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Abstract— A similarity cache can reply to a query for an
object with similar objects stored locally. In some applications
of similarity caches, queries and objects are naturally repre-
sented as points in a continuous space. This is for example the
case of 360◦ videos where user’s head orientation—expressed
in spherical coordinates—determines what part of the video
needs to be retrieved, or of recommendation systems where a
metric learning technique is used to embed the objects in a
finite dimensional space with an opportune distance to capture
content dissimilarity. Existing similarity caching policies are
simple modifications of classic policies like LRU, LFU, and
qLRU and ignore the continuous nature of the space where
objects are embedded. In this paper, we propose GRADES, a new
similarity caching policy that uses gradient descent to navigate
the continuous space and find appropriate objects to store in
the cache. We provide theoretical convergence guarantees and
show GRADES increases the similarity of the objects served by
the cache in both applications mentioned above.

Index Terms— Content distribution networks, approximate
computing.

I. INTRODUCTION

S IMILARITY searching [1] is a key building block
for a large variety of applications including multime-

dia retrieval [2]–[4], recommender systems [5]–[7], genome
study [8], [9], machine learning training [10]–[12], and serving
[13]–[22]. Given a query for an object, the goal is to retrieve
one or more similar objects from a repository. In the traditional
setting, a cache is used to speed up object retrieval: once
similarity search has identified the set of similar objects in the
global catalog, the system checks if some of these objects are
stored in the cache memory. In this setting, the cache performs
a local exact lookup for the objects. Similarity search over the
catalog can be itself a time-consuming operation, equivalent
to linearly scanning the whole catalog [23]. Moreover, if users
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generating the queries are located far from the repository, they
may experience long delays.

In order to solve these problems, the seminal papers
[3], [5] proposed, almost at the same time, a different use of
the cache: clients’ requests are directly forwarded to the cache;
then the cache performs a similarity search over the set of
locally stored objects and possibly serves the requests without
the need to forward the query to the (remote) repository.
The cache thus reduces the overall serving time at the cost
of providing objects less similar than those the repository
would provide. This operation was named similarity caching,
in contrast to the traditional exact caching. As recognized
in [24], the idea of similarity caching has been rediscov-
ered a number of times under different names: recognition
caches [15], [16], approximate deduplication [18], semantic
caches [19], prediction caches [14], approximate caches [20],
and soft caches [7], [25].

In many applications similarity is quantified using super-
vised machine learning techniques that collectively go under
the name of distance metric learning [26]. These techniques
learn how to map similar objects to vectors in Rd (called
embeddings) that are close according to p-norm distances,
cosine similarity, or Mahalanobis distances. Requests and
objects live then in a continuous space. For instance, in aug-
mented reality applications we often require to identify similar
objects: the image is coded into a query, i.e., an embedding
in Rd, and the application logic finds similar images to
be returned to the user [15]–[17], [19]. This is also the
case for other potential applications of similarity caching
like 360◦ videos, where requests for parts of the video are
implicitly dictated by the user’s head orientation expressed in
spherical coordinates.

Existing dynamic policies for similarity caches adapt and
extend well-known exact caching policies, like LRU and LFU,
to deal with the notion of a dissimilarity cost, i.e., how distant
is a cached object from the request. As a consequence, they
treat requests and objects as discrete entities and ignore the
continuous representation space.

This paper proposes GRADES, the first similarity caching
policy designed to exploit object embeddings in Rd with
a distance that captures dissimilarity costs. While previous
policies update the cache state by replacing a cached object
with (in general) a distant one—corresponding to “jumps”
in the representation space—GRADES incrementally updates
the (embedding of) each object using a gradient descent step
to progressively reduce the dissimilarity cost. Qualitatively,
as shown in Fig. 1, the objects in the cache smoothly move
in the representation space to find their optimal position,
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Fig. 1. Cached objects’ movements in the representation space (R2) during
[0, T ] when the cache is managed by GRADES. The catalog is made by the
points in a 100 × 100 grid, dark shaded areas correspond to more popular
objects. Dissimilarity cost Cd(x, y) = 1/10 ‖x − y‖1, retrieval cost Cr = 1,
cache size k = 50. See the description in Sec. V.

i.e., where they can serve a large number of requests with
small dissimilarity cost.

We prove that in a stationary setting, with an opportune
choice of the gradient step sizes, GRADES converges to a
cache configuration that corresponds to a critical point of the
service cost (likely a local minimum). Our experiments based
on realistic traces (made available online [27]) shows that
GRADES outperforms existing similarity caching policies both
for 360◦ videos and recommendation systems applications.

The paper is organized as follows. After an overview of
the related work in Sec. II, we present the formal problem
definition in Sec. III. We introduce GRADES and its theoret-
ical guarantees in Sec. IV. Finally, experimental results are
presented in Sec. V.

II. RELATED WORK

Most existing policies for similarity caches generalize
well-known exact caching policies, like LRU and LFU, to the
new context, where besides the exact hits and misses, approx-
imate hits are also possible. For example SIM-LRU [5], [13]
maintains objects in an ordered queue and serves an object
from the cache if its distance to the requested object is
lesser than a given threshold (an approximate hit occurs).
The object is then moved to the front of the queue. When
no object in the cache is close enough to the request, there
is a miss. The object is then retrieved from the server and
inserted at the front of the queue, possibly evicting objects
from the back. RND-LRU [5] is a variant of SIM-LRU where
the threshold is replaced by a random variable that is a function
of the dissimilarity cost i.e., the cost associated to the distance
between a cached object and the request. As with SIM-LRU
and RND-LRU that are adaptations of LRU, qLRU-∆C [24]
modifies qLRU [28] by introducing a refresh probability that
depends on the similarity. Finally, DUEL [24] is inspired
by LFU, and decides which object to evict by tracking the
dissimilarity cost i.e., the cost associated to the distance
between a cached object and the request accumulated over a
given time-window. In our experiments we compare GRADES

with SIM-LRU, qLRU-∆C, and DUEL. Recently, there has
been preliminary work that shows that coordinating decisions

in a network of similarity caches is particularly challenging
[29], [30]. GRADES can be adapted to work with a network
of similarity caches by tweaking the algorithm to use the cost
to retrieve content from a parent/neighboring cache in place of
the cost to retrieve content from a remote server. This change,
however, does not ensure optimal coordination amongst the
similarity caches in the network.

Our algorithm was inspired by the work from
Jorge Cortés et al. on coordination algorithms for mobile
agents [31]–[33]). In their setting mobile agents (e.g., drones)
place themselves in the space to be able to detect the largest
number of events in the environment. Similarly, the objects
in the cache need to position themselves to optimally serve
the requests appearing over the space. Despite similarities
at a high-level, their work focuses on a two-dimensional
space and needs to take into account agents’ movement and
communication constraints that do not hold in our context.

From another point of view, GRADES gradient update can
be considered as a generalization of stochastic K-means
algorithms, where the function we want to minimize is not
necessarily the squared Euclidean distance (as it is the case for
K-means). Our proofs rely on techniques for non-convex opti-
mization originally proposed in [34] also to study K-means.

Online caching policies based on gradient methods
have been proposed in the stochastic request setting (see,
e.g., [35], [36]), and, more recently, in the adversarial set-
ting [37], [38]. In these papers, the gradient step updates a
vector of length equal to the catalog size, whose component i
(in [0, 1]) represents which fraction of object i should be stored
in the cache or alternatively the probability to store i in the
cache. Differently from this line of work, GRADES uses the
gradient step to modify the objects in the cache and maintains
a vector of size equal to the cache—then much smaller than
the catalog size.

A costly operation in any similarity search system is to
find the closest object to the request. A simple solution is
to index the collection, e.g., with a tree based data structure,
to find the exact closest object. Unfortunately, when the num-
ber of dimensions d of the representation space exceeds 10,
such an approach has a computational cost comparable to a
full scan of the collection [23]. For this reason a number of
approximate search techniques have been developed, which
trade accuracy for speed and provide one or more points close
to the request, but not necessarily the closest. Prominent exam-
ples are the solutions based on locality sensitive hashing [39],
product quantization [40], [41], pivots [42], or graphs [43].
In the experiments in this paper, we have performed an
exact similarity search, but any of these approximated search
techniques could be used in GRADES.

The paper [44] models different caching policies as Markov
chains to study the tradeoff between the time required to
estimate the popularity distribution of the requested objects
and the accuracy of their estimation. GRADES allows to
balance these contrasting goals by tuning two parameters: the
learning rate and the grafting parameters (see e.g., Fig. 7
and Fig. 8). Our experiments show that GRADES achieves
a better tradeoff than state-of-the-art similarity caching
policies.
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The original envisaged applications of similarity caches
were content-based image retrieval (CBIR) [3] and contextual
advertising [5]. In a CBIR system, given an image (used as
a query), users can query the CBIR system to obtain images
that are most similar to the query by comparing their visual
contents. Here, a cache can respond with the most similar
images that are available locally. Similarly, in the case of
contextual advertising, the cache can provide ads similar to
those matching the user profile [5]. Likewise, recommender
systems can leverage similarity caches [7], [25]: a recom-
mender system can save operating costs and decrease its
response time through recommendation of relevant contents
from a cache to user-generated queries, i.e., in case of a cache
miss, an application proxy (e.g., YouTube) running close to the
helper node (e.g., at a multi-access edge computing server) can
recommend the most related files that are locally cached. More
recently, similarity caches have been employed extensively for
machine learning based inference systems to store queries and
the respective inference results to serve future requests, for
example, prediction serving systems [14], image recognition
systems [15], [16], [18], object classification on the cloud [19],
caching hidden layer outputs of a neural network to accelerate
computation [20], network traffic classification tasks [45]. The
cache can indeed respond with the results of a previous query
that is very similar to the current one, thus reducing the
computational burden and latency of running complex machine
learning inference models.

We remark that a prior version of the work has been
published in [46]. Here, we extend it by providing a complete
proof for our theoretical claims in the Appendix and new
experimental results in Sec. V (depicted in Fig. 6, Fig. 9, and
Fig. 11).

III. PROBLEM DEFINITION

We consider a similarity search system where a server
answers users’ queries with the most similar object from a
locally stored catalog. In some applications, it is required
to serve k similar cached objects instead of a single object.
GRADES can be augmented to provide k similar answers using
the same techniques introduced in [3], [5], [47]. For example,
the cache may store key-value pairs, where the key is a past
query and the value is the set of k closest objects to the query.
Upon a new query, the cache looks for the most similar key
stored locally and returns the corresponding set of objects.

Requests satisfied by the server incur a retrieval cost Cr,
which quantifies the delay the user experiences to retrieve
the object from the remote server, and/or the additional load
for the server, and/or the additional load for the network.
Alternatively, the request may be satisfied by a similarity cache
which stores a subset of the catalog. The cache provides,
in general, a less similar object than what the server could
provide, but incurs a negligible retrieval cost, as, for example,
it is located closer to the user, or uses a faster memory storage
or can perform faster lookup operations on the smaller set of
stored contents.

We assume that each request or object in the catalog can
be represented as a point in the d-dimensional Euclidean

space Rd. In what follows we will refer to such representations
as embeddings and, for the sake of simplicity, we will identify
each object/request with its embedding (e.g., we will say that
object x belongs to Rd). We assume all objects have the same
size and the cache can store up to k objects.

Our model of the system is similar to the one considered in
previous papers on similarity caching in the continuous setting
like [5], [24]. Let Z− and χ denote the catalog and the set
of possible requests, respectively. Both sets may be finite or
infinite, but we require them to be compact (to be able to
retrieve a closest object to a given request). The “quality” of
a similarity search for x depends on how similar the response
object z is to the request. We assume the dissimilarity cost
is quantified by the function Cd(x, z) = h(‖x−z‖), where
h : R → R+ is a non-decreasing non-negative function and ‖·‖
is a norm in Rd (e.g., the Euclidean one). For example Faiss
(Facebook AI Similarity Search) library [48] for multimedia
retrieval supports all p-norms for p ∈ [1,∞].

The state of the cache at time t is given by the set of objects
St currently stored in it, St = {y1

t , y2
t , . . . , y

k
t }, with yi

t ∈
χ ⊂ Rd. Requests arrive first at the cache. Given a request for
object xt at time t, let it denote the index of the most similar
object to the request, i.e., it ∈ arg mini=1,...,k Cd

(
xt, y

(i)
t

)
(if

there are many equally similar ones we arbitrarily select one).
If the cache satisfies the request xt, it will use content y(it)

t ,
and the user will incur the dissimilarity cost Cd(xt, St) !
Cd

(
xt, y

(it)
t

)
= miny∈St Cd(xt, y), but the retrieval cost is

negligible. Alternatively, the cache can forward the request
to the server, where it will be satisfied by the most similar
object in the catalog. The request will generate the retrieval
cost Cr, and the user will experience the dissimilarity cost
Cd(xt, ) = minz∈ Cd(xt, z) ≤ Cd(xt, St).

Ideally, the cache should compare the costs of serving
request locally (Cd(xt, St)) and from the server (Cd(xt, )+
Cr) and select the most convenient action. But, in order to
evaluate Cd(xt, ), the cache would need to store locally
metadata for the whole set and find the closest object in it.
The memory and computation requirements could defeat the
whole utility to have a cache. For this reason we consider
the cache does not know Cd(xt, ), but it is easy to adapt our
algorithm when it is not the case and its theoretical guarantees
still hold.

In the impossibility to compare Cd(xt, St) with the
request-dependent value Cd(xt, ) + Cr, the cache compare
Cd(xt, St) with a constant threshold value Cθ . If Cd(xt, St) ≤
Cθ , the cache serves the request locally, otherwise it forwards
it to the server. We assume Cθ is set once and for all offline.
Figure 2 illustrates how requests are served.

As Cd(xt, St) = Cd

(
xt, y

(it)
t

)
, the final cost to serve

request x (denoted by C(xt, St)) depends only on y(it)
t :

C(xt, St) = C
(
xt, y

(it)
t

)

=

{
Cd

(
xt, y

(it)
t

)
, if Cd

(
xt, y

(it)
t

)
≤ Cθ,

Cr + Cd (xt, ) , otherwise.
(1)
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Fig. 2. Coverage of the request space (⊂ R2) by 4 objects in the cache
with norm-2 as dissimilarity cost. Crosses represent the objects. Each object
is the closest point to requests in the corresponding Voronoi cell delimited by
the red lines. Consider a request x falling in the Voronoi cell of an object yi.
If x is closer to yi than the critical radius Rθ (such that h (Rθ) = Cθ), x
receives yi as reply, otherwise (it falls in the gray shaded area) it generates
a miss.

After a request, the cache can update its state. As updates
can themselves generate retrieval costs, we restrain to reactive
policies that can only update their state by inserting the object
retrieved from the server to satisfy a request.

In our setting, we assume that the two costs, Cr and Cd,
can be expressed in the same unit. For instance, the two costs
can quantify different aspects contributing to the overall user’s
quality of experience (QoE). The dissimilarity cost function
Cd(x, y) = h(||x− y||) can describe the QoE loss for the end
user upon receiving a dissimilar object, while Cr can capture
the QoE loss due to the experienced delay. As in our model,
the ITU-T E-model combines additively different metrics, such
as signal-to-noise-ratio, packet loss ratio, and delay, to obtain
a single scalar QoE rating for voice communications [49].
More in general, it is quite common in multi-objective resource
allocation problems to express the cost as a weighted sum of
the different objective functions [50]–[52].

In our theoretical analysis in Sec. III, we consider the case
when requests arrive according to a Poisson process and are
i.i.d. distributed. In the finite case (|χ| < ∞), we recover
the classic independent reference model [53], where object x
is requested with rate λx. In the continuous case, we need
to consider a spatial density of requests and objects in a set
A ⊂ χ are requested with rate

∫
A λx dx.

Under the above assumptions, for a given cache state S =
{y1 . . . yk}, we can compute the corresponding expected cost
to serve a request:

C(S) !
{∑

x λxC(x, S), finite case∫
χ λxC(x, S) dx, continuous case.

(2)

Finding an optimal set of objects S∗ to store in the cache that
minimizes the cost C(S) is NP-hard as it is a generalization of
the problem considered in [24] (where Cd(x, ) = 0 for each
x ∈ χ). Nevertheless, for the continuous case, we propose
a dynamic gradient descent based algorithm, that, under the
stationary request process, can achieve a stationary point
of C(S). The gradient descent based algorithm is a natural
choice for the continuous setting; the algorithm takes a descent
step to decrease C(S) at each time step. Further, in Sec. IV-C,

we describe an adaptation of the proposed algorithm for the
finite case.

IV. A GRADIENT-BASED ALGORITHM

The key idea of our algorithm is to let the objects stored
in the cache gradually “move” in the space Rd to reach a
configuration where they can be used as approximate answers
for a large number of requests (see Fig. 1). Upon a request
at time t for xt, the most similar object in the cache, y(it)

t ,
is moved in the direction opposite to the gradient of the service
cost (∇yC(xt, y

(it)
t )) proportionally to a time-varying step-

size (or learning rate) ηt:

y(it)
t+1 = y(it)

t − ηt∇yC
(
xt, y

(it)
t

)
. (3)

It is possible to prove that C(x, y) is differentiable every-
where and then the gradients in (3) exist with probabil-
ity 1 when the request process is continuous.1 When the
request process is discrete, the probability that the gradient
∇yC(xt, yt) does not exist may be non-zero, but we can then
perturb the request by a small random vector ε ∈ Rd and
consider ∇yC(xt + ε, yt).

Note that the algorithm is oblivious to the request rate
(λxt) of the object xt. However, every time a request is made
for object xt, the most similar object in the cache (y(it)

t ) is
moved in the direction of the requested object. Therefore, the
algorithm dynamics are sensitive to λxt .

An attentive reader may frown upon the simple algo-
rithm (3). First, it potentially updates the cache upon every
request, even when Cd(xt, y

(i)
t ) ≤ Cθ and the cache would

not need to retrieve any object. Second, even if y(i)
t is

the embedding of an object in the catalog, y(i)
t+1 may not

correspond to any object in the catalog.
In the following sections we address all issues mentioned

above. After having refined the update rule (3) (Sec. IV-A),
we prove that this idealized algorithm indeed converges to
a critical point of C(S) (Sec. IV-B). Then, in Sec. IV-C
we present a practical algorithm which 1) satisfies all our
requirements, 2) keeps the state of the cache “close” to the
state of the idealized algorithm, and 3) is more reactive and
thus more suitable to non-stationary request processes.

A. Introducing a Projection

As requests are only for objects in the bounded set χ,
there exists a norm-2 ball with radius R—B2(R) = {y ∈
Rd, ‖y‖2 ≤ R})—such that χ ⊂ B2(R) and C(x, y) = Cr for
each y /∈ B2(R) and x ∈ χ. There is no advantage to store in
the cache objects that do not belong to B2(R) as they do not
contribute to approximate any request. We then modify (3) in
order to make closer to B2(R) any cached object y(i)

t that the

1As far as all the y(i)
t are different, ∇yC(x, y(it)

t ) exists for all the points
in x ∈ X but at most for a measure zero set: the set of points for which
∇yCd(x, y

(i)
t ) does not exist, the points for which ‖x−y

(i)
t ‖ = ‖x−y

(j)
t ‖

for i '= j, and finally the set of points in ∂{x ∈ Rd : Cd(x, y(i)
t ) > Cθ},

where ∂A denotes the boundary of the set A.
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gradient update may have brought out of B2(R). We write

y(i)
t+1 = y(i)

t − ηtg
(i)
t , (4)

g(i)
t =






∇yC
(
xt, y

(i)
t

)
, if (i= it) ∧

(
y(i)

t ∈ B2(R)
)

f(‖y(i)
t ‖2 − R) y(i)

t

‖y
(i)
t ‖2

, if y(i)
t /∈ B2(R),

0, otherwise,

where f(·) is an increasing non negative function (so that
−g(i)

t points to the origin of the space). For technical reasons
that will be required in the proof of Theorem 4.2, we want
f(0) = f ′(0) = f ′′(0) = f ′′′(0) = 0, and f ′(∞) ∈ Θ(1). For
these reasons, we select f(u) = d

du
u4

1+u2 = 2 u3 2+u2

(1+u2)2 for
the proof.

B. Convergence

In this section we provide convergence results for the basic
algorithm described in (4). We assume the cache update rule
generates embeddings that always correspond to objects in the
catalog. Moreover, we will ignore the cost of updates made
after the request is served. These two simplifications will be
removed in the next section.

It will be useful to denote the cache state as a vector
yt = (yt,1, . . . , yt,k) ∈ Rk×d, obtained by concatenating the
embeddings of the different objects in the cache. Similarly,
we define the different costs as function of yt and then write
Cd(yt), C(yt), and C(yt). We are now going to prove that
algorithm (4) converges almost surely to a stationary point of
C(y) and the trajectory of yt is bounded almost surely.

Lemma 4.1: Let the learning rate ηt be selected so that∑+∞
t=1 ηt = +∞ and

∑+∞
t=1 η2

t < +∞. The sequence (yt) is
bounded almost surely.
The proof of the lemma is in Appendix A. The lemma is used
in the proof of the following convergence result.

Theorem 4.2: Let the learning rate ηt be selected so that∑+∞
t=1 ηt = +∞ and

∑+∞
t=1 η2

t < +∞. If C(·) is continuously
differentiable up to the second order then

lim inf
t→∞

‖∇yC(yt)‖2 = 0 a.s.

If C(·) is continuously differentiable up to the third order then

lim
t→∞

∇ytC(yt) = 0 a.s.

The proof of Theorem 4.2 is in Appendix B. Our proof relies
on techniques for non-convex optimization originally proposed
in [34]. We think it is possible to derive similar results, under
different hypotheses, using the approach based on ordinary
differential equations proposed in [54].

Theorem 4.2 states that the sequence (yt) converges to a
critical point of C(·), i.e., a point where the gradient is zero.
This may be a saddle point, a local maximum or a local
minimum of C(·). The latter is more likely as it is the only
one locally stable. The saddle points and local maxima of
C(·) are not stable, as on reaching either of these two types of
points, requests that appear in the neighborhood may perturb
yt and the gradient descent algorithm moves yt away from
these points. Given the stochastic nature of the request process
this is highly likely to happen.

C. Implementation

In this section we present our complete caching policy
GRADES, whose pseudo-code is in Algorithm 1. Theorem 4.2
shows that the basic gradient update (4) attains a critical point
of the expected cost C(·). Nevertheless, we have assumed
that this update rule always generates embeddings in Rd that
correspond to objects in the catalog. However, if the catalog
has a finite number of objects, this is unlikely to happen, as the
update (4) can potentially generate any real vector. Moreover,
the update (4) may modify an object in the cache upon each
request and then generate a high load on the server and the
network to retrieve the new modified objects.

In Sec. IV-C.1 we describe how our algorithm addresses
these issues. We then move on in Sec. IV-C.2 to describe
some additional features that provide a higher adaptivity of the
algorithm to deal with highly non-stationary request processes,
allowing for some random insertions with probability p.

Algorithm 1 GRADES

1: Let k be the cache size and x the object requested
2: if (|SV,t| < k) ∧ (x /∈ SV,t) then " still space in cache
3: Insert x in VC
4: Retrieve and insert ρ(x) in PC
5: µ(x) = ρ(x)

6: yV = arg miny∈SV,t
Cd(x, y)

7: Update SV,t according to (4)
8: if Cd(x, yV ) ≤ Cθ then " virtual hit
9: if ‖x − yV ‖ < ‖µ(yV ) − yV ‖ then " x approximates yV better

than µ(yV )
10: Evict µ(yV )
11: Retrieve and Insert ρ(x) in PC
12: µ(yV ) = ρ(x)

13: GRAFT_HIT_UPDATE(x,SV,t)

14: yP = arg miny∈SP,t
Cd(x, y)

15: ξ ∼ Uniform(0, 1)
16: if ξ < p then
17: (update, ω) =GRAFT_MISS_UPDATE(SV,t, x,

ρ(x))
18: if update then
19: Evict ω and µ(ω)
20: Retrieve and Insert ρ(x) in VC and PC
21: µ(ρ(x)) = ρ(x)
22: yP = ρ(x)

23: if (Cd(x, yP ) ≤ Cθ) ∨ (ρ(x) inserted in PC) then
24: Serve yP

25: else
26: Retrieve and Serve ρ(x)

1) Dealing With Finite Catalogue and Reducing Server
Load: We propose to maintain a virtual cache (VC) and a
physical cache (PC). The VC only stores some metadata, but
no actual object; its use is common to other policies like
2-LRU [28] or AdaptSize [55]. The VC is sometimes called
shadow cache.

In our case the VC stores k vectors in Rd that are updated
upon each request according to the basic algorithm in (4).
These vectors are the embeddings of the objects we would
like to store in the cache, but, as discussed above, such objects
may not exist, or they may not have been retrieved yet from
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the server. The PC contains objects from the catalog together
with their embeddings.

At a high level, the main idea behind GRADES is to maintain
the PC as close as possible to the VC. We use then the
current state of the VC to drive updates at the PC, i.e., object
eviction and insertion. In particular each vector yV in the VC
is matched to an actual object µ(yV ) in the PC and GRADES

will opportunistically update µ(yV ) to make it as close as
possible to yV .

We now describe in details Algorithm 1 using the following
additional notation:

• SV,t and SP,t denote the state of the VC and the PC,
respectively.

• ρ(x) denotes the closest object in the catalogue to x.
The gray lines correspond to changes to increase algorithm
adaptivity and will be discussed in Sec. IV-C.2.

Upon a request for x, if there is still space in the cache,
we retrieve the most similar object in the catalogue ρ(x).
GRADES inserts x and ρ(x) in the VC and in the PC, respec-
tively, and matches them (µ(x) = ρ(x)). These operations are
described in lines 2–5. The cache will finally serve ρ(x).

If the cache is already full, the closest object in VC yV will
be updated according to (4) (lines 6–7). Upon a virtual hit, if x
is closer to yV than the currently matching object µ(yV ) in the
PC, GRADES takes advantage of this request to replace µ(yV )
with ρ(x) (lines 9–12). In a stationary setting, the state of VC
converges to a critical point of the cost (Theorem 4.2) and the
PC should become closer and closer to it. Finally, the most
similar object in PC is served if it is close enough to x, or if
in any case ρ(x) has been retrieved (line 11).

2) Increasing Adaptivity: According to what we described
above, only the closest object in VC is updated upon a request
(unless some projection back to B(R) is needed). A potential
problem is that if an object x far from any other object has
been accidentally inserted in VC (and the corresponding object
ρ(x) in PC), it may never be updated and may uselessly
occupy cache space. Moreover, if at some point the request
process changes abruptly, some objects in the cache that were
initially useful may find themselves too far from the new
requests. Again, the gradient algorithm, by itself, would not
update such objects. To overcome this problem, we can graft
to GRADES a more dynamic caching policy that occasionally
(with probability p) updates the VC, hopefully evicting the
least useful object in the VC.

The “grafting” is described by the green-shaded lines in
Algorithm 1 and has been designed to support general cache
eviction algorithms like LRU, LFU, and their variants. The
grafted caching policy internally maintains its own data struc-
ture, e.g., an ordered queue for LRU. Upon an approximate hit,
the hit update rule of the grafted policy is called (line 13). For
example, LRU would move the requested object (if present in
the cache) to the front of the queue. Also, with probability p,
GRADES invokes the miss update rule of the grafted policy,
that may lead to select an element ω to be evicted. GRADES

then updates accordingly the VC and the PC (lines 19–22).
3) Algorithm Complexity: A straightforward implementa-

tion of GRADES has a time complexity of O(kd), where
k is the cache capacity and d is the embedding dimension.

TABLE I

TRACES DESCRIPTION

This is because one has to iterate through the k objects in
the cache to find the most similar object to the requested
object. However, one could use approximate nearest neighbor
index, such as those based on hierarchical navigable small
worlds (HNSW) graphs [43]. Numerically, HNSW is able to
answer a 10NN query over a dataset with 1 million objects
in a 128-dimensional space in less than 0.5 ms with a recall
greater than 97% [56]. As for the memory footprint, a typical
configuration of the HNSW index requires O(d) bytes per
objects, where d is the number of dimensions. For instance,
in case of d = 128 dimensional vectors, the memory required
to index 10 million objects is approximately 5 GB.

V. EXPERIMENTS

In this section, we empirically validate our algorithm
through simulations. First we demonstrate the benefit of the
algorithm by using synthetic traces. Next, to demonstrate real
world applicability of our algorithm, we use GRADES in
the domain of caching for 360◦ videos and recommendation
systems. We assume that the catalog coincides with the set
of possible requests (Z− = X) and then set Cθ = Cr. The
retrieval cost Cr is always equal to 1. Table I summarizes
the main characteristics of the traces. Further details about the
experimental setup and the properties of request traces will be
described in the corresponding subsections. To the best of our
knowledge, there are no public traces for similarity caching;
we made our traces available online [27].

We compare GRADES with the following algorithms.
a) GREEDY is an offline static algorithm that progressively

fills the cache inserting the object that provides the largest cost
saving given the set of objects already inserted. The algorithm
provides a 1

2 approximation in terms of cost savings [57].
b) LRU+ updates the cache as the classic LRU evicting the

least recently used content when needed, but it can provide
approximate objects.

c) SIM-LRU [5] maintains the content in an ordered queue
as LRU. It moves objects to the front upon an approximate
hit, and evicts objects from the back when needed.

d) qLRU-∆C [24] is a variant of qLRU [28] that, upon
an approximate hit, moves the object to the front with a
probability which is proportional to the service cost reduction
the object has guaranteed on the current request.

e) DUEL [24], upon a request for object x not in cache, x is
matched with an object y in the cache in a tournament aimed
at deciding if x is a better candidate to be stored in the cache
as compared to y. The decision is made by comparing the cost
savings x and y provide over a fixed interval of time (f ). If the
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Fig. 3. The heatmap depicts the popularity distribution of objects in the grid.
The darker regions A and B contain the most popular content. The circles
represent the final configuration produced by the GRADES policy (η = 0.64)
under the trace Synthetic.

new object x provides a larger cost saving, then x replaces y
in the cache.

A. Synthetic Traces

We consider a setting similar to [24]. The catalog is made
by the points of a L × L bi-dimensional grid with L = 313.
The cache hs size k = 313.2

For any two objects x and y on the grid we define the
approximation cost to be proportional to the norm-1 distance
between the two points x and y, in particular Cd(x, y) =
1
10 ||x − y||1. In our experiments, we observe that GRADES

converges to an expected cost that is slightly better than the
approximate optimal cost as computed in [24], suggesting that
GRADES converges very close to optimal.

The traffic is generated under the Independent Reference
Model [53]. There are two popular regions A and B centered
around coordinates (65, 65) and (220, 220), respectively; they
are produced by a mix of two Gaussian distributions. In par-
ticular, an object at (norm-1) distances d1 from the center of
A and d2 from the center of B is requested with probability

(d1, d2) ∝ 0.4 × e
−d2

1
2×152

√
2π × 15

+ 0.6 × e
−d2

2
2×252

√
2π × 25

.

The popularity distribution of the objects in the grid is depicted
in the heat-map in Fig. 3. Figure 1 corresponds to a rescaled
version of the same process.

Figure 4 shows the performance of GRADES without any
graft and with different grafts (LRU+, SIM-LRU, qLRU-
∆C) for a quite large value of the grafting parameter (p =
10−2). GRADES/X denotes GRADES grafted with policy X.
We observe that GRADES achieves the smallest cost, and by

2As noted in [24], when object requests fall uniformly over the points of
a L × L grid (with wrap-around conditions), with k = L = 1 + 2l(l + 1),
for some positive integer l, an optimal cache configuration can be computed.
The value k = L = 313 results from the particular choice of l = 12.
For a non-homogeneous request process an approximate optimal cost can be
computed as well (see Appendix F in [24]).

Fig. 4. Expected cost C(·) incurred by different policies under the trace
Synthetic. LRU+, SIM-LRU, qLRU-∆C (q = 10−2), GREEDY, and
GRADES (η = 0.64, plain and grafted with p = 10−1). Cache size k = 313.

Fig. 5. Effect of the grafting parameter p on the final expected cost
C(·). GRADES/qLRU-∆C (q = 10−2) and GRADES/SIM-LRU for different
learning rates under the trace Synthetic. Cache size k = 313.

grafting GRADES with SIM-LRU we can make the initial tran-
sient faster. Figure 3 also shows the final cache configuration
reached by GRADES: as expected, the density of the objects
in the cache is higher where the request density is higher.

The effect of the grafting parameter p is shown in Fig. 5
and depends on the specific grafted policy. We see that
GRADES/qLRU-∆C3 is relatively insensitive to the grafting
up to p = 0.05, but for larger values of p the cost increases,
and approaches the cost of qLRU-∆C alone (about 0.295 as
it can bee seen in Fig. 4). This happens because, for large p,
more and more cache updates are due to qLRU-∆C, which,
even upon an approximate hit, may introduce the requested
object with probability proportional to q. For GRADES/
SIM-LRU, the cost again increases as p increases, but it is
always much smaller than the cost of SIM-LRU alone (about
0.32). The explanation is that SIM-LRU never introduces new
objects on approximate hits. Hence, as far as the current cache
allocation is providing approximate answers, the function
GRAFT_MISS_UPDATE in Algorithm 1 does not modify the
current cache allocation.

In Fig. 6, we study the effect of the initialization on the
the performance of GRADES. We test three different initializa-
tion schemes: uniform box, uniform grid, and request-based
depicted in Fig. 6 (b), (c), (d), respectively. We sample the
initial set of objects uniformly at random without replacement
among those at the boundary (x ∈ {0, 312} or y ∈ {0, 312})
and from the whole catalog (313 × 313 grid), respectively

3Note that GRADES grafted with p = p′ to a qLRU-∆C with q = q′ is
equivalent to GRADES grafted with p = 1 to a qLRU-∆C with parameter
q = p′ × q′.
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Fig. 6. Subfigure (a) shows the expected cost C(·) incurred by
GRADES/qLRU-∆C (η = 0.64 grafted with p = 1 and q = 10−3) for
different initialization (uniform box, uniform grid, and request-based depicted
in (b), (c), and (d), respectively) under the trace Synthetic. Cache size is
k = 313. The heatmap depicts the popularity distribution of objects in the
grid.

Fig. 7. Effect of grafting parameter p on the expected cost C(·) in a dynamic
setting for GRADES/qLRU-∆C (η = 0.64). The cache is initialized to a
stationary configuration as in Fig. 3. Now, only requests corresponding to
region B from the trace Synthetic are made. Cache size k = 313.

under the uniform box initialization and the uniform grid one.
Instead, we take the first k distinct requested objects to obtain
the request-based initialization. Note how these three schemes
lead to store initially in the cache progressively more popular
objects. Figure 6 (a) shows the three initializations provide
different initial costs, with the configuration with the least
(resp. most) popular objects leading to the highest (resp. low-
est) initial cost. The figure shows also that, independently of
the initial cache configuration, GRADES is able to move to
configurations with smaller cost (similar to the one in Fig. 3).

Until now, we have considered a stationary request scenario,
where there is no evident advantage from grafting a more
reactive policy to GRADES. In Fig. 7 we consider a highly
non-stationary setting. At time 0, the cache is initialized as
in Fig. 3, i.e., the cache configuration reached by GRADES

after a large number of requests (a million) made from a mix
of the two gaussian distributions. Then, the request process
changes abruptly and no more requests for objects in region
A are generated. The cache should reach a new configuration

Fig. 8. Expected cost C(·) incurred by the different policies under the
trace Synthetic: qLRU-∆C (q = 10−3, 10−2), DUEL , GREEDY, and
GRADES (η = 1.28, 0.64 grafted with p = 1 and q = 10−3). Cache size
k = 313.

where all cached objects are located in region B, achieving a
lower cost, as now the same number of objects should cover
a smaller area. Fig. 7 shows that a higher value of p enables
faster migration of objects from region A to region B in the
cache.

Figure 8 shows the synergy between GRADES and the
grafted policy. qLRU-∆C, DUEL, and GRADES, all have
parameters (q, η, and f ) that can be tuned to find an optimal
trade off between convergence speed and final cost. They can
converge fast to configurations within a large neighborhood of
a critical point (for high q, high η, and low f , respectively),
or slowly to configurations within a smaller neighborhood.

Experiments in [24], in a setting similar to ours, show
that qLRU-∆C achieves a worse cost-vs-speed tradeoff than
DUEL. Figure 8 confirms that this is the case, but when qLRU-
∆C is grafted on GRADES, the resulting policy improves on
top of DUEL. In fact GRADES/qLRU-∆C achieves a better
trade-off as it is able to converge to a cost comparable to
DUEL in a shorter time, or equivalently to a smaller cost
in roughly the same time. Note also that DUEL’s expected
cost at steady state is noisier than GRADES/qLRU-∆C’s cost,
showing the advantage of smoothly updating the state using
gradients.

We now study the impact of the approximability threshold
(Cθ) on the expected cost using the Synthetic trace. We vary
the value of Cθ from 0.5 to 1.4 in increments of 0.1. Figure 9
shows that, as Cθ increases, the expected cost first decreases
and then increases. In fact, for Cθ - Cr = 1, a larger Cθ

increases the number of approximate hits and then avoids
the need to pay the cost Cr to retrieve the objects from
the server. On the contrary, for Cθ . Cr = 1, a larger
Cθ is not beneficial, because misses are finally less costly
than approximate hits. Figure 9 suggests that the optimal
configuration is Cθ ≈ Cr = 1 (in our experiments the server
can always provide an exact hit). We observe that, while this
choice minimizes the cost to serve a request given the current
cache configuration, the choice of Cθ also influences how the
cache state evolves. This is because newer objects are only
introduced into the cache on misses. Therefore, the optimal
value for Cθ could be, in principle, different.

B. 360◦ Videos

We test our algorithms on 360◦ video traces. A 360◦ video
is an immersive, spherical video [58], [59]. The video is first
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Fig. 9. Expected cost C(·) incurred by the GRADES/SIM-LRU under the
trace Synthetic for different values of the approximation threshold Cθ . Cache
size k = 313, Cr = 1, η = 0.64, 1.28 and p = 0.001.

projected on to a 2D plane to be encoded by classic 2D video
encoders. The video is divided into time segments, and each
segment is further spatially divided into tiles. The VR headset
is optimized to fetch the required tiles based on the head
position of the user. A system responsible for the delivery of
360◦ videos can store the popular tiles in nearby caches [60].
Moreover, tiles at the periphery of the user’s field of view
could be approximated by neighbouring tiles that are stored at
the cache and can then be served with low latency. Similarity
caching may then be useful in this context, specially in the
future when the number of tiles will increase and close tiles
will become more similar.

We generated a sequence of tiles’ requests for 360◦ videos
using the approach proposed in [61]. We took real traces from
8 videos watched by 48 users each, and then built a navigation
graph for each video, i.e., a Markov Chain that represents the
spatial and temporal viewing correlations for the video. The
videos we considered have on average 207 segments, each
with 25 tiles. From each navigation graph we can generate an
arbitrary number of possible views of the video. We generated
then a trace with 10,000 users as follows. At time t = 0, each
user selects one of the videos at random and starts watching
the video from a random segment of the video. The user
then walks through the navigation graph to view the complete
video. Once the user reaches the last segment in the video,
it selects a new video uniformly at random (with replacement)
and starts watching the selected video from the first segment.
The process is repeated till 10 million requests are generated.
We assume each tile can approximate at most 4 tiles (the
adjacent ones), with a fixed approximation cost Ca = 0.1.

Figure 10 compares the performance of GRADES/qLRU-
∆C and qLRU-∆C. Note that in this setting, the represen-
tation space exhibits a very rough granularity, as the tiles of
a segment cannot be used to approximate those of another
segment and each segment is decomposed in a 5 × 5 grid
of tiles. Nevertheless, GRADES/qLRU-∆C shows significant
improvement with respect to existing similarity caching poli-
cies and approaches the cost of GREEDY.

C. Machine Learning Traces

We study the performance of similarity caching under the
following traces in high-dimensional spaces.

Fig. 10. Expected cost C(·) incurred by the different caching policies
under the trace 360◦ videos. GRADES/qLRU-∆C (q = 0.01, 0.05) with
η = 1.0 and qLRU-∆C (q = 0.01, 0.05). Cache size k = 4000.

1) Amazon Trace: The paper [62] proposes a technique to
embed the images of Amazon products in a 100-dimensional
space, where the Euclidean distance between two items cap-
tures the similarity of the sets of users who purchased or
viewed both items. We have restricted ourselves to the prod-
ucts in the category “Baby” and we have assumed that a
request for a given item was issued at time t, if a user left
a review for the considered item at the same time.

2) CiteULike Trace: The CiteULike dataset [63] contains a
bipartite network of 22,715 users and 153,277 tags, where each
edge represents a timestamped tag creation. The embeddings in
a 100-dimensional space are obtained using the collaborative
metric learning model proposed in [64]. As for the Amazon
trace, the Euclidean distance within this space encodes the
similarity between users and items, where the items here are
the tags. We generated the trace considering that an object (tag)
is requested when one user adds the corresponding tag.

3) Movielens Trace: We have trained the RecVAE collabo-
rative filtering model from [65] on the Movielens dataset [66]
to embed users’ rating histories in a d = 200 dimensional
space. Users with similar rating histories are mapped to vectors
close according to the Euclidean distance. We have generated
the trace by embedding every batch of 38 ratings from the
same user (38 is the median number of ratings across all users)
and assigning it the timestamp of the latest rating in the batch.

In all previous traces similarity is captured by the Euclidean
distance. We then assume the dissimilarity cost to be pro-
portional to the squared Euclidean distance, i.e., Cd(x, y) =
b‖x − y‖2

2. As the absolute value of such distance has not a
clear meaning, we select the constant b so that on average an
object can approximate a given fraction α of the catalogue.
We say that x can approximate y if Cd(x, y) ≤ Cr = 1, and
we call α the approximability value. We set the cache size to
k = 100.

The time-average cost of different caching policies is shown
in Fig. 12 for the Amazon trace and 10% approximability.
Although an object is able to approximate only 10% of the
catalog on average, similarity caching policies significantly
reduce the cost in comparison to an exact caching policy like
LRU, with qLRU-∆C and GRADES/qLRU-∆C achieving the
lowest service cost.

The empirical distribution of pairwise distances in Amazon
trace is shown in Fig. 11. The figure shows that objects
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Fig. 11. The empirical distribution of pairwise distances under the trace
Amazon. The distribution is computed on a random subset of the catalog
containing 1000 products.

Fig. 12. The time averaged cost incurred by different policies under
the trace Amazon: LRU, LRU+, SIM-LRU, qLRU-∆C (q = 10−3) and
GRADES/qLRU-∆C (η = 6.9 × 102, grafted with p = 1). The level of
approximability is 10%. Cache size k = 100.

Fig. 13. The average cost incurred by qLRU-∆C (q = 10−3) and
GRADES/qLRU-∆C (grafted with p = 1) under the machine learning
traces. The learning rates picked for different approximability levels are:
(a) (η = 5.4 × 102, 6.3 × 102, 6.9 × 102, 7.7 × 102), (b) (η = 2.4 ×
10−2, 2.6×10−2, 3.0×10−2, 3.2×10−2) and (c) (η = 1.6×10−1, 2.7×
10−1, 3.2 × 10−1, 3.8 × 10−1). Cache size k = 100.

are quite scattered in this high-dimensional space with mean
distance of around 85,000 between any two objects. The
objects in the virtual cache are then in general far from
any object in the catalog and we could expect gradient
methods to perform poorly. Nevertheless, Fig. 12 shows that
GRADES/qLRU-∆C outperforms existing similarity caching
policies. Similar results hold for the other two traces.

Finally, Fig. 13 reports the costs obtained for the three traces
under different values of approximability. As expected, the
service cost reduces as the approximability becomes larger.
In the CiteULike trace, the service cost flattens rapidly (it
is almost constant after 10% approximability): a close look
at the dataset shows that popular objects are clustered in
a small region of space. Once the approximability value
guarantees that these objects can approximate each other, the

marginal improvement from further increasing approximability
becomes negligible. The other two traces show instead a
similar behaviour, with the service cost that is still decreasing
after 20% approximability. We also observe that the rela-
tive improvement of GRADES/qLRU-∆C in comparison to
qLRU-∆C becomes larger as the approximability increases.

VI. CONCLUSION

In this paper we have proposed GRADES, a new caching
policy for similarity caching systems that takes advantage
from the fact that objects and requests can many times be
embedded in a continuous metric space. GRADES outperforms
traditional caching policies in stationary scenarios, converging
to provably optimal configurations under mild assumptions.
Moreover we have shown that GRADES can be grafted to
any traditional caching policy, obtaining flexible schemes that
achieve arbitrary trade-offs between convergence speed and
average costs at steady state. The performance of GRADES

and its extensions has been evaluated in several synthetic and
realistic scenarios.
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