Ilterative Classification

Applying Bayesian Classifiers in Relational Data

Jennifer Neville
jnevill e@cs.umassedu

June 2000

Tednicd Report
TR-00-31

Computer Science Department
140 Governor's Drive
University of Massadhusetts
Amherst, MA 010034601



Abstract

Relational data off er a unique opportunity for improving the clasdfication accuracy
of statistical modes. If two dbjects are related, inferring something about one object
can aid inferences about the other. We present an iterative classfication procedure
that exploits this characteristic of relational data. This approach uses smple
Bayesian classfiersin aniterative fashion, dynamically updating the attributes of
some objects as inferences are made about related dbjects. Inferences made with
high confidence in initial iterations are fed back into the data and are used to
strengthen subsequent inferences about related dbjects. We evaluate the performance
of iterative classfication ona corporate dataset, using a binary clasgfication task.
Experiments indicate that iterative classfication significantly increases accuracy
when compared to a single-passapproach.

1. Introduction

The past two decales have seen adramatic increase in the anount of stored information,
creding aneal for anew generation of automated and intelli gent data analysis
tedhniques. Many of the data being captured are relational in nature, yet most analysis
tedhniques work with “flattened” attribute-value data. Attribute-value data record the
charaderistics of a set of homogeneous and statisticdly independent objeds, whereas
relational data record charaderistics of heterogeneous objeds and the relations among
those objeds. The inherent structure of relational data presents a unique opportunity to
use knowledge of one objed to infer something about related objeds. The goal of this
work isto explore how conventional analysis techniques can be used in new waysto
exploit this opportunity.

Clasgficaion is awell-studied problem in the field of data analysis for which many
madhine-leaning techniques have been developed. One of these techniques is the smple
Bayesian clasdfier. This clasgfier offers good performancein many domains and it is
also smpleto train and easy to understand. We investigate using simple Bayesian
classfiersin an iterative fashion to improve dassficaion acarracy by taking advantage
of relational information in the data.

The hypothesis underlying this approach isthat if two objeds are related, inferring
something about one objed can help you infer something about the other. Inferences
made with high confidencein initial iterations can be fed bad into the data to strengthen
inferences about related objeds in subsequent iterations. Experimental evidence reported
here shows that iterative dassficaion leadsto a significant increase in classficaion
acarracy when compared with a single-passapproadh. This suggests that there ae
digtinctive charaderistics of relational datathat can be used to improve dassficaion
acairagy.



2. Relational Knowledge Discovery

The anount of data being colleded by organizaions and businesses around the world has
grown explosively in the past 10 yeas. AT&T logs over 35 ggabytes of telephone cdl
data every day; The Second Palomar Observatory Sky Survey (POSSII) has over 3
terabytes of high-resolution image data from an astronomicd sky survey; WalMart has
transadion detail from over 2,900stores in its 7.5 terabyte data warehouse (Pregibon
200Q Brodley and Smyth 1996 Palace1996). In addition to the many business
government, and scientific databases growing at an unparalleled rate, the World Wide
Web grows by roughly a million eledronic pages every day, developing into the world's
largest interconneded information base (Chakrabarti et a. 1999.

For structured data captured and stored on a daily basis, arelational model is the most
commonly chosen representation (Friedman et al. 1999. Relational databases are used
routinely to store everything from marketing and sales transadions, to scientific
observations and medica reards. The Web's network of hyperlinked pages is another
good example of arelational data structure. The power of relationa dataliesin
combining intrinsic information about objeds in isolation, with information about the
connedions among objeds.

Hidden in this expanse of information are vital clues and general regularities that could
be used to improve deasion making, if they could be discovered and represented. For
example, customer demographic, lifestyle, and purchasing information could be used to
reducethe st of adired-mail marketing campaign by targeting a set of consumers most
likely to buy the product being promoted. Credit card companies could use transadion
histories, purchase patterns, and examples of past frauduent adivity to predict possble
cases of fraud in current credit card transadions.

The volume and paceof data storage far exceals our ability to summearize and evaluate
data without the use of automated analysis tedhniques. Knowledge discovery is the field
evolving to provide aitomated tools for these growing amounts of data, building on
tedhniques from statistics, artificial intelligence and databases. Knowledge discovery is
the processof automaticdly identifying previously unknown, and potentially useful
patterns in data (Fayyad et al. 1996). Knowledge discovery techniques are finding wide-
ranging applicaions in science, government and business

Most current knowledge discovery techniques take dtribute-value data a input, where
ead instanceis assumed to be structurally identicd and statisticaly independent. For
example, current techniques can learn smple rulesto use for diagnosis from a wlledion
of independent medicd records with identicd fields. However, in some cases a useful
diagnostic rule will need to consider genetic and environmental fadorsin addition to
patient records. In this stuation we would like to examine an interconneded group of
patients, their medicd records, family members, home environments, and workplaces.
Such arelational data structure violates the previously mentioned assumptions by
alowing numerous objeds of varying structure to have asociations among themselves.



Relationa data can be converted into attribute-value data by transforming relationships
into attributes. For example, <father’s blood type> axd <mother’s blood type> wuld be
represented as attributes of a patient rather than as associations among related family
members. In order to flatten the data we must deade in advance which combinations of
relationships may be useful and which of the large number of potential relational
attributes to include. The flattening processremoves the richer relational structure from
the data, and in doing so, may omit information crucial to the discovery of useful
patterns. Relational knowledge discovery looks for new ways to make use of relational
structure in discovery techniques, in order to support and enhancethe pattern detedion
process

3. Classification in Relational Data

Relational knowledge discovery builds on existing work in machine learning, statistics
and socia network analysis to exploit the additional knowledge implicit in relations.
There ae & least two approadhes to take when developing relational knowledge
discovery tedhniques. One gproacd isto devise entirely new techniques for relational
data structures, leaving behind the conventional attribute-value framework. An
dternative gproad isto adapt and extend current attribute-value techniques for use with
relational data. The latter approacdh stands to benefit from the advances made in the field
of knowledge discovery over the past 10 yeas, utilizing known techniques that have been
fine-tuned on attribute-value data. The work reported here takes the second approadh,
using a conventional classficaion technique in new ways on relational data.

Clasdficaion is probably the oldest and most widely studied of all the knowledge
discovery tasks, and it is one aeawhere techniques gand to benefit from the relations
among instances. Classfication takes a set of labeled training examples and builds a
model to map previously unseen, unlabeled examplesto discrete dassvalues. For
example, we may want to identify cases of cdlular phone fraud wsing cdl data and
customer histories (Fawcett and Provost 1997), or we may want to predict whether a
person is a potential money launderer based on bank deposits, international travel
documents and known asciations (Jensen 1997).

The goal of thiswork isto explore and evaluate aspedfic gpplication of classficaion
tedhniques on relational data: smple Bayesian classfiers. Simple (or “naive”) Bayesian
clasgfiers (SBCs) make the simplifying assumption that all attributes are independent
given the dass Empiricdly, it has been found that SBCs perform surprisingly well in
many domains. Domingos and Pazzani (1997 provide aformal analysis of the reasons
for this robust behavior and show that SBCs produce optimal predictions of classlabels,
even when the asumption of independenceis violated by a wide margin. An attradive
fedure of SBCsisthey require no explicit seach through the spaceof possble models.
Instead, amodel is built using smple probabili ties, estimated from the training examples.
Thisresultsin a dasgfier that is both incremental and relatively easy to code.

Simple Bayesian classfiers take traditional attribute-value data as input. In order to use
SBCswith relational data we have to flatten the data first. As mentioned above, flattening



the data removes much of the richer relational structure. Flattening relational data is task-
spedfic. Onceflattened for one dassficaion problem, it is often miseading or
impossble to use the flattened datato analyze an aternative dassgfication problem.
However, if we maintain arelational representation of the data and flatten dynamicdly
only when neaded, then the relational structureis gill accessble and it is possble to
leverage it in order to improve predictions.

Keguing the data in arelational format preserves the relationships among objeds  they
can be used in analysis dynamicadly. A relational representation makes it possble to
extrad data, perform a series of cdculations and then feed the results bad into the
relational structure for use in future cdculations. The adility to perform iterative
cdculations in this manner is one of the benefits of maintaining a relational data
representation. For example, some measures of centrality in socia network analysis
(Wasserman and Faust 1994) can only be cdculated in such an iterative fashion.
Kleinberg’s Hubs and Authorities algorithm for Web searching (1998 aso usesiiterative
cdculations in this manner. Below, we will examine how to use an iterative gplication
of SBCsto improve dassfication acaracy in relational data by using initial inferences to
aid later inferences about related objeds.

4. lterative Application of Selective Bayesian Classifiers

4.1. Learning a Simple Bayesian Classifier

The smple Bayesian classfier (SBC) is a probabili stic method for classfication that
makes predictions as follows (Mitchell 1997). Let Ay, A, ..., Ak be atributes used to
predict adiscrete dassC. For a given set of attribute values v; through vk, the dassfier
cdculates the mnditional probability for ead classlabel ¢;. The optimal prediction,
under a zeo-one lossfunction, isthe dasslabel ¢; for which P( ¢ | vy Ovo ... v ) IS
maximized.

Bayes Rule states that we can determine the probability that a particular example,
represented by the dtributevedor E={ v1, v2, ..., W}, is of classc; with the following
formula (for notational simplicity, we will substitute the notation P( ¢; | E ) for

P( C = ¢ | E) dong with other smilar substitutions):

P(c|E)=P(E|c)P(c)/P(E)

The probability P( E ) in the denominator is the same for ead classlabel ¢;
consequently, the denominator can be dropped from the eguation if the probabili ties
P(c |E) arenormalized acossall classlabels ;. Also, insteal of estimating the joint,
conditional probability P( E | ¢;), the SBC makes the assumption that the individual
attributes of E are mnditionally independent given C. As such, the conditional
probability can ke rewritten as follows:

P(cilE):P(ci)ﬂkP(vklci)



Figure 1: Graphical representation of a Smple Bayesian Classifier

An SBC model consists of a set of associated probability distributions, which the model
uses to make its class predictions. In particular, amodel is comprised of a single discrete
distribution for the class, and a set of associated conditional probabilities that characterize
probability distributions for each attribute given a particular class label. For discrete
attributes, the model maintains a discrete distribution ranging over all possible values of
that attribute, storing the probabilities P( v« | ¢) for each value v, given an instance of
classc.

Discrete distributions will contain zero counts when a class label and attribute value
never occur together in the training data. A zero count resultsin a zero probability
estimate, causing the entire joint probability to become zero. For this reason, a Laplace
correction is incorporated into all discrete probability estimates to adjust for zero counts
(Domingos and Pazzani 1997). The uncorrected estimate of P( vk | ¢i) 1S nik / nj where nig
Is the number of times class ¢; and value vk occur together, and n; is the total number of
times class ¢; occursin the training set. The Laplace corrected estimate of P( v« | G) is
(Mg + )/ (n +fne) where ngisthe number of distinct values of attribute Ay, and

f =1/ nwhere nisthe number of examplesin the training set.

For continuous attributes, we model the probability distributions using kernel density
estimators (Silverman 1986). Many implementations of SBCs either discretize continuous
attributes or model them with Gaussian distributions, which can be conveniently
represented in terms of their mean and variance. However, choosing appropriate
discretizations can be difficult and the assumption that an attribute obeys a Gaussian
distribution may not hold in all domains. It has been shown that Bayesian classifiers
using kernel density estimators for continuous probability distributions perform better
than those that assume a single normal distribution (John & Langley 1995). Our
implementation of akernel density estimator stores every value of an attribute seen
during training. When asked for an estimate of P( v| ¢i), the estimator calculates a
Gaussian distribution (kernel) around each observed value and returns a density averaged
over the set of al kernels. This method of kernel estimation produces more accurate
probability calculations in domains where the Gaussian distribution assumption is
violated, with only moderate computational cost.

Training an SBC model is quite simple and can easily be done incrementally. For each
new labeled training instance the model increments the counts for the class label and each
of the discrete attribute values, and stores the values of each of the continuous attributes.
Once the model islearned it can be applied to predict classes of previously unseen
instances.



4.2. Selective Bayesian Classifier

Although SBCs are known to be robust in the presence of irrelevant feaures (Duda &
Hart 1973, we would like the model to seled and use only the relevant attributes to
improve the cmprehensibility of the results. Relational data have alarge number of
potential attributes snce eah objed has not only its own intrinsic atributes, but also
relational attributes involving objeds to which it islinked. Removing uselessattributes
before dassficaion, and consequently reducing the number of attributes used by the
final classfier, smplifies the results and can improve the cmprehension of human
analysts.

The model can use ather afilter approadc or awrapper approad to deted and remove
irrelevant attributes (Kohavi & John 1997). In the filter approach, a subset of feauresis
seleded as a preprocessng step, ignoring the dfeds of the seleded set on the
performance of the model. In the wrapper approad, the model itself is used as a black
box in the evaluation function, guiding the seach for a good subset of fedures.

The dgorithm that we implemented for seledivity can be described as awrapper model.
In order to reducethe size of the feaure subset seach space a“relevance” weight is
cdculated for ead attribute, which signifies the correlation of the dtribute to the target
class To use this approad, the weights must be comparable for discrete and continuous
attributes. White & Liu (1994 suggest the use of p-values for this reason. P-values
cdculate the probabili ty of incorredly rgeding the null hypothesis whenit istrue —
where the null hypothesisisthat the atributes and the dassare independent. P-values can
be cdculated easlly for both discrete and continuous distributions using simple statisticd
dgnificancetests. We use the G-statistic to obtain p-values for discrete atributes, and the
Kolmogorov-Smirnoff test for continuous attributes (Sads 1982. The resulting p-values
are used to order the dtributes and the SBC model is then used to determine ap-vaue
threshold that maximizes crossvalidated acairacy on the training set. The dtributes with
p-values lessthan, or equal to, the dhosen threshold are used in the final classfier; all
other attributes are ignored.

Overview of learning a selective SBC model:

1. For eadt labeled training instance

a. Update dassdistribution

b. Update conditional distribution for ead attribute
Calculate p-values for discrete and continuous attributes
Determine threshold that maximizes crossvalidated acairacy
Seled attributes with p-values < threshold

Wb

4.3. Iterative Application of Bayesian Classifiers

Relationa datasets present a spedal opportunity for improving clasgfication. The
opportunity exists if, when two objeds are related, inferring something about one objed
can help you infer something about the other. For example, if two people ae involved in
businesstogether and one of them isidentified as a money launderer then it is more likely
that the other is also involved in money laundering. In this stuation, knowledge inferred



about one objed can be used to improve inferences about related objeds. The aility to
exploit asciations among objeds in this manner to “discover knowledge” has wide-
ranging applicaions in any field with relational data, including epidemiology, fraud
detedion, emlogicd analysis and sociology.

A relational classfication tedhnique, which uses information implicit in relationships,
should classfy more acarately than techniques that only examine objeds in isolation.
Relationa clasdgfication techniques could be particularly useful in domains where we
have more information about relationships among objeds than about their intrinsic
properties in isolation. For example, we may be interested in identifying potential money-
laundering operations based on bank deposits and businessconnedions (Jensen 1997). In
such a situation, the existence of an employeemaking large cah deposits for more than
one businessgives little information as to the legitimacy of those businesses. Many
service and retall companies have high volumes of cash sales and it’s not uncommon for
aperson to be employed by more than one company. However, if one of the businessesis
discovered to be afront company for money laundering, then the related businesses are
more likely to be front companies as well. In this case, the relationship of a cmmmon
depositor is more useful in the context of knowledge &out the related companies.

There ae multiple ways to approad classfication in arelational context. One can ignore
related objeds and classfy based only on the properties of an objed in isolation. One can
look at the properties of both the objed and itsrelated objeds in a static manner, by
taking a snapshot of the relational context at some time prior to clasgficaion. Or one can
employ a more dynamic goproad, using properties of related objeds and updating those
properties as predictions about those related objeds change. Iterative classification isa
dynamic method of relational classficaion, which uses SBCsin a dynamic way to fully
leverage the structure of relational data.

For example, in a data set we describe in sedion 5.1, relational data structures represent
companies, their subsidiaries, corporate stockholders, officers and board members.
Companies are linked indiredly through stockholders and through people serving
simultaneously on several boards (seefigure 2). In such an interlocking structure we have
both intrinsic and relational attributes. Intrinsic atributes record charaderistics of objeds
in isolation, for example, company type or officer salary. Relational attributes simmerize
charaderistics of one or more related objeds, for example, a mmpany’s number of
subsidiaries or the maximum salary of any board member.

Relational attributes fall into two caegories which we will cdl static relational and
dynamic relational. Any intrinsic atribute has the potential to be predicted by an SBC
model; from the same mmpany datawe @uld predict any of the intrinsic atributes
mentioned above. Static relational attributes involve “known” intrinsic atributes of
related objeds and as such they can be computed without the need for inference The
values of static relational attributes remain constant over the wmurse of classficaion.
Dynamic relational attributes involve “inferred” intrinsic atributes of related objeds ©
they require that at least some related objeds be dassfied before the atribute can be



@ > C3 P = Person
C = Company

O = Owner

Figure 2: Graphical representation of corporate data linkage

computed. The values of dynamic relational attributes may change as classification
progresses and inferences are made about related objects.

For example, if we were predicting company type:
o Static relational attributes
- number of board members who have the title CEO
- average salary of officers.
« Dynamic relational attributes
- most prevalent type of corporate stockholder
- maximum number of subsidiaries that share the same type.

For notational simplicity, for the remainder of this paper we will refer to intrinsic and
static relational attributes as static attributes, and dynamic relational attributes as dynamic
attributes.

In arelationa corporate data set, knowing the type of one company might help us infer
the type of another company to which it isrelated, and vice versa. For instance, we may
find that individuals tend to serve on boards of companies with the same type, so if a
person is on the board of both company X and company Y, and company X is a bank,
then company Y ismore likely to aso be a bank. Or we may find that companies tend to
own stock in companies with the same type, so if a company owns company X and
company Y, and company X is abank, then company Y is more likely to also be a bank.
In situations of this type, the relations among objects assist the inferences.

Initerative classification, a model is built using a variety of static and dynamic attributes.
Classifiers that include dynamic attributes rely on the previous (inferred) classification of



related objeds. When training the model, the dasslabels of al objeds are known and
consequently the values of al dynamic atributes are dso known.

The trained classfier is then applied to previousy unseen examples in which the dass
labels are unknown. Initialy, because dasslabels of related objeds are unknown, values
of dynamic atributes are dso unknown, but their values can be estimated as the
classficaion progresss. At the onset, the dassfier makes predictions for al objeds
based only on the values of static atributes. Clasgficaions made with high confidence
are acceted as valid and are written into the data & “known” classlabels. SBCs are
useful for iterative dassficaion becaise eab prediction has an associated probabili ty
estimate that can be used as a wnfidence score.

After some percentage of the most certain classficaions are “acceted” the dassfier
starts the next iteration, recdculating al dynamic atributes in light of this new
information and procealing with classfication once again. At ead iteration, additional
dynamic dtributes arefilled in and a greder percentage of classficaions are acceted.

Becaise eab prediction is both recdculated and reevaluated for ead iteration, a
prediction about a given objed may change over the wurse of iterations. If the

probabili ty associated with a particular prediction falls out of the top percentage of
accepted predictions, the inference will be removed from the data. Also, if the predicted
classlabel changes for a particular objed (and the prediction is accepted), the new class
label will be written into the data for that objed.

After agiven number of cycles, when al clasgficaions have been accepted, the process
terminates. We @njedure that iterative dassfication will produce more acarate
predictions of classvaues than conventional classfication involving intrinsic and static
relational attributes alone.

Overview of iterative application of SBC model:
1. Build SBC model on fully labeled training set
2. Apply trained model to test set of N instances. For eadhiterationi : 1to m
a. Cdculate values for dynamic relational attributes
b. Use model to predict classlabels
c. Sort inferences by probabili ty
d. Accept k classlabels, wherek =N (i/m)
3. Output final inferences made by model on test set

4.4. Necessary Conditions

We mnjedurethat arelationa dataset must exhibit several charaderistics before an
iterative dassfication approadh will improve on a single-passtechnique. An initial
outline of these dharaderisticsis given below; however, further investigation is needed to
determine the exad nature and scope of these conditions.

1C



First, the floor classficaion acairacy, using only static atributes, should not be too high.
If a dassfier can make highly acairrate predictions without dynamic atributes, there is
little room for improvement viaiteration. For this reason, there must be insufficient
predictive power in the static atributes of the dataset for iteration to exhibit an increase in
acarragy over asingle-passapproad.

Next, inferences made by the model must be relevant to the dassficaion task. If when
objeds are related, an inference dout one objed does not help subsequent inferences
about the other objeds, then dynamic atributes will not aid classficaion. The relevance
of dynamic dtributes can be gauged with a single “full knowledge” classfication pass—
where the true dasslabels of related objeds are used to cdculate the values of dynamic
attributes. Such atest indicates how effedive the dynamic atributes would be if the
inferences made by the model were 100% acaurate; the test revedsthe caling acaracy
for the dhosen set of attributes. If the celing acairacy is not significantly higher than the
floor acaracy (using only static atributes), iteration will not produce adiscernible dfed.

Also, the dataset must be sufficiently conneded. An iterative goproach uses relational
structure to maximizethe use of its inferences. Because the results of classficaion are
spread through the relational structure by way of dynamic atributes, if the dataset has
insufficient linkage, there is lessopportunity to make use of prior inferences. However,
what constitutes “sufficient” linkage is not clea, and it may vary significantly aaoss
datasets. Both the degreeof linkage, as well as the type of linkage, may affed the results
of iterative dassfication. Further exploration is needed to determine the success of
iterative dassficaion for various types of relational structures.

Finally, there must be information present in the datato start off the iteration process
Initial classficaions are made using only static atributes; therefore the dassficaion
model must have away of making some initial inferences acairately. If none of the initial
inferences are @rred, then all subsequent predictions will be mised by those inferences
that are acceted. In order to make acairate predictionsin the first iteration but to till
have room for improvement over the @urse of iterations, we must have atributes that
represent “islands of certainty.”

Islands of certainty denote knowledge from which some, but not all, objeds can be
classfied acarately, with high confidence. Examples of islands of certainty include:
« A highly predictive static atribute that is missng in many instances but known
for some
+ A datic datribute for which some values are highly predictive of particular class
labels but other values are not
+ A partialy labeled dataset

The inferences made from islands of certainty jump-start the iterative procedure, feeding
dynamic &tribute cdculations and improving predictions about related objeds. In this
way, knowledge spreads out through the data. Without such islands, the performance of
iterative dassfication may degrade. Future work includes exploring extent of this
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degradation and determining the size, type and number of islands needed for successful
iterative classfication.

Before there is an opportunity to gain from iterative classification we should be operating
in adomain that meets these conditions. Otherwise flattening the data and classifying a
single time will result in accuracies comparable to those achieved with iterative
classification.

5. Experimental Evaluation

5.1. Corporate Dataset

The data set used for these experiments records the intrinsic and relational features of
publicly traded corporations. The data are drawn from documents filed with the US
Securities Exchange Commission (SEC). Due to the size of the entire database, we chose
to work with data from only two industries, banks and chemicals companies. Data are
maintained separately for each industry in the SEC database, so substantial consolidation
was heeded to combine data from two industries.

The data consist of companies, their board members and officers, stockholders,
contractors and subsidiaries. The data set contains 2142 central companies (892 chemical
companies and 1250 banks). It also contains 18679 related companies: 5201 corporate
owners, 969 contractors, and 12509 subsidiaries. Owners, contractors, and subsidiaries do
not have the same intrinsic attributes as the banks and chemical companies, so we chose
to represent then as separate objects. In addition to these objects, the data set also
contains 25591 people who serve as officers and directors of the companies.

We selected arelatively smple task: to classify companies asto their industry, either
bank or chemical, using both relational and intrinsic attributes. Classification of
companies by type is a surrogate task intended to illustrate the potential of iterative
classification in other domains with similar organizational structure, such as fraud
detection or money laundering analysis. Iterative classification is not restricted to binary
classification tasks. Because the SBC makes prediction for each class label, the approach
could easily be used for classes with more than two labels. Multiple class |abels however,
would make the queries for calculating and updating attribute values more complex, and
would make the ROC curve analysis (section 5.4) more difficult.

The data ontology is displayed below in figure 3. Nodes in the graph represent the objects
in the data set. Links in the graph correspond to possible relationships among objectsin
the data set. Italicized labels indicate link or object type. All other labels correspond to
intrinsic data associated with the links and objects. A distinctive feature of this ontology
Is that companies are never linked to directly to other companies; they are only linked
indirectly through people, owners and contractors.

12
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Figure 3: Corporate data ontology

In the experiment reported below, we used four attributes for each company:
+ state of incorporation (static)
« number of subsidiaries (stétic)
« company X islinked to more than one chemical company through its board
members: true/false (dynamic)
« company X islinked to more than one chemical company through itsinsider
owners: true/false (dynamic)

A few informal tests with additional attributes showed no substantial improvement in
accuracy, so for efficiency reasons the attributes were limited to these four. Although the
SBC classifier itself isfast, there are efficiency issues regarding attribute calculation in
the data set. Each dynamic attribute calculation involves aggregating information about
company objects two links away. Recalculating a single dynamic attribute for companies
in a sample takes approximately three minutes of computation. Because each iteration
involves recalculating every dynamic attribute, experiments were greatly facilitated by
keeping the number of attributes to a minimum.

5.2. Sampling

Devising adigoint training and test set was a challenging task. It has been shown that
partial sampling of linked data can bias statistical estimates of relational attributes
(Jensen 1998). Fractional sampling of linkage in the data can produce under- and over-
estimates of attributes that will reduce the effectiveness of an induction algorithm. SBCs
assume that the distribution of features is comparable between training and tests sets, so
their effectiveness depends on a sampling procedure that produces similarly linked
training and tests sets. Also, because the iterative classification involves inferences made
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about linked companies, a desirable sampling procedure would retain as much linkage to
other companies as possble, to avoid handicgpping iterative dassficaion.

The sampling procedure used is smilar to the exhaustive gpproach described by Jensen
(1998. The processfor creding two samples A & B from the set of all companies X isas
follows.

1

(AN

Do until X is empty:

a

Do until a company is placed in sample A:

I.  Randomly pick a company x and remove from X.

li. Gather al objeds one link away from x.

iii. 1f any of these objedsisin sample B, discard x. Otherwise placex in sample
A, aong with al objeds one link away from x.

Do until a company is placed in sample B:

I.  Randomly pick a company y and remove from X.

li. Gather al objedsone link away fromyy.

iii. If any of these objedsisin sample A, discad y. Otherwise placey in sample
B, along with all objeds one link away fromy.

For al discarded companies, randomly placehalf in sample A and half in sample B.
Label al companiesin sample A that have no links to sample B as objedsin the wre
of sample A. Label sample B similarly.

Sample A / Sample B

&

Figure 4: Graphical representation of indirect company linkage in samples A and B

This approach produces two digoint subsets — the are of ead sample. By definition
companiesin core A have no links to companies in sample B. Likewise, companiesin
core B have no links to companies in sample A (seefigure 4). The resulting size of the
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cores depends on the degree of linkage in the dataset. If the objects are highly linked then
there will be very few objects in the core.

Because the success of iterative classification in the corporate data depends on linkage
among companies, we removed all companies from the sample with no links to other
companies. Thisimproved the statistical power of our evaluation by focusing on the
portion of the task to which iterative classification is most applicable. It also reduced the
total number of companiesin the dataset to 1088. In order to increase the number of
companies in the core of each sample, the definition of the core was relaxed. Because the
only dynamic attributes used for classification involved links through people (insider
owners or board members), the core objects were defined as those that have no links
through people to companies in the other sample. Links to companies in the other sample
through corporate owners and contractors however, were allowed. Core A therefore
consists of those companies in sample A that have no links through people, to companies
in sample B. The distribution of banks and chemical companies in both the samples and
the cores are outlined in table 1.

Number of Number of | Total number of
banks chemicals companies
Sample A 230 316 546
Core A 170 113 283
Sample B 236 306 542
Core B 189 113 302

Table 1: Distribution of samples and cores

5.3. Experimental Procedure

Using the two samples A and B we performed a two-fold cross validation test of iterative
classification. The small number of objects in the resulting cores, when sampled for more
than two sets, prohibited the use of more than two digoint samples. The SBC classifier
was trained on a fully labeled sample A and then tested on sample B with 10 iterations.
Because the 10" iteration has only 90% of the inferences available for dynamic attribute
calculation, afinal classification pass (11" iteration) was also included which used 100%
of the inferred class labels.

During training, the dynamic attributes of sample A make use of some of the class labels
in sample B but this does not include any of the companiesin core B. When testing on
sample B, the classifier makes inferences about all the companiesin sample B; however,
accuracy is measured only on the fully digoint companies in core B. The companies of
sample A must be fully labeled during the testing processin order to prevent biasing the
attribute calculation of companies in sample B that are not in core B. In the second te<t,
the classifier is trained on sample B and tested on sample A.
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5.4. Results

Accuracy results for the two test sets are shown in the table below; acaracy refersto the
rate of corred predictions made by the model for the objedsin the test set. The “ Static”
acarragy results are from a single dasgfication passusing only static atributes of the test
set, where the values for the dynamic relational attributes are dl missng. “Iteration 1”
and “Iteration 10" are the acacracy results after the first and tenth iteration respedively.
“Full knowledge” indicaes the acaracy results of asingle dassficaion passusing all
attributes, where the dynamic atributes are cdculated with complete knowledge of the
true dasslabels of al related companies.

% Accuracy on | % Accuracy on
Core B Core A
Static 69.2 68.6
Iteration 1 72.2 78.1
Iteration 10 75.2 80.9
Full Knowledge 78.1 80.9

Table 2: Classification accuracies

McNemar’'stest (Sads 1982 was used the compare the differencein classficaion
acaracy between the 1% iteration and 10" iteration. The McNemar statistic tests the null
hypothesis that the differences in frequencies of corred and incorred classficaionsin
ead iteration represent random variations in the dasslabels. Let b be the number of
instances that change from corred to incorred classficaion from the 1 to the 10"
iteration. Let ¢ be the number of instances that change from incorred to corred
classfication from the 1 to the 10" iteration. For (b + c) = 30the McNemar statistic is
(b—0)?/ (b +c+ 1) and it is distributed as X* with one degreeof freedom.

Combining the results from both crossvalidation trials, the value of the McNemar

statistic was 5.558, which indicates the differencein classfications from the 1% to the 10"
iteration is sgnificant at the 2% level.

Iterations for Core B Iterations for Core A
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Figure 5: Accuracy results on sample core objects for each iteration.
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Accuragy results over the course of iterations for ead crossvalidation run are shown in
figure 5. Accuragy increases gedlily throughout the dassficaion procedure except for a
drop in the final pass(11" iteration). Dynamic atribute cdculationsin the final pass
include the inferences for which the SBC model is most unsure @dout — the bottom 10%.
This suggests that an improvement in classfication could be adieved by the use of a
threshold for accepting predictions, instead of accepting the top percentage.

ROC Curve Analysis

Becaise actracy maximizaion assumes equal misclassficaion cost for false positive
and false negative arors, it has been shown that the use of classfication acaracy asa
primary metric to compare dassfiersisnot always an indicaion of superior performance
for other costs and classdistributions (Provost et a. 1998. Receaver Operating
Charaderistic (ROC) analysis, an analysis method taken from signal detedion theory, is
an alternative means to evauate the aror tradeoffs associated with a given model.

ROC curves sow the predictive aility of a dassfier acossall possble eror costs and
classdistributions. Eadh SBC model is represented in ROC spaceby a arve
corresponding to its true positive rates and false positive rates (TP, FP), as the probabili ty
threshold between classes is varied between zero and one. In contrast to the SBC model,
which asociates probabili ties with ead classlabel, for ROC curve analysis one dass
label is considered positive (in this case bank) and the probabili ties associated with the
predictions of that classlabel are used to graph the ROC curves.

An ROC curve maps a dassfier’s performance & the confidence threshold for
accetance of its predictionsis varied between the extremes of accepting no
classficaionsto accepting al classficaions. If amodel dominates the ROC spaceit can
be regarded as the “best” predictive model for al domains, no matter what the st and
classdistributions are in the test environment.

The ROC curves for ead crossvalidation run are shown in figure 6.

ROC Curve for Core B ROC Curve for Core A
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lterction 10
P — - - — - Default
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00 == 00

FdseP ositive FdseP ositive

Figure 6: ROC Curves for classification on sample core objects.
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5.5. Discussion

Looking at the accuracy results we can make some interesting observations regarding
iterative classfication in this domain. First, the window for improvement in this dataset is
quite small, with approximately a 10% difference between the floor and celling
accuracies. The floor accuracy can be lowered artificially by dropping static attributes.
This was attempted but the iterative approach failed without the inclusion of both static
attributes. This indicates the importance of having strong static attributes as idands of
certainty from which to jumpstart the iterative process. The limited variety of linksin the
data set constrained the number of potentially predictive dynamic attributes, so raising
the ceiling accuracy was difficult.

Next, the improvement of accuracy in the 1% iteration compared to the static approach is
noteworthy. The difference between classification in the 1% iteration and the static test is
that during the 1% iteration some dynamic attributes values are known. For companies
with less than two links to other companies through people, we can return a value of false
for the dynamic attributes without any knowledge of the company type. This suggests
that dynamic attributes whose value can be determined with certainty from a small

amount of evidence may be quite helpful to the iterative process.

Also, it isworth mentioning that in the second trial on Core A, iterative classification was
able to match the accuracy of classification with full knowledge. This shows the power of
iterative classification to classify asif it had full knowledge of the surrounding
environment.

Finally, the ROC curves show that the 10" iteration performs better than, or equal to, the
1% jteration for most thresholds. However, the ROC curves show that the primary effect
of iteration occurs late in the curve when the probability of a company being a bank is
relatively low. This may indicate that dynamic attributes are more helpful in the case of
predicting chemical companies and do little to increase the probabilities associated with
predictions of banks.

6. Conclusions and Future Work

A number of conclusions can be drawn from this work about the potential of iterative
classification. We have shown that there is an opportunity to use relationsin data to
increase classification accuracy, and that an iterative approach exploiting this opportunity
can produce a significant improvement in accuracy for a binary classification task in the
corporate data set.

We have outlined several necessary conditions for successful application of iterative
classification. For iterative classification to improve on a static approach, a data set
should exhibit the following characteristics. insufficient predictive power from static
attributes and useful dynamic attributes, rich relational structure, and idands of certain
knowledge from which to jump start the iterative process. Expansion and formal
verification of these ideas is an important area for further investigation.
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In addition to presenting opportunities for discovery, relational data dso offer several
challenges. Devising a sampling procedure that doesn't bias gatisticd estimates of
relational attributesis a difficult task. Asthe relational data structure becmes more
complex, our opportunities for improving classfication increase, but so do the dallenges
of sampling. Future work would be aded by the use of naturally digoint datasets with
similar distributions such as the university web sites used by Slattery (2000.

Formulating helpful dynamic atributesis also challenging. It is difficult to define the
value of a dynamic atribute when some, but not all of the related classlabels have been
inferred. Because the dasdfier istrained on full knowledge, dynamic atribute values
expressng partia knowledge can hias or mideal the predictions of the dassfier. A few
incorred inferences could have a“snowball effed” with the dynamic atributes cascading
the mistakes throughout the test set. For this reason it isimportant to use dynamic
attributes whose values are ather known with complete cetainty or not at all. Threshold
attributes are agood example of thistype of “robust” attribute, where the value is known
as on as a particular value threshold is exceeaded. Both dynamic atributes used in this
experiment are examples of threshold attributes.

Consider the dtribute “company X is linked to more than one dhemicd company through
its board members’. The cdculation for this attribute is as follows (where n is the total
number of companies linked through board membersto X, ny is the number of known
banks, n¢ is the number of known chemica companies, and ‘7 designates a missng
value):

if n< 1then return false

elseif nc> 1 thenreturntrue

elseif n—np < 1thenreturn false

elsereturn‘?

When designing threshold attributes it isimportant to keep in mind that different sources
of evidence ca be used to determine the value of the dtribute but some of the values
must be known with certainty ealy on in the processfor iteration to have astarting point.
If none of the values can be determined in ealy iterations then either the processwill stall
and no gains will be made, or incorred predictions will begin to reduce dassfication
acaracy. Future work includes both establishing the dfeds of threshold attributes on
iterative dassficaion, and determining other types of robust attributes.

Attributes that combine probabili stic evidence of al related classlabels are apotential
dternative to threshold attributes. Instead of accepting the top percentage of predictions,
or those excealing athreshold, the dgorithm would accept all predictions. The values of
these probabili stic atributes are then determined by a cmbination of the probabili ties
asciated with the inferred classlabels of related objeds. Asthe cetainty of predictions
change over the murse of iterations, the atribute values could be dynamicdly updeted.
Thisis an areathat requires additional exploration; it is not clea that the probabilities
produced by the SBC are acarate enough to be used effedively in this fashion.
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A potential pitfall of the specific variety of iterative classification explored here is that
SBCs often produce biased probability estimates. SBCs are known to produce optimal
class predictions in awide variety of domains, however, SBC probability estimates are
biased except under conditions of attribute independence. Future work includes exploring
iterative classification with other methods that output more accurate probabilities such as
Bayesian networks or PRMs (Freidman et a. 1999). We will also investigate the use of a
threshold for accepting predictions instead of accepting a percentage determined by the
number of iterations.

Another direction for future work involves extending the iterative procedure for
prediction of multiple object types by ssimply combining the results of multiple

classifiers. Each classifier would make use of the dynamic attributes filled in through the
efforts of the other classifiers. In this sense the classifiers would collaborate with each
other to improve accuracies for both classification tasks. Caruana (1997) has investigated
the collaboration of multiple models for learning under the hypothesis that multiple,
related learning tasks share the same representation, and learning one helps with learning
another. A relational approach would be smilar but would involve the collaborative
application of models instead.

7. Related Work

Previous work of the WebKB project investigated classification in arelational context
(Craven et a. 1998). WebKB uses FOIL, a greedy covering algorithm for learning
function-free Horn clauses, to label web pages automatically. Relationships among pages,
as encoded by their hyperlinks, are used along with intrinsic attributes to improve
classification accuracy. While this approach uses relational attributes as inputsto the
learned model, the values of those attributes remain static throughout the entire process.
What is known about the test instances does not change dynamically during classification
asit doesin an iterative approach.

Freidman et al. (1998) have also investigated the use of a relational framework to make
complicated inferences. They have shown how to learn probabilistic relational models
(PRMs) from relational databases. PRMs are sophisticated relational models, similar to
Bayesian networks (Heckerman 1995) that allow the properties of an object to depend
probabilistically on both properties of the object in isolation and on properties of other
related objects. However, as with WebKB, the knowledge in these models remains fixed;
the data representation is not updated to reflect the inferences made by the model. This
approach does not exploit the relationships among objects as fully as iterative
classification.

The Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin 1977) is
similar to in spirit to iterative classification, but it addresses a somewhat different
problem. The EM agorithm uses a two-step iterative procedure to find the maximum-
likelihood estimate of the parameters of an underlying distribution (a model) from a data
set containing incomplete or missing data (Bilmes 1998). The first step of EM (the
"expectation” step) finds the expected value of missing data values, given the current
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model. The seaond step of EM (the "maximization” step) finds the maximum-likelihood
model, given the inferred data. After replaang the aurrent model with the new model,
the processrepeds. In contrast to iterative dassficaion, EM readjusts the model in the
seaond step, rather than adjusting the values of attributes that serve & inputsto the
model. Thus, it isamethod of leaning a model given attribute-value data, rather than a
method of applying aleaned model to relational data.

“Co-training” is another iterative goproacd to learning models (Blum and Mitchell 1998
Mitchell 1999. Mitchell showed that a large number of unlabeled instances can be used
to boost the performance of alearning algorithm when only a small set of labeled
instances is available. Multiple dassfiers are learned on independent sets of attributes,
fromthe dl the available training data. Eadh classfier isrun and its most confidently
predicted positive and negative instances are alded to the common training set. By using
the same training data, the dassfiers ead profit from the predictions of other classfiers.
The dassfiers are releaned with the larger, augmented training set, and the processis
repeded. Co-training is tested in arelational context; however, it does not require
relational knowledge for the processto operate, it can be gplied to attribute-value data &
well. Aswith the EM algorithm, this method uses iteration for learning models instead of
using iteration in the gplicaion of leaned models, as does iterative dassfication.

Boosting and other methods of ensemble dassficaion (Dietterich 1997) arerelated to
iterative dassficaion in the sense that what is known about the data dhanges over the
course of the procedure. Boosting uses multiple dassfiers collaboratively for asingle
clasgfication task and manipulates the sampling distributions of the training sets used to
learn ead model in order to increase overal classficaion acaracy. Ensemble
approadies such as these, change the knowledge available to models asthey are leaned.
In contrast, iterative dassfication changes the knowledge available to the model asit is

applied.

Kleinberg (1998 developed an iterative dgorithm, caled Hubs & Authorities, for Web
seaching based on the network structure of hyperlinked pages on the Web. The
algorithm uses a graph structure, with nodes corresponding to web pages and dreded
links indicating the presence of hyperlinks between pages. Given the task of identifying
authoritative pages, two mutually-reinforcing attributes are defined: hub weight and
authority weight. The weights are cdculated in an iterative fashion by feeding the values
of one attribute into the cdculations of the other. The iterative nature of this algorithm is
similar to our approach in that it maintains and updites attribute values throughout the
procedure. However, the dgorithm assumes the values of both attributes are known for
ead instance and starts by assgning equal weightsto all pages, it does not use a
predictive model to assgn weight values.

Inwork concurrent with our own, Slattery (2000 has investigated using relational
information in the test set to classfy web pages more acarately. FOIL-HUBS isan
extension of FOIL inspired by the Hubs & Authorities algorithm (Kleinberg 1999.
FOIL-HUBS identifies the existence of hubs for ead target class(e.g., student-hubs
point to many student pages) and hub weights contribute to the probabili ty that pages
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pointed to by the hubs are of a particular class. FOIL-HUBS employs an iterative
classification scheme to predict class labels and estimate hub weights, which is very
similar to our own agorithm for iterative classification, but it is limited to domains where
uniform hub nodes exist. In contrast, our work represents an initial attempt to provide a
uniform framework for the calculation and use of a wider range of dynamic attributes,
abeit within a smpler model representation (SBCs as opposed to function-free Horn
clauses).
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