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Abstract—In a 5G testbed, we use 360° video streaming to test,
measure, and demonstrate the 5G infrastructure, including the
capabilities and challenges of edge computing support. Specif-
ically, we use the SEAWARE (Semantic-Aware View Prediction)
software system, originally described in [1], at the edge of the 5G
network to support a 360° video player (handling tiled videos)
by view prediction. Originally, SEAWARE performs semantic
analysis of a 360° video on the media server, by extracting, e.g.,
important objects and events. This video semantic information is
encoded in specific data structures and shared with the client
in a DASH streaming framework. Making use of these data
structures, the client/player can perform view prediction without
in-depth, computationally expensive semantic video analysis. In
this paper, the SEAWARE system was ported and adapted to run
(partially) on the edge where it can be used to predict views and
prefetch predicted segments/tiles in high quality in order to have
them available close to the client when requested. The paper
gives an overview of the 5G testbed, the overall architecture,
and the implementation of SEAWARE at the edge server. Since
an important goal of this work is to achieve low motion-to-
glass latencies, we developed and describe “tile postloading”,
a technique that allows non-predicted tiles to be fetched in
high quality into a segment already available in the player
buffer. The performance of 360° tiled video playback on the 5G
infrastructure is evaluated and presented. Current limitations
of the 5G network in use and some challenges of DASH-based
streaming and of edge-assisted viewport prediction under “real-
world” constraints are pointed out; further, the performance
benefits of tile postloading are disclosed.

Index Terms—Tile-based 360° video streaming, viewport pre-
diction, tile postloading, 5G networks, edge computing

I. INTRODUCTION

360° videos are a rich and interactive way to consume
media. For high-quality content and, ideally, an immersive user
experience, high-resolution imagery, substantial downlink data
throughput, and very low motion-to-glass latency are required.
Previous research efforts have proposed and developed DASH-
and tile-based 360° video streaming systems and software as
viable solutions. There also seems to be a consensus that
(accurate) future view prediction is necessary to address the

low latency problem and improve the quality of experience
(QoE). Furthermore, edge computing is regarded as beneficial
for meeting low-latency requirements.

SEAWARE [1] is a recent approach and software system
for future view prediction in 360° videos to improve users’
QoE. SEAWARE works on top of DASH and uses a video’s
semantic information and users’ viewing patterns to perform
view prediction at the client. Two new data structures, the
Semantic Flow Descriptor (SFD) and the View-Object State
Machine (VOSM) are introduced, containing semantic and user
behaviour information, respectively. The tiled 360° video is
analysed (offline) on the media server using deep learning
mechanisms, and the generated data structures are stored
alongside the video. Whenever the client requests video data,
this additional information is transmitted to the client utilising
an advanced Media Presentation Description (MPD). Thus
the client can perform semantic-aware view prediction for
a number of future segments (the prediction horizon of ‘k’
seconds) without analysing the video data itself. SEAWARE
performs better than regular history-based view prediction
algorithms and showcases the advantages of utilising video
semantic data for view prediction.

In this work, we combine the SEAWARE approach to view
prediction and the edge computing paradigm and develop an
edge-assisted on-demand 360° video streaming system. To
achieve this, we ported (part of) the SEAWARE software to run
on the edge and perform view prediction and tile prefetching
there. In the current configuration, the edge server acts as the
“client” in a typical SEAWARE-based streaming system. In
technical terms, this means that the edge server obtains the
SFD and VOSM from the media server and performs future
view prediction on behalf of the client. The results of the view
prediction are used to prefetch and cache tiles on the edge
server, allowing them to be transmitted with minimal latency
if/when the client requests them in the future. To further reduce
the motion-to-glass latency, we modified the 360° video player
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of [2] to implement “tile postloading”, allowing the player to
react to viewport changes as soon as they occur. To the best of
our knowledge, such a technique has not been used for 360°
video streaming before, but turned out to be very beneficial
on unexpected (mispredicted) viewport changes.

The contributions of this paper are as follows:
• The SEAWARE system is (partially) ported to an edge in-

stance and integrated into a fully functional 5G-, DASH-,
and tile-based on-demand 360° video streaming system.

• Tile postloading is implemented in the 360° video player,
allowing for quicker viewport/tile updates at the client
and leading to lower motion-to-glass latencies.

• Importantly, the modifications made to the client and the
system implemented at the edge work independently from
each other; either component can be placed as-is into the
streaming system.

• The performance of the SEAWARE system at the 5G
edge is analysed and presented. Some limitations of the
current 5G network and challenges of edge-based view
prediction under “real-world” constraints are pointed out.

The remainder of this paper is organised as follows. Sect. II
discusses related work. The SEAWARE system at the 5G
edge and tile postloading are described in Sect’s. III and IV,
respectively. Sect. V discusses the dataset and the evaluation
setup and presents the performance results. Sect. VI concludes
the paper.

II. RELATED WORK

Streaming 360° videos consumes a significant amount of
bandwidth [3]. However, technologies such as HEVC [4] and
DASH [5] can help combat the bandwidth requirement. Tiled
video encoding as part of HEVC splits the 360° video into
independently processed rectangular blocks known as tiles.
Encoding tiles outside the user’s viewport in low quality leads
to bandwidth savings [6]. However, when a user changes their
viewport, the tiles in the new viewport need to be updated to
high quality as quickly as possible.

Hence, viewport prediction algorithms such as SEA-
WARE [1] were developed to predict the user’s future viewport
in advance and prefetch those tiles to the client. These algo-
rithms must be accurate to provide a good QoE to the user [7].
However, performing viewport prediction on the client requires
significant computational power, which is often limited on
mobile clients.

Edge computing is based on the concept of placing com-
putational and storage resources close to the client [8]. This
enables low-latency responses and real-time data transfer to the
client. This can be especially helpful in the context of latency-
sensitive media such as 360° videos. Furthermore, tasks can be
offloaded from the client to an edge instance, allowing client
devices with limited computational power to obtain results of
computationally intensive tasks.

Hence, various edge-assisted 360° video streaming tech-
niques have been researched. Caching 360° video content
at the edge allows it to be accessible with minimal latency
compared to fetching it from the CDN. Various caching

Fig. 1. 5G Testbed

techniques have been developed with a focus on optimising the
storage overhead of the cache on the edge while still serving
enough video data from the cache to make it beneficial [9].

A joint caching and computation system was also devel-
oped, utilising both the caching capability and computational
power of the edge [10]. A computationally-intensive projection
task could be performed at the edge instance to compress the
viewport data to be sent to the client device. While leading to
bandwidth savings, the client device would still have to de-
compress the viewport before displaying it. However, the client
device could cache either the compressed or decompressed
viewport. Caching the decompressed viewport would reduce
the need to decompress it before display, but caching the
compressed viewport would lead to a lower storage overhead.
Hence, efficiency is important for such an implementation.

III. SEAWARE AT THE 5G EDGE

A. 5G Infrastructure

Our 5G testbed is depicted in Fig. 1. An interesting feature
of this 5G infrastructure – available within the project 5G
Playground Carinthia1 and provided by the mobile network
operator A12 – is that the 5G core functionality is fully
implemented in software, provided by a product by Hyper-
Blox Inc.3 running in an Exoscale4 edge cloud. The primary
purpose of the infrastructure is to explore the capabilities and
challenges of (software-based) 5G networks. For reasons of
ease of system administration, our edge server is located on
a separate machine, co-located with (but logically completely
separate from) the media server. Basic measurements (ping and
iperf ) show that, at the time of writing, the one-way latency
between the edge server and the client is < 6 ms on average,
the downlink throughput is > 500 Mbps, and the uplink
throughput is > 100 Mbps. We use a 5G-enabled Android
smartphone slid into a VR headset as the client/playout device.
All experiments were performed indoor in the 5G Playground
premises, with the client device a few tens of metres away
from the 4G/5G antenna, yet not in the same room.

B. Functionalities of SEAWARE at the Edge

The system at the edge contains three major functionalities:

1https://5gplayground.at/
2https://www.a1.net/, https://www.a1.group/
3http://hyperblox.io/
4https://www.exoscale.com/
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Fig. 2. Overall Workflow of the SEAWARE System

1) Serving On-demand 360° Videos to the Client: The
videos that need to be served are stored on the media server.
The videos are publicly available and can be streamed reg-
ularly by a suitable client. However, our client connects to
the edge instance to utilise the SEAWARE system. To make
the media server contents accessible via the edge, we deploy
an NGINX5 web server on the edge instance that acts as a
reverse proxy. When the edge instance (reverse proxy) receives
a request from the client, the reverse proxy can process it and
forward it to the media server. The media server will then
send the response to the reverse proxy, which will, in turn,
send it back to the client. Fig. 2 shows the overall workflow of
the SEAWARE system. On top of reverse proxy functionality,
NGINX has a powerful caching system which we utilise to
serve files from the edge instance with minimal latency.

2) Executing SEAWARE with Low Latency: The advanced
MPD generation part of SEAWARE, including creating and
storing the SFD and VOSM data structures, still runs on the
media server side in our system. In a typical SEAWARE
system, the advanced MPD would then be sent from the
media server to the client, which would execute the semantic-
aware view prediction component. The key difference in
our implementation is that the view prediction algorithm of
SEAWARE is offloaded from the client to the edge instance.

To execute SEAWARE on the edge instance, we utilise a
Python web application, also known as webapp; see below.
A Python port of the original SEAWARE view prediction
algorithm was created and integrated into the webapp.

SEAWARE at the edge needs the user’s current viewport as
an input to the view prediction algorithm. This is obtained by
analysing the requests sent from the client. The tiles stored on
the media server are named according to a segment template
specified in the MPD file of a video. In our case, the template
is seg-strQ-demuxedT-S.m4s, where Q, T and S are the
quality level (as an integer), the tile number, and the segment
number, respectively. The client utilises this template to form
requests. Since the system at the edge knows which files the
client requests, it can determine the user viewport by analysing

5https://nginx.org/

the requests and identifying the high-quality tiles requested for
every segment.

3) Preloading of Tiles Belonging to Predicted Viewports:
The result of the semantic-aware view prediction algorithm
is a list of visible tiles in the future viewports for the user.
SEAWARE at the edge converts the results into filenames
using the naming scheme from the MPD. With the help of
NGINX, these files are then fetched from the media server
and stored in the NGINX cache. When NGINX receives a file
request from the client, the cache is checked first for the file. A
file found in the cache is served from it, avoiding forwarding
the request to the media server and waiting for a response.

C. Implementation
The components of SEAWARE at the edge are as follows:
1) NGINX: NGINX is configured mainly using directives

from the ngx_http_proxy6 module. The proxy_pass
directive is utilised to forward the client’s requests to the
webapp. The proxy_cache family of directives is used to
cache files in advance and to serve requests from the cache
when applicable. To ensure that the cache has no significant
storage overhead, files are stored in the cache for only one
minute before being evicted.

2) Webapp: Flask7 was chosen as the webapp framework
of choice. It is used to process an incoming request from the
client and send a response back. It is important to process the
request as quickly as possible to minimise the latency overhead
introduced by the webapp. Hence, only minimal processing is
done on the main thread.

When Flask receives a request forwarded to it from NGINX,
the nature of the file requested is checked. An MPD file being
requested signifies the beginning of video playback. Hence,
some operations are performed to prepare the webapp for
new video playback. Most importantly, a function is executed
asynchronously using Flask-Executor8 to obtain and load the
SFD and VOSM data structures corresponding to the video.
Flask-Executor is a Flask extension that implements Python’s
built-in library for executing functions asynchronously.

6http://nginx.org/en/docs/http/ngx http proxy module.html
7https://flask.palletsprojects.com/en/2.0.x/
8https://flask-executor.readthedocs.io/en/latest/
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If the file request is for a tile, some crucial data is extracted
from the filename, and a task is submitted to Flask-Executor
for further processing, including obtaining relevant data from
the filename as explained earlier. When all the data for the
user’s viewport for a particular segment is obtained, the
semantic-aware view prediction algorithm is executed using
Celery9. This is a lightweight framework that also allows for
the execution of tasks in the background, similar to Flask-
Executor. However, we utilise Celery in this case since it
supports task chaining, i.e., a task can be configured to execute
when a result from another specified task is obtained. More
specifically, as soon as the future viewports are obtained from
the view prediction algorithm, another task is executed to
initiate the caching of the tiles corresponding to the future
viewports. The tiles to be cached are retrieved from the media
server in advance.

Finally, Passenger10 was utilised as the application server
of choice to deploy the webapp. The app server, amongst
other things, is responsible for managing requests sent to
the webapp. Furthermore, Passenger and NGINX have out-of-
the-box compatibility allowing NGINX to seamlessly forward
incoming requests to Passenger.

IV. TILE POSTLOADING

This section focuses on the need for and the concept of tile
postloading, a term given to a set of modifications made to
the Tiled Player app that we use [2].

A. Original Player App Design and Need for Modifications
Before describing tile postloading, it is essential to present

how the original app functions. The app is designed to stream
on-demand 360° videos using DASH. Videos are requested on
a per-segment basis and stored in a local buffer. The buffer
always holds the current and next segments to be played. The
capacity of the playback buffer is the driving parameter for
new segment requests. When the app notices that the buffer
contains less than two segments, it sends requests to the media
server for the next segment, as detailed below.

Tiles outside the user’s viewport at the time of the request
are requested in low quality; tiles inside the user’s viewport
are requested in the highest quality allowed by the network
conditions. The tiles are downloaded individually, multiplexed
into a segment, and then added per frame to the buffer. For a
30 fps video and 1-second segment length, for instance, a new
segment would lead to 30 new entries in the playback buffer,
each containing tile data for one frame. Hence, the buffer
acts as a queue. As a consequence, when the user’s viewport
changes, the tiles in the new viewport are only obtained in high
quality whenever the next segment request happens. Although
in line with DASH specifications, this design has a significant
drawback for our use case.

Let Sn be the nth segment of a 360° video, and Fn be
the set of frames belonging to Sn. Let the user perform one
head movement (the ‘motion’) when Sn is playing. Since

9https://docs.celeryproject.org/en/stable/getting-started/introduction.html
10https://www.phusionpassenger.com/

the app maintains a local buffer of two segments, the frames
from Sn+1 already exist in the playback queue, having been
requested before the motion. Thus, the high-quality tiles in
Fn+1 correspond to the user’s previous viewport and might
contain low-quality tiles in the user’s new viewport. When
Sn finishes playing, the app recognises that there is only one
segment in the buffer and requests Sn+2. The app uses the
user’s viewport at the time of the request, and thus, the tiles
in the frames belonging to Fn+2 are assigned high-quality
appropriately. When Sn+1 is played, some tiles in the user’s
viewport are still low quality. However, when Sn+2 plays, all
the tiles belonging to the user’s viewport are finally displayed
in high-quality.

The motion-to-glass latency here would equal at least one
segment length. Regardless of when the head movement hap-
pened in Sn, the user would always have to wait for Sn+1 to
finish playing for the updated viewport to be displayed to them.
Since the main aim of this work was to minimise motion-to-
glass latency, we found this design to be counterproductive.
Ideally, this latency would be less than 20 ms to provide
maximum comfort to the user [11]. Since we encode our
videos with a 1-second segment length, a motion-to-glass
latency of > 1 second was very undesirable.

B. Tile Postloading
With tile postloading enabled, the app can request updated

viewports for all segments already existing in the buffer,
including the one currently being played back. The user’s
viewport changes can be reflected in the current segment,
and the need to wait for the current or the following segment
to finish playing is eliminated. In other words, the observed
motion-to-glass latency is reduced significantly. Tile postload-
ing is explained in detail with the help of the example from
the previous subsection, illustrated in Fig. 3. Fig’s. 3a and 3b
depict the various events that occur during the playback of
Sn and Sn+1, respectively. In Fig. 3c, the user’s viewport is
depicted using dashed lines. The tiles shown in red are of low
quality, whereas the green ones are of high quality.

Let Tn,1 to Tn,24 represent the 24 tiles belonging to segment
Sn. When the user performs a head movement during the
playback of Sn, the app detects this movement, and the app
immediately sends a request to update all the segments in the
buffer, i.e., Sn and Sn+1. These updates are performed by
modifying the tiles belonging to all frames in Fn and Fn+1

to reflect the new viewport.
Say the user’s viewport initially contains the tiles Tn,9,

Tn,10, Tn,15, and Tn,16. Furthermore, say the user rotates their
head to their right, leading to the new viewport containing tiles
Tn,10, Tn,11, Tn,16, and Tn,17. To perform tile postloading,
first, the tiles in the new viewport that are not already high
quality are identified. Then a partial segment is requested,
containing only these tiles but in high quality. In this example,
a partial segment containing only tiles Tn,11 and Tn,17 will be
requested for Sn. Similarly, a partial segment containing tiles
Tn+1,11 and Tn+1,17 will be requested for Sn+1, as it also
exists in the buffer. Let T

′

n,11 and T
′

n,17 represent the newly
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(a) Sn (b) Sn+1
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(c) User Head Movement and Tile Postloading During Sn

Fig. 3. Motion-to-Glass Latency Example with Tile Postloading

obtained high-quality tiles for Sn. These tiles then replace the
already existing Tn,11 and Tn,17 in Sn, and are multiplexed
with the rest of the tiles to obtain S

′

n, the updated segment
with all F

′

n containing high-quality tiles in the new viewport.
Similar updates are also conducted for the rest of the segments
already existing in the buffer. In this case, Sn+1 would be
updated with T

′

n+1,11 and T
′

n+1,17 to obtain S
′

n+1.

V. PERFORMANCE EVALUATION

This section focuses on the performance of our system.
The dataset, the setup utilised to evaluate the system, and
performance evaluation results are presented.

A. Dataset
We utilised the same dataset as in the original SEAWARE

paper. The dataset [12] contains view traces from 48 users
watching nine videos. The videos need to be prepared before
they can be streamed. The preparation involved encoding the
video into tiles and preparing an advanced MPD for the videos.
Tiling the videos was achieved with the help of FFmpeg11,
Kvazaar12, tileMuxer [2], and MP4Box13. The videos were
encoded with a 1-second segment length, a 6x4 tiling pattern
and three quality representations (low, medium, and high).

After the configuration, the SFD and VOSM files of the
videos were placed in their root folder. These data structures
were obtained from the original SEAWARE implementation. A
Python script was utilised to add new elements named “SFD”
and “VOSM” to the manifest, containing only one attribute
named “path”. The path of the SFD and VOSM files relative
to the manifest file is set as the value of the respective “path”
attributes. When the webapp detects a video MPD is requested
by the client (tiled player), it can obtain the SFD and VOSM
by reading these attributes in the manifest file.

Finally, the user view traces from the dataset were also
prepared so that the player could perform hands-free testing by
reading the view data and changing viewports autonomously.

B. Evaluation Setup
The evaluation setup contains various components. Some

of these components are static, while others are changed to
obtain different evaluation configurations.

11https://ffmpeg.org/
12https://github.com/ultravideo/kvazaar
13https://github.com/gpac/gpac/wiki/MP4Box

The videos are streamed over the testbed of Fig. 1 to a
Samsung Galaxy S20 5G phone14. Various configurations are
studied: from the media server or the edge server, with tile
postloading or without, and utilising Wi-Fi or 5G.

Further, three prediction horizons (‘k’) are utilised when
streaming with SEAWARE: 1, 2, and 5 seconds. Results with
k=1 and k=5 are compared to the original SEAWARE system.
k=2 is utilised in this paper due to the nature of our client app
(player). The player requests one segment in advance using
the user’s viewport from the currently viewed segment. When
considering file requests, the initial viewport requested for any
immediate next segment would be the same as the viewport for
the current one. Hence, predicting the immediate next segment
with our SEAWARE system will not significantly impact the
system’s performance, as the full segment would be requested
before any view prediction is performed.

Finally, random viewport changes and user view traces are
utilised for autonomous testing with the player.

C. Motion-to-Glass Latency

The system times at the time of a viewport change (‘mo-
tion’) and at the time of frames being displayed (‘glass’) are
logged in the client app (tiled player). These logs contain
information regarding tiles in the viewport and their quality.
The motion-to-glass latency is calculated by taking the differ-
ence in the system times between the viewport change and all
the visible tiles displayed in high-quality. Notably, any cases
where the visible tiles after a viewport change already existed
in high quality beforehand are not considered for motion-to-
glass latency calculation.

Furthermore, a metric called the “success rate” is intro-
duced. There could be a scenario that the viewport would
never be updated with high-quality tiles due to poor network
conditions before another viewport change happened. The
success rate represents the percentage of viewport changes
successfully met with a high-quality viewport.

1) Playback after Random Viewport Changes: Fig. 4 shows
the comparison of Wi-Fi and 5G with both regular playback
of the videos and playback with tile postloading enabled,
under random viewport changes. It can be observed that
both networks perform similarly for regular playback. This
is expected, as the motion-to-glass latency is a minimum of
one segment length (1 second in our case), and that is enough
time for both networks to download future viewports.

For playback with tile postloading, 5G performs 39.25%
worse than Wi-Fi on average. Since the viewports are changed
randomly, many tiles can be added to the viewport as part of
one change. The 5G network does not perform as well as the
Wi-Fi network in downloading many tiles simultaneously.

The reason for the 5G network’s performance is twofold.
Firstly, the 5G network we use is operated in non-standalone
(NSA) mode, i.e., it utilises the existing 4G LTE infrastructure.
Hence, the client device often switches to 4G even when

14Model number SM-G918B/DS; http://www.samsung.com/us/mobile/
galaxy-s20-5g/specs/
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(a) Regular Playback (b) Playback with Tile Postloading
Enabled

Fig. 4. Playback after Random Viewport Changes: Motion-to-Glass Latency

Fig. 5. Playback after Random Viewport Changes: Success Rate

it is supposed to utilise 5G. Secondly, we measured the
performance of our 5G and Wi-Fi networks using iperf315,
curl16, and termux17. While both connections had adequate
bandwidth, the downloading times for a 32.9 kB file were
significantly different. On 5G, it took the client device 1.15
and 1.09 seconds to download the file from the media server
and the edge cache, respectively. However, the times measured
with Wi-Fi were only 0.22 and 0.05 seconds. Hence, the
Wi-Fi performed significantly better than the 5G network in
downloading files. Furthermore, for Wi-Fi, tile postloading led
to an average 62.59% lower motion-to-glass latency; for 5G,
the improvement was 48.06% on average. Hence, Wi-Fi has
more potential to take advantage of tile postloading than the
5G network currently in use.

Fig. 5 shows the success rate of the four configurations
under random viewport changes. The success rate is very high
for all configurations, with an average of 94.29%. Hence, the
network conditions were adequate regardless of the network
being utilised and tile postloading being enabled.

2) Playback with User View Data: Fig. 6a shows the
motion-to-glass latency results for our system when using the
prepared user view traces. These measurements were done
only with the 5G network since the focus here was to compare
the various SEAWARE configurations instead of the networks.

It can be noted that the latencies are similar for all four con-
figurations. This is not the expected result, as the SEAWARE
system at the edge should reduce the latency due to some files
being served from the cache at the edge instance.

15https://iperf.fr
16https://curl.se/
17https://termux.com/

(a) Motion-to-Glass Latency (b) Success Rate

Fig. 6. Playback with User View Data (5G Network)

There are a few reasons for this result. Firstly, the 5G
network is not as stable and well-performing as expected,
as described in the previous subsection. Even though enough
relevant head movements were obtained to compensate for the
unstable nature of 5G, a simple test showed that the latencies
were lower when using Wi-Fi. The motion-to-glass latency for
video 3 with k=5 was 216 ms when streaming with Wi-Fi and
492 ms for streaming with 5G. Furthermore, the media server
in our configuration was still only a few hops away from our
client device, i.e., close enough that streaming directly from
the media server also yielded good results.

Finally, the performance of our SEAWARE system, as
discussed in the following subsection, also impacts the motion-
to-glass latency. To achieve low motion-to-glass latency, all the
tiles included in a request must be served from the NGINX
cache. If even one of the tiles needs to be fetched from the
media server, then the latency will be high, as the client device
needs to wait for that tile to fulfil the overall file request. Our
system apparently cannot consistently preload full viewports
needed by the client from the NGINX cache. However, when
the whole viewport is found, the latency is significantly lower,
as observed by the client recording download times of 20–
40 ms when only one or two tiles were requested.

Fig. 6b shows the success rate when using the prepared user
view traces. With a 96.28% average, the success rate is very
high. Hence, in the case of streaming with user viewport data,
the network is still adequate for the client to load high-quality
viewports in response to the head movements.

D. SEAWARE Performance and Storage Overhead

The view prediction accuracy of SEAWARE plays a crucial
part in determining the system’s overall effectiveness since
only tiles predicted by the SEAWARE algorithm are cached
by NGINX at the edge. We measure the metrics related to
the view prediction performance of our SEAWARE system
by using modified versions of MATLAB scripts from the
original SEAWARE implementation. Furthermore, since we
utilise the same user view traces and algorithms as the original
SEAWARE system, its performance is compared with the
performance of our SEAWARE system.

Fig’s. 7 and 8 show the precision and prediction error
metrics, respectively, of our SEAWARE system. On average,
our SEAWARE system has a precision of 0.733 and 0.623 for
k=1 and k=5, respectively. Likewise, our SEAWARE system
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(a) k = 1 (b) k = 5

Fig. 7. SEAWARE Precision Comparison

(a) k = 1 (b) k = 5

Fig. 8. SEAWARE Prediction Error Comparison

has an average prediction error of 0.175 and 0.259 for k
values 1 and 5, respectively. Notably, a lower prediction error
signifies better performance. Our system performs worse than
the original system in all cases. More specifically, the precision
of our system is 18.24% and 24.08% worse for k values of 1
and 5, respectively. Likewise, in terms of prediction error, our
system is 12.21% and 15.95% worse for k values of 1 and 5,
respectively.

Since the SEAWARE portion of both systems is identical to
each other, this performance change can be attributed to the
fact that our system operates in a “real-world” scenario, with
certain constraints, whereas the original SEAWARE system
is a simulation written in MATLAB. Our system utilises an
Android client and various servers for streaming. The client
device is not capable of performing more than one viewport
change per second without introducing further processing lags.
Hence, we modified the user viewport data such that our client
would perform only one viewport change per second, whereas
the simulated SEAWARE system reads the full view traces,
about 90 per second. This allows the simulated system to
develop a more accurate idea of the user’s viewport. This
viewport is used as input to the viewport prediction algorithm
and to measure the performance by comparing it to the
predicted viewports. Thus, the predicted viewports and the
performance metrics calculated would be much more accurate
for the simulated system.

Finally, the SFD and VOSM files generated for SEAWARE
have an insignificant impact on the overall video size, respec-
tively measuring at 0.0104% and 0.0009% of the total storage
size of the videos on average.

E. NGINX Performance
NGINX plays a crucial part in our SEAWARE system, and

the performance of NGINX is directly tied to the system’s

(a) NGINX Cache Hit Rate (b) NGINX Response Time

Fig. 9. NGINX Performance

performance as a whole. We define two metrics to measure
this performance: the NGINX cache hit rate and the NGINX
request-response time.

1) NGINX Cache Hit Rate: On top of the precision and
prediction error, the NGINX cache hit rate is another metric
used to measure the performance and effectiveness of our
system’s SEAWARE view prediction algorithm. The NGINX
cache hit rate is the percentage of file requests served from
the cache compared to the total number of file requests. This
hit rate represents the “real-world” performance of the system,
as it directly represents the number of files served to the user
from the NGINX cache with minimal latency.

Fig. 9a shows the NGINX cache hit rate measurements for
our SEAWARE system with k=2 and k=5. The hit rate for
k=1 was 1.63% on average for all the videos. The low hit
rate is due to the buffer management in the client app. When
segment Sn is playing, Sn+1 already exists in the buffer and
Sn+2 is requested. But with k=1, viewport prediction leads
to tiles for Sn+1 being predicted. In this case, the segment
requested is not the one for which tiles are preloaded. Hence,
the hit rate for k=1 is insignificant and is consequently not
plotted in the graph.

The average cache hit rates for k=2 and k=5 were 70.59%
and 80.35%, respectively. The hit rate for k=5 was on average
9.76% higher than for k=2. This increase is simply due to
there being more tiles predicted and thus preloaded when
the system is predicting the user viewport for the next five
segments compared to the next two segments. More tiles in the
NGINX cache lead to a higher probability of a tile requested
by the client to be found in the cache.

2) NGINX Request-Response Time: The NGINX request-
response time, or simply response time, represents how long
our system takes to process the request and send a response
back to the client. This time includes delays induced by any
processing done in our system, such as delays induced by the
webapp and the time needed to fetch a file from the media
server. Notably, the response time is only calculated for high-
quality tile requests, as those are the only tiles our system
predicts and preloads into the cache.

Fig. 9b shows the NGINX request-response time for our
SEAWARE system with all three k values. Unlike the cache hit
rate, the response time for k=1 is included in this graph since
it could be plotted without skewing the scale too much for the
other two configurations. Nonetheless, it can be noted that the
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response time for k=1 is significantly higher. This is due to
only a small amount of requests being served from the NGINX
cache in this case. A file being served from the NGINX cache
means that NGINX does not have to communicate with the
rest of the system or the media server and subsequently wait
for their responses. Hence, a cache hit reduces the NGINX
response time significantly. Since most files are not found
in the NGINX cache for k=1, the average response time is
significantly higher.

The average response times for k=2 and k=5 were 37 ms
and 25 ms, respectively. The response times are lower due to
the higher cache hit rate for the two configurations. Similarly,
the response time for k=5 is lower than k=2 since the former
had a higher cache hit rate than the latter.

Notably, the request-response time in NGINX for files
served from the cache is 0.000 seconds. Since NGINX logs to
millisecond precision, the response time for these requests is
less than 1 ms. This is significantly smaller than the response
time for files not served from the cache, which ranges from
approximately 50 ms to over 200 ms.

F. Webapp Performance and Storage Overhead
The webapp is designed to execute most tasks off the main

thread, adding minimal overhead to the request-response time.
More specifically, the webapp adds 0.09 ms on average, a
negligible amount compared to the overall NGINX response
time. Another important metric is the time taken to perform
view prediction using SEAWARE. On average, across all
videos, the webapp takes 18.21 ms, 31.17 ms, and 71.04 ms
to perform semantic-aware view prediction for k=1, k=2, and
k=5, respectively. Furthermore, the time taken to send the
view prediction results to NGINX is 12.82 ms, 24.45 ms, and
57.11 ms for prediction horizon values of k=1, k=2, and k=5,
respectively. These times are much shorter than the 1-second
segment length, ensuring that view prediction for a segment
can be performed in real time.

Finally, the storage overhead of the app is measured to be
270.9 MB, which is negligible compared to the capacities of
servers that usually range in the hundreds of GBs.

VI. CONCLUSION AND FUTURE WORK

In this work, we developed a “real-world” system for edge-
assisted view prediction in on-demand streaming of tiled 360°
videos. The system was designed to minimise motion-to-glass
latency and involved the development of a webapp at the
5G Playground edge. SEAWARE was utilised as the view
prediction algorithm of choice. Furthermore, tile postloading
was implemented in the 360° video player, allowing the
player to harness the system’s potential further and reduce
the motion-to-glass latency. Finally, 5G was utilised as the
communication medium between the client device and the
server it connects to.

We observe that streaming with our SEAWARE system
does not significantly change motion-to-glass latency com-
pared to streaming the video directly from the media server.
Furthermore, our SEAWARE system performs worse than

the original SEAWARE system in terms of precision and
prediction error. However, utilising tile postloading leads to a
significant reduction in motion-to-glass latency. Additionally,
the 5G connection at the 5G Playground performs worse than
the Wi-Fi connection. At this time, the Wi-Fi connection also
has a higher potential to take advantage of tile postloading
than the 5G connection. Finally, the overheads added by the
webapp are found to be insignificant in terms of response time
and storage.

Since the performance of the 5G network is a notable
limitation of the system, future development in that field will
directly benefit this work. Other opportunities in future work
also exist in the form of a view prediction algorithm designed
specifically to be utilised in an edge-assisted scenario and a
player designed with tile postloading and edge-assisted view
prediction in mind. An edge-assisted view prediction system
could also be designed for live-streamed 360° videos.
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