which metadata arrive –
for the PoP fail, but DNS traffic still reaches the nameservers via
peering links.

To mitigate the issues described above, the nameservers check
for staleness in critical state and, if determined to be stale, self-
suspends as described in §4.2.1. The exact criteria for staleness
varies among metadata. A common strategy is to declare state stale
if a critical input’s timestamp is older than a threshold.

4.2.3 Input-induced Failure. Since the nameservers consume a
wide variety of metadata inputs from varied internal and enterprise-
related sources, a great deal of care goes into validating each of these
inputs to ensure the safety of the nameservers. However, despite this
effort, there remains a highly unlikely but not impossible scenario
where a new input exercises a bug in the nameservers leading
to widespread crashes and potentially an outage. Even with very
long odds, such a scenario must be mitigated in order to meet our
resiliency mandate and protect the Internet ecosystem.

Akamai DNS protects against input-induced failures using input-
delayed nameservers. For each of the 24 anycast clouds, one PoP
is selected to house the input-delayed nameservers (in addition to
regular nameservers) that differ from other nameservers in three
ways. First, they receive all inputs with an artificially imposed 1-
hour delay. Second, they do not self-suspend due to input staleness.
Third, the BGP-speaker running along side the input-delayed name-
server advertises the anycast prefixes to the POP’s router with
a higher Multi-Exit Discriminator (MED) value than other name-
servers. The router prefers the advertisements with lowest MED.
So, in the common case where the regular nameservers are also
advertising the anycast prefixes to the router, the input-delayed
nameservers receive no DNS traffic.

The input-delayed nameservers will receive DNS traffic, how-
ever, when all other nameservers within the PoP withdraw their
advertisements, as would occur if an input caused them all to crash.
Similarly, if all other PoPs advertising the same anycast prefix
also withdraw their advertisements due to crashes, then all traffic
globally to the anycast prefix will failover to the input-delayed
nameservers within seconds as shown in §4.1. Since the input-
delayed nameservers have not yet received the input, they continue
to answer DNS queries with intentionally stale data ensuring that
Akamai DNS remains available, until Akamai DNS is fully restored.
Also, the input-delayed nameservers stop receiving any new in-
puts upon use, giving the operations team ample time to identify
and resolve the issue. Thus, the input-delayed system reduces an
extremely rare but potentially devastating outage to a period of
degraded service until mitigated.

4.2.4 Query-of-Death. Given that software crashes due to unex-
pected client traffic are a potential failure mode for all networked
systems, it is important for any DNS infrastructure to be resilient
against unexpected DNS queries, regardless of whether there is
malicious intent behind them. We call a DNS query that causes the
nameserver to crash a query-of-death (QoD). Although they are ex-
tremely rare, we observe that a QoD is seldom a malformed packet
not conforming to the relevant DNS RFCs. More often, a QoD arises
due to a corner-case in a complex query processing code path. No
matter the cause, when a nameserver crashes during answering a
query, the resolver will not receive an answer, eventually leading

to timeout & retry. If crashes are frequent, QoDs can cause a partial
or total service outage.

When a nameserver crashes, the on-machine monitoring agent
(Figure 6) detects it and instructs the BGP-speaker to withdraw
anycast advertisements, causing the router to forward traffic to
other machines in the PoP. However, forwarding a QoD to other
nameservers is problematic, as it could make them crash as well.

To mitigate QoDs, the nameservers detect unrecoverable faults
in their query processing logic and write the DNS payload of the
packet that it is currently processing to disk. A separate process on
the machine constructs and inserts a firewall rule to drop similar
DNS queries, preventing repeated crashes due to potential QoDs,
while allowing the nameserver to continue answering dissimilar
queries. However, the firewall rule may be too broad, dropping false
positives. Therefore, the rule is expunged after a configurable time
TQoD , so that the nameserver will occasionally attempt to answer
potential QoDs while limiting the crash rate to at most once per
TQoD . Further, this feature is only deployed on a subset of name-
servers. Thus, queries similar to the QoD that do not themselves
cause crashes experience a partial outage at worst while operations
teams work to identify the precise cause of the crash.

4.3 Attack Resiliency
Distributed Denial of Service (DDoS) attacks against authoritative
nameservers are frequent [6, 33] and sufficiently large attacks could
bring down all services the DNS supports. It is crucial that Akamai
DNS continues responding to valid DNS queries during attacks.
A DDoS attack attempts to exhaust the compute and/or network
resource of the DNS infrastructure. We describe architectural fea-
tures for resiliency and then show how these features can be put
into play in the context of both observed and hypothesized attack
scenarios.

4.3.1 Distributed Deployment. The first line of defense against
attacks is our highly distributed deployment. As mentioned in §3.1,
each enterprise is assigned a unique set of 6 anycast clouds to use for
their DNS zones and each anycast cloud is advertised from a large
set of PoPs. These PoPs are distributed worldwide and connected to
the Internet with thousands of peering links. Individually, PoPs are
over-provisioned in both bandwidth and compute to handle spikes
in traffic, allowing them to absorb a large distributed attack. No PoP
supportsmore than two anycast clouds. Even if an attacker saturates
a PoP that advertises one or two of the 6 clouds that support a zone,
resolvers, upon receiving a timeout, will retry against the other
4-5 clouds assigned to that zone [34]. Since the resolver is routed
to different PoPs for the other clouds, the resolver will, with high
probability, obtain an answer to the query.

Further, in case the target of an attack is a specific enterprise
deployed on Akamai DNS, rather than Akamai DNS itself, the
uniqueness of the 6 delegations used by that enterprise limits the
collateral damage to other enterprises not directly under attack.
In the worst case scenario that the PoPs advertising the clouds
assigned to enterprise A are all saturated, any other enterprise B
will have at least one delegation not in common with A and likely
advertised from a different PoP. Resolvers thus will be able to obtain
an answer for B’s DNS zones even in the worst case scenario. The
design choice of using 6 delegations is arbitrary and serves only to

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Schomp et al.

YES NO

Resolvers
DoSed?

Are Peering Link(s)
Congested?

I) Do Nothing

YES NO

Can Spread
Attack?

YES NO

Is Compute
Saturated?

YES NO

II) Work
with peers

III) Withdraw
from fraction of
links sourcing

attack

IV) Withdraw
from all links

sourcing attack

V) Withdraw
from all links
not sourcing

attack

Figure 9: Decision tree of anycast traffic engineering actions
taken during an attack.

balance between assigning each enterprise a unique set and limiting
the total number of clouds needed.

4.3.2 Anycast Traffic Engineering. Another tool to combat DDoS
attacks is traffic engineering via BGP advertisements. As noted in
[33], PoPs within an anycast cloud may either absorb attacks or
withdraw advertisements to shift the attack to other PoPs. Since
anycast prefixes are advertised to each peer at each PoP individually,
the decision to withdraw can be made per advertisement. A human
operator chooses an action during an attack following the decision
tree in Figure 9 as described below.

I) The preferred action is always do nothing. As described in
§4.3.1, resolvers are only DoSed if multiple PoPs are saturated
causing packet loss on all delegations for a zone. If that is not the
case, then absorbing the attack at the few saturated PoPs effectively
mitigates the attack. We also note that any active reaction leaks
information which could be of use to the attacker to improve their
attack. Further, shifting traffic among PoPs during an attack can
reduce the effectiveness of some automated mitigation mechanisms
described in §4.3.4. To know whether resolvers are DoSed we rely
upon our external monitoring and information sharing with peers.

I I) If resolvers are DoSed, determine what resource (bandwidth
or compute) is saturated. Measuring saturation of compute on the
nameservers is straightforward, while peering link congestion can
be determined with external monitoring or information sharing
with the peer. If neither is saturated, then there is likely upstream
congestion and we work with peers to determine where and how to
mitigate it.

I I I) If compute is saturated, withdrawing from a fraction of peer-
ing links sourcing attack traffic can disperse the attack among more
PoPs while absorbing a manageable fraction of the attack traffic in
each PoP.

IV) However, if one or more peering links are congested, with-
drawing from these attack-sourcing links will shift the traffic else-
where, possibly to larger peering links or spreading the attack across

more peering links. Deducing exactly how anycast traffic will shift
can be hard, but in many cases we can infer that the other PoPs
with links to the same peer from which we withdraw will absorb
the attack.

V) If spreading the attack is not possible, then withdrawing from
non-attack-sourcing links minimizes the collateral damage by shift-
ing as much legitimate traffic out of the saturated PoP as possible.

Finally, we note that while the above reactions are described
in terms of withdrawing routes, there are alternatives including
appending BGP communities[10] to implement remote triggered
blackhole filtering [35] or path prepending to reduce preference
for the route. Deciding which action to take is non-trivial and
potentially requires discussion with our network peers. Together
with the sensitivity of the issue and our preference to take no action
unless needed, we opt to leave the traffic engineering decisions to
human operators. Instead of automated systems for these tasks, we
focus on rich controls and rapid delivery of configuration safely
to PoPs that are under attack. Automated mechanisms to perform
traffic engineering and share information between network peers
are important areas for future work.

4.3.3 Query Scoring and Prioritization. To complement the dis-
tributedmitigations described earlier, we also built mitigationmech-
anisms that run on each machine as a part of the nameserver soft-
ware. Each query received by the nameserver is first given a penalty
score that represents the “legitimacy” of the query, where “suspi-
cious” queries receive more penalty than “legitimate” ones. Then,
when the queries are processed to generate a response, the legiti-
mate queries with lower penalty scores receive more resources than
the queries with higher penalty scores. This allows the nameserver
to prevent malicious queries from exhausting resources that it could
have used to serve legitimate ones. We describe this approach in
more detail below.

Query Scoring: Each DNS query passes through a sequence
of filters (described in §4.3.4), where each filter performs a set of
checks on the query parameters and adds a penalty score to the
query if needed. The total penalty score S assigned by the filters is
a measure of the legitimacy of the query. Next, the DNS query is
placed into one of a configurable number of queues according to
score. Each queue i has a maximum score value,Mi and the query
is placed into the queue i with the minimumMi such that S ≤ Mi .
Queries with a high score, S ≥ Smax , are discarded outright as
definitively malicious.

Query Processing: Queries are read from queues in the increas-
ing order of penalty for processing. If a lower-penalty queue is
empty, it reads from the next higher-penalty queue. In this way,
more legitimate queries are processed ahead of suspicious queries.
Our query processing is work-conserving, so if there are any en-
queued queries, it will attempt to answer them, even if suspicious.
Starvation is allowed in all queues except for the lowest-penalty
queue. We note that starvation is only possible if the compute ca-
pacity of the nameserver is saturated answering lower-penalty DNS
queries.

4.3.4 Attack Scenarios and their Mitigations. We present a tax-
onomy of DDoS DNS attacks and show which architectural features
and mechanisms described above are most effective at mitigating
each type of attack. We present the attacks in the order – from

Akamai DNS SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

our perspective – of the simplest to the most complex in both the
attacking instrument and mitigation mechanisms. Note that this
is not equivalent to ordering based upon impact or cost of the at-
tacks, as each one of these attacks can have significant impact if not
appropriately defended. Each attack is unique and all of Akamai
DNS’s mitigation mechanisms are reconfigurable so that they can
be tuned to react to a specific attack.

1) Volumetric: The goal in this class of attack is to saturate the
available bandwidth and cause DoS by dropping legitimate traffic
in queues at routers along the path. The attack traffic used need
not be DNS queries because the target is not the application but the
underlying network. Attacks in this class may use sources of ampli-
fication including DNS reflection [23] or NTP reflection [14]. The
attack traffic is typically easy to filter, e.g., simple firewall rules can
drop anything not destined to port 53 or distinguish DNS reflection
traffic from legitimate DNS queries using the QR-bit. In practice,
we observe that the bottleneck for volumetric attacks is usually
upstream from the nameservers as we have sufficient compute ca-
pacity to filter in the firewall at a higher rate than the bandwidth
available in peering links. Thus, volumetric attacks are the only
class of attacks listed here that typically fall into the category of
bandwidth saturating rather than compute saturating. Mitigating
them is a matter of having sufficient bandwidth to absorb the attack
and filtering in the firewall so that the traffic never reaches appli-
cations. We respond to this class of attacks by overprovisioning
peering links and reacting to saturated links as described in §4.3.2.

2) Direct Query: The simplest DNS-based DoS attack is to send
DNS queries directly to authoritative nameservers from one or more
attack machines. While this attack could saturate either bandwidth
or compute, in practice we observe that compute tends to be the
bottleneck for any class of attack that arrives at the application. To
combat this attack, we use a rate limiting filter in the query scoring
module that learns the “typical” query rate (in qps) of resolvers from
historical data and assigns a rate limit on a per-resolver basis. A
query received from a resolver that is over its rate limit is assigned
a penalty score. As shown in Figure 3, DNS traffic is bursty, hence
we use a leaky bucket rate limiting mechanism.

Rate limiting is most effective when the attack is from a small
number of source IP addresses, but becomes less effective when the
attack is from a large number of source IPs that each need to be rate
limited, e.g., a Mirai botnet attack[24]. As the cumulative volume
and source diversity of the attack increases, the query scoring
module activates an allowlist filter that maintains an “allowlist” of
resolvers that are historically-known to Akamai DNS. As noted
in §2, the resolvers that drive the most DNS queries to Akamai
DNS are consistent over time, and so the allowlist changes only
gradually. Queries originating from sources not in the allowlist are
assigned a penalty, de-prioritizing them further.

3) Random Subdomain[52]: This unique attack deserves spe-
cial attention because of how common it is and its ability to “pass-
through” resolvers. By randomizing the hostname in each query and
sending the query to resolvers, an attacker can force extremely low
cache hit rates in resolvers, causing the resolvers – including ones
on the allowlist – to send a high volume of queries to Akamai DNS.
Because the traffic originates from resolvers, the above described
filters are ineffective as the rate limiting filter is equally likely to

A1 A2

attack rate A (obfuscated)

0%

20%

40%

60%

80%

100%

%
 l
e
g
it

im
a
te

 q
u
e
ri

e
s

a
n
sw

e
re

d

w/ filter

w/o filter
A1 & A2

Figure 10: Percent legitimate queries answered
with/without NXDOMAIN filter.

assign a penalty for a legitimate query as a random subdomain
attack query from the same resolver.

To combat this class of attacks, our query scoring module uses
the NXDOMAIN filter that exploits the fact that the random host-
names4 used in attack do not exist, resulting in an NXDOMAIN
response. Thus, during a random subdomain attack, early identifi-
cation of queries that will result in an NXDOMAIN response and
filtering them can potentially mitigate the attack. Legitimate traffic
is unlikely to be penalized by this filter as NXDOMAIN responses
are rare in legitimate traffic, accounting for only ∼0.5% of the DNS
responses Akamai DNS typically returns.

The NXDOMAIN filter functions by tracking NXDOMAIN re-
sponses per zone and if the count exceeds a threshold, the filter
builds a tree of all valid hostnames in the zones above the thresh-
old. Queries for hostnames in the zones that are not present in the
tree are assigned a penalty score. An alternate approach is to build
a tree from all zones, rather than just those zones that exceed a
threshold number of NXDOMAINs. However, this approach results
in a tree that is much larger and updating such a tree results in
greater contention due to locking.

We use a testbed comprised of two machines connected via
a switch to demonstrate the effectiveness of query scoring and
prioritization. We focus on the NXDOMAIN filter. The other filters
described in this section behave similarly when applied to the
attack traffic that they are designed to mitigate. One machine in
the testbed acts as the source of DNS query traffic while the other
is a nameserver. From the source, we drive both legitimate traffic
sampled from observed production traffic and attack traffic where
the hostnames are selected from a test domain prepended with
a random string. The legitimate traffic is set at a fixed rate of L
queries/sec while the attack rate of A queries/sec is ramped up
over time. Figure 10 shows the percentage of the legitimate traffic
answered versus the attack rate A and has three regions of interest.
In the first region where A ≤ A1, the cumulative query rate A +
L is smaller than the processing capacity of the nameserver, so
all legitimate queries are answered with or without the filter. In
the second region A1 < A ≤ A2, the nameserver does not have
sufficient processing capacity to answer all of the DNS queries
received. Without the filter, the percentage of legitimate queries
4Often implemented by prepending a random string onto a valid zone, e.g.
“a3n92nv9.akamai.com”.

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Schomp et al.

answered decreases as legitimate queries are equally likely to be
dropped as attack queries. With the filter, the nameserver continues
to answer nearly all of the legitimate queries as they are prioritized
over the attack queries. In the third region when A > A2, we
reach the I/O capacity of the nameserver machine. The nameserver
software is unable to read queries off of the network stack as fast
as they arrive causing drops below the application layer of both
legitimate and attack queries. These results demonstrate that the
NXDOMAIN filter can effectively increase the cumulative rate that
the nameserver can handle before dropping legitimate queries.

4) Spoofed Source IP: A modification of direct query attacks
occurs when attackers spoof the source IP address, both hiding the
origins of the attack and enabling the use of many more source
IP addresses than physical machines. The rate limit filter quickly
becomes ineffective due to the large set of source IPs an attacker
is likely to use, while the allowlist filter remains effective. But,
an attacker may intelligently spoof IP addresses to impersonate
known resolvers (e.g. Google Public DNS[18]), including ones on
the allowlist, causing allowlist filtering to also be ineffective.

To combat this class of attacks, we use the well-established tech-
nique of hop-count filtering [22]. The hopcount filter learns the IP
TTL of DNS queries for resolvers on the allowlist using historical
data. When the IP TTL of a DNS query diverges from the expected
value, the query is assigned a penalty score. We observe in the DNS
traffic arriving at our nameservers that the IP TTL is consistent per
source IP address, with only 12% of source IP addresses showing any
variation in IP TTL over one hour and 4.7% ever varying by more
than ±1. On the other hand, when an attacker spoofs a resolver IP
address from a different topological location than that resolver, it
is likely that the spoofed query will arrive at the nameserver with
a different IP TTL.

5) Spoofed Source IP & IP TTL: Further enhancing the pre-
vious attack, we hypothesize that an attacker can spoof both the
source IP address and IP TTL of allowlisted resolvers. This implies
that the attacker knows the number of hops from the allowlisted
resolver to Akamai DNS. To combat this sophisticated attack, the
query scoring module contains a loyalty filter. Each nameserver in-
dependently tracks the resolvers that historically send DNS queries
to it. Recall the use of anycast for our nameservers and that each
resolver is routed to a PoP via BGP. Thus, allowlisted resolvers only
appear in the loyalty filter of nameservers to which the allowlisted
resolver is routed. When a nameserver receives a query from a
resolver that is not in the loyalty filter, the query is assigned a
penalty score. Thus, the attacker must not only spoof the source
IP address and IP TTL but also be routed to the same PoP as the
allowlisted resolver in order for the attack traffic to not be filtered.
Further, since the resolvers that drive the most DNS queries to
nameservers are consistent over several days (Figure 4), they will
with high probability be in the loyalty filter.

Discussion. Mitigating attacks by shifting the resolver traffic
via traffic engineering actions such as those described in §4.3.2
can negate the efficacy of filters that rely on leveraging historical
traffic patterns. In such a situation, the filters described here do not
differentiate between legitimate and attack traffic in the worst-case,
and our work-conserving query processing attempts to answer all
queries (§4.3.3). This is one reason why the preferred action during
an attack is to take no action.

While all of the mechanisms described above can together effec-
tively mitigate a wide range of attacks, we recognize that there is
still the possibility of an attack that cannot be distinguished from
legitimate traffic. Such a “perfect” attack would have to mimic legiti-
mate traffic so well that the likelihood of its occurrence is extremely
low, yet extremely costly. Thus, Akamai DNS is designed for this
event, by overprovisioning both bandwidth and compute, and by
compartmentalizing the infrastructure as described in §4.3.1.

5 DNS PERFORMANCE
While resiliency of Akamai DNS is critical due to its role in the
Internet ecosystem, its performance is also important. A significant
fraction of requests for Internet content and services start with a
query to Akamai DNS, so it is critical that Akamai DNS provides
answers with low latency.

5.1 Anycast Performance Tuning
Because Akamai DNS uses anycast routing, BGP path selection
plays an important part in performance. All 24 anycast clouds are
advertised from PoPs spread around the globe, so that there is
always a geographically nearby PoP for any resolver to provide
low RTT DNS resolutions for all 24 clouds. However, ensuring
that the route to the nearest PoP is selected by BGP is non-trivial
and requires significant engineering as well as communication
with our peers to align our routing policies. Common practice in
anycast optimization is to ensure that the peering links at PoPs
consist of the samemajor providers [55] and that the advertisements
from those PoPs appear identical upstream. We use these common
practices to select which PoPs should advertise which of our 24
anycast clouds and modify our BGP advertisements per peer to
achieve similarity. Recent work on modeling anycast catchments
[49], measuring performance [16], and automated configuration
of advertisements [30] help. However, today anycast optimization
remains a challenging and operationally time-consuming task. One
that we view deserves further study.

5.2 Two-Tier Delegation System
Akamai DNS is the entry point for the Akamai CDN, as each con-
tent request to the CDN is prefaced by a DNS query to Akamai DNS.
To accelerate DNS resolutions for the CDN, Akamai DNS uses the
Two-Tier delegation system. Continuing the example from §3.1, the
zone “akamai.net” is delegated to 13 anycast clouds, called toplevels
in Two-Tier context. From the toplevels, the zone “w10.akamai.net”
is delegated to a set of unicast lowlevel nameservers co-located
with the wide CDN footprint. The Akamai mapping system [11, 36]
tailors the set of lowlevel delegations to be near the resolver issuing
the query. The CDN hostnames use very low TTLs – currently 20
seconds – to enable quick reaction to changing network conditions
and edge server liveness. So, the resolvers’ cache must be frequently
refreshed. The lowlevels provide rapid responses to queries for CDN
hostnames, minimizing the cost of refreshes. The delegation from
toplevel to lowlevel has a large TTL – currently 4000 seconds –
so that resolvers need to refresh the lowlevel delegation set in-
frequently, Thus, the majority of resolutions occur between the
resolver and the lowlevels.

Akamai DNS SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

The Two-Tier system accrues two separate advantages over a
single-tier of IP anycast toplevels. First, the Two-Tier system is
able to utilize lowlevel nameservers deployed with the CDN’s edge,
including those in co-location sites where it is not possible to in-
ject eBGP route advertisements, and hence not usable for IP any-
cast. Second, in the Two-Tier system, Akamai is able to route re-
quests from resolvers to a proximal nameserver using its mapping
system[11, 36], often achieving lower RTTs than anycast.

We now develop an analytical model of Two-Tier and use it to
measure the performance impact of Two-Tier in isolation from
other components of DNS performance. The performance achieved
by Two-Tier depends upon the resolvers’ cache state and the RTTs
between the resolver and the lowlevels/toplevels. Consider the reso-
lution of “a1.w10.akamai.net” and let L be the RTT to the lowlevels
andT be the RTT to the toplevels5. If the resolver has the A/AAAA
records for “a1.w10.akamai.net” in cache, there is no need to contact
any authoritative nameservers and the resolution takes no time.
There is no performance impact to using Two-Tier in this case.
However, if “a1.w10.akamai.net” is not in cache but the NS records
(and associated A/AAAA records) for “w10.akamai.net” are cached,
then the resolver must only contact the lowlevels and the resolution
time is L msec. If the records for “w10.akamai.net” are not cached,
then the resolver must contact the toplevels first, resolution time
L +T msec. We define rT as the fraction of DNS resolutions that
require contacting the toplevels, the value of which depends upon
many factors including (i) the TTLs of the NS/A/AAAA records in-
volved and (ii) the frequency and inter-arrival times of DNS queries
from end-users to the resolver for Akamai CDN hostnames. Thus,
we can calculate the average resolution time using Two-Tier and
find the speedup over answering from the single-tier of toplevels
as:

S =
T

(1 − rT) · L + rT · (L +T)
(1)

When S > 1 , Two-Tier reduces resolution time on average in
comparison to answering directly from the single-tier of toplevels.
Intuitively, Two-Tier is most beneficial when rT is small – the
resolver has to consult the toplevels infrequently – and the differ-
ence between T and L is large – the resolver has a shorter RTT to
lowlevels than to toplevels.

Measuring T & L: We use RIPE Atlas [41] to measure T and
L, scheduling DNS measurements on 1,663 probes, selected with
1 probe per ASN/country combination. The DNS measurements
instruct the probes to send a query directly from the probe to the
toplevel delegations and lowlevel delegations. For the toplevels, we
configure the measurement target as one of the toplevel anycast
addresses. For the lowlevels, the measurement target should be
the unicast address of a lowlevel tailored to be near the probe. We
achieve this by setting the measurement target to the hostname of
one of the unicast lowlevel delegations, and using the “Resolve on
Probe” option [42], causing the probe to look up the hostname using
the probe’s resolver first. The experiment ran for one month with
hourly measurements and we compute the median RTT against
each toplevel and lowlevel delegation, and use the per delegation
RTTs to computeT and L as follows. Research in [34, 44, 56] shows

5Note that both the toplevel and lowlevel delegation sets contain multiple IP addresses
and thus multiple RTTs. In this formulation, we assume an aggregate RTT is used and
discuss its computation below.

2−4 2−3 2−2 2−1 20 21 22 23 24

speedup of Two-Tier (S)
0.0

0.2

0.4

0.6

0.8

1.0

fra
c.

 o
f r

es
ol

ve
rs

 (R
) /

 q
ue

rie
s (

Q)

wgt RTT - R
avg RTT - R
wgt RTT - Q
avg RTT - Q

Figure 11: Speedup in average resolution time using Two-
Tier over a single-tier of toplevels.

a range of behaviors among resolvers in sending DNS queries to
delegations, from apparent uniformity to preferencing delegations
with lower RTT. The former is a best case scenario for Two-Tier as
toplevel delegation RTTs vary widely due to anycast routing, often
not coinciding with lowest RTT. Similarly, the latter is a worst sce-
nario for Two-Tier since the highest toplevel RTTs contribute less
to the aggregate. Per RIPE Atlas probe, we simulate both behaviors
to bound the expected RTT. For the former we calculate the average
RTT, while for the latter we assume that a resolver’s preference
for a nameserver is inversely proportional to the delegation RTT
and calculate the weighted RTT. The lowlevel RTT L is less than
the toplevel RTT T for 98% of the probes using the average RTT
and 87% of the probes using the weighted RTT. Thus, Akamai map-
ping reduces the RTT between the resolver and the authoritative
nameserver over the RTT of anycast routing for the majority of
probes.

Measuring rT : Next, we investigate values of rT using resolvers
in the wild. Collecting logs from toplevels and lowlevels over one
day, we compute the number of queries received per resolver IP
address by toplevels and lowlevels for the domain “w10.akamai.net”.
For each of the 575K resolver IP addresses in the dataset, the number
of queries received by toplevels divided by the number of queries
received by lowlevels provides an estimate of rT . The mean value
of rT is 0.48. However, as previously noted in §2, the distribution of
DNS queries among resolvers is highly skewed. So, when weighted
by the lowlevel DNS queries sent by the resolvers, the weighted
mean rT is only 0.008.

Results: Combining the RTT dataset from RIPE Atlas with the
traffic logs from resolvers in the wild, we calculate the value of S
(Eq. 1). As RIPE Atlas probes are not resolvers themselves, they do
not appear in the traffic logs and there is no direct way to merge
the datasets. Instead, we choose to combine all (T , L) and rT values
from both datasets to produce a collection of simulated resolvers
based upon our real worldmeasurements. These simulated resolvers
cover a wide range of situations for resolvers, including situations
encountered by real-world resolvers and situations not at present
encountered by any real-world resolvers, while also missing some
situations that real-world resolvers may encounter. Figure 11 in the
lines “wgt RTT - R” and “avg RTT - R” shows CDFs of the speedup
using the weighted and average RTT, respectively. Between 47%
(448M) using the weighted RTT and 64% (609M) using the average

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Schomp et al.
To

pl
ev

el
 r

es
ol

ut
io

n
ti
m

e
(m

se
c)

Two-Tier resolution time (msec)

Figure 12: Computed resolution time per query from sim-
ulated resolvers to toplevels (Y -axis) and Two-Tier (X -axis)
using average (right) and weighted (left) RTTs. Tint repre-
sents a linear scaling on the number of simulated resolvers
within a hexbin.

RTT experience reduced average resolution time with Two-Tier, i.e.,
S > 1. Due to the skew in DNS queries among resolvers, those 47-
64% resolvers account for 87-98% of all DNS queries, as shown in the
lines “wgt RTT - Q” and “avg RTT - Q”. Since S is a ratio, we also plot
the absolute resolution times in Figure 12 for the “wgt RTT - Q” (left)
and “avg RTT - Q” (right). TheY -axis is the numerator in Eq. 1 while
the X -axis is the denominator. Thus, Two-Tier reduces resolution
time compared to toplevels for points above the diagonal. For both
“wgt RTT - Q” and “avg RTT - Q”, the average Two-Tier resolution
time is roughly 16 msec. The average toplevel resolution time is
27 and 61 msec in “wgt RTT - Q” and “avg RTT - Q”, respectively.
Thus, we conclude that Two-Tier can reduce resolution time in
most situations over Akamai’s single-tier of toplevels.

Improvements: Our results show that there is a cost for some
resolvers, however, and particularly those that weight delegation
selection or have low DNS query volumes. Clearly, the cost is in-
curred each time the resolver must query both the toplevels and
the lowlevels. If the DNS response from the toplevels could, in ad-
dition delegating to lowlevels, push an answer so that the resolver
need not query the lowlevels in the same resolution, then Two-Tier
would always be beneficial when the lowlevel RTT is less than
the toplevel RTT, which is the case for 87-98% of the simulated
resolvers. Pushing answers requires a modification to the DNS pro-
tocol. However, server push is a feature in recently standardized
DNS-over-HTTPS [19].

6 RELATEDWORK
Since DNS was conceived during the Internet’s early stages [31], it
has been extensively studied, resulting in numerous RFCs [1], as
well as a vast array of academic work. DNS lies in the intersection
of various fields such as security and privacy [21, 38, 47], BGP
and anycast [7, 15, 30, 43], resiliency against malicious attacks
[32, 51], and DNS-based traffic load balancing and CDNs [50]. In
terms of systemic analysis andmeasurement studies, prior work has
extensively explored the behaviors and interactions of end-users
and their resolvers [2, 8, 17, 26, 48, 56]. In comparison, authoritative
DNS infrastructures have not been studied in as much depth, with
the exception of the root nameservers [9, 28, 53]. We focus on

the design and operation of one of the largest authoritative DNS
infrastructures in the world, Akamai DNS.

Several elements of Akamai DNS and how it is used by the Aka-
mai CDN have been studied before. In [36], the authors present the
Akamai CDN and how Akamai DNS answers DNS queries for the
CDN, including a high level description of the Two-Tier delegation
system (§5.2). In this paper, we demonstrate the effectiveness of
Two-Tier. In [11], the authors demonstrate an extension of the Map-
ping Intelligence component and Akamai DNS to support end-user
mapping using the edns-client-subnet (ECS) EDNS0 option. This
work presents a use of Akamai DNS, while we present the Akamai
DNS infrastructure in detail. Finally, the overlay multicast network
that Akamai DNS uses for near real-time delivery of certain critical
metadata is similar to that discussed in [4, 25]. Akamai DNS is a
consumer of these delivery services, so we do not discuss it here.

7 CONCLUDING REMARKS
This paper presents design principles and experiential insights
gleaned over two decades of architecting, deploying, and operating
Akamai DNS, a critical component of the Internet infrastructure.We
show how Akamai DNS is designed to provide resiliency, scalability,
performance, and reconfigurability. We describe a taxonomy of
failure modes and attack scenarios, and the mechanisms designed to
mitigate them. As DNS query volumes increase rapidly and attacks
on DNS become more sophisticated, the Akamai DNS architecture
provides a flexible platform to build more capabilities to meet future
challenges.

We now summarize the key design principles that underlie the ar-
chitecture of Akamai DNS: (i) Avoid single points of failure (§4.3.1);
(ii) Use general mitigation strategies for failure modes rather than
specific point solutions, as such strategies potentially also cover
unanticipated failure modes (§4.2), (iii) Under widespread failure,
continue to operate in a degraded state as the alternative is not op-
erating at all (§4.2.1), (iv) Build in contingencies for even extremely
unlikely but high impact scenarios, so that Akamai DNS is always
available (§4.2.3, §4.2.4), (v) Avoid actively reacting to an attack –
instead rely upon automated mitigations – until action becomes
absolutely necessary (§4.3.2).

We also highlight the following areas of future work for the
research community. Mechanisms for automating anycast traffic
engineering (§4.3.2) and the methods for information sharing be-
tween network peers to enable those mechanisms is an important
area of work. Similarly, methods for predicting anycast routing or
improving BGP route selection would greatly advance anycast per-
formance (§5.1). Further, we believe there remain opportunities to
improve the DNS protocol (§5.2), adding features to provide faster
answers to the world’s queries.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers and
our shepherd for their insightful comments that helped improve
this paper. We would like to also thank Jean Roy, Larry Campbell,
Brian Sniffen, and Joshua Matt for providing valuable feedback on
early drafts of this paper. Finally, we thank the numerous engi-
neers at Akamai who contributed to building Akamai DNS into the
impressive system that it is today.

Akamai DNS SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

REFERENCES
[1] 2020. DNS Camel Viewer. (2020). https://powerdns.org/dns-camel/
[2] Bernhard Ager, Wolfgang Mühlbauer, Georgios Smaragdakis, and Steve Uhlig.

2010. Comparing DNS resolvers in the wild. In Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement. 15–21.

[3] Akamai. 2019. EdgeScape. (2019). Retrieved December 2019 from https://
developer.akamai.com/edgescape

[4] Konstantin Andreev, Bruce M Maggs, Adam Meyerson, and Ramesh K Sitaraman.
2003. Designing overlay multicast networks for streaming. In Proceedings of the
fifteenth annual ACM symposium on Parallel algorithms and architectures. ACM,
149–158.

[5] Vasco Asturiano. 2011. The Shape of a BGP Update. (2011). Retrieved January
2020 from https://labs.ripe.net/Members/vastur/the-shape-of-a-bgp-update

[6] Chris Baker. 2016. Dyn, DDoS, and the DNS. (2016).
[7] Matt Calder, Ashley Flavel, Ethan Katz-Bassett, Ratul Mahajan, and Jitendra

Padhye. 2015. Analyzing the Performance of an Anycast CDN. In Proceedings of
the 2015 Internet Measurement Conference. 531–537.

[8] Thomas Callahan, Mark Allman, and Michael Rabinovich. 2013. On modern DNS
behavior and properties. ACM SIGCOMM Computer Communication Review 43, 3
(2013), 7–15.

[9] Sebastian Castro, Duane Wessels, Marina Fomenkov, and Kimberly Claffy. 2008.
A day at the root of the internet. ACM SIGCOMM Computer Communication
Review 38, 5 (2008), 41–46.

[10] R. Chandra, P. Traina, and T. Li. 1996. BGP Communities Attribute. RFC 1997.
https://tools.ietf.org/html/rfc1997

[11] Fangfei Chen, Ramesh K Sitaraman, and Marcelo Torres. 2015. End-user mapping:
Next generation request routing for content delivery. ACM SIGCOMM Computer
Communication Review 45, 4 (2015), 167–181.

[12] Cloudflare. 2019. Cloudflare 1.1.1.1 Public Recursive Resolver. (2019). Retrieved
June 2019 from https://1.1.1.1/

[13] C. Contavalli, W. van der Gaast, D. Lawrence, and W. Kumari. 2016. Client Subnet
in DNS Queries. RFC 7871. https://tools.ietf.org/html/rfc7871

[14] Jakub Czyz, Michael Kallitsis, Manaf Gharaibeh, Christos Papadopoulos, Michael
Bailey, and Manish Karir. 2014. Taming the 800 pound gorilla: The rise and
decline of NTP DDoS attacks. In Proceedings of the 2014 Internet Measurement
Conference. ACM, 435–448.

[15] Ricardo de Oliveira Schmidt, John Heidemann, and Jan Harm Kuipers. 2017.
Anycast latency: How many sites are enough?. In International Conference on
Passive and Active Network Measurement. Springer, 188–200.

[16] Wouter B De Vries, Ricardo de O Schmidt, Wes Hardaker, John Heidemann, Pieter-
Tjerk de Boer, and Aiko Pras. 2017. Broad and Load-Aware Anycast Mapping
with Verfploeter. In ACM Internet Measurement Conference.

[17] Hongyu Gao, Vinod Yegneswaran, Yan Chen, Phillip Porras, Shalini Ghosh, Jian
Jiang, and Haixin Duan. 2013. An empirical reexamination of global DNS behavior.
In ACM SIGCOMM Computer Communication Review, Vol. 43. ACM, 267–278.

[18] Google. 2019. Google Public DNS. (2019). Retrieved June 2019 from https:
//developers.google.com/speed/public-dns/

[19] P. Hoffman and P. McManus. 2018. DNS Queries over HTTPS (DoH). RFC 8484.
https://tools.ietf.org/html/rfc8484

[20] C. Hopps. 2000. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992.
https://tools.ietf.org/html/rfc2992

[21] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman. 2016.
Specification for DNS over Transport Layer Security (TLS). RFC 7858. https:
//tools.ietf.org/html/rfc7858

[22] Cheng Jin, Haining Wang, and Kang G Shin. 2003. Hop-count filtering: an
effective defense against spoofed DDoS traffic. In Proceedings of the 10th ACM
Conference on Computer and Communications Security. ACM, 30–41.

[23] Georgios Kambourakis, Tassos Moschos, Dimitris Geneiatakis, and Stefanos
Gritzalis. 2007. Detecting DNS amplification attacks. In International Workshop
on Critical Information Infrastructures Security. Springer, 185–196.

[24] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas.
2017. DDoS in the IoT: Mirai and other botnets. Computer 50, 7 (2017), 80–84.

[25] Leonidas Kontothanassis, Ramesh Sitaraman, Joel Wein, Duke Hong, Robert
Kleinberg, Brian Mancuso, David Shaw, and Daniel Stodolsky. 2004. A transport
layer for live streaming in a content delivery network. Proc. IEEE 92, 9 (2004),
1408–1419.

[26] Marc Kührer, Thomas Hupperich, Jonas Bushart, Christian Rossow, and Thorsten
Holz. 2015. Going wild: Large-scale classification of open DNS resolvers. In
Proceedings of the 2015 Internet Measurement Conference. 355–368.

[27] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. 2000. Delayed
Internet routing convergence. ACM SIGCOMM Computer Communication Review
30, 4 (2000), 175–187.

[28] Bu-Sung Lee, Yu Shyang Tan, Yuji Sekiya, Atsushi Narishige, and Susumu Date.
2010. Availability and Effectiveness of Root DNS servers: A long term study. In
2010 IEEE Network Operations and Management Symposium-NOMS 2010. IEEE,
862–865.

[29] E. Lewis and Ed. A. Hoenes. 2010. DNS Zone Transfer Protocol (AXFR). RFC 5936.
https://tools.ietf.org/html/rfc5936

[30] Stephen McQuistin, Sree Priyanka Uppu, and Marcel Flores. 2019. Taming Any-
cast in the Wild Internet. In Proceedings of the Internet Measurement Conference.
165–178.

[31] P. Mockapetris. 1987. Domain names - implementation and specification. STD 13.
https://tools.ietf.org/html/rfc1035

[32] Giovane Moura, John Heidemann, Moritz Müller, Ricardo de O Schmidt, and
Marco Davids. 2018. When the Dike Breaks: Dissecting DNS Defenses During
DDoS. In Proceedings of the Internet Measurement Conference 2018. ACM, 8–21.

[33] Giovane Moura, Ricardo de O Schmidt, John Heidemann, Wouter B de Vries,
Moritz Muller, Lan Wei, and Cristian Hesselman. 2016. Anycast vs. DDoS: Eval-
uating the November 2015 root DNS event. In Proceedings of the 2016 Internet
Measurement Conference. ACM, 255–270.

[34] Moritz Müller, Giovane Moura, Ricardo de O Schmidt, and John Heidemann. 2017.
Recursives in the wild: engineering authoritative DNS servers. In Proceedings of
the 2017 Internet Measurement Conference. ACM, 489–495.

[35] Marcin Nawrocki, Jeremias Blendin, Christoph Dietzel, Thomas C Schmidt, and
Matthias Wählisch. 2019. Down the Black Hole: Dismantling Operational Prac-
tices of BGP Blackholing at IXPs. In Proceedings of the Internet Measurement
Conference. ACM, 435–448.

[36] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. 2010. The Akamai Network:
A Platform for High-Performance Internet Applications. ACM SIGOPS Operating
Systems Review 44, 3 (2010), 2–19.

[37] Jeffrey Pang, Aditya Akella, Anees Shaikh, Balachander Krishnamurthy, and
Srinivasan Seshan. 2004. On The Responsiveness of DNS-Based Network Control.
In Proceedings of the 4th ACM SIGCOMM Conference on Internet Measurement.
21–26.

[38] Jeman Park, Aminollah Khormali, Manar Mohaisen, and Aziz Mohaisen. 2019.
Where Are You Taking Me? Behavioral Analysis of Open DNS Resolvers. In
2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 493–504.

[39] Quad9. 2019. Quad9 DNS Service. (2019). Retrieved June 2019 from https:
//www.quad9.net/

[40] Yakov Rekhter, Susan Hares, and Tony Li. 2006. A Border Gateway Protocol 4
(BGP-4). RFC 4271. (Jan. 2006). https://doi.org/10.17487/RFC4271

[41] RIPE. 2019. Atlas. (2019). Retrieved January 2020 from https://atlas.ripe.net/
[42] RIPE. 2019. Atlas API v2 manual: Base Attributes. (2019). Retrieved June

2020 from https://atlas.ripe.net/docs/api/v2/manual/measurements/types/base_
attributes.html

[43] Sandeep Sarat, Vasileios Pappas, and Andreas Terzis. 2006. On The Use of
Anycast in DNS. In Proceedings of 15th International Conference on Computer
Communications and Networks. IEEE, 71–78.

[44] Kyle Schomp. 2019. DNS Recursive Resolver Delegation Selection in the
Wild. (2019). Retrieved May 2019 from https://indico.dns-oarc.net/event/31/
contributions/676/

[45] Kyle Schomp, Mark Allman, and Michael Rabinovich. 2014. DNS resolvers
considered harmful. In Proceedings of the 13th ACM Workshop on Hot Topics in
Networks. ACM, 16.

[46] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. 2013. On
Measuring the Client-side DNS Infrastructure. In Proceedings of the 2013 Confer-
ence on Internet Measurement (IMC ’13). ACM, New York, NY, USA, 77–90.

[47] Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. 2014. As-
sessing DNS Vulnerability to Record Injection. In International Conference on
Passive and Active Network Measurement. Springer, 214–223.

[48] Kyle Schomp, Michael Rabinovich, and Mark Allman. 2016. Towards a model of
DNS client behavior. In International Conference on Passive and Active Network
Measurement. Springer, 263–275.

[49] Pavlos Sermpezis and Vasileios Kotronis. 2019. Inferring Catchment in Internet
Routing. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 3, 2 (2019), 30.

[50] Anees Shaikh, Renu Tewari, and Mukesh Agrawal. 2001. On The Effectiveness
Of DNS-Based Server Selection. In Proceedings of IEEE INFOCOM 2001, Vol. 3.
IEEE, 1801–1810.

[51] Roland van Rijswijk-Deij, Anna Sperotto, and Aiko Pras. 2014. DNSSEC and Its
Potential for DDoS Attacks: A ComprehensiveMeasurement Study. In Proceedings
of the 2014 Conference on Internet Measurement (IMC ’14). ACM, New York, NY,
USA, 449–460. https://doi.org/10.1145/2663716.2663731

[52] Ralf Weber. 2014. Latest Internet Plague: Random Subdomain Attacks. (2014).
Retrieved May 2019 from https://indico.uknof.org.uk/event/31/contributions/349/

[53] Duane Wessels. 2019. Long Term Analysis of Root Server System Performance
Using RIPE Atlas Data. (2019). Retrieved Nov 2019 from https://indico.dns-oarc.
net/event/32/contributions/713/

[54] Florian Wohlfart, Nikolaos Chatzis, Caglar Dabanoglu, Georg Carle, and Walter
Willinger. 2018. Leveraging interconnections for performance: the serving in-
frastructure of a large CDN. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication. ACM, 206–220.

https://powerdns.org/dns-camel/
https://developer.akamai.com/edgescape
https://developer.akamai.com/edgescape
https://labs.ripe.net/Members/vastur/the-shape-of-a-bgp-update
https://tools.ietf.org/html/rfc1997
https://1.1.1.1/
https://tools.ietf.org/html/rfc7871
https://developers.google.com/speed/public-dns/
https://developers.google.com/speed/public-dns/
https://tools.ietf.org/html/rfc8484
https://tools.ietf.org/html/rfc2992
https://tools.ietf.org/html/rfc7858
https://tools.ietf.org/html/rfc7858
https://tools.ietf.org/html/rfc5936
https://tools.ietf.org/html/rfc1035
https://www.quad9.net/
https://www.quad9.net/
https://doi.org/10.17487/RFC4271
https://atlas.ripe.net/
https://atlas.ripe.net/docs/api/v2/manual/measurements/types/base_attributes.html
https://atlas.ripe.net/docs/api/v2/manual/measurements/types/base_attributes.html
https://indico.dns-oarc.net/event/31/contributions/676/
https://indico.dns-oarc.net/event/31/contributions/676/
https://doi.org/10.1145/2663716.2663731
https://indico.uknof.org.uk/event/31/contributions/349/
https://indico.dns-oarc.net/event/32/contributions/713/
https://indico.dns-oarc.net/event/32/contributions/713/

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Schomp et al.

[55] Bill Woodcock. 2016. Best Practices in DNS Service-Provision Architecture. In
ICANN 55. ICANN.

[56] Yingdi Yu, Duane Wessels, Matt Larson, and Lixia Zhang. 2012. Authority server
selection in DNS caching resolvers. ACM SIGCOMM Computer Communication

Review 42, 2 (2012), 80–86.

	Abstract
	1 Introduction
	2 Characterizing Query Traffic
	3 System Architecture
	3.1 Authoritative Nameservers
	3.2 Supporting Components

	4 Resiliency
	4.1 Anycast Failover Mechanism
	4.2 Failure Resiliency
	4.3 Attack Resiliency

	5 DNS Performance
	5.1 Anycast Performance Tuning
	5.2 Two-Tier Delegation System

	6 Related Work
	7 Concluding Remarks
	References

