
Distance Estimation for Very Large Networks
using MapReduce and Network Structure Indices

Hüseyin Oktay1

Dept. of Computer Science
University of Massachusetts

hoktay@cs.umass.edu

A. Soner Balkir1
Dept. of Computer Science

University of Chicago
soner@uchicago.edu

Ian Foster
Dept. of Computer Science,

University of Chicago
foster@anl.gov

David D. Jensen
Dept. of Computer Science
University of Massachusetts

jensen@cs.umass.edu

ABSTRACT
Distance calculation is key to many network mining appli-
cations such as centrality and clustering. As the size of
available networks increases to millions of nodes and edges,
distance calculation becomes a bottleneck for such appli-
cations. One way to overcome such bottlenecks is to use
the MapReduce parallel processing framework, though in-
creasing resources linearly does not scale well for many net-
work mining applications. Hence, instead of calculating
the exact distance, efficiently and accurately estimating dis-
tance may scale better for very large networks. In this
paper, we propose a network structure index(NSI) on the
MapReduce framework by extending the basic breadth-first
search algorithm to accurately estimate shortest distance
using MapReduce. We demonstrate the accuracy of our
method for distance estimation on synthetic and real net-
works. We use distance estimation along with progressive
sampling to achieve two specific applications for very large
networks: closeness centrality and betweenness centrality.
We first evaluate our distance estimation method on rela-
tively small networks, then we report our observations about
the most central nodes of a Twitter network with more than
40 million nodes.

1. INTRODUCTION
Networks with millions of nodes and edges are increasingly
observable. Social networks such as Facebook, Twitter, and
LinkedIn have millions of users; billions of web sites are
linked by hyperlinks; call networks constructed by who-calls-
who information with millions of users are now observable;
biological networks representing the protein-protein interac-
tion and numerous other networks are now available. Many
researchers in different fields are interested in calculating
network properties and statistics for such very large net-
works.

One key common operation in calculating such statistics
and properties is shortest path calculation between nodes,
and as the size of the network increases to millions of nodes
and edges, such calculation becomes intractable. In this
work we combine two existing ideas to overcome this chal-
lenge: (1) using the MapReduce (MR) distributed program-
ming framework[2], and (2) efficiently and accurately esti-
mating shortest paths between nodes by indexing the net-

1These authors contributed equally to this work.

1

5 4

3

6

7

2

9

10

8

Figure 1: Example toy network

Table 1: Input file for the example network

(a) Initial representation, root is 1

NodeId Root Distance Degree Neighbors

1 1 0 5 3 5 4 7 6
0 1 inf 1 2
2 1 inf 5 9 0 3 4 8
3 1 inf 3 1 2 4
4 1 inf 3 1 3 2
5 1 inf 1 1
6 1 inf 2 1 7
7 1 inf 2 1 6
8 1 inf 1 2
9 1 inf 1 2

(b) Representation after convergence

NodeId Root Distance Degree Neighbors

1 1 0 5 3 5 4 7 6
0 1 3 1 2
2 1 2 5 9 0 3 4 8
3 1 1 3 1 2 4
4 1 1 3 1 3 2
5 1 1 1 1
6 1 1 2 1 7
7 1 1 2 1 6
8 1 3 1 2
9 1 3 1 2

work structure[13].
MR is a widely used, distributed programming frame-

work[2], and network structure indices (NSIs)[13] can pro-
vide efficient and accurate distance estimation, which is re-
quired for many network mining applications[10]. In this
paper, we develop an NSI on the MR parallel processing
framework using Hadoop to efficiently and accurately esti-
mate shortest paths between nodes in very large networks.
We also use distance estimation with NSIs to estimate close-
ness centrality and betweenness centrality. We show the
accuracy of NSIs on relatively small synthetic and real net-
works for which we can also calculate the exact values. We
also report results from a Twitter network with more than
40 million nodes.



(a) Distance estimation (b) Betweenness centrality (c) Closeness centrality

Figure 2: Forest fire network 10,000 nodes, 19,832 edges

(a) Distance estimation (b) Betweenness centrality (c) Closeness centrality

Figure 3: Wikipedia Vote network, 7,066 nodes, 100,736 edges

2. OUR IMPLEMENTATION OF NSIS
Our implementation of NSIs on MR is an extension of the
breadth-first search (BFS) algorithm. Thus, we first review
the BFS implementation on MR and then give details on
how to extend it to realize NSIs. We assume for simplic-
ity that networks are undirected and unweighted; however,
our methods are easily applicable to weighted and directed
networks. We also point out the required modifications to
extend these same ideas to weighted and directed networks.

Breadth-First Search in MapReduce
In MR we choose to represent networks as adjacency lists
because each line corresponds to a node and all local infor-
mation about a node is summarized in one line. The format
of the input file is:

<NodeId> <Root> <Distance> <Degree> <Neighbors>

where NodeId is the label of the particular node, Root is
the root of the breadth-first search tree that is about to be
calculated, Distance is shortest-path distance from node to
root, and Degree and Neighbors are, respectively, the num-
ber of neighbors and a list of those neighboring nodes. Note
that in the input file, the distance for each node is set to
“infinity” for all nodes except the root node, for which dis-
tance is set to 0. Table 1a is an example input file for the
network in figure 1 where the root is 1. If an NSI has more

than one tree, we merge the files for each tree. In BFS for
MR, the map function gets a line from the input file, and
if the Distance is less than infinity, then for each neighbor,
the mapper emits key-value pairs, where key is the label of
the neighboring node and value is the Distance +1. Also,
each mapper emits the input line as is, in order not to lose
the degree and neighbors information for nodes.

Since key is the NodeId, all values for a specific node are
processed by one reducer. For each node, the reducer cal-
culates the minimum distance among the values, and emits
NodeId, Root, Distance, Degree, and Neighbors as output
where Distance is the minimum distance. If the node is not
reached (i.e., the Distance is infinity) then the distance re-
mains infinity. BFS converges when there are no unreached
nodes left (i.e., no Distance value with infinity). The out-
put file after the BFS for the example graph in 1 is shown in
table 1b. In the worst case, BFS needs to run d iterations,
where d is the diameter of network.

NSIs in MapReduce
We extend BFS to keep track of the shortest path between
nodes and the root of the tree. Basically, our new input file
to the algorithm is in the following form:

<NodeId> <Root> <Distance> <Degree> <Neighbors> <Path>

The only modification to the BFS algorithm is to update
the path when we emit new distances. We then use the



(a) Distance estimation (b) Betweenness centrality (c) Closeness centrality

Figure 4: Peer-to-Peer Gnutella File Sharing Network, 8,842 nodes, 63,674 edges

path information to find the lowest common ancestors and
thus estimate more accurately the distance between nodes.
We use the following formula to do distance estimation:

D(n1, n2) = D(n1, lca)+D(n2, lca)
where n1, n2, and lca are nodes in the network and lca (the
lowest common ancestor) is identified through path infor-
mation we now have in the NSIs. For example, if we want
to estimate the distance between (8,9) in our toy network
in figure 1 using the BFS tree with root 1, we find that 2 is
the lowest common ancestor by using the path information,
and we estimate the distance as

D(8,9) = D(8,2) + D(9,2) = 1+1 = 2.

Extending to Directed and Weighted Networks
Distance estimation can be performed for directed networks
by considering only “out degree” and “out neighbors” in the
initial representation of the network. For weighted networks,
we add another column to the input file that has a list of
weights corresponding to the weight of the edge to the cor-
responding neighbor. More concretely, the input file format
for weighted version would be as follows:

<NodeId> <Root> <Distance> <Degree> <Neighbors>

<Weights> <Path>

where Weights is a list of weights where wi corresponds to
the edge weight between NodeId and ith neighbor in Neigh-
bors. While constructing NSIs, we emit Distance+wi in the
map function for each neighbor instead of Distance+1 in the
unweighted case.

3. APPLICATIONS OF NSIS

Betweenness Centrality
Betweenness centrality[4] is a widely used flow-based metric
for identifying central nodes in networks. Formally, between-
ness centrality for a node is defined as

B(u) =
∑

v,w∈V

gu(v, w)

g(v, w)
, u 6= v 6= w (1)

where g(v, w) is the number of lowest-cost (geodesic) paths
connecting nodes v and w, and gu(v, w) is the number of
these paths that pass through node u. Nodes that occur on
more shortest paths between nodes have higher betweenness

centrality. For example, in our small network in figure 1,
node 2 occurs in most of the shortest paths between the
nodes and hence has high betweenness centrality.

Since the original definition of betweenness centrality
takes O(n3) time, we employ two techniques to make compu-
tation tractable. First, as proposed by Maier et al. (2011),
instead of calculating all shortest paths between all pairs,
we estimate one shortest path between pairs and increase
the score by 1 for nodes that constitute the path. Second,
instead of calculating paths for all pairs, we use progressive
sampling as proposed by Provost et al.[12] and calculate dis-
tance for a sample of pairs. We converge when the change
in Spearman’s ranking coefficient between the rankings of
betweenness scores in consecutive iterations is less than a
threshold (i.e., 0.01).

Closeness Centrality
Closeness centrality is another widely used metric based on
diameter to identify central nodes in networks. Formally
closeness centrality for a node is defined as

C(u) =
1∑

v∈V d(u, v)
(2)

where d(u, v) is the distance between u and v. Nodes that
have small average distance to all other nodes have higher
closeness centrality scores. For example, node 3 has a high
closeness centrality score in figure 1.

As Maier et al. (2011) proposed, we implement an ap-
proximate method to calculate the closeness centrality where,
instead of calculating distance to all other nodes, we calcu-
late the distance to a sample of nodes. We again use pro-
gressive sampling[12] and calculate the distance to a sample
of nodes. As in betweenness centrality, the algorithm con-
verges if the Spearman’s ranking coefficient for the closeness
centrality score between consecutive iterations is less than a
threshold (e.g., 0.01).

4. RESULTS
We first report results from relatively smaller networks to
evaluate our distance estimation method. We randomly
sample 10,000 pairs, and we plot the frequency of estimated
distance with respect to the actual distance. As Maier et



al. (2001) noted, relatively few trees are needed to provide
acceptable performance on real world networks.

Figure 2a shows distance estimation for a synthetically
generated forest fire network with 10,000 nodes and almost
20,000 edges[8] where we used 10 trees in our NSI. As the
figure suggests, for many of the distance estimations, our
method can find the actual distance, and for some pairs,
our method over estimates. The average stretch of random
10,000 distance estimation calculations is 1.03. Similarly,
in figure 3a, we report the same experiment for a wikipedia
voting network from Stanford’s network datasets1 with more
than 7,000 nodes and more than 100,000 edges where we
use 10 trees in our NSI and the average stretch is 1.28. In
figure 4a, we have the same experiment for a peer-to-peer
file sharing network with more than 8,000 nodes and more
than 63,000 edges again from Stanford’s network library.
We used 20 trees in our NSI, and the average stretch is 1.22.
And finally in figure 5a, we report the same experiment on
a protein-protein interaction network2, almost 1,500 nodes
and almost 2,000 edges where with 3 trees we get average
stretch of 1.28. Our results suggest that with few trees,
distance between pairs can be estimated with reasonable ac-
curacy.

We also evaluated our centrality algorithms based on
progressive sampling with relatively small networks. Figure
2b shows betweenness centrality rankings for the synthetic
forest fire network. Our algorithm converges when the sam-
ple size is 50,000 pairs. Most centrality applications, require
to identify the top k results, and in figure 2b we report
that the approximate method finds the top 20% percent of
nodes with high betweenness centrality with a 95% percent
accuracy. Also, in figure 3b we report the betweenness cen-
trality approximations by using 32,000 distance pairs for the
wikipedia voting network for the top 3000 (roughly top 20%)
instances, with 88% accuracy. In figure 5b, we show the
top 20% nodes with high betweenness nodes in the protein-
protein interaction network with 99% accuracy where we
used 8,000 distance pairs to calculate. And finally, in fig-
ure 4b, we show the top 20% of the peer-to-peer network
with 65% accuracy where we used 16,000 distance pairs. We
suggest two ways to increase the accuracy:(1) Increase the
number of trees in NSI, (2) Sample more distance pairs.

Figure 2c shows closeness centrality rankings for the syn-
thetic forest fire network. Our algorithm converges when the
sample size is 1000 pairs. Also, we report that the approxi-
mate method finds the top 20% percent of nodes with high
closeness centrality with a 92% percent accuracy by consid-
ering the distance to only 1000 random nodes. Also, in fig-
ure 3c, we report the closeness centrality approximations for
the wikipedia voting network for the top 3000 (roughly top
20%) instances, where we have 76% accuracy by considering
distance to 640 random nodes. In figure 5b, we report the
top 20% of the nodes with high closeness centrality scores
with 66% percent accuracy by considering distance to 40
random sample nodes. Finally in figure 4c, we show the top
20% of nodes with high closeness centrality for the peer-to-
peer network with 71% accuracy by considering distance to
only 160 random nodes. Again the suggestions above can
further increase the accuracy. We conclude that approxi-
mation methods can estimate the top k results as well as

1http://snap.stanford.edu/data/
2http://www.barabasilab.com/rs-netdb.php

centrality rankings with reasonable accuracy.
We also report results from a Twitter network with more

than 40 million nodes where we used 100 trees for our NSI.
Since we can not calculate the exact metrics for such a large
network, we only report our observations. Table 2a lists the
top 10 Twitter users with the highest betweenness central-
ity; table 2b lists the top 10 Twitter users with the highest
closeness centrality.

5. RELATED WORK
As the size of available networks becomes larger than the
memory limits of available commodity computers, distributed
frameworks for graph mining are becoming more widely used.
One highly regarded framework for mining very large graphs
is Hadoop[1], which is an open source implementation of
MapReduce parallel processing paradigm[2]. Recently, Kang
et al.[6, 7] developed graph mining algorithms for the Hadoop
framework, such as finding the diameter, degree distribution
and connected components of very large graphs via a gener-
alization of matrix vector multiplication enabling perform-
ing basic graph mining tasks on graphs with billions of nodes
and edges. Kang et al.[5] also developed an approximate
method for different centrality definitions, a more compu-
tationally intensive as well as highly popular graph mining
task. However, the centrality study modifies the original def-
initions of betweenness and closeness centrality for efficient
computation since the original definitions of centrality, along
with many other graph mining tasks, require calculating ex-
act shortest paths between nodes, and such computation is
intractable for very large graphs. Also, the newly introduced
definition of closeness centrality only works for unweighted
graphs. However, the centrality method we propose by uti-
lizing NSIs on MapReduce is loyal to the original definitions
of centrality, and applicable to weighted graphs. Also, our
proposed distance estimation with NSIs can make computa-
tion more tractable than calculating exact distance, enabling
more sophisticated graph mining tasks on the Hadoop frame-
work, such as centrality and clustering.

To estimate such low-cost paths between nodes, Ratti-
gan et al.[13] proposed approximation methods by indexing
the network structure by dividing the whole network into
zones (i.e., sections) and annotating every node with these
zones. They then used these annotations to estimate dis-
tances. Maier et al.[10] extended NSIs by constructing them
through shortest path trees and generalized NSIs to han-
dle weighted graphs with better time and space complexity.
Rattigan et al.[14] also applied NSIs to different graph min-
ing tasks including graph clustering and centrality. However,
the main assumption of these indexing approaches is that the
network should fit into the memory of a workstation, hence
these methods can only analyze smaller networks, whereas
we propose indexing network structures on the MapReduce
framework, which is capable of analyzing networks beyond
the memory limits. Thus our approach enables many net-
work mining tasks, such as calculating closeness centrality
and betweenness centrality for very large graphs.

Eppstein[3] as well as Peleg and Schaffer[11] also de-
veloped methods for approximating low-cost paths between
nodes, though they applied their methods to routing algo-
rithms in actual physical networks. However, to the best of
our knowledge, such studies also assume that the networks
are small enough to fit in the memory of a workstation, and
hence they are not applicable to the very large graphs we



(a) Distance estimation (b) Betweenness centrality (c) Closeness centrality

Figure 5: Protein-Protein Interaction Network, 1,458 nodes, 1,993 edges

Table 2: Twitter network with more than 40 million nodes

(a) Betweenness centrality
Screen Name Name

BarackObama Barack Obama
aplusk Ashton Kutcher
cnnbrk CNN Breaking News
TheEllenShow Ellen DeGeneres
britneyspears Britney Spears
Oprah Oprah Winfrey
MCHammer Mc Hammer
twitter Twitter
stephenfry Stephen Fry
KimKardashian Kim Kardashian

(b) Closeness centrality
Screen Name Name

Hamywithfath Hamy With Fat
ronpark Ronpark
PrimeTime09 PrimeTime
MrP2theA Pete
reb4peace Rebecca Roper
karnner Narkkie Allie
1cederman Cederman
Jodie173 Jodie Fagg
sunoneal Sunil Tolani
ScottHarbuck Scott Harbuck

focus on in this study.

6. CONCLUSIONS
In this paper, we propose a distance estimation method for
the MapReduce parallel processing framework by indexing
the network structure. We show that low-cost path distance
between pairs in very large networks can be estimated with a
reasonable accuracy. We also propose progressive sampling-
based centrality algorithms for very large networks that uti-
lize our distance estimation method. We show that, with
reasonable accuracy, estimation methods can find the cen-
tral nodes in very large networks.

In the future work, we want to use our distance estima-
tion methods to develop more sophisticated graph mining
tasks as network clustering.

7. ACKNOWLEDGEMENTS
Discussions with Marc E. Maier and Ramesh K. Sitaraman
contributed to the paper. Helpful comments and patient
editing were made by Cynthia Loiselle. We would like to
thank Yahoo! Inc. for the access to the M45 cluster.

8. REFERENCES
[1] Hadoop information. http://hadoop.apache.org/.

[2] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[3] D. Eppstein. Spanning trees and spanners. Handbook
of Computational Geometry, pages 425–461, 2000.

[4] L. Freeman. Centrality in social networks conceptual
clarification. Social networks, 1(3):215–239, 1979.

[5] U. Kang, S. Papadimitriou, J. Sun, and H. Tong.
Centralities in large networks: Algorithms and
observations. In SIAM International Conference on
Data Mining (SDM) 2011, Mesa, Arizona, USA, 2011.

[6] U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus:
A peta-scale graph mining system - implementation
and observations. IEEE International Conference On
Data Mining, 2009.

[7] U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus:
Mining peta-scale graphs. Knowledge and Information
Systems, 2010.

[8] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs
over time: Densification laws, shrinking diameters and
possible explanations. In Proceedings of the Eleventh
ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining, pages 177–187.
ACM, 2005.

[9] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph
evolution: Densification and shrinking diameters.
ACM Transactions on Knowledge Discovery from
Data (TKDD), 1(1):2, 2007.

[10] M. Maier, M. Rattigan, and D. Jensen. Indexing
network structure with shortest-path trees. ACM
Transactions on Knowledge Discovery from Data,
5(3), 2011.

[11] D. Peleg and A. Schaffer. Graph spanners. Journal of
graph theory, 13(1):99–116, 1989.

[12] F. Provost, D. Jensen, and T. Oates. Efficient
progressive sampling. In Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 23–32. ACM, 1999.

[13] M. Rattigan, M. Maier, and D. Jensen. Using
structure indices for efficient approximation of network
properties. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 357–366. ACM, 2006.

[14] M. Rattigan, M. Maier, and D. Jensen. Graph
clustering with network structure indices. In
Proceedings of the 24th International Conference on
Machine Learning, pages 783–790. ACM, 2007.


