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ABSTRACT 
We present a family of algorithms to uncover tribes—groups of 
individuals who share unusual sequences of affiliations.  While 
much work inferring community structure describes large-scale 
trends, we instead search for small groups of tightly linked 
individuals who behave anomalously with respect to those trends. 
We apply the algorithms to a large temporal and relational data set 
consisting of millions of employment records from the National 
Association of Securities Dealers. The resulting tribes contain 
individuals at higher risk for fraud, are homogenous with respect 
to risk scores, and are geographically mobile, all at significant 
levels compared to random or to other sets of individuals who 
share affiliations. 

Categories and Subject Descriptors 
D.2.8 [Database Management]: Database Applications – Data 
mining; I.5.1 [Pattern Recognition]: Models – Statistical; J.4 
[Social and Behavioral Sciences]. 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Social networks, dynamic networks, anomaly detection. 

1. INTRODUCTION 
In relational and social network data sets, social structure among 
individuals offers vital explanatory power for prediction tasks. 
Achieving a more detailed view of the connections between 
entities, particularly in dynamic temporal domains, promises to 
aid analyses of the data. This paper seeks to infer close 
relationships among certain co-workers, given a database of 
affiliation histories. Specifically, we search for groups of 
individuals, which we call tribes, that have anomalously similar 
job sequences within a large industry. We want to identify 
employees who were co-workers at multiple jobs, and to 
distinguish those who worked together intentionally from those 
who simply shared frequently occurring employment patterns in 
the industry. 

Relational knowledge discovery [10] exploits connections among 
individuals, as well as intrinsic attributes, to find patterns and 
make predictions. One notable property in relational, or network-
structured, data sets is autocorrelation, or homophily: the tendency 
of connected entities to have similar attribute values [17]. 
However, raw data does not always expose the links that account 
for these correlations. To create a better view, raw data must be 
refined, whether by preprocessing it to identify real-world entities 

and their relations [8], or further by inferring latent structure, for 
instance at the level of groups or communities [16], [11], [7]. In 
this work, we identify finer-grained, strong associations among 
individuals in a large, dynamic data set by finding small groups 
that are anomalously similar. 

This novel task was inspired by a case study, but it can be applied 
to a number of domains. The important properties in the scenario 
are that individuals are affiliated with organizations, and that the 
affiliations change over time. We form a model of “typical” 
sequences of affiliations, which allows us to score any given 
sequence of affiliations based on its likelihood. Then, for each 
pair of individuals, we find the sequence they have in common (if 
any) and score it. The score describes the likelihood that two (or 
more) individuals shared the given affiliations by chance alone, 
under the null hypothesis of independent movement.  

Other tasks with this structure include: finding students that select 
classes together, given a table of students and their enrollments; 
inferring sets of cars traveling in caravan on a highway, given 
sightings at different locations and times; or, discovering family 
structure in animal groups, from tagged individuals frequently 
sighted together (see Related Work). If we remove the temporal 
aspect of the problem and simply require a bipartite graph of 
affiliations, then we could generalize the model to find people 
with unusually similar tastes in movies, highly related documents 
sharing words that rarely co-occur, or friends within an album or 
yearbook containing photos of large groups. 

Our model is particularly suited to situations with large 
organizations, where the original data does not describe 
associations among individuals at the desired level of detail. For 
instance, in our employment domain from the securities industry, 
people often work at branches of thousands. In such cases, we can 
benefit from learning a model of typical affiliation patterns. Then, 
against this background, small groups doing unusual things stand 
out in contrast.  

2. MOTIVATION 
The National Association of Securities Dealers (NASD) regulates 
securities firms in the United States, with responsibility for 
preventing and discovering misconduct among its registered 
representatives, also called just “reps.” With over 600,000 reps 
under its jurisdiction, the NASD must focus its investigatory 
resources on those most likely to commit fraud or other violations 
of securities regulations. In conversations over the course of 
related projects [6][18], NASD representatives suggested that 
fraud may be committed by colluding groups of reps that move 
together through multiple places of employment. If we could 
identify “tribes” of reps moving together from job to job, we 
could test them for elevated rates of one or more indicators of 



fraud risk. Of course, such tribes will certainly also include 
harmless sets of friends that worked together in the industry, 
perhaps recruiting one another to new jobs. Our hope is that we 
will discover groups in which the reps tend to be homogenous: 
mostly low-risk or mostly high-risk. 

Our source data is a table of employment histories: for each rep, a 
series of records containing the branch identifier, start date, and 
end date for every employment the rep has held in the securities 
industry. The data set is large, containing (after some preliminary 
cleaning) ~4.8 million records describing employments of ~2.5 
million reps at ~560,000 branch offices. The branches range in 
size from one to ~35,000 employees. The branch identities 
themselves have been inferred, through an earlier process of link 
consolidation from office addresses [6], from the ~22,000 firms 
that have ever registered with NASD. The employment histories 
span the twentieth century through today, though most records are 
from the past fifteen years, and almost a quarter refer to currently 
held jobs (as of May 2006).  Even though many of the records are 
historical—referring to branches and reps no longer under 
NASD’s jurisdiction—we use the whole collection. 

Two constraints of the real-world data shape our approach. First, 
many employment histories include simultaneous, overlapping 
jobs or leave gaps between employments (at least, between 
employments in this industry). This muddies the concept of a 
transition between jobs: a rep does not necessarily leave one job 
when starting another, nor vice versa. Overlapping jobs are too 
common to consider discarding from the data: 20% of employees 
hold more than one job at some point, and 10% even begin 
multiple jobs (up to 16) on the same day. With transition dates ill 
defined, we cannot treat job changes as the basic units in the task; 
instead, we direct our attention to the times and places that people 
have been co-workers. 

 
Figure 1. Example (hypothetical) of branch-branch transition 
patterns. The left-most edge means that 80% of the reps who 

ever worked at (this branch of) I&D Insurance were later 
employed by (that branch of) Cumulative Sentences. Only 

edges with high percentages are shown. 
Second, mass movements of employees between jobs are 
common. In addition to continual flows between firms (e.g., 
common career paths within a given city), the businesses change: 
branches are closed or opened, firms merge or are bought. Reps in 
this flow could end up being colleagues at multiple organizations 
without even knowing each other. We can visualize such trends as 
transition diagrams, as in Figure 1, to create a map of the whole 
industry. The meaning of the numbers along the edges will be 
discussed and refined in Section 3.3; roughly speaking, they 
indicate the percentage of employees at one branch that later work 
at the attached (destination) branch.  

Many of these transition percentages are high, which confirms 
that job movement in the industry is not random. Among branches 
of fewer than ten employees, about 73% have a destination branch 
where at least 90% of the employees later end up. Among larger 
branches, 30% of the branches have some destination where at 
least 50% of their employees go. These figures increase slightly if 
we ask which transitions are popular within a given year—to 
spotlight abrupt shifts like mergers—as opposed to throughout the 
life of a branch office. This structured transition pattern is exactly 
what we hope to factor out in order to find genuinely tight 
associations among individuals. 

3. APPROACH 
3.1 Basic Tribe-Finding Process 
Formally, we are given a bipartite graph 

! 

G = (R"O,E) of reps R 
= {r1, r2, …, rn} and organizations O = {o1, o2, …, om}. Each edge 

! 

e " E  is annotated with a time interval: e = (ri, oj, tstartij, tendij). 
Our tribe-discovery process begins with finding all pairs fij = (ri, 
rj) of individuals that have ever worked together. This can be a 
large list (2.6 billion pairs, in our case), generated simply by 
iterating through the branches and recording every pair of reps fij 
= (ri, rj) whose employment stints at a branch intersect.  

For each pair, we then summarize their co-worker relationships, 
keeping track of the jobs where they coincide. We record 
additional information, such as the date the reps first coincide at 
each job, and the total time spent at overlapping jobs. The 
algorithm stores the pairs in a new graph H = (R, F), where F = 
{fij}, and each edge is annotated with:  

qij = { the sequence of jobs {ox, oy, …} shared by ri and rj 

! 

"  
additional information described above}.  

For purposes of efficiency, we retain only the rep pairs that have 
at least three jobs in common. This leaves us a graph H' = (R, F'), 
with |R| = 2.5 million, and |F'| = approximately 3 million pairs of 
individuals that are co-workers multiple times: the candidates for 
tribes.  

The algorithm proceeds by identifying all significant pairs. We 
compute a score cij(qij) for each edge in F', measuring how 
significant or unusual its sequence of shared jobs is. The rest of 
Section 3 discusses the choice of function to use for cij. 

Once the significance scores are computed, we pick a threshold d 
for the scores and retain only edges fij for which cij > d. Then, we 
compute the connected components of H', which are designated 
the tribes. The output of the algorithm is a list of tribes: sets of 
reps within components of size two or higher in H'.  

3.2 Scoring/Ranking Functions 
The choice of scoring methods constitutes the heart of the task. 
(Strictly speaking, we only use the scores to create a ranking of 
the pairs, so we also use the term “ranking method.”) We propose 
and compare several. Given a sequence of jobs, we must decide 
whether it is unusual for a pair of co-workers to have worked 
together at all of these jobs. Two simple methods for ranking the 
pairs are:  

• JOBS = the number of jobs in the shared sequence 
• YEARS = the number of years of overlap 

Computing JOBS is a straightforward count of the job sequence. 
For years, we choose to add up the length of each overlap period, 



so that if a pair of reps works simultaneously at two branches for 
ten years, this counts as twenty years of overlap. 

These simple methods treat all branches equivalently. As 
described earlier, however, reps in the securities industry do not 
behave as if they are picking jobs out of a hat. Instead, they tend 
to follow patterns caused by industry events and geographical and 
other factors. Accounting for these patterns motivates the 
probabilistic models that follow. 

3.3 Probabilistic Model 
In developing a simplified model for the job history data, there is 
a tradeoff in how specific to make it. We want the model to 
flexibly mimic the characteristics of each branch without exactly 
reproducing the original data. In addition, the procedure must be 
tractable on a large data set. The process of computing all pairs of 
co-workers is time- and space-intensive, so it would be infeasible, 
for example, to generate random replicates of the network and re-
compute shared job sequences. Attempting to strike the right 
balance, we model rep movement across branches as a 
modification of a Markov chain over organizations, ignoring 
timing and duration. 

If each rep held one job at a time and changed it at each time step, 
we could model movement using an ordinary Markov chain, as 
follows. Each rep picks a start branch randomly. (Say, all reps 
start their careers at the same time; it does not matter for the 
eventual model). Then at each step, the rep’s next branch is 
decided probabilistically based only on the current branch. We 
ignore actual time spent at each job; at each step in the Markov 
process, a rep either moves to a new branch, or leaves the 
workplace. We also assume transition probabilities are static over 
time. If this were our model, then the quantities we would need to 
estimate are: 

pi = P(start at branch i), and  
tij = P(transition from branch i to branch j | [given that] 

 currently at branch i).  
Then, we could estimate the probability of a rep having any given 
job sequence as:  
x = P(branch A 

! 

" branch B 

! 

" branch C 

! 

" branch D) = 

! 

pA " tAB " tBC " tCD .  

The probabilities are straightforwardly estimated using: 
pi = # reps ever at branch i / # reps in database 
tij = # reps who leave branch i and next go to branch j  
         / # reps ever at branch i. 

Using the ordinary Markov chain and the null hypothesis of 
independent movement, we would score the sequence of Figure 2 
as shown.  

1. P(rep 1 holds this sequence of jobs) = x 
2. P(reps 1 and 2 each hold this sequence of jobs) = x2. 

3. P(some two reps in database hold this sequence of jobs) 
follows a binomial distribution, with n = # reps in the 
database, and p = x2.  

Steps 2 and 3 are monotonic transformations of 1, so if the scoring 
function only needs to return a ranking, it is enough to calculate x. 
Further, it is not necessary to compute the denominator of pi. For 
the example in Figure 2a), the score would be 

! 

" p A # tAB # tBC # tCD
 =  

! 

(4234)(.005)(.01)(.005) . (The “<5%” of the diagram would be an 
exact figure normally. The self-loop of one rep at Branch A is 

ignored.) For situations where reps start or end at separate jobs, 
we only score the sequence they share. 

 

Figure 2. Job sequences to score. Nodes indicate branches and 
their sizes. Arrows leading into a node show the dates the new 
job is started, and the transition probabilities (see text). Solid  

lines are moves executed by both reps in the pair; dashed  
lines are moves by one member only, and dotted are by the 

other. The firm names are fabricated to suggest 
correspondences visible in the real data. These diagrams are 
modified from pairs scored as significant;  hence, the reps’ 

start dates match closely, although the timing information was 
not used in scoring. 

If job sequences in the database were as simple as Figure 2a), this 
model would be sufficient. However, Figure 2b) is more typical of 
the data. The reps in this example start at the same branch, split 
apart for a few years, come back together, and then both begin 
two jobs at related companies at the same time. To allow for these 
more complex situations, we adjust the model in such a way that it 
is no longer a Markov chain, but the probability calculations are 
almost the same. 

The major modification is to allow reps to have different paths 
between shared jobs, as is shown near the top of Figure 2b). To do 
this, we change the quantity tij, which describes the probability 
that a rep moves to branch j immediately after branch i, to a new 
quantity vij, describing the probability that a rep moves to branch j 
at any point after working at branch i. Now, each vij ≥ tij, and the 
transition probabilities leaving a branch no longer sum to 1 
(

! 

tij
i

" =1, but 

! 

vij
i

" #1). We cannot generate sequences as part of 

a Markov process using the vij probabilities, but we can still score 
an existing sequence of jobs using these estimates of how likely 
each transition is to occur. For Figure 2b), we then calculate 

a) b) 



P(Reedbuck 

! 

" Pond & River) (a percentage not displayed in the 
figure), without regard for the intermediate branches. This 
modification is much cleaner than an alternate approach that 
might attempt to compute direct transition probabilities along all 
possible paths. The drawback is that even in the case of direct 
moves we compute with vij, though tij would be more appropriate. 
It may be the case that vij >> tij only for branches j that are rarely 
reached directly from i, and vij 

! 

" tij for branches j that are reached 
directly; if so, then the substitution is not a problem. 

The other modification is to allow for simultaneous jobs. We treat 
the shared job sequences as if they are in a definite order, but the 
underlying situations can be complicated. For instance, rep 1 can 
start at branch A, then add branch B, while rep B starts at branch 
B and later adds branch A. Then the reps overlap at B before they 
overlap at A, although rep 1 never left branch B for branch A. Or, 
as in Figure 2b), the reps may be at both Bells Vireo firms 
simultaneously, not one after the other. To extend the model to 
handle these situations, we replace the quantity vij, the probability 
that a rep moves to branch j at any point after working at branch i, 
with a new quantity wij, the probability that a rep works at branch 
j at any point simultaneous to or after working at branch i. The 
same caveats apply as for vij: the transition probabilities become 
less precise and correct, but can now be used in these more 
general situations. The transition probabilities shown in Figure 2, 
and later in Figures 4 and 5, are actually wij values, so the example 
calculation for Figure 2a) is computed as we discussed earlier, but 
the meanings of the probabilities are different. 

3.4 Family of Models 
The probabilistic scoring model described above, which we refer 
to as PROB, treats jobs in a sequence as being ordered by time, but 
it does not take into account when the transitions occur. A 
transition is considered equally probable whenever it takes place. 
We create two variations on the model by changing the treatment 
of time. 

First, we account for varying transition probabilities. We 
hypothesize that the scoring will be more accurate if we can 
represent single-event mass movements, as well as changes in 
industry patterns over the years. For instance, consider the case 
where 30% of reps at branch A eventually move to branch B, but 
99% of the reps at branch A in 1997 were seen at branch B later in 
1997 after it purchased branch A. So, rather than scoring a 
transition based on the probability of a rep moving from branch A 
to branch B, we describe a more specific event. Now, the rep is 
moving from branch A at time X, to branch B at time Y 
(specifically: the rep is first seen at branch A at time X, and then 
first seen at branch B at time Y which is equal to or later than time 
X). Time is divided into bins, with bins representing one year or 
more. Each branch has its own bin divisions, depending on the 
number of employees at the branch at different years. We allocate 
the bins so that there are at least 10 people who worked at each 
branch in each bin period, provided the branch has had that many 
employees during its history. 

The parameters needed for this new model, called PROB-TIMEBINS, 
require changing pi and (again) wij. We now compute: 

! 

piX   = # reps ever at branch i during time X / # reps in db 

! 

yiXjY  = # reps ever at branch i during time X and at branch j 
 during time Y, where Y ≥ X / # reps ever at branch i 
 during time X 

We take the opposite extreme for the second variation. The PROB 
model is not very informed about time, as the wij values describe 
the probability of being at branch j anytime after or simultaneous 
to being at branch i; only the relative order of i and j matter. To 
find out how important that directionality of time is, we create a 
simpler model, PROB-NOTIME, which ignores even the order of job 
moves. For this model, we use the original 

! 

" p i  (again, no need to 
compute the denominator), and a (final) transition quantity zij, 
representing the raw number of reps who are at both branches i 
and j during their careers. There is an ambiguity in this 
formulation, in that now we should be able to score a set of shared 
branches regardless of the ordered they are presented in; however:  

transition probability from i to j = (zij /

! 

" p i) ≠ (zij /

! 

" p j
) = 

transition probability from j to i. 
As PROB-NOTIME turns out to work almost as well as PROB (see 
Section 4) and allows this framework to be applied to situations 
without a time ordering, we hope to explore the issue of ordering 
the branches in future work. For now, we use the same, temporal 
ordering of branches as used in the other methods. 

The JOBS ranking falls out as a trivial probabilistic model.  If all 
branch transitions are considered to have the same probability, 
and branches have the same probability for being started at, then 
the ranking is equivalent to counting the number of shared jobs. 

4. EVALUATION AND RESULTS 
Ideal tribes consist of reps that certainly know each other and 
have coordinated their movements among jobs. Since we cannot 
directly verify the personal relationships among thousands of 
securities reps across the country, we evaluate our tribes using 
indirect measures.  First, we examine structural characteristics of 
the tribes produced with the various scoring methods.  Then, we 
analyze the tribes’ patterns of risk scores and geographic 
movement. 

4.1 Tribes Produced 
Using the basic process described in Section 3.1, we compiled a 
list (the edges F') of the 3.07 million pairs of reps in the database 
that shared at least three different jobs. We ranked these pairs 
using the five scoring functions described in Sections 3.2-3.4: 
JOBS, YEARS, PROB, PROB-TIMEBINS, and PROB-NOTIME. All but 
JOBS give quasi-continuous values as scores. For these, we can 
choose a threshold d to keep any desired number of pairs; then, 
when we compute the connected components of the pairs, we get 
a set of tribes of assorted sizes and a corresponding set of reps in 
these tribes. For JOBS, the scores are discrete: all pairs have at 
least three jobs, and the maximum number of shared jobs is 25. To 
compare the different scoring functions, for each continuous 
method we determine a cutoff d such that the resulting number of 
reps in the tribes matches (+/- 1) the number of reps in tribes 
formed with JOBS.  Tables 1-3 display structural characteristics of 
some tribe sets matched in this manner. We omit these 
characteristics for the variations on PROB (PROB-TIMEBINS and 
PROB-NOTIME), as they are substantially similar to those for PROB. 



Table 1. Tribe network structure for JOBS ranking  

 
JOBS 

criteria 

 
 

# reps 

 
# 

pairs 

 
# 

tribes 

max 
tribe 

size 

 
# reps in 

tribes size 2 

jobs ≥ 7 578 495 232 31 374 

jobs ≥ 6 1600 1461 623 32 952 

jobs ≥ 5 6066 7855 2124 101 3188 

jobs ≥ 4 26,152 70,209 7244 1350 10,044 

 
Table 2. Tribe network structure for PROB ranking 

 
# reps 

 
# pairs 

 
# tribes 

max  
tribe size 

# reps in 
tribes size 2 

578 336 266 6 464 

1600 958 718 13 1240 

6066 4072 2591 23 4284 

26,152 23,193 9468 400 14,064 

 
Table 3. Tribe network structure for YEARS ranking 

 
# reps 

 
# pairs 

 
# tribes 

max  
tribe size 

# reps in 
tribes size 2 

578 1624 140 64 176 

1600 5446 408 127 512 

6066 24,672 1498 604 1934 

26,152 362,966  6669 1910 9092 

 

Naturally, components with hundreds or even with dozens of 
nodes are unlikely to be tribes of the kind we are looking for. In 
practice, we would probably disregard tribes with more than 
perhaps ten members. Dropping the larger tribes does not seem to 
change the evaluation measures, so we leave them in for the 
remaining analysis. What the tribe structures in these tables show 
is that the PROB ranking is more inclined to produce tribes of size 
two—pairs of associated reps. JOBS and even more so YEARS, in 
order to get an equally large set of reps, provide many more 
pairs—edges in the graph F'—but the additional edges go to fill in 
the enormous components, instead of creating new small groups. 

We can see this effect from another perspective by considering the 
frequency of high-ranked job sequences.  For JOBS and PROB, the 
scores are based solely on the job sequence; therefore, if a number 
of reps all share an identical job sequence, then the scores of their 
edges are equal. If that (shared) score passes the threshold, then 
the whole set of reps will be included in the tribes. For this reason, 
a ranking that scores common job sequences as significant will 
have large connected components among its tribes.  

Table 4 examines this frequency of high-ranked job sequences. It 
displays the average, for each pair included in tribes, of the 
number of times its job sequence occurs among the 3 million 
pairs.  The low averages for the PROB ranking confirms that this 
model succeeds in scoring rare sequences as significant. JOBS also 
brings in fairly rare sequences.  For YEARS, when one pair passes 
the threshold d, others with the same job sequence do not, since 
the score depends on how long the co-workers are together.  

However, we see that the reps working together for the longest 
times tend actually have common sequences of jobs. 

Table 4. For each job sequence among the top-ranked pairs, 
average number of times it occurs among all pairs of reps.  
Among all 3 million pairs, the job lists repeat an average of 

40.72 times. 
# reps in tribes Ranking 

578 1600 6066 26,152 

PROB 1.06 1.07 1.21 1.51 

JOBS 1.16 1.35 2.05 4.31 

YEARS 315.73 194.05   87.07 224.78 

 

Error! Reference source not found. below gives a sense of how 
diverse the tribes produced by different scoring methods are. It 
shows, for several cutoffs, the percentage overlap between the set 
of reps selected by PROB and each other ranking. We see that the 
PROB variations give results fairly close to PROB, particularly 
PROB-NOTIME. The reps sets created by JOBS are related but 
substantially different, while those of YEARS have almost no 
overlap. 

Table 5. Percent overlap of rep set with that from prob 

# reps in tribes Ranking 

578 1600 6066 26,152 

JOBS 38.2% 41.9% 42.1% 51.3% 

YEARS 1.6% 2.7% 6.5% 22.1% 

PROB-TIMEBINS 80.3% 80.3% 80.1% 82.1% 

PROB-NOTIME 93.3% 94.9% 94.9% 96.2% 

 
4.2 Disclosure Scores 
As part their oversight, the NASD and other regulatory 
organizations require disclosures to be filed on reps for a variety 
of actions they commit and events that take place. These 
disclosures span categories such as customer complaints, 
bankruptcies, criminal charges and regulatory actions; some are 
mundane and merely required to be reported, while others 
represent serious breaches of trust. We can use these disclosures 
as assessments of past behavior or as predictors of future fraud 
risk. We compute a “disclosure score” for each rep as a weighted 
sum of their disclosures, where serious categories are weighted 
more highly (the weights were developed in consultation with 
NASD); in this system, the vast majority of reps are assigned a 
score of zero. 

When we examine the disclosure scores of reps in tribes, we find 
that the tribes are strongly enriched for reps with high scores. 
Figure 3 displays the average disclosure scores of reps in different 
ranking systems. The reps are assigned to bins A-G based on what 
cutoff causes the rep to be included in the set of tribes (see Table 
6). For instance, bins A-D comprise the top 578 reps, and A-E 
comprise the top 1600; bin E contains the reps that appear at ranks 
579 to 1600. The bin widths correspond to the number of reps in 
the bin, for bins A-E; bins F and G would be too wide to fit in the 
diagram, so their widths as displayed are not meaningful.  



Within each bin, the four bars correspond to reps produced by 
JOBS, PROB, PROB-TIMEBINS, and PROB-NOTIME. The dashed 
horizontal line at score = 2.8 is the average disclosure score of all 
the (unique) reps among the 3 million pairs (F'). The dotted line at 
score = 0.7 is the average score for all reps in the database. 

Table 6. Bins used in Figure 3.  

Bin JOBS criteria 
determining bin size 

# reps in 
bin 

A jobs ≥12 48 

B 9 ≤ jobs ≤ 11  66 

C jobs = 8 106 

D  jobs = 7 358 

E jobs = 6 1022 

F jobs = 5 4466 

G jobs = 4 20,086 

 

The overall trend is very encouraging for these rankings. They all 
score well above average, and the average disclosure scores of 
reps produced at the top of the rankings are higher than those 
lower down. The smaller bins A-C are more variable, as they 
contain only 220 reps total. It is interesting to see, however, that 
the disclosure score of JOBS drops in the highest bin (A), and then 
compensates for it in bin C. 

YEARS is not displayed, as its scores are low: all fall below the 
dashed line. In fact, in bins A-C the values are below the dotted 
line, and unlike with the other ranking systems, they rise as we 
move down the list of reps, reaching 2.4 in bin G. This might 
imply that the reps who have worked together for many years are 
least of all likely to commit fraud. 

One alternative explanation for the high disclosure scores seen 
here is that the reps who have held such sequences of jobs 
together may simply have longer careers than average, and so 
have accumulated more disclosures over the years. We test this 
explanation by dividing all reps into groups based on the number 
of jobs they have held and the number of years they have in the 
industry. Given a top-ranked set of reps from the tribes, we 
replace the disclosure score of each rep with the average score 
from the rep’s matched group, and recalculate the average for the 
set. If the matched disclosure scores are elevated, then our top-

ranked reps simply have long histories. In fact though, the 
matched scores all give averages close to 2.8, the height of the 
dashed line, which means that the length of their careers does not 
explain away the high scores.  

4.3 Disclosure Score Correlation within 
Tribes 
If the tribes are of good quality and the conjecture is correct that 
reps at high risk of disclosures often move in tribes, then we 
would expect each tribe’s disclosure scores to be homogenous. 
That is, some tribes would tend to have multiple members with 
high scores, while other tribes would have low scores. Judging 
tribes by the properties of their members’ disclosure scores is not 
ideal, since the expected outcome depends on that second 
conjecture. In addition, since the frequency of disclosures is very 
low, under this lens only high-risk tribes look conclusively like 
high-quality tribes; low-risk tribes are hard to distinguish from 
random sets of reps.  Finally, note the potential problem of 
incomplete information here: reps that appear low-risk compared 
to their tribe-mates might just have evaded detection. It is 
precisely these individuals that the NASD may be interested in 
investigating in the future.  

We perform several experiments to test whether the tribes are 
homogenous with respect to disclosure scores. First, we examine 
individual pairs of reps, using a chi-square test to assess whether 
reps with positive disclosure scores pair with others with positive 
scores more often than expected at random. If we take all the pairs 
that form tribes, then reps in large components will be represented 
more than once; to avoid this, we only perform this test on the 
tribes of size 2. Since the rankings are all significant at the p ≤ 10-

7 level, we can compare them using the phi-square statistic, which 
is chi-square normalized to have maximum value 1. By this 
measure, all five rankings are more or less equally significant, as 
shown in Table 7. 

Figure 3. Disclosure scores of the top-ranked reps. 



Table 7. Comparison of tribe homogeneity,  
using top 1600 reps 

Ranking # pairs # tribes Phi-sq Avg disc AUC 

JOBS 1461 623 0.140 7.9 0.775 

YEARS 5446 408 0.119 1.4 0.616 

PROB 958 718 0.127 7.9 0.736 

PROB-
TIMEBINS 

960 714 0.158 7.1 0.752 

PROB-
NOTIME 

965 718 0.112 7.9 0.730 

 

Next, we set up a prediction task with the tribes: we try to predict 
the disclosure score of each rep. For each target rep, we take the 
other reps in the same tribe, average their disclosure scores, and 
use this average as the predicted value. We can compute an AUC 
(area under the ROC curve) for these predictions if the 
classification task is binary. The AUC values shown are for the 
task “is the rep’s score higher than the average for this set?” By 
this measure, JOBS comes out a little more correlated than PROB-
TIMEBINS, followed by the other PROB rankings, and YEARS trails. 

4.4 Geographic Movement 
The final indirect measure we use is the postal codes of the 
branches. If groups of reps move geographically, particularly 
large distances, this is an indicator they are staying together 
intentionally. Reps participating in the natural patterns of branch 
changes are less likely to be moving to far-off places together. We 
have the five-digit zip codes associated with most branches 
(96%). The first digit designates a broad region of the United 
States, and the first three correspond to a particular large city or 
local region. Counting the number of unique one-digit (or three-
digit) zip code prefixes associated with a rep pair’s list of shared 
branches gives a rough idea of the geographic mobility of the pair. 
As with disclosure scores, since we expect many high-quality 
tribes will not have geographic movement, this measure can only 
be used to evaluate tribes in the aggregate. 

Table 8 displays information about geographic movement. For 
each pair in the set, we calculate how many unique 1-digit and 3-
digit zip codes are covered by the shared jobs, as well as how 
many shared jobs there are with zip code information (96% of 
branches have zip codes available). The numbers shown are the 
averages over the distinct job lists among the pairs. 

The PROB rankings show the greatest mobility when we look at the 
number of zip codes covered. This is more surprising when we 
consider that the pairs in JOBS have more shared jobs, yet move 
less geographically. Pairs in the YEARS ranking move least of all, 
even less than the average of the 3 million, which means that 
long-term co-workers tend to settle down. These long-term YEARS 
tribes, judging from their low disclosure scores, low overlap with 
the others, and low movement, do not seem to be the type of tribes 
we are looking for. 

Table 8. Comparison of geographic mobility, using top 1600 
reps 

Ranking # unique 
job 

sequences 

Avg # 
1-digit 

zips 

Avg # 
3-digit 

zips 

Avg # 
branches 
with zips 

avail 

JOBS 1085 1.58 2.59 6.70 

YEARS 738 1.43 1.78 3.91 

PROB 896 1.78 2.83 5.47 

PROB-
TIMEBINS 

899 1.78 2.80 5.47 

PROB-
NOTIME 

893 1.80 2.85  5.54 

all scored 
pairs 

75,321 1.33 1.78 3.21 

 

4.5 Discussion 
To sum up what we have seen, all the rankings JOBS, PROB, PROB-
TIMEBINS, and PROB-NOTIME create tribes whose reps have higher 
disclosure scores, on average, than random (Section 0). Reps with 
high (or non-zero) disclosure scores are associated in tribes with 
other such reps under all rankings. At the cutoffs giving 1600 
reps, PROB-TIMEBINS has a higher phi-square than the others, 
whereas JOBS gives the highest AUC; these vary at other cutoffs, 
with phi-square remaining highest for either PROB-TIMEBINS or 
JOBS, and the highest AUC traded among JOBS and all the PROB–
based models (Section 4.3). The PROB models create tribes that 
cross more zip codes among their shared jobs, even though the 
reps in JOBS have a higher number of shared jobs (Section 4.4). 
The PROB models produce more individual pairs in tribes, while 
JOBS and YEARS produce larger connected components as tribes 
(Section 4.1). 

The fact that the JOBS and PROB models perform comparably at 
various cutoffs, yet pick different sets of reps, suggests that there 
is room for improvement by combining the best of both systems. 
Of the tribes ranked highly by JOBS but not PROB, some, on 
inspection, appear to be just the types we hoped to avoid: pairs of 
reps taking a large number of very common transitions together. 
Others look like good tribes, and it appears PROB may miss them 
because of poor probability estimates at small branches. When 
both reps at a 2-person branch move to the same new job, it is 
impossible to tell whether they moved together because their firm 
was bought, or because they wanted to stay together. The PROB 
model assumes the former, calculating the move as 100% likely to 
occur by chance, but this may not be the best policy. More 
generally, the PROB model seems to favor large firms, either 
because the probability estimates are more stable there, or perhaps 
because it is possible to create smaller transition probabilities 
from larger firms. We have not yet succeeded in correcting for 
this property, and the conclusion might be that the model is 
simply better suited for situations with large branches. 



Qualitatively, many of the tribes look convincing when the reps’ 
job histories are displayed together. It is a compelling feature that 
transition dates often coincide closely, although the model did not 
use them.  

As examples, Figures 4 and 5 display the career histories of two 
potential tribes.  Each of these tribes consists of a single pair of 
reps. The pair in Figure 4 was scored by PROB as highly 
significant, while that in Figure 5, even though it has a long 
history together and was ranked highly by JOBS, appears to be 
following typical patterns; it was scored as not significant by 

PROB. As it turns out, the reps from the significant pair have 
disclosure scores of 18 and 24, primarily since in April 1996 they 
were both fired (disclosures show an Internal Review and a 
Termination for each).  One of the reps from the non-significant 
pair has no disclosures, while the other was fired in 1997 for 
"diversion of profitable trades to personal" and received a score of 
12 for this. 

5. RELATED WORK 
Our task of identifying small, anomalously similar groups is novel 
within the world of relational knowledge discovery but has 
analogs in other fields. Within the analysis of complex relational 
and social networks, it is common to cluster the graph or 
otherwise infer hidden group structure [16], [11], but usually the 
aim is to find large-scale communities, such as among webpages 
[7], employees in a single organization [20], or bottlenose 
dolphins [14]. In addition, these algorithms are typically designed 
for static or time-collapsed networks, whereas the temporal aspect 
is important for us. 

In time series analysis, there is research within the database 
community on efficiently finding identical or similar sequences 
[1], and on constructing flexible definitions of similarity [4]. 
Econometrics has a related concept called cointegration: two time 
series X and Y (e.g., of stock prices) may be cointegrated if Xt is 
useful for predicting Yt+1 [9]. However, in these fields, time series 
are traditionally numerical. Furthermore, in our task we need to 
find sequences that are not just similar, but anomalously similar. 

Anomaly detection, often applied to the security task of intrusion 
detection, does highlight unusual time-sequence patterns against a 
background of normal activity, often learning a background model 
from the data [19]. A recent paper by Eskin [5] offers a clear 
formulation that treats the data as a mixture model of normal with 
anomalous sequences, a technique that could be useful for scoring 
pairs in our scenario, although we would still need to specify the 
form of the normal model as we do here. For anomaly detection in 
relational data, Lin and Chalupsky [13] offer a measure of path 
rarity that can be used to find the closest match to a given 
individual, although it does not compare one set of individuals to 
another. 

In modeling dynamic networks, a few papers offer related ideas. 
Magdon-Isamil et al. [13], searching for hidden groups, propose a 
Markov chain model of how individuals’ group affiliations change 
over time, one general enough to allow multiple simultaneous 
memberships along with individual preferences. This framework 
could potentially make our probabilistic model cleaner, although 
it would need to be heavily constrained to reduce the number of 
parameters required. Lahiri and Berger-Wolf [12] introduce an 
algorithm for dynamic graphs that predicts future interactions 
(edges) at each time step based on patterns of interactions at 
previous time steps.  With an appropriate mapping of our branch 
transitions into their interactions, this approach might provide a 
different way of modeling the background transition patterns we 
try to capture. 

Figure 4.  Example tribe ranked highly by PROB but not 
by JOBS. Refer back to Figure 2 for meanings of labels.  

Firm names are fictitious.  



Most intriguingly, animal biologists have long faced something 
like the tribe-finding task: given observations of animals in 

groups, taken at different time points, they ask which pairs of 
animals are highly associated. (These “association patterns” are 
used as the links for animal social networks studied in above 
papers [14], [12].) The most common association measure, the 
Half-Weight Index [3], is a simple function of the number of 
times the animals are seen together vs. apart, but Bejder et al. 
propose a more sophisticated network randomization test [2]. We 
are investigating this literature as part of ongoing work, and note a 
few aspects here. First, the associations are impossible to verify 
directly, but there is work validating the methods through 
simulation. Second, the models ignore time, which seems 
reasonable given that each group is only observed once. 

6. CONCLUSIONS AND EXTENSIONS 
One of the strengths of this work is that, beginning with no 
explicit knowledge of this industry, we can discover, model, and 
factor out typical job transitions, even though in real life these are 
caused by a combination of geography, career tracks, and other 
factors. Moving forward, we may extend our model by 
incorporating external or domain-specific information. For 
example, we could consider relationships between reps who work 
in the same city but not at the same branch, and we could better 
handle some odd cases of reps with many simultaneous jobs given 
a better understanding of the industry and the data sources. 

In this work, we had access to a complete history of employments 
and disclosures so far. In practical use, tribe identification will be 
more of an online process, a situation we need to consider; it will 
be more difficult to recognize tribes when they have shared only a 
few jobs. 

The most interesting aspect of our formulation, compared to 
related work, is our accounting for simultaneous jobs and different 
paths between the same jobs. We needed to allow for multiple 
affiliations starting and ending at arbitrary times, yet our model 
does not describe the network’s changes day by day; instead, we 
observed certain discrete events (job transitions, and co-workers 
intersecting at a job) as time moved forward. 

It may be worthwhile to incorporate more timing information, 
such as job durations, into our model, or other properties like the 
lengths of reps’ non-intersecting careers. In the direction of 
simplifying, we plan to explore the time-oblivious version of the 
model (PROB-NOTIME), to see how well it can be applied to other 
types of tasks. More immediately, we are investigating 
adjustments that may improve the model’s behavior with small 
branches. Finally, we hope to experiment with other domains and 
data sets. 
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Figure 5. Example tribe ranked highly by JOBS 
but not by PROB. Firm names are fictitious.  
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