
Darwin: Flexible Learning-based CDN Caching
Jiayi Chen

1
, Nihal Sharma

1
, Tarannum Khan

1
, Shu Liu

2
, Brian Chang

1
, Aditya Akella

1
,

Sanjay Shakkottai
1
, Ramesh K. Sitaraman

3

1
The University of Texas at Austin,

2
UC Berkeley,

3
UMass Amherst & Akamai Tech

ABSTRACT
Cachemanagement is critical for Content DeliveryNetworks (CDNs),

impacting their performance and operational costs. Most produc-

tion CDNs apply static, hand-tuned caching policy parameters at

cache servers, such as admission frequency or size thresholds for

the Hot Object Caches (HOC) of their system. However, these static

policies fall short when a server is faced with unpredictable traffic

pattern changes, even when policies employ multiple control pa-

rameters/knobs. Recent approaches have proposed learning-based

solutions to dynamically adjust policy parameters, but they are

limited in action space, caching objectives, or impose high over-

head. We propose Darwin, a CDN cache management system that is

robust to traffic pattern changes and can flexibly optimize different

caching objectives with unrestricted action spaces. Darwin employs

a three-stage pipeline involving traffic pattern feature collection,

unsupervised clustering for classification, and neural bandit expert

selection to choose the optimal caching policy. Through extensive

simulations, experiments using an Apache Traffic Server (ATS)-

based prototype, and theoretical analysis, we show that Darwin

achieves significant performance gain w.r.t. different objectives

such as maximizing object hit rates and minimizing disk writes,

while simultaneously adapting to traffic pattern shifts. Darwin im-

poses negligible overhead and achieves high throughput compared

to the state-of-the-art.

CCS CONCEPTS
• Computer systems organization → Processors and mem-
ory architectures; • Computing methodologies → Machine
learning approaches;

KEYWORDS
Content Delivery Networks, CacheManagement, Machine Learning

ACM Reference Format:
Jiayi Chen, Nihal Sharma, Tarannum Khan, Shu Liu, Brian Chang, Aditya

Akella, Sanjay Shakkottai, Ramesh K. Sitaraman. 2023. Darwin: Flexible

Learning-based CDN Caching. In ACM SIGCOMM 2023 Conference (ACM
SIGCOMM ’23), September 10–14, 2023, New York, NY, USA. ACM, New York,

NY, USA, 19 pages. https://doi.org/10.1145/3603269.3604863

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA
© 2023 Association for Computing Machinery.

ACM ISBN 979-8-4007-0236-5/23/09. . . $15.00

https://doi.org/10.1145/3603269.3604863

1 INTRODUCTION
Content Delivery Networks (CDNs) [14, 31] serve most of the Inter-

net traffic today. They enhance the user experience by deploying a

large number of edge servers that can cache content close to the

clients (i.e., users). A large production CDN, such as Akamai’s, may

deploy more than 350,000 servers across 1400+ networks in 100+

countries [3].

A CDN server has a hierarchical structure with the Hot Object

Cache (HOC) comprising in-memory storage for fast access, and

the Disk Cache (DC) which has much more storage, but with slower

access. An incoming request to the CDN is served from the HOC if

the object exists there, else it is served from the DC. If the object is

unavailable at the DC as well, it is retrieved from the origin site of

the content provider. Cache management policies that determine

which objects to hold versus evict in the HOC or DC play a key

role in improving user-perceived latencies.

CDNs employ multi-level load balancing to determine how CDN

servers cache and serve content (Section 2.1). These load balancing

policiesmay conspire to impose significant traffic pattern changes at

a given CDN server; over time, a server may see requests for objects

from different "traffic classes" (e.g., images or video segments or

web pages or software downloads; Section 3), causing significant

changes in key request attributes such as the request frequency,

object size, and recency distributions [10, 42].

Unfortunately, this variability has a significant impact on the

effectiveness of CDN caching and renders widely-used cache man-

agement policies ineffective [10, 39]. This makes it challenging to

design cache management policies that adapt to observed traffic

patterns.

We consider the problem of cache management policy design in

the context of admission policies that determine when/which objects

are stored in the limited-capacity HOC. We find that an admission

policy cannot simply consider a single knob, e.g., a threshold 𝑓 on

the frequency of requests, to determine whether to cache in the

HOC. Furthermore, multi-knob static policies (for example, caching

objects of size ≤ 𝑠 that have been requested ≥ 𝑓 times) also fall

short (Section 3).

Learning-based approaches that avoid the pitfall of static choices

have been considered for cache management in general [2, 39, 44]

and HOC admission in particular [10]. However, prior learned ap-

proaches suffer from one or more key drawbacks rendering them

impractical (Section 3): they consider a single knob and cannot be

easily extended to several; their algorithms target a specific objec-

tive, such as object hit rate, and cannot be easily applied to others

that combine hit rates with operational costs; and, their approaches

induce high overhead due to having to look up complex inference

models for every request. Furthermore, many of the approaches

lack sound theoretical backing.

https://doi.org/10.1145/3603269.3604863
https://doi.org/10.1145/3603269.3604863


ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

We develop Darwin, a practical and provably effective approach

to adaptive learning-based HOC admission that addresses the above

issues. At its core, Darwin is based on a novel approach to neural-

aided bandit selection. Using this approach, Darwinmakes an online
selection of the "best-expert" HOC admission policy, where experts are
defined by thresholds on the aforementioned knobs. The number

of experts can be large depending on the number of knobs and the

values they can take, and evaluating them to make an informed

runtime choice can be prohibitive. Darwin scales the problem down

by using two ideas that work offline: (1) performing unsupervised
clustering of workloads and associating with each cluster a small

subset of experts offering good performance with respect to the

chosen objective; and (2) training cross-expert prediction neural nets
that eliminate the need for direct evaluation of expert performance

by enabling prediction of the runtime performance of an expert

based on a different expert that is currently running. Our online

bandit selection algorithm uses the above steps as sources of side
information – it maps incoming traffic to a cluster and uses the

prediction networks to select the best expert from among the ones

corresponding to the cluster. We prove that with high probability

our algorithm identifies the best expert in a finite amount of time

that is constant with respect to the number of experts.

A key advantage of Darwin over existing caching approaches

is that it can be used to optimize for different types of metrics. In

particular, most prior literature on caching focuses on optimizing

hardware-independentmetrics like hit rate. This is because the prior

algorithms use a hardware-independent model for a cache; e.g.,

Belady’s algorithm [8] has an optimal hit rate independent of the

hardware it runs on. As a result, prior approaches do not apply to

hardware-dependent (resource-related) metrics such as writes to

storage that are very important in practice. In contrast, an appealing

aspect of Darwin’s approach is that it is based on actually running

experts on the given hardware. Thus, it can optimize both types

of metrics. For the same traffic, Darwin can pick different experts

for different hardware configurations given the necessary offline

training.

Overall, Darwin’s design allows it to be highly customizable.

CDN operators can use the same framework for different traffic

features that can be collected, different objectives that combine

cache performance with costs, and different knob choices that are

viable in a given deployment.

We build a prototype of Darwin that uses experts parameter-

ized by two knobs <𝑓 , 𝑠>, atop the Apache Traffic Server [18]. We

conduct an extensive evaluation using both simulations and real

deployment, and both synthetic and real traces derived from a pro-

duction CDN server. Some highlights from our findings include:

(1) Darwin improves the object hit rate (OHR) by 3-43% compared

to static baselines and state-of-the-art HOC admission policies. (2)

We show that Darwin can be used to improve other metrics, e.g.,

a linear combination of OHR and disk writes improves by up to

97% and byte miss ratio by 11% compared to static approaches. (3)

Darwin imposes minimal CPU overhead and achieves a throughput

of up to 10.4Gbps, outperforming static experts due to its higher

hit rates.

2 BACKGROUND
We now describe CDNs, the cache management system utilized by

CDN servers (alternately, CDN cache), and the main metrics used

to evaluate a CDN cache.

2.1 Content Delivery Networks
The first point-of-contact for any client request is the closest CDN

server, which probes its local cache for the object. On a cache

hit (when the object is found in cache), the server retrieves this

content from memory and delivers it to the client, thus minimizing

download times which leads to better performance. In contrast, on

a cache miss, the server must source this object from the origin

server over the Wide Area Network (WAN) before it can relay it to

the client. This additional effort translates to higher latency at the

client, thus degrading performance. Additionally, on a cache miss,

the server also decides whether or not to place this retrieved object

in its cache to serve future requests. Besides worse performance, a

cache miss also results in extra bandwidth usage due to “midgress”

traffic between the CDN server and the origin [42, 50]. Hence,

increasing cache hits (and decreasing cache misses) is the holy grail

for CDN operators.

A traffic class [41, 42] is a set of domain names with a particular

content type such as images or text from a content provider(s) (such

as a social media site) with similar access characteristics. A CDN

server serves requests from highly diverse sets of traffic classes. Due

to the differences in the content they represent, these classes also

display a large variety in access frequency and size statistics. Two

levels of load balancers [12, 27] work in tandem to choose a specific

CDN server to serve each request. The first of these, the global load

balancer, performs inter-cluster distribution, while a second local

load balancer dispenses traffic between servers within a cluster. The

goal of CDN load balancing is to efficiently route client requests to

servers that are most likely to contain the requested content in their

local cache. CDN load balancing is often performed via DNS with

TTLs that are set to be small [36]. This allows the load balancer to

react quickly to changes in traffic demand, server state, and network

state. Akamai, for example, employs a TTL of about 20s to help

the load balancer modulate traffic mixes to its servers. As access

patterns, network conditions, and server states change rapidly,

these load balancers continually adjust the traffic class mixes of

each CDN server to meet availability, performance, and capacity

constraints. For instance, a CDN server that is serving mostly small

objects from a Web traffic class may start to serve larger objects

from a software download class when an important iOS update is

released. The volume and mix of traffic classes assigned to a CDN
server can change rapidly requiring a flexible cache management
system that adapts to the change without a deterioration in cost and
performance, designing such as system is the main focus of our work.

2.2 Cache Management System
A CDN server has a hierarchical structure with a Hot Object Cache

(HOC) and a Disk Cache (DC) as shown in Figure 1 [10]. HOC is a

fast but small first-level cache that resides in main memory and is

used to store frequently requested objects so that the objects can be

accessed quickly. In contrast, the DC is high-capacity, with slower

access time.



Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Figure 1: A two-level CDN cache serves requests with Hot Object Cache (HOC)
andDiskCache (DC). It can deploy various combinations of admission/eviction
policies to optimize cache usage.

The CDN server’s cache management system decides which

objects to admit in each of its caches and which to evict when the

cache is full as shown in Figure 1. Upon a cache miss (the object is

not present in the HOC or DC and is fetched from the origin), the

cache management system determines whether or not the object

can be admitted into the DC. With a cache hit (object is already

present in the DC), the object may also be admitted (i.e., promoted)

into the HOC. The decision to admit an object into either cache is

made in accordance with the admission policy of that cache. If the

DC or the HOC is full, one or more objects will need to be evicted

to make room for the newly-admitted object. The decision of which

object(s) to evict from either cache is determined by the eviction
policy of the respective cache.

Caching Policies. There is a vast literature on eviction policies

[2, 7, 13, 32, 44]. These generally rely on object metrics such as

recency and frequency of access, size, and cost of a cache miss [21].

The most commonly deployed policies are based on the Least Re-

cently Used (LRU) strategy (evict objects not requested for the

longest interval).

In contrast, admission policies have received much less attention.

Nearly 70% of the unique objects accessed from a CDN cache are

“one-hit wonders”, i.e., objects that are only accessed once [27].

Admitting one-hit wonders into the DC is a waste of disk resources

since they are never accessed again. Thus, a common admission

policy is to only admit objects into the DC when it is requested for

a second time by recording (but not admitting) the first request in

a bloom filter [27]. Unlike the DC, the HOC has limited capacity.

So, attributes such as frequency f [17, 40] and size s [10] are often
also considered for HOC admissions. For example, the HOC may

admit an object if it has a size smaller than a threshold s or when
the requested object has been accessed with a frequency more than

a threshold f.
CDN Caching Objectives: A cache management system is

designed to optimize several objective metrics, each metric signifi-

cantly impacting either the performance (e.g., latency) or cost (e.g.,

bandwidth cost).

Hit-rate metrics: A metric that directly measures caching perfor-

mance is the object hit rate (OHR, or simply, hit rate), i.e., the ratio

of the number of cache hits to the total number of requests served.

Each cache hit saves bandwidth and time to fetch the object over

the WAN. High OHRs improve object retrieval latencies, and con-

sequently the client-perceived response times. A related metric of

byte miss rate (BMR), i.e., the ratio of bytes served during cache

misses to the total number of bytes served, is also tracked and mini-

mized. The midgress traffic from the CDN servers to the origin due

to cache misses is directly proportional to BMR. The bandwidth

cost of midgress traffic is a significant portion of the operating ex-

penditures (OPEX) of a CDN [42], requiring the minimization of

BMR.

Resource-related metrics: In addition to the hit-rate related metrics,

cache management systems also optimize resource-related metrics

such as disk operations needed to serve the content. Primary among

them is SSD writes that impact both the SSD utilization and lifetimes.

Notably, excessive SSD writes can cause the disk to reach its write

endurance limit, requiring additional capital expenditures (CAPEX)

for replacing the disks or the servers [35, 50, 52].

A variety of heuristic policies have been explored for cache

management systems that optimize one or the other of the above

hit-rate metrics [5, 17, 20, 47]. In contrast, limited attention has

been paid to policies for resource-related metrics (see, e.g., [28])

which are also important in practice. Irrespective, these heuristics

operate one or more decision knobs each taking a range of values.

Together, they lead to a huge space of tunable parameters for CDN

cache management.

3 MOTIVATION
The problem of eviction is well-studied, with classical results dat-

ing back decades [7, 13, 32] to more recent work on data-driven

approaches [2, 44]. Our work, in contrast, focuses on admission

policies, which are less well-studied. As recent studies have ob-

served [10], HOC admission policies play a crucial role in overall

CDN caching performance and client-perceived response times.

In this section, we argue that admission policies need multi-

ple control knobs – simply admitting based on frequency or size

threshold, for example, is insufficient. More importantly, we show

that static admission policies are rather sub-optimal – even when
considering multiple knobs. This makes a case for learning-based

admission policies, but we find that current approaches suffer from

fundamental drawbacks.

3.1 Drawbacks of Static Policies
As mentioned in Sec. 2.1, the load balancer of a CDN can rapidly

vary both the traffic volumes and traffic classes that are assigned

to a CDN server. Since different traffic classes have widely varying

characteristics (e.g. different object size and popularity distributions

and patterns of access), a CDN server must alter its caching strategy

in a dynamic fashion to adapt to changes in the traffic mix.

In production settings, CDN HOC admission typically relies on

hand-tuned parameters, such as predetermined frequency (f ) and
size (s) thresholds. Unfortunately, there is no one-size-fits-all policy;
different traffic mixtures lead to different settings of the control

knobs (controlling either one or multiple parameters) being optimal.

Example with a real trace. We simulate a CDN cache server’s

behavior using real traces collected from a production CDN server.

We simulate a 100MB HOC (with a bloom filter for one-hit wonders)

and a 10GB DC on these traces, using LRU as our eviction algorithm.

Figure 2a and 2b show the HOC OHR under various static f and s
thresholds for two randomly-picked time windows, each with 2M

requests, in a CDN production subtrace from two distinct media

traffic classes in Europe.



ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

From Figure 2a, we see that simply controlling one knob – e.g.,

fixing 𝑓 and ignoring 𝑠 – is not sufficient.
1
For a given choice of 𝑓

(likewise 𝑠) a specific non-trivial choice of 𝑠 (𝑓 ) is needed to opti-

mize OHR. While our analysis here considers just two knobs, HOC

policies could use additional knobs (e.g., recency and frequency

per-unit size) that can play a crucial role in caching alongside 𝑓

and 𝑠 . We study a third dimension (recency) in Section 6.

Furthermore, we see that sticking to the best parameters for

window 1 (f =3, s=7MB) causes the window 2 requests to perform

1.19% worse than optimal (f =1, s=7MB), while keeping window 2’s

best parameters (f =1, s=7MB) degrades window 1’s HOC hit rate

by 7.83%.
2

We posit that an underlying reason for these observations is a

shift in workload – either in the mixes between different traffic

classes or in the size/frequency distribution of objects. To under-

stand the impact of and dependence on traffic composition, we

consider an extreme case where objects are from just one traffic

class as seen at the CDN server. Specifically, we examine the Image

(Figure 2c) and Download traffic (Figure 2d, 2e) class subsets of a

production server trace.

The Image class has many requests for infrequently accessed

objects and 71.9% of the requests are for objects whose sizes are

smaller than 20KB. The best HOC admission parameters for the

Image class are f =5 and s=20KB, as shown in Figure 2c. Larger

frequency thresholds prevent those two-hit/three-hit/four-hit won-

ders from entering the HOC, and therefore better utilize the limited

memory space with the more popular objects. On the other hand,

the size threshold of 20KB gives most of the objects a chance to

reside in the HOC, while preventing the few large objects from

taking up the space that can serve more objects.

However, we can see from Figure 2d that for Download requests,

the previous hand-tuned admission thresholds (f =5, s=20KB) be-
come suboptimal. Choosing another parameter set (f =1, s=5MB) for

the Download class can reach a 71.39% higher HOC hit rate. This

is because the Download class objects are more popular. Increas-

ing the frequency threshold doesn’t have a large effect on which

objects get admitted to HOC as these objects all have more than 7

requests. A larger frequency threshold slightly hurts the HOC OHR

performance because the HOC admission of each object takes more

requests. On the other hand, the subset of common media objects

have much larger object sizes and only 21.5% of the requests are

for objects below 50KB. They need a larger size threshold to keep

the most common but reasonably-sized objects in the HOC cache.

3.2 Learning the Admission Decisions
Monitoring traffic properties and tuning policies manually is diffi-

cult. One might ask if the optimal admission decisions are learnable.

Indeed, CDN caches have key properties that are beneficial for

learning: (1) Diverse CDN servers produce large amounts of logs

every day, creating a large and diverse dataset that can be used

to learn from. (2) It is easy to obtain the cache performance repre-

sentation (footprint descriptor), even from completely anonymized

1
Note that because of the use of the bloom filter, a particular value of 𝑓 implies that

an object is let into the HOC upon the (1 + 𝑓 )𝑠𝑡 request.
2
Compared to these randomly chosen windows, in our end-to-end evaluation in

Section 6 we observe much more significant differences between static expert choices

and experts chosen in an adaptive manner.

Name Year

Many

Knobs

Diverse

Goals

Low

Overhead

Theoretical

Guarantees

Darwin 2023 ✓ ✓ ✓ ✓

LHR [49] 2021 ✓ ✗ ✗ ✗

RL-Cache [22] 2019 ✓ ✓ ✗ ✗

AdaptSize [10] 2017 ✗ ✗ ✓ ✗

Hill Climbing [10] 2017 ✓ ✓ ✗ ✗

Percentile [10] 2017 ✓ ✓ ✓ ✗

Table 1: Learned cache admission schemes (Percentile and Hill Climbing
discussed in Section 6)

logs [41] of CDN requests – this is strongly correlated with the

traffic’s cache performance. (3) The best caching behaviors are de-

terministic for a given request sequence, and therefore learnable

by considering prior traces. (4) CDN cache servers in general are

not CPU-bound[39], and can leverage available compute toward

learning-based decisions.

Next, we describe the requirements for caching with learned

HOC admission and describe where prior art falls short.

3.2.1 Requirements, and Issues with Prior Schemes.
Adaptation. The primary requirement of a learned admission scheme

is that as traffic mixtures of different traffic classes expected at a

CDN server change, the cache management policy should be able

to (R1) adapt to best suit the current traffic. In particular, the policy

should offer performance very close (e.g., within, say 1% in terms of

the OHR) to the "hindsight optimal" policy, since directly matching

the performance of an oracle is impossible.

Multiple decision knobs. Decision knobs such as 𝑓 and 𝑠 are the

parameters that a learning-based approach uses in its decision-

making and define the approach’s action spaces. Restricting the

knobs restrains the possible action space that the admission poli-

cies can work with. AdaptSize, for example, learns the probabilistic

size threshold (𝑠) for HOC admission. It develops a Markov chain

model that estimates OHR as a function of the object size thresh-

old. However, with the same input features and models, AdaptSize

cannot extend its model to other admission heuristics that also

involve other knobs, e.g., 𝑓 and 𝑠 . This can be problematic: e.g.,

when a subset of popular objects is mixed with a cache scan [33],

AdaptSize’s size-based policy is suboptimal as it doesn’t consider

object frequency and admits objects with low popularity. Similar

issues arise with admission rules based on frequency alone [17, 27].

Thus, (R2) learning-based approaches should accommodate multiple
decision knobs to cover more advanced admission policies.
CDN optimization goal. This refers to the metric that the learning

approach optimizes for. Cache servers can have diverse goals. For

example, a server with SSD as the disk cache may want to opti-

mize disk writes while maintaining high OHR. Most approaches

today employ algorithms that target a specific goal, which is of-

ten hardware-independent (e.g., OHR). This can cause highly sub-

optimal behavior with respect to other goals; for example, as shown

in Figure 2d and 2e, the static frequency and size thresholds that

achieve the highest OHR for the Download trace offers the second

highest SSD writes. The underlying algorithms cannot be easily

extended to other goals, especially hardware-dependent ones. For

example, we cannot easily adapt AdaptSize’s approach, which re-

lates OHR to a probabilistic size admission threshold model, to

optimize SSD writes due to the complexity of modeling hardware

behavior. Other cache management approaches, such as those based



Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

(a) Production (Win1) OHR (b) Production (Win2) OHR (c) Image OHR (d) Download OHR (e) Download Disk Write

Figure 2: (a) (b): HOC OHR results for two windows in a CDN production trace with different frequency and size thresholds. (c) (d) (e): The optimal parameters
change with different traces and evaluation metrics. (c) HOC OHR for the Image trace is optimal with (f =5, s=20KB). (d) HOC OHR for the Download trace is
optimal with (f =1, s=5MB). (e) Disk write for the Download trace is optimal with (f =1, s=10MB).

on Hill Climbing [10] face similar issues. Ideally, (R3) the cache man-
agement policy should be easily customized to all types of different
objectives, avoiding baking the objective into the design.

Overhead. A learning-based cache management approach should

(R4) impose low overhead on the system overall. Some approaches, e.g.,

RL-Cache [22] and LHR [49] learn the features of multiple objects

using which they predict the current object’s decision (object-based

learning). However, such prediction-per-request is significantly

more expensive than approaches that, by design, invoke learning

for every time interval or once every several requests. Additionally,

learning approaches like hill climbing [10] require simultaneous

runs of shadow caches to report online statistics of the policies in

comparison, which induces high memory overhead.

Table 1 compares learning-based mechanisms explored in prior

work that can be applied to tune CDN cache admission policies.

All proposals attempt to meet R1, although to different levels of

effectiveness (Section 6), but fail on one or more of the other re-

quirements. None of the approaches have theoretical backing either.

4 DARWIN DESIGN
We present Darwin in the context of admission policies that maxi-

mize the HOC hit rate in a CDN server. We show how it extends to

other practical objectives in Section 6. There are several possibili-

ties for applying learning to this problem. We initially considered

training a learning algorithm to make per-object admission pre-

dictions, but this has a high overhead violating R4. Furthermore,

speaking to CDN operators highlighted hesitation in deploying this

approach due to the black-box nature of predictions and difficulty

with interpreting decisions.

We then considered a more practical approach that maps features

of arriving traffic directly to the available knobs of a HOC admission

policy (e.g., 𝑓 or 𝑠 or jointly predict both). This ensures better

interpretability, but we found that its OHR performance is poor

(Section 6) mainly because there was no way to control the inherent

error in the approach’s parameter prediction. Also, predicting the

best joint parameter choice is challenging when the number of

knobs is large.

Darwin’s approach is to use learning to "test" and select among

a set of "known good experts". This preserves interpretability while

avoiding the pitfalls of direct prediction. In Darwin, each expert

is characterized by a tuple (𝑓 , 𝑠) of frequency and size thresholds,

and promotes to HOC all objects that occur more than 𝑓 times

and request objects of size lesser than 𝑠 . Darwin learns to associate

traffic patterns in the arriving workload to the best-performing

expert (one with the largest hit rate) in the given set. Darwin can

be trivially extended to include other knobs.

Our approach is summarized in Figure 3 and is split into two

steps: offline training, and online selection.

1. Offline training (Section 4.1, Appendix A.1) :
1a. Offline clustering and expert set association: We collect histor-

ical traffic traces of CDN server operation. Each trace could span a

specific (large) number of requests or time and could be collected

at a single server or could combine data across many servers. For

the collected traces, we extract features, which include average

requested object sizes, vector of inter-arrival times, and vector of

stack distances [46]. We then form clusters of traces based on their

features. Next, we associate an expert with a trace if its hit rate is

within \% of that of its best-performing expert. Cycling over each

trace in each cluster gives us a map between features of a trace

to a corresponding set of experts that are promising. This process

aids the online operation of Darwin by potentially reducing the

number of experts to be considered. Further, the \ threshold can

help capture the best experts of similar traces that were not covered

in the logs.

1b. Offline cross-expert predictors:We find that the performance of

multiple experts that map to a cluster are correlated (as we explain

later in Figure 5c), implying that we can predict the performance

of an expert given that of another. To this end, we train neural

networks for each ordered pair of experts – each one accepts trace

features as input and outputs the conditional probability of hits

of one expert given hits/misses of the other. These cross-expert
neural predictors are used in the online phase below to predict the

performance of all non-deployed experts using only the samples

collected from the deployed expert (Section 4.1).

These offline steps are repeated periodically as more trace data

is collected, resulting in more refined/new clusters and improved

cross-expert prediction.

2. Online selection (Section 4.2): The online step proceeds over

epochs of 𝑁𝑒 requests each and consists of two phases: feature

estimation, and best-expert identification and deployment.(Feature
Estimation) The first 𝑁𝑤𝑎𝑟𝑚−𝑢𝑝 requests are used to estimate the

features of the current traffic and thus associate the incoming traffic

with a learned cluster (step 1a). (Best-Expert Identification and De-
ployment) From the corresponding set of experts with the learned

cluster, we select a single best expert using a novel best-arm iden-

tification algorithm (Algorithm 1) with side information provided



ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

Offline traces
Compute Expert 

Hit Rates
Compute 
Features

Form 
Clusters

Form Expert 
Sets

Step 1a. Offline Clustering and Expert Sets

Mi,j

Trace 
features

Size 
distribution

Step 1b. Cross-Expert Prediction Networks

Time

Requests

Nwarm-up Nround Nround Nround

One Epoch: Ne requests

Feature 
Estimation

Best-expert 
Identification

Step 2. Online Selection

Identified expert 
is deployed

Figure 3: Darwin Workflow

by the cross-expert predictors (step 1b). The learned expert is then

deployed for the remainder of the epoch.

4.1 Offline Training
The offline clustering and expert set association process is straight-

forward and we defer its description to Appendix A.1. We now

discuss the cross-expert predictors.

The experts in Darwin share a structure: they promote all objects

that occur with more than a threshold frequency and have a size

smaller than a threshold in order to maximize HOC hit rates over

a series of requests (traces). This structure can be leveraged in

selecting experts.

To see why, let 𝐸1 and 𝐸2 be two experts characterized by tuples

(𝑓1, 𝑠1), (𝑓2, 𝑠2) respectively. In any fixed trace, requests can be: (a)
promoted by both 𝐸1 and 𝐸2, (b) promoted by only one of the

two experts, or (c) never promoted by either expert. Specifically,

objects that are requested at least max{𝑓1, 𝑓2} times with size at

mostmin{𝑠1, 𝑠2} are of the type (a), type (c) consists of requests with
object size over max{𝑠1, 𝑠2} or frequency lesser than min{𝑓1, 𝑓2};
the remainder are type (b).

This suggests that the performance of these experts on a fixed

trace is not independent of one another. It is thus reasonable to

estimate the hit rate of one expert by observing the behavior of

another on a fixed set of requests; we show empirical evidence in

Figure 5c (Section 6).

Building on this idea, we train a 1-layer fully connected neural

network𝑀𝑖, 𝑗 for each ordered pair of experts 𝐸𝑖 and 𝐸 𝑗 that belong

to the same cluster-level best expert set. To train this network, we

first extend the set of features associated with each trace with a

bucketized version of its size distribution. This extended feature

set is then used as a training point to train 𝑀𝑖, 𝑗 , which predicts

the conditional probabilities P(𝐸 𝑗 hit|𝐸𝑖 miss) and P(𝐸 𝑗 hit|𝐸𝑖 hit)
over this trace. Adding the size distribution to the features helps

provide sharper estimates of these conditional probabilities; the

number of buckets to use can be chosen as necessary.

These conditional probability estimates also lead to estimates on

variances: Let P(𝐸𝑖hit), P(𝐸𝑖 miss) denote the cache hit andmiss fre-

quencies of a fixed expert 𝑖 on a given trace. For all experts 𝑗 ≠ 𝑖 the

networks𝑀𝑖, 𝑗 can be used to compute 𝑉ℎ𝑖𝑡 (𝑖, 𝑗)=P(𝐸 𝑗 hit |𝐸𝑖 hit) · (1−
P(𝐸 𝑗 hit |𝐸𝑖 hit)), the estimated variance of 𝐸 𝑗 hits given an 𝐸𝑖 hit. Sim-

ilarly, we can also compute𝑉𝑚𝑖𝑠𝑠 (𝑖, 𝑗) =P(𝐸 𝑗hit |𝐸𝑖 miss) ·(1−P(𝐸 𝑗hit |𝐸𝑖 miss))
the estimated variance under 𝐸𝑖 misses. Together, these can be com-

bined to provide an estimate of the variance of hits of expert 𝑗

given the performance of expert 𝑖 using 𝜎2
𝑖 𝑗

:= P(𝐸𝑖 hit)𝑉ℎ𝑖𝑡 (𝑖, 𝑗) +
P(𝐸𝑖 miss)𝑉𝑚𝑖𝑠𝑠 (𝑖, 𝑗). These variance computations will find use in

the online expert identification stage below.

4.2 Online Expert Identification
We now move to the online deployment step of Darwin.
Feature Estimation. For the first 𝑁𝑤𝑎𝑟𝑚−𝑢𝑝 requests of an epoch

of 𝑁𝑒 requests, the user deploys an arbitrary expert (or one from

the previous epoch) to instruct HOC admissions. It then computes

the empirical features for this epoch based on the warm-up requests

and then selects a small set of experts (Appendix A.1).

Best-Expert Identification and Deployment. Next, our (ban-
dit) algorithm sequentially deploys different experts (from the set

identified through feature learning) and collects rewards (HOC hit

rates) from each expert. Using these collected rewards and fictitious

reward samples generated using the cross-expert predictors (Sec-

tion 4.1), the algorithm determines a single best expert at the end of

"best-expert identification", and deploys this selected expert. There

are two things to note: First, each expert deployment is over a series

of 𝑁𝑟𝑜𝑢𝑛𝑑 consecutive requests (termed as a round). At the end of a
round, the next expert is deployed, and so on over rounds, until the

end of the best-expert identification phase. The number of requests

in a round, 𝑁𝑟𝑜𝑢𝑛𝑑 is chosen to be sufficiently long such that the

state of the cache (which has been determined by previously de-

ployed experts) sufficiently de-correlates over time, and the reward

estimates at the end of the round are representative of the currently

deployed expert. Second, the number of rounds (equivalently, the
number of experts) that are deployed in this phase is adaptively

chosen online, to ensure that the expert chosen at the end of the

phase is truly the best expert with a probability ≥ (1 − 𝛿), where,
𝛿 is an operator specified failure probability. This expert is then
deployed for the remainder of the epoch.

From Experts to Bandits. The problem of expert selection is

closely related to the Multi-armed Bandit problem with experts

as arms and hit rates as rewards. In contrast to standard bandit

feedback models where only rewards of experts deployed for HOC
admissions can be observed, we can gather hit rate estimates for
all experts using our cross-expert prediction models. There are,

however, two things to note: (a). The estimates of the non-deployed

experts are only accurate if the networks predict the conditional

hit rates reliably, (b). Due to the randomness in the performance of

the deployed expert, the reward estimates from the non-deployed

experts are also random, with variances that depend on the de-

ployed expert. This problem is one formulation of the Multi-armed

bandit problem with Side Information; this form was introduced by

[48], where the selected arm-dependent variances are encoded as

a known side information matrix. Further, this information struc-

ture generalizes various structures studied in bandits including

graph-based and full feedback; we refer to [4, 48] for details. How-

ever these works have focused on cumulative regret, whereas our

objective is that of best-arm identification, which is quite different
3
.

3
Broadly, there are two bandit settings: (a) cumulative regret, where the objective is to

continuously trade-off between exploration and exploitation of learned information

throughout the deployment, and (b) best arm identification/pure exploration, where

the goal is to determine the best expert at the end of a learning phase. The algorithms

for these two settings can be quite different; we refer to [24] for additional discussion.



Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

To the best of our knowledge, our work is the first to consider the

best-arm identification setting with this richer feedback structure.

This additional structure is utilized by our algorithm to identify the

best expert in a finite expected time, whose scaling is constant with
respect to the number of experts. This is in contrast to the classical

setting, where the learning time typically grows with the number

of experts.

Best Expert Identification with Side Information. We now

make our setting formal: Let the cluster-level set identified af-

ter 𝑁𝑤𝑎𝑟𝑚−𝑢𝑝 samples have experts indexed by the set [𝐾] =

{1, 2, ..., 𝐾}. For any expert 𝑖 ∈ [𝐾], let `𝑖 ∈ [0, 1] denote its mean

hit rate (reward) and ` ∈ R𝐾 be the vector of mean rewards. We

denote the variance of rewards observed from expert 𝑗 when expert

𝑖 is deployed (or played) by 𝜎2
𝑖 𝑗
and encode these variances in the

matrix Σ ∈ R𝐾×𝐾 .
The learner first infers the side information matrix Σ by de-

ploying each expert over a series of 𝑁𝑟𝑜𝑢𝑛𝑑 requests using the

performance prediction networks𝑀𝑖, 𝑗 (see variance computation

discussions in Section 4.1). Thereafter, in each round 𝑡 , an expert

𝐸𝑡 is chosen to be deployed in the HOC over 𝑁𝑟𝑜𝑢𝑛𝑑 requests. At

the end of the round, the learner computes the observed hit rate

of expert 𝐸𝑡 in this round and uses 𝑀𝐸𝑡 , 𝑗 for all 𝑗 ≠ 𝐸𝑡 to form

the vector of rewards 𝑌𝑡 = (𝑌1 (𝑡), 𝑌2 (𝑡), . . . , 𝑌𝐾 (𝑡)). Here, 𝑌𝐸𝑡 (𝑡)
is the true observed hit rate, while 𝑌𝑗 (𝑡), 𝑗 ≠ 𝐸𝑡 are all fictitious

samples generated by the prediction networks. We assume that for

any expert 𝑖 and any round 𝑡 , 𝑌𝑖 (𝑡) is an independent Gaussian

random variable with mean `𝑖 and variance 𝜎2
𝐸𝑡 𝑖

.

The learner maintains an estimate ˆ̀𝑡 of the mean rewards of

each expert at the end of round 𝑡 to instruct its future deployed

experts. As in the standard best-arm identification problem of [19],

we seek to design a triple (𝜋, 𝜏,𝜓 ) of an expert sequence selection

policy 𝜋 , a stopping time 𝜏 and a recommendation rule𝜓 such that:

P`,Σ,𝜋 (𝜓 ( ˆ̀𝜏 ) ≠ 𝑖∗ (`)) ≤ 𝛿. In words, the expert recommended

using the rule𝜓 after 𝜏 rounds of running the policy 𝜋 is the best

expert 𝑖∗ (`) = argmax𝑘∈[𝐾 ] `𝑘 with a high probability of 1−𝛿 . Let
E(Σ) be the set of all mean reward vectors ` with Side information

matrix Σ. Then, any triple (𝜋, 𝜏,𝜓 ) satisfying the above condition
for all ` ∈ E(Σ) is said to be 𝛿−sound [19, 24].

Track and Stop with Side Information.We propose the Track

and Stop with Side Information algorithm (Algorithm 1) which

builds on the well-known Track and Stop strategy [19] for best-arm

identification with standard bandit feedback. It deploys experts to

instruct HOC admissions sequentially over rounds and terminates

once it has identified the best expert with a high probability ≥
1 − 𝛿 . This termination time is random and depends on the request

sequence and statistics. Below, the algorithm estimates hit rates for

each expert, determines the sequence in which experts are deployed

our rounds, and stops when it is confident that it has identified the

best expert.

Hit rate estimators: At each round 𝑡 , the estimate ˆ̀𝑖 (𝑡) for the mean

reward of expert 𝑖 ∈ [𝐾] is given by

ˆ̀𝑖 (𝑡) =
1

𝜌𝑖 (𝑡)

𝑡∑︁
𝑛=1

𝑌𝑖 (𝑛)
𝜎2
𝐸𝑛,𝑖

, 𝜌𝑖 (𝑡) =
𝑡∑︁
𝑛=1

1

𝜎2
𝐸𝑛,𝑖

(1)

Algorithm 1 Track and Stop with Side Information

1: Inputs: Side Information matrix Σ, failure probability 𝛿 > 0, a function 𝛽𝑡 (𝛿, Σ) .
2: Choose each expert once and set 𝑡 = 𝐾,𝑇𝑖 (𝐾) = 1.

3: while 𝑍𝑡 < 𝛽𝑡 (𝛿, Σ) , do
4: Compute 𝛼∗ ( ˆ̀𝑡 , Σ) defined in Equation (3).

5: Deploy 𝐸𝑡+1 = argmax𝑖∈[𝐾 ] 𝑡𝛼
∗
𝑖
( ˆ̀ (𝑡 ), Σ) −𝑇𝑖 (𝑡 ) .

6: Observe the reward vector 𝑌𝑡 .
7: Update estimates ˆ̀𝑖 (𝑡 + 1) using Equation (1).

8: Increment the counter of expert plays𝑇𝐸𝑡+1 .
9: Compute 𝑍𝑡+1 = Φ( ˆ̀𝑡 ,𝑇 (𝑡 + 1)) , Φ as in Equation (2).

10: end while
11: return𝜓 ( ˆ̀ (𝑡 )) = argmax𝑖∈[𝐾 ] ˆ̀𝑖 (𝑡 )

The above is simply a modification to the standard empirical mean

and is obtained by re-weighting each sample according to its corre-

sponding variance and then normalizing the estimate using 𝜌𝑖 (𝑡).
It was previously used by [4] to design asymptotically optimal algo-

rithms for the cumulative regret setting of [48] when the rewards

are Gaussian.

Expert sequence selection policy 𝜋 : To determine the sequence of

experts to deploy, the learner repeatedly (at the beginning of each

round) solves the optimization problem:

Φ(a, 𝛼) = inf

a′∈E𝑎𝑙𝑡 (a)

𝐾∑︁
𝑖=1

𝛼𝑖

𝐾∑︁
𝑗=1

(a 𝑗 − a ′𝑗 )
2

2𝜎2
𝑖, 𝑗

(2)

𝛼∗ (a, Σ) = argmax

𝛼 ∈P𝐾−1
Φ(a, 𝛼) . (3)

The cost function in Φ is derived from a KL divergence between

two Gaussian distributions. Intuitively, if a 𝑗 is replaced with the

empirically learned mean, this cost quantifies the most likely Gauss-

ian distribution from among the alternate environments that could

have resulted in the observed samples. Thus, in some sense, this

measures the distance to the ‘most likely’ wrong expert that we

could end up with. Here, P𝐾−1 is the probability simplex in 𝐾 di-

mensions and E𝑎𝑙𝑡 (a) = {a ′ ∈ E(Σ) : 𝑖∗ (a) ∩ 𝑖∗ (a ′) = ∅} is the set
of alternate environments. Recall that E(Σ) is the collection of all

possible environments; for each ` in this set, E𝑎𝑙𝑡 (`) is the subset of
environments that do not share the same index for the best expert.

For a given mean vector a and a side information matrix Σ, the
solution 𝛼∗ (a, Σ) is a probability distribution over experts. In each

round 𝑡 , the learner solves for 𝛼∗ ( ˆ̀𝑡 , Σ). Intuitively, 𝛼∗ corresponds
to the optimal fraction of rounds that each expert should have been

deployed until now, assuming that the current empirical estimates

are correct. Thus, in the current round, the algorithm deploys that

expert which is the most under-deployed expert with respect to

this estimated distribution (Line 5, Algorithm 1).

Stopping time 𝜏 : The algorithm computes the ‘information level’

𝑍𝑡 = Φ( ˆ̀𝑡 ,𝑇 (𝑡)). Here, 𝑇𝑖 (𝑡) is the number of times that expert

𝑖 has been deployed up to time 𝑡 , and 𝑇 (𝑡) is the vector of these
deployment counts. At the beginning of each round, if this informa-

tion level exceeds the given threshold function 𝛽𝑡 (𝛿, Σ) (specified
in Theorem 1), the algorithm terminates (thus defining the stopping

time).

Expert recommendation rule𝜓 : The returned expert is simply the

most empirically promising one at the time of stopping. Formally,

𝜓 ( ˆ̀𝜏 ) = argmax𝑖∈[𝐾 ] ˆ̀𝑖 (𝜏)



ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

Theoretical Results. Our setting differs from the standard bandit

feedback due to the fictitious samples we gather from the cross-

expert predictors. These are explicitly used in our estimators in

Equation (1) and in order to guarantee that Algorithm 1 is 𝛿−sound,
we require concentration bounds on the performance of these es-

timators. The difficulty is that the series of expert deployments is

random due to the expert sequence selection policy 𝜋 . To overcome

this, we develop anytime concentration bounds for these scaled em-

pirical estimators that do not depend on the selection strategy used

to pick experts. For this, we analyze a martingale process, both

over time and experts. Beyond proving soundness, the martingale

evolution over the pair (experts, time) – as opposed to only time – is

crucial to show that the stopping time of our algorithm is bounded

by a quantity that does not scale with the number of experts 𝐾 . As

observed before, this is an expected, yet interesting artifact of the

increased feedback due to correlation across experts.

We now state our theoretical guarantees. The first result shows

that the proposed policy, stopping criterion and expert recommen-

dation rule form a 𝛿−sound triple.

Theorem 1. Let 𝜎2
𝑚𝑖𝑛

, 𝜎2𝑚𝑎𝑥 be the minimum and maximum vari-
ances in Σ respectively. Let 𝑀 be such that the rewards 𝑌𝑖 (𝑡) ∈
[−𝑀,𝑀] with probability at least 1 − 𝛿/2 for all 𝑖 ∈ [𝐾], 𝑡 ∈ N.
Using ^ =

𝜎2

𝑚𝑖𝑛

𝜎2

𝑚𝑎𝑥
and 𝛽𝑡 (𝛿, Σ) = 𝐾𝑡

2^ + 𝐾𝑀2

2𝜎2

𝑚𝑖𝑛
^
√
𝐶

√︁
𝑡 log(2/𝛿) for a

constant 𝐶 , the triple (𝜋, 𝜏,𝜓 ) suggested by Algorithm 1 is 𝛿−sound.

The next result characterizes the expected stopping time.

Theorem 2. Let a be any environment with a unique best expert.
Then, with expert sequence selection policy 𝜋 and stopping time 𝜏 as
in Algorithm 1, it holds that

lim

𝛿→0

Ea𝜋 [𝜏]
log(1/𝛿) =

(
𝑀

𝜎2
𝑚𝑖𝑛

· 𝐾

2^Φ(a, 𝛼∗ (a, Σ)) − 𝐾

)
2

.

We recall that Φ(`, 𝛼), 𝛼∗ (a, Σ) are defined in Equations (2) and (3)

respectively.

Complete proofs of both these theorems can be found in Appen-

dix A.2. The key observation here is that the limit in Theorem 2 does

not scale in the number of experts 𝐾 , whereas with standard bandit

feedback, the corresponding limit scales linearly in the number of

experts.

Remark:We choose to develop the best expert selection algorithm

for Gaussian rewards to ease presentation. Specifically, this assump-

tion allows us to write the quadratic-form inner summations (which

are KL divergences between two Gaussians) in Equation 2 and also

provide a unique closed-form solution to the optimization prob-

lem in Equation 3. This solution is then used to establish Theorem

2. This provides us with intuition on the scaling of the stopping

time with the total number of experts 𝐾 . Note that we do not re-

quire the Gaussian rewards to prove soundness in Theorem 1. With

non-Gaussian rewards, our approach can be used by appropriately

modifying Equation 2 and numerically solving Equation 3.

5 IMPLEMENTATION
We implemented Darwin on top of ATS [18]. The original ATS

consists of a RAM cache and a disk cache. We inject the Darwin

admission policy by modifying the conditions for an object to be

added to the RAM cache to include a frequency and a size threshold

configured by the user. We make further modifications to support

the online phase of Darwin.

To aid in this, we track the request counts on the cache server.

Once the request count reaches an action point (e.g., the end of the

feature collection stage, or the end of each bandit round), our proto-

type starts a new thread to perform Darwin’s additional operations.

At the end of the feature collection stage (which is lightweight due

to the optimizations discussed in Section 6.4), the thread looks up

the cluster and loads the corresponding best experts into memory.

At the end of each bandit round, we calculate the rewards of this

round and select the next round’s arm (expert) in parallel with

the cache processing. Once the new expert decisions are made, we

change the threshold values of the HOC admission policy.

We also implemented a Darwin simulator based on the LRB sim-

ulator [39] and the feature extraction module [34], which simulates

a two-level cache hierarchy.

6 EVALUATION
We evaluate Darwin using both simulations and prototype experi-

ments. We seek to answer four main questions:

(i) How well can Darwin adapt to traffic changes and improve CDN

caching OHR performance compared to fixed experts and SOTA

learning-based approaches? (Section 6.1)

(ii) How well do Darwin components of clustering, cross-expert

predictors, and online selection perform? (Section 6.2)

(iii) How well does Darwin work toward optimizing different met-

rics? (Section 6.3)

(iv) What is the overhead of using Darwin, in terms of latency,

throughput, CPU, and memory usage? (Section 6.4)

We now discuss our methodology and setup.

Simulator Setup.We build and run the simulator on a single server.

The server’s HOC size is configured to be 100MB, and the disk size

is 10GB. We also experiment with larger cache sizes, specifically,

200MB and 500MB. We are limited by our access to computational

resources to explore even larger cache sizes. However, our study

with 100MB, 200MB, and 500MB caches shows that Darwin’s per-

formance benefits hold for servers equipped with larger caches.

Testbed Setup.We set up the client, proxy (CDN server), and origin

servers in Cloudlab [16]. Each node has a 16-core AMD 7302P @

3.00GHz, 128GB ECC Memory (8x 16 GB 3200MT/s RDIMMs), two

480 GB 6G SATA SSD, and two dual-port Mellanox ConnectX-5

25Gb GB NIC (PCIe v4.0). Each node pair of client-proxy and proxy-

origin is connected with a 20Gbps bandwidth link. We inject a

latency of 10ms between the client and proxy and 100ms between

the proxy and origin. By default, we set the cache RAM size to

100MB, and disk size to 1024GB.

CDN Traces. We first describe how we generate traces to study

Darwin’s benefits for a 100MB cache size. We then describe how

we "scale" these traces to study the benefits for CDN servers using

larger cache sizes of 200MB and 500MB.

We employ two sets of CDN traces in the experiments: an offline

training set used to train the cross-expert prediction models and a

testing set for online testing. To create a large and diverse dataset,

we generate synthetic traces based on the Download and Image

traces with various mixed ratios using Tragen [34]. The sum of the



Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

request rates for the two traffic classes in the production trace is

265.9 req/s. We vary the proportion of these two traffic classes, from

100:0 to 0:100, creating 100 mixed request rate configurations in to-

tal. We generate 10 traces with 10M requests for each configuration.

7 of these are added to the training set (offline train trace), and the

rest 3 traces are used for model testing (offline test trace). We also

create one trace for each configuration that contains 100M requests

to be used for the end-to-end evaluations (online test trace). For

all the traces, the first 1M of requests are used as "cache warmup"

requests in the trace, and the statistics of these requests are not

counted in the final results.

For 200MB and 500MB cache sizes, instead of using the same

traces as above, we scale up the object sizes of the 100MB traces

by 2× and 5×, respectively, and additionally perturb each object’s

size randomly by ±20% to synthetically generate “new” traces. Our

rationale for scaling the traces is that in a production setting, the

load balancer of the CDN would assign more traffic to servers with

larger caches. For example, servers equipped with larger caches

will typically serve larger volumes of traffic with higher request

rates and/or larger objects.

Baselines. In the simulation experiments, we compare with Stat-

icExpert(s), AdaptSize (AS) (Section 3.2.1), DirectMapping (Direct)

(Section 4), Percentile (P), and HillClimbing (HC-Δ𝑠 ). Each Stat-

icExpert is a combination of a frequency threshold (f =2-7) and a

size threshold (s=10, 20, 50, 100, 500, 1000kB). We scale up the size

thresholds for the larger cache sizes.

Percentile (P) works as follows: In 𝑁 -request windows, we up-

date the empirical distributions of frequencies and sizes of incoming

requests. For the next 𝑁 requests, it deploys the expert (𝑓 , 𝑠) with
𝑓 , 𝑠 closest to the 60

𝑡ℎ, 90𝑡ℎ percentiles (respectively) of the em-

pirical distribution hitherto. We use 𝑁 = 100𝐾 requests and the

percentile values are picked to be the best-performing ones for this

window size.

For HillClimbing, the learner deploys an expert (𝑓 , 𝑠) in the main

cache for 𝑁 requests and concurrently runs two shadow caches;

one each for experts (𝑓 + Δ𝑓 , 𝑠), (𝑓 , 𝑠 + Δ𝑠 ). It then updates the

main cache with the best-performing expert of the three. When the

expert deployed in the main cache does not change, the shadow

caches are updated to run (𝑓 −Δ𝑓 , 𝑠), (𝑓 , 𝑠−Δ𝑠 ). In the above we use,
Δ𝑓 = 1 and Δ𝑠 = {1𝐾𝐵, 10𝐾𝐵} and 𝑁 = 0.5𝑀 in our evaluation.

In the prototype experiments, we compare with the same set of

static experts on ATS. Unless otherwise stated, we configure Darwin

with \ = 1%, 𝑁𝑒 = 100𝑀 , 𝑁𝑤𝑎𝑟𝑚𝑢𝑝 = 3𝑀 and 𝑁𝑟𝑜𝑢𝑛𝑑 = 0.5𝑀 .

Metrics. For simulation, we consider the 𝑂𝐻𝑅, the linear combi-

nation 𝑂𝐻𝑅 + 𝑘 ∗ 𝑑𝑖𝑠𝑘_𝑤𝑟𝑖𝑡𝑒𝑠 , and byte miss ratio (BMR) as the

objectives for HOC admissions. For the prototype, we also measure

the request first-byte latency, server throughput, CPU and memory

use, and network throughput.

6.1 Robustness to Traffic Changes
We evaluate the OHR of Darwin and multiple baselines in the

simulator using our online test trace set. We find that Darwin out-

performs baselines by 3%-43%. While the lower-range improvement

numbers seem unimpressive at face value, we remind the reader

that even minor improvements in hit rates translate to significant

reductions in network bandwidth usage that leads to improvements.

Since a large CDN could incur a midgress of tens of Tbps at a cost

of tens of millions of dollars per year, even a small midgress band-

width reduction due to improved hit rates translates into large cost

savings for the CDN [42].

Comparison with static baselines. To illustrate the performance

of Darwin and the baseline algorithms against changing traffic,

we pick an ensemble set made up of traces with a variety of best

static experts. We group the online test traces by their best static

experts and randomly pick one trace from each group to add to the

ensemble set. Figure 4a shows the distribution of Darwin’s HOC

OHR improvement rates against each baseline (more complete

baseline results in Appendix A.3). Note that each trace is with a

stable traffic mixture, and therefore a suitable static expert can

outperform Darwin in one trace as Darwin runs with a suboptimal

expert in a proportion of the requests when learning. But no static

expert works well in all traces.

Comparison with adaptive methods. Darwin adapts to traffic

changes better than the previous state-of-the-art adaptive methods

described below.

Percentile: Fixed percentile thresholds are non-optimal for a pro-

portion of the traces and therefore have worse hit rates for those

traces. In our experiments, Percentile is 10% worse on average than

Darwin.

HillClimbing: In our experiments, HillClimbing has access to a

larger slew of experts (e.g., all experts with frequency thresholds

that are multiples of Δ𝑓 ) than Darwin (limited to the given expert

set). Further, HillClimbing is provided with additional computa-

tional resources in the form of two shadow caches which are used

to determine the expert swaps (one each for size and frequency).

However, even with these significant advantages, it under-performs

Darwin by ≥ 3% on average. Further, HillClimbing also requires

careful tuning of the jump sizes (Δ𝑓 , Δ𝑠 ), as well as the number

of requests after which experts are switched. And, it also suffers

from the pitfall of displaying suboptimal performance due to the

presence of local optima.

AdaptSize: As noted previously, AdaptSize examines only one di-

mension for HOC admissions, the size, which is insufficient as the

cache can be polluted by, e.g., many infrequently requested objects

(it is 20% worse than Darwin on average).

DirectMapping: Direct mapping from traffic features to the single
best (𝑓 , 𝑠) threshold configurations also performs 7% worse than

Darwin on average. This is because it is not robust to errors in

feature collection or in the process of learning the mapping; Darwin,

due to directly testing and then selecting among multiple good
candidates can better accommodate any potential errors in feature

collection, clustering, etc.

We observe similar results with a larger cache size (Figure 4b) as

well as in our prototype with a subset of static experts (Figure 4c).

6.2 Effectiveness of Darwin Components
How quickly can the features reach reliable values? The fea-
ture estimation phase at the beginning of each epoch in Darwin’s

online step is crucial as it decides the expert set to be considered;

errors here impact performance significantly. To choose the num-

ber of requests used in this phase (𝑁𝑤𝑎𝑟𝑚−𝑢𝑝 ) appropriately, we
study the convergence of empirical features to their true values. We



ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

(a) Simulation (100MB) (b) Simulation (500MB) (c) Prototype
Figure 4: OHR for Darwin vs. Baselines (P = Percentile, HC = HillClimbing, Direct = DirectMapping, AS = Adaptsize). (a) Simulation results with 100MB HOC size.
(b) Simulation results with 500MB HOC size. We observed similar results with a 200MB cache size. We omit the results for brevity. (c) Prototype results with low
concurrency.

use average size (size_avg), the first 7 average inter-arrival times

(iat_avg’s), and stack distances (sd_avg’s) as features. Figure 5a uses

the 10M length offline traces and computes the true features using

all 10M requests. We compare these true features with the first 𝑥M

requests of the trace (𝑥 varies as in the legend) and plot the %-age

difference in absolute value. We see that feature values converge

to within a 10% error margin using only the first 3M requests. Im-

portantly, this trend – of needing 3M requests – also holds for the

100M length online test traces. We use this value for 𝑁𝑤𝑎𝑟𝑚−𝑢𝑝
from here on. 𝑁𝑤𝑎𝑟𝑚−𝑢𝑝 for the online test trace thus is just 3% of

the total number of requests (complete result in Appendix A.3).

Does clustering and expert set formation help? We present

evidence of our offline clustering leading to a reduction in the

number of considered experts. We begin with 36 experts and use

the offline traces to perform clustering (into 52 clusters) and expert

set association. Recall that the threshold \ induces diversity by

considering all experts within \% of the best-performing expert of

an offline training trace to be part of its promising experts set. We

observe that for every offline test trace and our online test traces,

at least one of the trace’s best experts is always included in its

corresponding expert set for varying thresholds \ (detailed result in

Appendix A.3). With \ = 1 (our default choice), we observe an 82%

reduction in the number of experts on average; even with \ = 5,

we can extract a 35% reduction. The CDF of the number of experts

that remain after clustering is in Figure 5b.

We also created experts with three decision knobs: frequency,

size, and recency, and formed clusters and expert sets using the

offline training traces. Here too, we saw a 90% reduction in the

number of experts using a \ = 1% threshold, resulting in only a few

experts that Darwin’s online algorithm needs to work with (results

deferred to Appendix A.3).

How accurate are the cross-expert predictors? For our online
identification process, it is sufficient for our prediction networks

to accurately estimate the ordering of expert hit rates. We say two

experts are ‘𝑘% proximal’ on a trace if their hit rates on this trace

are less than 𝑘% apart. For each predictor 𝑀𝑖, 𝑗 , we compute the

fraction of traces on which the experts 𝑖, 𝑗 are either proximal or

𝑀𝑖, 𝑗 predicts the same ordering between hit rates of experts 𝑖 and 𝑗

as the ground truth. We refer to this fraction as the order prediction
accuracy and its CDF over all 1260 cross-expert predictors (formed

using the 36 experts) versus proximity 𝑘 is shown in Figure 5c. Even

with the strictest 1% proximality, more than 90% of the predictors

reach > 80% order prediction accuracy (across our test data points).

In Appendix A.3, we show that our cross-expert predictors also

work well with test traces drawn from a different distribution than

the one they were trained on.

How many rounds for online expert identification? We ob-

serve that the average hit rates for the candidate experts converge

fast for most of the traces in the online identification stage, and

we can quickly identify a consistent best expert from them. For a

trace running the online expert identification, we say that it has

found the best expert if either the bandit algorithm terminates or

an expert is consistently selected by the bandit for 5 consecutive

rounds. We track the number of rounds from the start of the bandit

stage until the best expert is found. Figure 5d illustrates that start-

ing from the 12th round onwards, ≥ 80% of our online test traces

achieve stability with the best expert (requiring ≤5.5M requests for

convergence). The worst-case scenario for convergence spans 21

rounds (equivalent to 10M requests, constituting 10% of the trace).

6.3 Support for Other Goals
We show that Darwin can be easily customized to other objectives.

For a new optimization metric, we need two slight modifications: 1.

retrain the cluster best expert mapping based on the new metric

results of the experts; 2. use the new metric as the reward in the

online phase.

We first target minimizing the BMR of the HOC to reduce the

bytes written to the DC or to the origin server. To estimate the

unobserved experts’ BMR performance, we perform a simple calcu-

lation based on the observed bucketized size distribution and the

output of the existing OHR cross-expert predictors. Figure 6a shows

that Darwin reduces the HOC Byte Miss Ratio by 0.37%-11.28%.

Another objective that we experiment with is a combination of

HOC OHR and disk writes. We seek to maximize𝑂𝐻𝑅 − 𝐷𝑖𝑠𝑘𝑊𝑟𝑖𝑡𝑒
#𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

.

We approximate the disk write bytes to be the bytes missed in HOC.

With that, we can calculate HOC OHR and disk writes respectively

with the existing OHR cross-experts and the bucketized size dis-

tribution. Figure 6b shows that Darwin improves the metric by

7.47%-96.67%.



Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

(a) Feature Convergence (b) Improvement from Clustering (c) Cross-expert Prediction Accuracy (d) Bandit Rounds for Identification
Figure 5: Effectiveness of Darwin Components: (a) Feature convergence using first 𝑥M requests; (b) CDF of the number of remaining experts after clustering for
different \ ; (c) Order prediction accuracy for our cross-expert predictors; (d) Number of rounds required for best expert-identification.

(a) HOC BMR (b) HOC OHR-Disk Write/#Request
Figure 6: Darwin for other objectives.

As we have alluded to before, existing baselines such as Hill

Climbing and AdaptSize cannot readily adapt to objectives such as

disk writes that are hardware-dependent and are therefore complex

to model and simulate. Hill Climbing uses the notion of a shadow

cache to simulate and derive the hit rate of an incrementally larger

cache. Likewise, AdaptSize uses a Markov chain model to simulate

object accesses and derive OHR as a function of the size threshold.

The models simulated in both the above approaches are explicitly

tailored to deriving hit rates. It is not clear how these models can be

extended to other more complex hardware-dependent objectives.

In contrast, Darwin does not rely on a specific modeling and simu-

lation approach for cache performance and can work for objective

functions that are hard to explicitly model and simulate.

6.4 Overhead
In our prototype, we conduct measurements of performance and

resource usage overheads. We demonstrate the positive impact of

Darwin on throughput and latency through the increased rate of

cache hits. Additionally, we find that Darwin’s implementation

minimally impacts CPU and memory utilization.

Response Latency. Figure 7a shows the latency CDF for a con-

catenated trace that consists of four 100M online test traces with

different best experts. We observe that Darwin doesn’t impose ad-

ditional latency overhead, and improves the first-byte latency by

reducing the requests forwarded to the origin server (on account of

its better OHR). All the Darwin components – e.g., feature collec-

tion, cluster lookup, and looking up prediction networks – create

a new thread to perform the work in parallel. Thus, the learning

logic is not in the critical path of cache processing.

(a) First Byte Latency (b) Throughput
Figure 7: Darwin prototype’s latency and throughput performance

Throughput. Figure 7b shows the peak of the application through-

put of Darwin across multiple concurrency levels. Higher concur-

rency can increase throughput but also increases synchronization

costs (lock contention for the HOC). We compare Darwin with

the static (𝑓 = 2, 𝑠 = 2𝐾) expert. In both cases, the sweet spot for

throughput vs synchronization overhead is around 200 requests.

Darwin is able to reach an average throughput of 10.4Gbps for 200

client threads (static expert reaches 9.3Gbps).

For low concurrency levels, Darwin’s throughput is comparable

to the static expert, but Darwin’s OHR (which stays unaffected at

these concurrency levels, but isn’t shown) is significantly better as

shown in Figure 4c. At higher concurrency, Darwin’s hit rates are

inferior to that at low concurrency (this trade-off has been observed

in prior works [10]), as are the static experts’. But Darwin offers

better throughput – this is because, on account of its better OHR,

Darwin is able to skip round trips to the origin server.

CPU and Memory. Without Darwin, the average CPU usage is

2% to process the requests in real-time. The peak CPU usage with

Darwin can reach 99.2%. But this only happens instantaneously in

two specific steps: 1. when Darwin classifies the features and does

cluster lookup at the end of the feature collection stage; 2. when

Darwin infers from the cross-expert predictors at the beginning of

each round. The instances of high CPU use are infrequent relative

to overall request processing at the cache and are amortized out; as

such, we see no perceptible increase in average CPU use.

Darwin’s memory overhead is also reasonable, with a peak of

4GB. During the feature collection stage, we create a tree structure

to extract the stack distances and inter-arrival times of the objects.

This tree is deleted at the end of the stage, and we only store a



ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

single feature vector with 15 entries. During the online selection

stage, the largest memory usage is for the cross-expert prediction

networks. To avoid the performance overhead of loading the predic-

tion networks repeatedly, we keep them in memory for the whole

online selection stage, which contributes to the 4GB memory use.

The other data structures stored include the following, and they

also pose minimal overhead: (1) bucketized size distribution, whose

entry number is the same as the size threshold selection range; (2)

model variance matrix, whose entry number is the number of ex-

pert pairs; (3) reward vector, whose entry number is the number of

experts. For 2 and 3, we only consider the experts from the cluster

outputs, so it’s significantly smaller than the original expert space.

7 RELATEDWORK
Section 2 discussed related work on heuristic-based policies for

HOC admission and eviction, as well as learned HOC admission

policies. Here, we cover other related works, spanning bandit algo-

rithms and learned cache eviction.

Bandit Algorithms. Prior work on bandits studied several types

of side information by imposing additional structure on the space

of actions. These include graph-structured actions [1, 11, 43], latent

causal confounding [25, 38, 51], and noisy side observations [4, 48]

among others. These are mostly in the setting of cumulative regret.

Best-arm identification with side information has been considered

for the causal confounding case in [23, 37], and more recently for

linear bandits in [26]. Our setting in Section 4.2 is that of best-arm

identification with noisy side observations as in [4, 48].

Learned Cache Eviction. Recent works have proposed learning-

based CDN cache eviction policies. LFO [9], LRB [39], CACHEUS

[33], LeCaR [45], LHD [6], and DeepCache [30] all use learning

or prediction models to decide object eviction. Almost all of these

approaches are designed to optimize a single performance objective

like OHR. While Darwin focuses on studying HOC admissions, we

argue that our approach can be flexibly extended to learn CDN

eviction decisions with multiple objectives; we leave a systematic

exploration for future work.

8 CONCLUSION
We presented Darwin, a CDN cache management system that uses a

novel cache admission approach. Darwin is robust to traffic pattern

changes, can optimize different caching objectives, and accommo-

dates unrestricted action spaces. Darwin’s offline clustering and

expert prediction approaches provide crucial side information to

its online phase, where a bandit selection algorithm quickly selects

the right admission policy to use for the currently observed traffic

pattern. Our evaluation shows that Darwin is highly effective at

adaptation and at optimizing both hit rates and operational costs

(such as disk writes and BMR) while offering high throughput at low

overhead. Besides cache management, our novel learning paradigm

of offline clustering and online expert selection is likely applicable

to auto-tuning other system components and is the subject of future

research.

Ethics Statement: Our work uses synthetic traces or anonymized

production CDN traces and raises no ethical concerns.

ACKNOWLEDGEMENT
We would like to thank our shepherd, Katerina Argyraki, and the

anonymous SIGCOMM reviewers for their invaluable feedback.

This work was supported in part by the National Science Foun-

dation under Grants CCF-2019844, CNS-2207317, CNS-2112471,

CNS-2106299, CNS-1763617, and the Machine Learning Lab (MLL)

at UT Austin.

REFERENCES
[1] Amin, K., Kearns, M., and Syed, U. Graphical models for bandit problems. arXiv

preprint arXiv:1202.3782 (2012).
[2] Ari, I., Amer, A., Gramacy, R. B., Miller, E. L., Brandt, S. A., and Long,

D. D. Acme: Adaptive caching using multiple experts. In WDAS (2002), vol. 2,
pp. 143–158.

[3] Asiso. Overview of the cdn akamai. https://www.asioso.com/en/blog/

overview-of-the-cdn-akamai-b520, Feb 2021.

[4] Atsidakou, A., Papadigenopoulos, O., Caramanis, C., Sanghavi, S., and

Shakkottai, S. Asymptotically-optimal gaussian bandits with side observations.

In International Conference on Machine Learning (2022), PMLR, pp. 1057–1077.

[5] Basat, R. B., Einziger, G., Friedman, R., and Kassner, Y. Randomized admission

policy for efficient top-k and frequency estimation. In IEEE INFOCOM 2017-IEEE
Conference on Computer Communications (2017), IEEE, pp. 1–9.

[6] Beckmann, N., Chen, H., and Cidon, A. LHD: improving cache hit rate by max-

imizing hit density. In 15th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2018, Renton, WA, USA, April 9-11, 2018 (2018), S. Banerjee
and S. Seshan, Eds., USENIX Association, pp. 389–403.

[7] Belady, L. A. A study of replacement algorithms for a virtual-storage computer.

IBM Systems journal 5, 2 (1966), 78–101.
[8] Belady, L. A. A study of replacement algorithms for a virtual-storage computer.

In IBM Systems journal (1996), vol. 5, pp. 78–101.
[9] Berger, D. S. Towards lightweight and robust machine learning for CDN caching.

In Proceedings of the 17th ACM Workshop on Hot Topics in Networks, HotNets 2018,
Redmond, WA, USA, November 15-16, 2018 (2018), ACM, pp. 134–140.

[10] Berger, D. S., Sitaraman, R. K., and Harchol-Balter, M. Adaptsize: Orches-

trating the hot object memory cache in a content delivery network. In 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17)
(2017), pp. 483–498.

[11] Buccapatnam, S., Eryilmaz, A., and Shroff, N. B. Stochastic bandits with

side observations on networks. In The 2014 ACM international conference on
Measurement and modeling of computer systems (2014), pp. 289–300.

[12] Chen, F., Sitaraman, R. K., and Torres, M. End-user mapping: Next generation

request routing for content delivery. InACMSIGCOMMComputer Communication
Review (2015), vol. 45, ACM, pp. 167–181.

[13] Cherkasova, L., and Ciardo, G. Role of aging, frequency, and size in web

cache replacement policies. In High-Performance Computing and Networking: 9th
International Conference, HPCN Europe 2001 Amsterdam, The Netherlands, June
25–27, 2001 Proceedings 9 (2001), Springer, pp. 114–123.

[14] Dilley, J., Maggs, B. M., Parikh, J., Prokop, H., Sitaraman, R. K., and Weihl,

W. E. Globally distributed content delivery. IEEE Internet Computing 6, 5 (2002),
50–58.

[15] Dubhashi, D. P., and Panconesi, A. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009.

[16] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L.,

Hibler, M., Johnson, D., Webb, K., et al. The design and operation of cloudlab.

In USENIX Annual Technical Conference (2019), pp. 1–14.
[17] Einziger, G., Friedman, R., and Manes, B. Tinylfu: A highly efficient cache

admission policy. ACM Transactions on Storage (ToS) 13, 4 (2017), 1–31.
[18] Foundation, T. A. S. Apache traffic server. https://trafficserver.apache.org/,

2018. Accessed: 2023-01-30.

[19] Garivier, A., and Kaufmann, E. Optimal best arm identification with fixed

confidence. In Conference on Learning Theory (2016), PMLR, pp. 998–1027.

[20] Guan, Y., Zhang, X., and Guo, Z. Caca: Learning-based content-aware cache

admission for video content in edge caching. In Proceedings of the 27th ACM
International Conference on Multimedia (2019), pp. 456–464.

[21] Jeong, J., and Dubois, M. Cost-sensitive cache replacement algorithms. In The
Ninth International Symposium on High-Performance Computer Architecture, 2003.
HPCA-9 2003. Proceedings. (2003), IEEE, pp. 327–337.

[22] Kirilin, V., Sundarrajan, A., Gorinsky, S., and Sitaraman, R. K. Rl-cache:

Learning-based cache admission for content delivery. In Proceedings of the 2019
Workshop on Network Meets AI & ML (2019), pp. 57–63.

[23] Lattimore, F., Lattimore, T., and Reid, M. D. Causal bandits: Learning good

interventions via causal inference. In Advances in Neural Information Processing
Systems (2016), pp. 1181–1189.

[24] Lattimore, T., and Szepesvári, C. Bandit algorithms. Cambridge University

https://www.asioso.com/en/blog/overview-of-the-cdn-akamai-b520
https://www.asioso.com/en/blog/overview-of-the-cdn-akamai-b520
https://trafficserver.apache.org/


Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Press, 2020.

[25] Li, L., Chu,W., Langford, J., and Schapire, R. E. A contextual-bandit approach to

personalized news article recommendation. In Proceedings of the 19th international
conference on World wide web (2010), pp. 661–670.

[26] Li, Z., Ratliff, L., Nassif, H., Jamieson, K., and Jain, L. Instance-optimal pac

algorithms for contextual bandits. arXiv preprint arXiv:2207.02357 (2022).

[27] Maggs, B. M., and Sitaraman, R. K. Algorithmic nuggets in content delivery.

ACM SIGCOMM Computer Communication Review 45, 3 (2015), 52–66.
[28] McAllister, S., Berg, B., Tutuncu-Macias, J., Yang, J., Gunasekar, S., Lu, J.,

Berger, D. S., Beckmann, N., and Ganger, G. R. Kangaroo: Theory and practice

of caching billions of tiny objects on flash. ACM Trans. Storage 18, 3 (2022),

21:1–21:33.

[29] McDiarmid, C. Concentration. Probabilistic methods for algorithmic discrete
mathematics (1998), 195–248.

[30] Narayanan, A., Verma, S., Ramadan, E., Babaie, P., and Zhang, Z. Deepcache:

A deep learning based framework for content caching. In Proceedings of the 2018
Workshop on Network Meets AI & ML, NetAI@SIGCOMM 2018, Budapest, Hungary,
August 24, 2018 (2018), ACM, pp. 48–53.

[31] Nygren, E., Sitaraman, R. K., and Sun, J. The Akamai Network: A platform for

high-performance Internet applications. ACM SIGOPS Operating Systems Review
44, 3 (2010), 2–19.

[32] Rizzo, L., and Vicisano, L. Replacement policies for a proxy cache. IEEE/ACM
Transactions on networking 8, 2 (2000), 158–170.

[33] Rodriguez, L. V., Yusuf, F. B., Lyons, S., Paz, E., Rangaswami, R., Liu, J., Zhao,

M., and Narasimhan, G. Learning cache replacement with cacheus. In FAST
(2021), pp. 341–354.

[34] Sabnis, A., and Sitaraman, R. K. Tragen: a synthetic trace generator for realistic

cache simulations. In Proceedings of the 21st ACM Internet Measurement Conference
(2021), pp. 366–379.

[35] Sazoglu, F. B., Cambazoglu, B. B., Ozcan, R., Altingovde, I. S., and Ulusoy, Ö.

A financial cost metric for result caching. In Proceedings of the 36th international
ACM SIGIR conference on Research and development in information retrieval (2013),
pp. 873–876.

[36] Schomp, K., Bhardwaj, O., Kurdoglu, E., Muhaimen, M., and Sitaraman,

R. K. Akamai dns: Providing authoritative answers to the world’s queries. In

Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication (2020), pp. 465–478.

[37] Sen, R., Shanmugam, K., Kocaoglu, M., Dimakis, A., and Shakkottai, S. Con-

textual bandits with latent confounders: An nmf approach. In Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics (2017),
pp. 518–527.

[38] Sharma, N., Basu, S., Shanmugam, K., and Shakkottai, S. On under-

exploration in bandits with mean bounds from confounded data. arXiv preprint
arXiv:2002.08405 (2020).

[39] Song, Z., Berger, D. S., Li, K., and Lloyd, W. Learning relaxed belady for content

distribution network caching. In 17th USENIX Symposium on Networked Systems
Design and Implementation (2020).

[40] Suksomboon, K., Tarnoi, S., Ji, Y., Koibuchi, M., Fukuda, K., Abe, S., Motonori,

N., Aoki, M., Urushidani, S., and Yamada, S. Popcache: Cache more or less

based on content popularity for information-centric networking. In 38th Annual
IEEE conference on local computer networks (2013), IEEE, pp. 236–243.

[41] Sundarrajan, A., Feng, M., Kasbekar, M., and Sitaraman, R. K. Footprint

descriptors: Theory and practice of cache provisioning in a global cdn. In Pro-
ceedings of the 13th International Conference on emerging Networking EXperiments
and Technologies (2017), pp. 55–67.

[42] Sundarrajan, A., Kasbekar, M., Sitaraman, R. K., and Shukla, S. Midgress-

aware traffic provisioning for content delivery. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20) (July 2020), USENIX Association, pp. 543–557.

[43] Valko, M., Munos, R., Kveton, B., and Kocák, T. Spectral bandits for smooth

graph functions. In International Conference on Machine Learning (2014), pp. 46–

54.

[44] Vietri, G., Rodriguez, L. V., Martinez, W. A., Lyons, S., Liu, J., Rangaswami,

R., Zhao, M., and Narasimhan, G. Driving cache replacement with ml-based

lecar. In HotStorage (2018), pp. 928–936.
[45] Vietri, G., Rodriguez, L. V., Martinez, W. A., Lyons, S., Liu, J., Rangaswami, R.,

Zhao, M., and Narasimhan, G. Driving cache replacement with ml-based lecar.

In 10th USENIX Workshop on Hot Topics in Storage and File Systems, HotStorage
2018, Boston, MA, USA, July 9-10, 2018 (2018), A. Goel and N. Talagala, Eds.,

USENIX Association.

[46] Wikipedia. Stack distance, 2023. https://en.wikipedia.org/wiki/Cache_

performance_measurement_and_metric.

[47] Wu, K.-L., Yu, P. S., and Wolf, J. L. Segment-based proxy caching of multimedia

streams. In Proceedings of the 10th international conference on World Wide Web
(2001), pp. 36–44.

[48] Wu, Y., György, A., and Szepesvári, C. Online learning with gaussian payoffs

and side observations. Advances in Neural Information Processing Systems 28
(2015).

[49] Yan, G., Li, J., and Towsley, D. Learning from optimal caching for content

delivery. InCoNEXT ’21: The 17th International Conference on emerging Networking
EXperiments and Technologies, Virtual Event, Munich, Germany, December 7 - 10,
2021 (2021), G. Carle and J. Ott, Eds., ACM, pp. 344–358.

[50] Yang, J., Sabnis, A., Berger, D. S., Rashmi, K., and Sitaraman, R. K. C2dn:

How to harness erasure codes at the edge for efficient content delivery. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 22)
(2022), pp. 1159–1177.

[51] Zhang, J., and Bareinboim, E. Transfer learning in multi-armed bandit: A

causal approach. In Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems (2017), pp. 1778–1780.

[52] Zhang, Q., Xiang, Z., Zhu, W., and Gao, L. Cost-based cache replacement and

server selection for multimedia proxy across wireless internet. IEEE Transactions
on Multimedia 6, 4 (2004), 587–598.

A APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

A.1 Offline Clustering and Expert Sets
We assume that each offline-collected traffic trace contains se-

quences of requests indexed by a triple of the ID, size, and time-

stamp associated with the requested object.

Forming the clusters: For each trace, we compute a variety of sta-

tistics to use in clustering. In our setting, we found the following

statistics to serve as useful features; we note Darwin allows the

CDN server operators to use other features, too. The features are:

(a). Average request size, (b). Vector of first 𝑛 average inter-arrival

times: The 𝑛𝑡ℎ inter-arrival time is the time elapsed between 𝑛 + 1

successive requests with the same ID, and (c). Vector of first𝑚 aver-

age stack distances; the𝑚𝑡ℎ stack distance measures the cumulative

size of all requests received between𝑚 + 1 successive requests with
the same ID. The averages above are over all the choices of object

IDs; 𝑛,𝑚 are hyperparameters. Together, these statistics summarize

the trace and serve as features to cluster traces using the 𝐾-means

clustering algorithm. The total number of clusters 𝑁𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 to be

formed can also be tuned as necessary.

Clusters to experts sets: We evaluate the HOC hit rate of each ex-

pert over all the traces offline. For each trace, we collect experts

that achieve hit rates within \ = 1% of its best-performing expert

to form the trace-level "best expert set". We then take the union of

the trace-level best expert sets of all traces in a cluster to form the

cluster-level best expert set.

This offline process results in a map from the features to a set of

experts that are best suited for these features. There are two reasons

that motivate the association process: (a). The cluster-level best
expert sets can potentially be much smaller than the total number

of available experts, (b). The \ = 1% threshold above potentially

captures the true best experts of the traces with similar features that

were not present in the logs. Both these reasons will help accelerate

learning in the online phase of the caching process.

A.2 Proofs of Theorems in Section 4.2
In our analysis, we assume that rewards are sampled from Gauss-

ian distributions of known means, whereas in the experiments,

the rewards (e.g., hit rates) are bounded over [0, 1]. The choice of
Gaussian rewards is intentional because it leads to closed-form ex-

pressions and thus provides greater insight into the benefits of the

algorithm (e.g., 𝑂 (1) with respect to 𝐾 , the number of experts, as

opposed to linear dependence without our approach). Our methods

https://en.wikipedia.org/wiki/Cache_performance_measurement_and_metric
https://en.wikipedia.org/wiki/Cache_performance_measurement_and_metric


ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

apply with more generality (and can be numerically evaluated) and

readers can replace the Gaussian-specific quantities we use with

their respective counterparts and deploy the strategy we develop.

We present the proofs of our theoretical results and some dis-

cussions around the same here. Our analysis follows similar ar-

guments to that of the Track and Stop algorithm of [19] for stan-

dard bandit feedback (We also refer to Chapter 33 in [24] for more

discussions). Owing to our increased feedback through the cross-

expert prediction networks and our modified estimators in Equa-

tion 1, we require novel concentrations inequalities to establish the

soundness of Algorithm 1 as in Theorem 1. Recall that any triple

(𝜋, 𝜏,𝜓 ) of expert sequence selection policy, stopping time and ex-

pert recommendation rule (respectively) is said to be 𝛿−sound if

P`,Σ,𝜋 (𝜓 ( ˆ̀𝜏 ) ≠ 𝑖∗ (`)) ≤ 𝛿 .
We will first establish any-time concentration bounds on the

estimators ˆ̀𝑖 (𝑡) around their mean `𝑖 that do not depend on the

policy used to design the expert selection sequence. These will

instruct our design for the threshold function 𝛽𝑡 (𝛿, Σ).

A.2.1 Concentration Bounds for Estimators in Equation 1.

Lemma 3. Let 𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥 , 𝑀 and ^ be as defined in Theorem 1.
Then, for some constant 𝐶 , we have that for any time 𝑡 ,

P

(
𝐾∑︁
𝑖=1

( ˆ̀𝑖 (𝑡) − `𝑖 )2 ≥ 𝐾𝜎2𝑚𝑎𝑥 + 𝐾𝑀
2

2^

√︂
log(2/𝛿)
𝐶𝑡

)
≤ 𝛿.

Proof: In order to prove these results, we will use a variant of

McDiarmid’s inequality with bad events as in [29]; specifically,

we apply Theorem 7.8 of [15]. To this end, we define the event

E = {∀𝑡,∀𝑖, 𝑌𝑖 (𝑡) ∈ [−𝑀,𝑀]} (E𝐶 is our ‘bad event’). We assume

E holds (and suppress the conditioning notation to ease presenta-

tion) until otherwise mentioned. We define the function

𝑓 (𝐸1, {𝑌𝑖 (1)}, ..., 𝐸𝑡 , {𝑌𝑖 (𝑡)}) =
𝐾∑︁
𝑖=1

©«
∑𝑡
𝑛=1

𝑌𝑖 (𝑛)
𝜎2

𝐸𝑛,𝑖∑𝑡
𝑛=1

1

𝜎2

𝐸𝑛,𝑖

− `𝑖
ª®®¬
2

.

Note that the arguments of this function are random variables:

𝑌𝑖 (𝑡) is the reward obtained from expert 𝑖 in round 𝑡 and 𝐸𝑡 is the

deployed expert in this round. To apply Theorem 7.8 of [15], we need

to show that the expected value of this function is bounded and that

the function satisfies the bounded difference criteria therein. The

former is guaranteed as since the expected value of the 𝑓 (·) is only
a function of {`𝑖 }𝐾𝑖=1 and {𝜎 𝑗,𝑖 }

𝐾
𝑖,𝑗=1

. By assumption,max𝑖∈[𝐾 ] `𝑖 <
∞ and max𝑖, 𝑗 ∈[𝐾 ] 𝜎 𝑗,𝑖 < ∞ and thus, the expected value is finite.

We are only left to set up the bounded differences appropriately. For

this, we will treat the changes in 𝐸𝑛 and those in 𝑌𝑖 (𝑡) separately.
Case 1: 𝑌𝑖 (𝑚) → 𝑌 ′

𝑖
(𝑚)

𝑓 (𝐸1, {𝑌𝑖 (1)}, ..., 𝑌𝑖 (𝑚), ..., 𝐸𝑡 , {𝑌𝑖 (𝑡)})
− 𝑓 (𝐸1, {𝑌𝑖 (1)}, ..., 𝑌 ′

𝑖 (𝑚), ..., 𝐸𝑡 , {𝑌𝑖 (𝑡)})

=
©«
∑
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2

𝐸𝑛,𝑖

+ 𝑌𝑖 (𝑚)
𝜎2

𝐸𝑚,𝑖

𝜌𝑖 (𝑡)
− `𝑖

ª®®¬
2

−
©«
∑
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2

𝐸𝑚,𝑖

+ 𝑌 ′
𝑖 (𝑚)
𝜎2

𝐸𝑛,𝑖

𝜌𝑖 (𝑡)
− `𝑖

ª®®¬
2

=

(
𝑌𝑖 (𝑚)

𝜎2
𝐸𝑚,𝑖

𝜌𝑖 (𝑡)

)
2

−
(

𝑌 ′
𝑖
(𝑚)

𝜎2
𝐸𝑚,𝑖

𝜌𝑖 (𝑡)

)
2

+ 2 ·
(

𝑌𝑖 (𝑚)
𝜎2
𝐸𝑚,𝑖

𝜌𝑖 (𝑡 )
− 𝑌 ′

𝑖
(𝑚)

𝜎2
𝐸𝑚,𝑖

𝜌𝑖 (𝑡 )

)
·
©«
∑
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2

𝐸𝑛,𝑖

𝜌𝑖 (𝑡)
− `𝑖

ª®®¬
Treating the two parts separately, we have that������

(
𝑌𝑖 (𝑚)

𝜎2
𝐸𝑚,𝑖

𝜌𝑖 (𝑡)

)
2

−
(

𝑌 ′
𝑖
(𝑚)

𝜎2
𝐸𝑚,𝑖

𝜌𝑖 (𝑡)

)
2

������ ≤
�����𝑌𝑖 (𝑚)2 − 𝑌 ′

𝑖
(𝑚)2

𝜌𝑖 (𝑡)2𝜎4𝐸𝑚,𝑖

�����
≤ 𝑀2𝜎4𝑚𝑎𝑥

𝑡2𝜎4
𝑚𝑖𝑛

=
𝑀2

𝑡2^2
,

2

�������𝑌𝑖 (𝑚) − 𝑌 ′
𝑖
(𝑚)

𝜎2
𝐸𝑚,𝑖

𝜌𝑖 (𝑡)
©«
∑
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2

𝐸𝑛,𝑖

𝜌𝑖 (𝑡)
− `𝑖

ª®®¬
�������

≤ 4𝑀𝜎2𝑚𝑎𝑥

𝑡𝜎2
𝑚𝑖𝑛

�������
∑
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2

𝐴𝑛,𝑖

𝜌𝑖 (𝑡)
− `𝑖

�������
≤ 4𝑀

𝑡^

(
𝑀 (𝑡 − 1)

𝑡^
+ 1

)
.

Combining these, we get

|𝑓 (𝐸1, {𝑌𝑖 (1)}, ..., 𝐸𝑚, 𝑌1 (𝑚), ..., 𝑌𝑖 (𝑚), ...𝑌𝐾 (𝑚), ..., 𝐸𝑡 , {𝑌𝑖 (𝑡)})
− 𝑓 (𝐸1, {𝑌𝑖 (1)}, ..., 𝐸𝑚, 𝑌1 (𝑚), ..., 𝑌 ′

𝑖 (𝑚), ...𝑌𝐾 (𝑚), ..., 𝐸𝑡 , {𝑌𝑖 (𝑡)}) |

≤ 4𝑀 (𝑀 − ^)
𝑡^2

+ 𝑜
(
1

𝑡

)
(4)

Case 2: 𝐸𝑚 → 𝐸 ′𝑚

𝑓 (𝐸1, {𝑌𝑖 (1)}, ..., 𝐸𝑚, {𝑌𝑖 (𝑚)}, ..., 𝐸𝑡 , {𝑌𝑖 (𝑡)})
− 𝑓 (𝐸1, {𝑌𝑖 (1)}, ..., 𝐸 ′𝑚, {𝑌𝑖 (𝑚)}, ..., 𝐸𝑡 , {𝑌𝑖 (𝑡)})

=

𝐾∑︁
𝑖=1


©«
∑
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2

𝐸𝑛,𝑖

+ 𝑌𝑖 (𝑚)
𝜎2

𝐸𝑚,𝑖∑
𝑛≠𝑚 𝜎

−2
𝐸𝑛,𝑖

+ 𝜎−2
𝐸𝑚,𝑖

− `𝑖
ª®®¬
2

−
©«
∑
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2

𝐸𝑛,𝑖

+ 𝑌𝑖 (𝑚)
𝜎2

𝐸′𝑚,𝑖∑
𝑛≠𝑚 𝜎

−2
𝐸𝑛,𝑖

+ 𝜎−2
𝐸′𝑚,𝑖

− `𝑖
ª®®®¬
2

=

𝐾∑︁
𝑖=1

(𝐴2

𝑖 −𝐴
′2
𝑖 ) + (𝐵2𝑖 + 𝐵

′2
𝑖 )

− 2` (𝐴𝑖 + 𝐵𝑖 −𝐴′
𝑖 − 𝐵

′
𝑖 ) + 2(𝐴𝑖𝐵𝑖 −𝐴′

𝑖𝐵
′
𝑖 )

where

𝐴𝑖 =
1

𝜌𝑖 (𝑡)
∑︁
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2
𝐸𝑛,𝑖

, 𝐴′
𝑖 =

1

𝜌 ′
𝑖
(𝑡)

∑︁
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2
𝐸𝑛,𝑖



Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

𝐵𝑖 =
1

𝜌𝑖 (𝑡)
𝑌𝑖 (𝑚)
𝜎2
𝐸𝑚,𝑖

, 𝐵′𝑖 =
1

𝜌 ′
𝑖
(𝑡)

𝑌𝑖 (𝑚)
𝜎2
𝐸′𝑚,𝑖

𝜌 ′𝑖 (𝑡) =
∑︁
𝑛≠𝑚

𝜎−2𝐸𝑛,𝑖 + 𝜎
−2
𝐸′𝑚,𝑖

.

First, we have

|𝐴2

𝑖 −𝐴
′2
𝑖 | =

(∑︁
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2
𝐸𝑛,𝑖

)
2

·
(

1

𝜌𝑖 (𝑡)2
− 1

𝜌 ′2
𝑖
(𝑡)

)
≤ 𝑀2𝐶2 ·

����� 1

(𝐶 + 𝜎−2
𝐸𝑚,𝑖

)2
− 1

(𝐶 + 𝜎−2
𝐸′𝑚,𝑖

)2

�����
In the above, 𝐶 =

∑
𝑛≠𝑚 𝜎

−2
𝐸𝑛,𝑖

. We can bound the second term

as: ����� 1

(𝐶 + 𝜎−2
𝐸𝑚,𝑖

)2
− 1

(𝐶 + 𝜎−2
𝐸′𝑚,𝑖

)2

�����
=

�����𝜎4𝐸𝑚,𝑖 (1 +𝐶𝜎2𝐸′𝑚,𝑖 )2 − 𝜎4𝐸𝑚 ;,𝑖
(1 +𝐶𝜎2

𝐸𝑚,𝑖
)2

(1 +𝐶𝜎2
𝐸𝑚,𝑖

)2 (1 +𝐶𝜎2
𝐸′𝑚,𝑖

)2

�����
≤ 1

(1 +𝐶𝜎2
𝑚𝑖𝑛

)4
���𝜎4

𝐸𝑚,𝑖
−𝜎4

𝐸′𝑚,𝑖
+2𝐶𝜎2

𝐸𝑚,𝑖
𝜎2

𝐸′𝑚,𝑖
(𝜎2

𝐸𝑚,𝑖
−𝜎2

𝐸′𝑚,𝑖
)
���

=
𝜎2
𝐸𝑚,𝑖

+ 𝜎2
𝐸′𝑚,𝑖

+ 2𝐶𝜎2
𝐸𝑚,𝑖

𝜎2
𝐸′𝑚,𝑖

(1 +𝐶𝜎2
𝑚𝑖𝑛

)4
���𝜎2𝐸𝑚,𝑖 − 𝜎2𝐸′𝑚,𝑖 ���

≤
(𝜎2𝑚𝑎𝑥 − 𝜎2

𝑚𝑖𝑛
) (𝜎2

𝑚𝑖𝑛
+ 𝜎2𝑚𝑎𝑥 + 2𝐶𝜎2

𝑚𝑖𝑛
𝜎2𝑚𝑎𝑥 )

(1 +𝐶𝜎2
𝑚𝑖𝑛

)4

Therefore,

|𝐴2

𝑖 −𝐴
′2
𝑖 |

≤
𝑀2𝐶2 (𝜎2𝑚𝑎𝑥 − 𝜎2

𝑚𝑖𝑛
) (𝜎2

𝑚𝑖𝑛
+ 𝜎2𝑚𝑎𝑥 + 2𝐶𝜎2

𝑚𝑖𝑛
𝜎2𝑚𝑎𝑥 )

(1 +𝐶𝜎2
𝑚𝑖𝑛

)4

≤ 𝑀2 (𝑡 − 1)2 (1 + ^ + 2(𝑡 − 1)^) (1 − ^)
(1 + ^ (𝑡 − 1))4

=
2𝑀2^ (1 − ^)𝑡3
(1 + ^ (𝑡 − 1))4

+ 𝑜
(
1

𝑡

)
(5)

Next, we have

|𝐵2𝑖 − 𝐵
′2
𝑖 |

≤
�����𝑌𝑖 (𝑚)

(
1

𝜎4
𝐸𝑚,𝑖

(𝐶 + 𝜎−2
𝐸𝑚,𝑖

)2
− 1

𝜎4
𝐸′𝑚,𝑖

(𝐶 + 𝜎−2
𝐸′𝑚,𝑖

)2

)�����
≤ 𝑀2

����� 1

(1 + 𝜎2
𝐸𝑚,𝑖

𝐶)2
− 1

(1 + 𝜎2
𝐸′𝑚,𝑖

𝐶)2

�����
≤ 𝑀2

����� (𝜎4𝐸′𝑚,𝑖 − 𝜎4𝐸𝑚,𝑖 )𝐶2 + 2𝐶 (𝜎2
𝐸′𝑚,𝑖

− 𝜎2
𝐸𝑚,𝑖

)

(1 + 𝜎2
𝐸𝑚,𝑖

𝐶)2 (1 + 𝜎2
𝐸′𝑚,𝑖

𝐶)2

�����
≤ 𝑀2

(1 + 𝜎2
𝑚𝑖𝑛

𝐶)4
·
���(𝜎4𝐸′𝑚,𝑖 − 𝜎4𝐸𝑚,𝑖 )𝐶2 + 2𝐶 (𝜎2

𝐸′𝑚,𝑖
− 𝜎2𝐸𝑚,𝑖 )

���
≤
𝑀2 (𝜎2𝑚𝑎𝑥 − 𝜎2

𝑚𝑖𝑛
)
(
(𝜎2𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛2 )𝐶2 + 2𝐶

)
(1 + 𝜎2

𝑚𝑖𝑛
𝐶)4

≤
𝑀2 (𝑡 − 1) (𝜎2𝑚𝑎𝑥 − 𝜎2

𝑚𝑖𝑛
)
(
2 + (𝜎2

𝑚𝑖𝑛
+ 𝜎2𝑚𝑎𝑥 ) 𝑡−1

𝜎2

𝑚𝑎𝑥

)
𝜎𝑚𝑎𝑥2 (1 + ^ (𝑡 − 1))4

=
𝑀2 (𝑡 − 1) (1 − ^) (2 + (^ + 1) (𝑡 − 1))

(1 + ^ (𝑡 − 1))4
= O

(
1

𝑡2

)
(6)

Next, we consider

𝐴𝑖 + 𝐵𝑖 −𝐴′
𝑖 − 𝐵

′
𝑖 =

∑
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2

𝐸𝑛,𝑖

+ 𝑌𝑖 (𝑚)
𝜎2

𝐸𝑚,𝑖

𝜌𝑖 (𝑡)
−

∑
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2

𝐸𝑛,𝑖

+ 𝑌𝑖 (𝑚)
𝜎2

𝐸′𝑚,𝑖

𝜌 ′
𝑖
(𝑡)

=
𝛼 + 𝛽
𝛾 + 𝛿 − 𝛼 + 𝛽 ′

𝛾 + 𝛿 ′

where

𝛼 =
∑︁
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2
𝐴𝐸 ,𝑖

, 𝛾 =
∑︁
𝑛≠𝑚

1

𝜎2
𝐸𝑛,𝑖

𝛽 =
𝑌𝑖 (𝑚)
𝜎2
𝐸𝑚,𝑖

, 𝛽 ′ =
𝑌𝑖 (𝑚)
𝜎 ′2
𝐸𝑚,𝑖

𝛿 =
1

𝜎2
𝐸𝑚,𝑖

, 𝛿 ′ =
1

𝜎 ′2
𝐸𝑚,𝑖

.

Thus,

𝐴𝑖 + 𝐵𝑖 −𝐴′
𝑖 − 𝐵

′
𝑖

=
𝛼 (𝛿 ′ − 𝛿) + 𝛾 (𝛽 − 𝛽 ′) + 𝛽𝛿 ′ − 𝛽 ′𝛿

(𝛾 + 𝛿) (𝛾 + 𝛿 ′)

=

(∑︁
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2
𝐸𝑛,𝑖

− 𝑌𝑖 (𝑚)
∑︁
𝑛≠𝑚

1

𝜎2
𝐸𝑛,𝑖

)
×

(
𝜎2
𝐸𝑚,𝑖

− 𝜎2
𝐸′𝑚,𝑖

𝜎2
𝐸𝑚,𝑖

𝜎2
𝐸′𝑚,𝑖

)
· 1

(𝛾 + 𝛿) (𝛾 + 𝛿 ′)

=

(∑︁
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2
𝐸𝑛,𝑖

− 𝑌𝑖 (𝑚)
∑︁
𝑛≠𝑚

1

𝜎2
𝐸𝑛,𝑖

)
×

𝜎2
𝐸𝑚,𝑖

− 𝜎2
𝐸′𝑚,𝑖

(1 +𝐶𝜎2
𝐸𝑚,𝑖

) (1 +𝐶𝜎2
𝐸′𝑚,𝑖

)

≤
(∑︁
𝑛≠𝑚

𝑌𝑖 (𝑛)
𝜎2
𝐸𝑛,𝑖

− 𝑌𝑖 (𝑚)
∑︁
𝑛≠𝑚

1

𝜎2
𝐸𝑛,𝑖

)
·
𝜎2
𝐸𝑚,𝑖

− 𝜎2
𝐸′𝑚,𝑖

(1 +𝐶𝜎2
𝑚𝑖𝑛

)2

=⇒ |𝐴𝑖 + 𝐵𝑖 −𝐴′
𝑖 − 𝐵

′
𝑖 | ≤

2𝑀𝐶 (𝜎2𝑚𝑎𝑥 − 𝜎2
𝑚𝑖𝑛

)
(1 +𝐶𝜎2

𝑚𝑖𝑛
)2

≤ 2𝑀 (𝑡 − 1) (1 − ^)
(1 + (𝑡 − 1)^)2

=
2𝑀𝑡 (1 − ^)

(1 + (𝑡 − 1)^)2
+ 𝑜

(
1

𝑡

)
(7)

And finally,

|𝐴𝑖𝐵𝑖 −𝐴′
𝑖𝐵

′
𝑖 |

=

�������
𝑌𝑖 (𝑚)∑𝑛≠𝑚 𝑌𝑖 (𝑛)

𝜎2

𝐸𝑛,𝑖

𝜎2
𝐸𝑚,𝑖

𝜌2
𝑖
(𝑡)

−
𝑌𝑖 (𝑚)∑𝑛≠𝑚 𝑌𝑖 (𝑛)

𝜎2

𝐸𝑛,𝑖

𝜎2
𝐸′𝑚,𝑖

𝜌 ′2
𝑖
(𝑡)

�������
≤ 𝑀2𝐶

����� 1

𝜎2
𝐸𝑚,𝑖

(𝐶 + 𝜎−2
𝐸𝑚,𝑖

)2
− 1

𝜎2
𝐸′𝑚,𝑖

(𝐶 + 𝜎−2
𝐸′𝑚,𝑖

)2

�����



ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

= 𝑀2𝐶

����� 𝜎2
𝐸𝑚,𝑖

(1 +𝐶𝜎2
𝐸𝑚,𝑖

)2
−

𝜎2
𝐸′𝑚,𝑖

(1 +𝐶𝜎2
𝐸′𝑚,𝑖

)2

�����
= 𝑀2𝐶

�������
𝜎2
𝐸𝑚,𝑖

− 𝜎2
𝐸′𝑚,𝑖

+𝐶2𝜎2
𝐸𝑚,𝑖

𝜎2
𝐸′𝑚,𝑖

(𝜎2
𝐸′𝑚,𝑖

− 𝜎2
𝐸𝑚,𝑖

)(
(1 +𝐶𝜎2

𝐸𝑚,𝑖
) (1 +𝐶𝜎2

𝐸′𝑚,𝑖
)
)
2

�������
≤ 𝑀2𝐶(

1 +𝐶𝜎2
𝑚𝑖𝑛

)
4

×
���𝜎2𝐸𝑚,𝑖 − 𝜎2𝐸′𝑚,𝑖 +𝐶2𝜎2𝐸𝑚,𝑖

𝜎2
𝐸′𝑚,𝑖

(𝜎2
𝐸′𝑚,𝑖

− 𝜎2𝐸𝑚,𝑖 )
���

≤
𝑀2𝐶 (𝜎2𝑚𝑎𝑥 − 𝜎2

𝑚𝑖𝑛
) (𝐶2𝜎2

𝑚𝑖𝑛
𝜎2𝑚𝑎𝑥 − 1)(

1 +𝐶𝜎2
𝑚𝑖𝑛

)
4

≤ 𝑀2 (𝑡 − 1) (1 − ^) ((𝑡 − 1)2^ − 1)
(1 + (𝑡 − 1)^)4

=
𝑀2^ (1 − ^)𝑡3
(1 + (𝑡 − 1)^)4

+ 𝑜
(
1

𝑡

)
(8)

Combinging Equations (5), (6), (7) and (8), we get:

|𝑓 (𝐸1, {𝑌𝑖 (1)}, ..., 𝐸𝑚, {𝑌𝑖 (𝑚)}, ..., 𝐸𝑡 , {𝑌𝑖 (𝑡)})
𝑓 (𝐸1, {𝑌𝑖 (1)}, ..., 𝐸 ′𝑚, {𝑌𝑖 (𝑚)}, ..., 𝐸𝑡 , {𝑌𝑖 (𝑡)}) |

≤ 𝐾

(
3^ (1 − ^)𝑡3

(1 + (𝑡 − 1)^)4
+ 4𝑀𝑡 (1 − ^)
(1 + (𝑡 − 1)^)2

)
+ 𝑜

(
1

𝑡

)
≤ 𝑀𝐾^ (1 − ^) (3𝑀 + 4^)𝑡3

(1 + (𝑡 − 1)^)4
+ 𝑜

(
1

𝑡

)
≤ 𝑀𝐾 (1 − ^) (3𝑀 + 4^)

16^3𝑡
+ 𝑜

(
1

𝑡

)
. (9)

Therefore, we canwrite that the function 𝑓 (·) follows the bounded
difference condition of Theorem 7.8 in [15] using Equations 4 and

9 with

𝑐𝑖 ={
𝐶1𝐾𝑀 (1−^) (3𝑀+4^)

16^3𝑡
; for changes in expert choices

𝐶2𝑀 (𝑀−^)
𝑡^2

; for changes in reward samples

Note that there are 𝑡 random variables of the first type and 𝐾𝑡

random variables of the second. This leads to

(𝐾+1)𝑡∑︁
𝑖=1

𝑐2𝑖 = 𝑡

(
𝐶1𝐾𝑀 (1 − ^) (3𝑀 + 4^)

16^3𝑡

)
2

+ 𝐾𝑡
(
𝐶2𝑀 (𝑀 − ^)

𝑡^2

)
2

≤ O
(
𝐾2𝑀4

^2𝑡

)
Applying McDiarmid’s inequality with 𝐶 large, we get

P

(
𝐾∑︁
𝑖=1

( ˆ̀𝑖 (𝑡) − `𝑖 )2 ≥ 𝐾𝜎2𝑚𝑎𝑥 + 𝜖
)

≤ P
(
𝐾∑︁
𝑖=1

( ˆ̀𝑖 (𝑡) − `𝑖 )2 ≥ E
[
𝐾∑︁
𝑖=1

( ˆ̀𝑖 (𝑡) − `𝑖 )2
]
+ 𝜖

)

≤ exp

(
− 2𝜖2^2𝑡

𝐶𝐾2𝑀4

)
We can re-write this as

P

(
𝐾∑︁
𝑖=1

( ˆ̀𝑖 (𝑡) − `𝑖 )2 ≥ 𝐾𝜎2𝑚𝑎𝑥 + 𝜖
)
≤ exp

(
− 2𝜖2^2𝑡

𝐶3𝐾
2𝑀4

)
⇐⇒ P

(
𝐾∑︁
𝑖=1

( ˆ̀𝑖 (𝑡) − `𝑖 )2 ≥ 𝐾𝜎2𝑚𝑎𝑥 + 𝐾𝑀2

2^

√︃
log(2/𝛿 )
𝐶
3
𝑡

)
≤ 𝛿

2

.

Recall that all arguments hitherto were under the event E =

{∀𝑡,∀𝑖, 𝑌𝑖 (𝑡) ∈ [−𝑀,𝑀]} with P(E𝐶 ) ≤ 𝛿
2
by definition of 𝑀 .

Thus, we get:

P

(
𝐾∑︁
𝑖=1

( ˆ̀𝑖 (𝑡) − `𝑖 )2 ≥ 𝐾𝜎2𝑚𝑎𝑥 + 𝐾𝑀2

2^

√︃
log(2/𝛿 )
𝐶
3
𝑡

)
= P

(
𝐾∑︁
𝑖=1

( ˆ̀𝑖 (𝑡) − `𝑖 )2 ≥ 𝐾𝜎2𝑚𝑎𝑥 + 𝐾𝑀2

2^

√︃
log(2/𝛿 )
𝐶
3
𝑡
, E

)
+ P

(
𝐾∑︁
𝑖=1

( ˆ̀𝑖 (𝑡) − `𝑖 )2 ≥ 𝐾𝜎2𝑚𝑎𝑥 + 𝐾𝑀2

2^

√︃
log(2/𝛿 )
𝐶
3
𝑡
, E𝐶

)
≤ P

(
𝐾∑︁
𝑖=1

( ˆ̀𝑖 (𝑡) − `𝑖 )2 ≥ 𝐾𝜎2𝑚𝑎𝑥 + 𝐾𝑀2

2^

√︃
log(2/𝛿 )
𝐶
3
𝑡

����E)
+ P(E𝐶 )

≤ 𝛿.
This completes the proof. ■

A.2.2 Proof of Theorem 1. We are now ready to prove our sound-

ness result. The analysis here is similar to that in Proposition 12

of [19] and Lemma 33.7 in [24]. The key difference being that we

leverage Lemma 3 in place of standard concentrations on empirical

estimators.

Proof: [Proof of Theorem 1] By definition of 𝜏, 𝑍𝑡 , we have that

{a ∈ E𝑎𝑙𝑡 (â)} ⊆

𝐾∑︁
𝑖=1

𝑇𝑖 (𝜏)
𝐾∑︁
𝑗=1

( ˆ̀𝑗 (𝑡) − `𝑖 )2

2𝜎2
𝑖, 𝑗

≥ 𝛽𝜏 (𝛿, Σ)


Without loss of generality, let 𝑖∗ (a) = 1. Thus, we have

P(1 ≠ 𝜓 (â (𝜏)))
≤ P(a ∈ E𝑎𝑙𝑡 (â (𝜏)))

≤ P ©«
𝐾∑︁
𝑖=1

𝑇𝑖 (𝜏)
𝐾∑︁
𝑗=1

( ˆ̀𝑗 (𝜏) − ` 𝑗 )2

2𝜎2
𝑖, 𝑗

≥ 𝛽𝜏 (𝛿, Σ)
ª®¬

≤ P ©«
𝐾∑︁
𝑗=1

( ˆ̀𝑗 (𝜏) − ` 𝑗 )2

2

𝐾∑︁
𝑖=1

𝑇𝑖 (𝜏)
𝜎2
𝑖, 𝑗

≥ 𝛽𝜏 (𝛿, Σ)ª®¬
≤ P ©« 𝜏

2𝜎2
𝑚𝑖𝑛

𝐾∑︁
𝑗=1

( ˆ̀𝑗 (𝜏) − ` 𝑗 )2 ≥ 𝛽𝜏 (𝛿, Σ)ª®¬
≤ P

(
𝐾∑︁
𝑖=1

( ˆ̀𝑖 (𝑡) − `𝑖 )2 ≥ 𝐾𝜎2𝑚𝑎𝑥 + 𝐾𝑀
2

2^

√︂
log(1/𝛿)
𝐶𝜏

)
≤ 𝛿.



Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Where the final inequality follows from Lemma 3. ■

A.2.3 Proof of Theorem 2. We now move on to the proof of our

stopping time scaling. This follows the sequence of arguments used

in proving Theorem 33.6 in [24]. The key differences here are due

to the modified definition of Φ(a, 𝛼) in Equation (2). Further, the

lack of explicit exploration in Algorithm 1 also changes how we

bound the average stopping time.

Proof:[Proof of Theorem 2] For an environment a , we have

Φ(a, 𝛼) = inf

a′∈E𝑎𝑙𝑡 (a)

𝐾∑︁
𝑖=1

𝛼𝑖

𝐾∑︁
𝑗=1

(` 𝑗 − ` ′𝑗 )
2

2𝜎2
𝑖 𝑗

=
1

2

min

𝑘≠𝑘∗

𝑤𝑘∗ ·𝑤𝑘 · Δ2

𝑘

𝑤𝑘∗ +𝑤𝑘
:=

1

2

min

𝑘≠𝑘∗
𝑓𝑘 (𝑤𝑘∗ ,𝑤𝑘 )

Here, we have 𝑘∗ = 𝑖∗ (a) and 𝑤𝑘 =
∑𝐾
𝑖=1

𝛼𝑖
𝜎2

𝑖𝑘

. Note that we have

𝑍𝑡 = Φ(â𝑡 ,𝑇𝑖 (𝑡)). We also define

𝛼∗ (a) = argmax

𝛼 ∈P𝐾−1
Φ(a, 𝛼), 1

𝑐∗ (a) = Φ(a, 𝛼∗ (a)).

Wenow study the quantity𝛼∗ (a), the optimal proportion of plays

for environmenta . Since𝑤𝑘 are affine in𝛼𝑖 andΦ(a, ·) is a minimum

of concave functions in 𝑤𝑖 , Φ(a, ·) is thus concave in its second

argument. 𝛼∗ (a) are to be chosen such that the corresponding𝑤∗
𝑘

equalize the functions 𝑓𝑘 (𝑤∗
𝑘∗
,𝑤∗
𝑘
) for all 𝑘 ≠ 𝑘∗ to a constant.

Therefore, letting Φ(a) =
𝑤∗
𝑘∗𝑤

∗
𝑘
Δ2

𝑘

2(𝑤∗
𝑘∗+𝑤

∗
𝑘
) , we have that the optimal

𝛼∗ (a) are solutions to the system of equations given by

𝐾∑︁
𝑖=1

𝛼∗𝑖 (a) = 1, 𝑤∗
𝑘
=

𝐾∑︁
𝑖=1

𝛼∗
𝑖
(a)
𝜎2
𝑖𝑘

, 𝑤∗
𝑘
=

2𝑤∗
𝑘∗
Φ(a)

Δ2

𝑘
𝑤∗
𝑘∗

− 2Φ(a)
.

The solutions are roots of some polynomial, and thus are finite

in number. Further, due to concavity of Φ(a, ·), there are either

infinitely many maxima or just one. Combining these two facts we

get that 𝛼∗ (a) is unique.
We define the metric 𝑑 (a1, a2) = ∥` (a1) − ` (a2)∥∞ and note that

under this metric on the space of environments, the function 𝛼∗ (a)
is continuous at every a .

We now establish the finiteness of the mean of 3 random times

that will help in establishing our results.

1. Consider the random time 𝜏a (𝜖) = 1 + max{𝑡 : 𝑑 (â𝑡 , a) ≥ 𝜖}.
We show that E[𝜏a (𝜖)] < ∞ for any 𝜖 > 0. For this, we define the

following random variable:

Λ = max

_ ≥ 1 : ∀𝑡, 𝑑 (â𝑡 , a) ≤

√︄
2𝜎2𝑚𝑎𝑥 log (_𝐾𝑡 (𝑡+1))

𝑡


Since all rewards have variance upper bounded by 𝜎2𝑚𝑎𝑥 , union

bounding and Gaussian concentrations give that P(Λ ≥ 𝑥) ≤ 1

𝑥 .

Additionally, we have

E[log2 Λ] =
∫ ∞

0

P(_ ≥ exp(
√
𝑥))𝑑𝑥

≤
∫ ∞

0

exp(−
√
𝑥)𝑑𝑥 = 2.

Therefore, by definition, we have

𝜏a (𝜖) ≤ 1 +max

𝑡 :
√︄

2𝜎2𝑚𝑎𝑥 log(Λ𝐾𝑡 (𝑡 + 1))
𝑡

> 𝜖


=⇒ E[𝜏a (𝜖)] ≤ O(E[log2 Λ]) = O(1).

2. Consider the random time 𝜏𝛼 (𝜖) = 1 + max{𝑡 : ∥𝛼∗ (â𝑡 ) −
𝛼∗ (a)∥∞ ≥ 𝜖}. Let 𝑤 (𝜖) = inf{𝑥 : 𝑑 (𝑤,a) ≤ 𝑥 =⇒ ∥𝛼∗ (𝑤) −
𝛼∗ (a)∥∞ ≤ 𝜖}. By continuity of 𝛼∗ satisfies that ∀𝜖 > 0,𝑤 (𝜖) > 0.

Therefore, E[𝜏𝛼 (𝜖)] ≤ E[𝜏a (𝑤 (𝜖))] < ∞.

3.Define the random time 𝜏𝑇 (𝜖) = 1+max{𝑡 : ∥𝑇 (𝑡)/𝑡−𝛼∗ (a)∥∞ ≥
𝜖}, where 𝑇 (𝑡) = {𝑇1 (𝑡), ...,𝑇𝐾 (𝑡)} is the vector of the number of

arm plays. Using the definition 𝐸𝑡 , for 𝑡 ≥ 2𝐾𝜏𝛼 (𝜖/2𝐾)
𝜖 , we have

𝑇𝑖 (𝑡) ≤ max{𝑇𝑖 (𝜏𝛼 (𝜖/2𝐾)), 1 + 𝑡 (𝛼∗𝑖 (a) + 𝜖/2𝐾)}

≤ 𝑡
(
𝛼∗𝑖 (a) +

𝜖

𝐾

)
=⇒ 𝑇𝑖 (𝑡)

𝑡
− 𝛼∗𝑖 (a) ≤

𝜖

𝐾
.

Therefore, E[𝜏𝑇 (𝜖)] ≤ E
[
2𝐾𝜏𝛼 (𝜖/2𝐾)

𝜖

]
< ∞ for any 𝜖 > 0 due to

finiteness of E[𝜏𝛼 (𝜖)] .
Finally, we now define

𝜏𝛽 (𝜖) = 1 +max{𝑡 : 𝑡Φ(a, 𝛼∗ (a)) < 𝛽𝑡 (𝛿) + 𝜖𝑡},
𝑢 (𝜖) = sup

𝜔,𝛼
{Φ(𝜔, 𝛼) : 𝑑 (𝜔, a) ≤ 𝜖, ∥𝛼 − 𝛼∗ (a)∥∞ ≤ 𝜖}

For any 𝑡 ≥ max{𝜏𝑛𝑢 (𝜖), 𝜏𝑇 (𝜖), 𝜏𝛽 (𝑢 (𝜖))}, we have

𝑡𝑍𝑡 = 𝑡Φ(â𝑡 ,𝑇 (𝑡)/𝑇 )
≥ 𝑡

(
𝜙 (a, 𝛼∗ (a)) − 𝑢 (𝜖)

)
≥ 𝛽𝑡 (𝛿)

=⇒ 𝜏 ≤ max{𝜏a (𝜖), 𝜏𝑇 (𝜖), 𝜏𝛽 (𝑢 (𝜖))}
=⇒ E[𝜏] ≤ E[𝜏a (𝜖)] + E[𝜏𝑇 (𝜖)] + E[𝜏𝛽 (𝑢 (𝜖)]

=⇒ lim sup

𝛿→0

E[𝜏]
log(1/𝛿) ≤ lim sup

𝛿→0

𝜏𝛽 (𝑢 (𝜖))
log(1/𝛿)

Where the final inequality follows since 𝜏a (𝜖), 𝜏𝑇 (𝜖) do not depend
on 𝛿 and 𝜏𝛽 (𝜖) is deterministic.

Finally, with 𝐶1 =
𝐾
2^ ,𝐶2 =

𝑀2𝐾

2𝜎2

𝑚𝑖𝑛
^
, we have the chain

𝑡Φ(a, 𝛼∗ (a)) < 𝛽𝑡 (𝛿) + 𝑢 (𝜖)𝑡

=⇒ 𝑡
(
Φ(a, 𝛼∗ (a)) − 𝑢 (𝜖)

)
< 𝑡 ·𝐶1 +𝐶2 ·

√︁
𝑡 log(1/𝛿)

=⇒ 𝑡

log(1/𝛿) <

(
𝐶2

Φ(a, 𝛼∗ (a)) − 𝑢 (𝜖) −𝐶1

)
2

Taking 𝜖 → 0, we have 𝑢 (𝜖) → 0 and thus,

lim

𝛿→∞
E[𝜏]

log(1/𝛿) =

(
𝐶2

Φ(a, 𝛼∗ (a)) −𝐶1

)
2

.

The result follows by substituting the values of 𝐶1 and 𝐶2. ■



ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA J. Chen, et al.

Baseline Avg.Improvement Rate

f2s10 15.67

f2s20 4.84

f2s50 10.59

f2s100 19.21

f2s500 25.39

f2s1000 26.49

f3s10 22.10

f3s20 9.03

f3s50 7.17

f3s100 12.00

f3s500 17.05

f3s1000 18.09

f4s10 20.75

f4s20 14.76

f4s50 10.04

f4s100 12.10

f4s500 15.75

f4s1000 16.63

f5s10 34.45

f5s20 19.87

f5s50 13.78

f5s100 14.46

f5s500 16.94

f5s1000 17.68

f6s10 39.12

f6s20 24.28

f6s50 17.31

f6s100 17.21

f6s500 19.10

f6s1000 19.72

f7s10 43.07

f7s20 28.16

f7s50 20.65

f7s100 20.13

f7s500 21.63

f7s1000 22.20

Percentile 18.91

HillClimbing-Δ𝑠 = 10 8.00

HillClimbing-Δ𝑠 = 20 3.00

DirectMapping 7.21

AdaptSize 19.96

Table 2: "A Comparison of Average Improvement Rate of Darwin Relative to
Baselines"

(a) 100M Request Traces

Figure 8: Convergence of features over 100M-length online test traces: Cor-
responding plot to Figure 5a. Empirical features are within 10% of their true
values using 𝑁𝑤𝑎𝑟𝑚−𝑢𝑝 = 3𝑀 .

A.3 Additional Results from Section 6
We present additional results from our evaluations.

(a) Expert Reduced Rate (b) Expert within \%

Figure 9: Expert number reduction after clustering: Figure 9a presents the
average reduction % of experts for different values of cluster threshold \ .
Figure 9b displays the average fraction of experts in the expert sets within \%
of each other after clustering.

Figure 10: Out of Distribution performance of cross-expert neural network
predictors, in addition to in-distribution performance: Corresponding figure
to Figure 5c

We summarize the full set of average rate of improvement re-

sults comparing Darwin against baselines (other static experts,

various configurations of HillClimbing, Percentile, AdaptSize and

Directmapping) in Table 2.

Figure 8a confirms our claim that empirical features converge to

within a 10% threshold with just the first 3𝑀 requests.

Figure 9 presents additional data on how offline clustering and

expert set formation aids in reducing the number of experts under

consideration.

Figure 10 illustrates the generalization performance of the cross-

expert prediction networks by testing on mixtures that were not

trained on.

Figure 11 shows the result for the reduction in the number of ex-

perts when we consider a third dimension of recency in addition to

frequency and size. The original expert set size is 36 (6 frequencies,

2 sizes, 3 recencies) .



Darwin: Flexible Learning-based CDN Caching ACM SIGCOMM ’23, September 10–14, 2023, New York, NY, USA

Figure 11: Expert reduction number after cluster experts, where experts use
three knobs


	Abstract
	1 Introduction
	2 Background
	2.1 Content Delivery Networks
	2.2 Cache Management System

	3 Motivation
	3.1 Drawbacks of Static Policies
	3.2 Learning the Admission Decisions

	4 Darwin Design
	4.1 Offline Training
	4.2 Online Expert Identification

	5 Implementation
	6 Evaluation
	6.1 Robustness to Traffic Changes
	6.2 Effectiveness of Darwin Components
	6.3 Support for Other Goals
	6.4 Overhead

	7 Related work
	8 Conclusion
	References
	A Appendix
	A.1 Offline Clustering and Expert Sets
	A.2 Proofs of Theorems in Section 4.2
	A.3 Additional Results from Section 6


