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Abstract—Geo-distributed analytics (GDA) involves processing
of data stored across geographically distributed sites. Such ana-
lytics involves data transfer over the wide area network (WAN)
links. WAN links are highly constrained and heterogeneous in
nature, making the data transfer over the WAN slow and costly.
To tackle this issue, recent approaches have proposed WAN-
aware scheduling and placement of geo-distributed analytics
tasks. However, computing joins in a geo-distributed setting
remains a challenging problem. In this work, we propose Ag-
gFirstJoin, an approach to minimize the cost of geo-distributed
joins using a theoretically sound query transformation technique.
Our optimization approach takes a combined view of the join
and aggregation operations which are often part of the same
query and pushes (a transformed) aggregation before join in
a manner to produce the same results as the original query.
We augment our query transformation technique with a WAN-
aware task placement and a Bloom filtering approach to further
reduce query execution time and WAN usage respectively. We
implement our proposed technique on top of Apache Spark, a
popular engine for big data analytics. We extensively evaluate our
proposed technique using synthetic, TPC-H and Amplab Big Data
benchmark datasets on a real geo-distributed testbed on AWS as
well as an emulated testbed. Our evaluations show our proposed
technique achieves up to 300x reduction in query execution time
and 200x reduction in WAN usage as compared to state-of-the-art
GDA techniques.

I. INTRODUCTION

Today, data is generated in a geographically distributed
manner in a wide variety of domains such as social net-
works, e-commerce, search engines, online advertisements,
audio and video streaming, energy, smart cities, IoT sensors
etc. Consequently, this data is stored across geographically
distributed edges and data centers (DCs) near to the end-users
and end-devices, the very sources of this data. Analyzing this
geographically distributed data is challenging primarily due to
two reasons: 1) constrained and costly WAN bandwidth links
which connect the geo-distributed edges and DCs (henceforth
collectively called as sites) [1], and 2) limited compute avail-
ability at each site (especially the edges) [2].
Limitations of state-of-the-art approaches. Prior work has
sh-own that transferring all the data to a centralized DC
for analysis significantly increases the query execution time
as well as the monetary cost of data transfer [3], [4], [5],
[2], [6], [7], [8]. Consequently, various approaches have been

†This work was done while the author was a graduate student at the
University of Minnesota, Twin Cities.

proposed to perform analytics in a geographically distributed
manner. This involves utilizing multiple geographically dis-
tributed sites for computing the analytical results. The existing
approaches have tried to address the WAN bandwidth and
compute capacity constraints by proposing query optimization
[1], task placement and scheduling strategies [3], [5], [9], [2],
[4] which systematically give preference to those reduce sites
having higher bandwidth capacity links and/or higher compute
capacity. Although these techniques offer a great improvement
over centralized query execution, the amount of data shuffled
and query execution time for operations such as joins can be
very high and often remains the bottleneck. This is because
even with the existing geo-distributed approaches, joins often
involve shuffling of the entire joining tables across the geo-
distributed sites and generating the cross product between the
joining tables.
Our approach and key insights. In this work, we focus on
optimizing the execution of geo-distributed joins. We use the
insight that in typical queries, the join operators are often
followed by aggregation operators. Our proposed approach
optimizes the join by identifying opportunities to push the
(transformed) aggregation before the join operator in a manner
that does not change the final query results (i.e. without any
accuracy loss). This query transformation is particularly im-
portant in a geo-distributed setting where individual tables may
be partitioned across multiple sites. Pushing the aggregation
before join can allow us to aggregate table partitions in-situ,
and then shuffle only the aggregated partition results across
the WAN for computing the final join. Such an approach
can save significantly on WAN usage and query execution
latency, especially for multi-way joins where the aggregation
is performed over columns spanning multiple tables.
Challenges. It is challenging to transform a query by pushing
aggregation before join correctly and efficiently in a geo-
distributed setting. The existing work on pushing aggregation
before join [10], [11] supports only single-server databases
where all tables are stored in one site and there is only
one partition per table. It does not provide answers to the
many additional questions posed by geo-distributed joins: (1)
Given a query, how to derive a transformation in a principled
manner which would work well in a geo-distributed setting?
(2) Should the aggregation be performed at one site or across
multiple sites in a geo-distributed manner? (3) How to com-
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bine the multiple partitions of each table distributed across
geo-distributed sites? (4) How to address WAN constraints
and heterogeneity in the context of geo-distributed joins?
(5) How to avoid sending redundant data over the WAN?
Moreover, the existing work does not answer: (6) How to
perform aggregation over derived columns which may be
derived from columns spanning multiple tables? (7) How to
transform higher order aggregation functions (e.g. variance,
skewness, kurtosis)? The existing work supports only a limited
set including sum, average, min, max and count. (8) How to
perform aggregation over columns with data types other than
real numbers (e.g. strings)? We present a general framework
to push such sophisticated aggregations before the join in a
geo-distributed environment.
Research contributions. In this paper, we present Ag-
gFirstJoin, a theoretically sound query transformation tech-
nique. We identify the operations and query transformations
needed to generate an equivalent query execution (resulting in
the same result as the original query). We augment our query
transformation technique with a WAN-aware task placement
method that reduces the query execution latency by exploiting
the WAN heterogeneity across multiple sites. Further, to
reduce the amount of data sent over the WAN, we employ a
filtering technique using Bloom filters to preemptively remove
redundant keys which would not appear in the final join result.
We summarize our main contributions next:
• We propose AggFirstJoin, an approach to minimize the cost

of geo-distributed joins using a theoretically sound query
transformation technique.

• We augment our query transformation technique with a
WAN-aware task placement and a Bloom filtering approach
to further reduce query execution time and WAN usage
respectively.

• We implement AggFirstJoin on top of Apache Spark, a
popular analytics engine.

• We evaluate our approach using synthetic traces and popular
benchmarks on AWS as well as an emulated testbed to
show up to 300x reduction in query execution time and
200x reduction in WAN usage as compared to state-of-the-
art GDA techniques.

II. BACKGROUND AND PRELIMINARIES

System model. We consider a geo-distributed analytics system
[3], [4], [2], [12] spanning across multiple geo-distributed
sites. These sites may vary in terms of compute and storage ca-
pacity and are connected to each other via wide-area network
(WAN) links. A site may just be an edge cluster located closer
to a group of user devices but having very limited compute
and storage capacity or a site may be a full fledged data center
(DC) having abundant compute and storage capacity. Each site
continuously ingests data streams from multiple data sources
such as user devices and IoT sensors, and stores it locally for
batch analysis. It then sends the processed results to a central
DC which combines results from all the sites and saves the
final result for consumption by analysts.

Processing model. We consider batch processing model which
involves running analytics queries over batches of data dis-
tributed across geo-distributed sites. For example, a recurring
query may be issued every 12 hours for analyzing the user
session logs of a social networking service for last 12 hours.
Resource constraints and heterogeneity in GDA. Tradition-
ally, analytics are run in an intra-DC environment which have
abundant and homogeneous network and compute resources.
On the contrary, geo-distributed analytics involves data transfer
over WAN links which have (1) highly constrained bandwidth:
inter-DC WAN bandwidth is 1-2 orders of magnitude less than
intra-DC bandwidth [1], and (2) heterogeneous bandwidth:
there is a great deal of variation in the bandwidth availability
on different WAN links. For example, in a geo-distributed
setup on AWS EC2 , the ratio of highest to lowest WAN
bandwidth capacity can be > 20 [1]. Additionally, geo-
distributed sites can span across edge clusters (constrained
compute resources) and full-fledged DCs (abundant compute
resources) leading to heterogeneity in compute resources avail-
able at each site [2]. Hence, it is important to design solutions
for geo-distributed analytics which factor in constraints and
heterogeneity in bandwidth and compute availability.
Target queries. We focus on analytics queries that compute
joins over multiple tables followed by aggregation over one
or more columns. Joins are one of the most compute and
network intensive operations and hence, optimizing them is
an important problem. We discuss a few examples to further
motivate the problem.
• Example 1. Using the TPC-H benchmark schema [13], a

part supplier wants to compute his total profit from the
selling of its line items. The SQL statement for such a query
would look like:
SELECT PS.SuppKey, SUM(LI.Price * (1-LI.Discount)

- LI.Quantity * PS.SuppCost) as Profit

FROM PartSupplier PS, LineItem LI

WHERE PS.SuppKey = LI.SuppKey and PS.PartKey =

LI.PartKey GROUP BY PS.SuppKey

• Example 2. A multinational e-commerce enterprise selling
products in multiple countries wants to find the total revenue
coming from each of its products. This requires joining
over the order table (comprising columns such as order id,
product id, currency, amount) and the currency conversion
table (comprising columns such as currency, conversion
rate). The SQL statement for such a query would look like:
SELECT PId, SUM(Amount * Conversion Rate) as
Revenue FROM ORDERS, CURRENCY

WHERE ORDERS.Currency == CURRENCY.Currency

GROUP BY PId

Note that all the above examples involve aggregations over
new columns derived from columns spanning multiple tables.
Metrics. We focus on the following metrics:
• Latency. This refers to the total time taken by a query to

execute from the start to the finish of query execution. This
is important since the results of the analytics queries are
often required for taking business-critical decisions. This

415

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 30,2023 at 05:02:49 UTC from IEEE Xplore.  Restrictions apply. 



latency can be further divided into two major parts: (1)
Network latency: This is the time taken to transfer data
(both input and intermediate) across geo-distributed sites.
(2) Compute latency: This refers to the time spent in
computing the query results (excluding the network latency).

• WAN usage. This refers to the actual amount of data
transferred across the WAN links. This is important since the
data transfer over WAN links is costly [4] unlike intra-DC
data transfer which is generally free.

III. CHALLENGES IN GEO-DISTRIBUTED JOINS

We identify the challenges in geo-distributed joins and
discuss prior work with a simple example. Suppose there
are two database tables T1(Key,C1) and T2(Key,C2) geo-
distributed across sites S1 and S2. Each site stores portions
of T1 and T2 each. Let us also assume that T1 has total R1

records with each key k having R1,k records. Similarly, T2

has total R2 records with each key k having R2,k records. Let
us now consider the following join query:
SELECT Key, SUM(C1 ∗ C2) as Cagg FROM T1, T2

WHERE T1.Key == T2.Key GROUP BY Key

The final query results are required to be available at a third
site S3. All the three sites are connected via WAN links. To
execute this query, a centralized approach would first transfer
the portions of T1 and T2 from site 1 and site 2 to site 3,
combine the partitions of each table to form one partition per
table and then proceed with the join computations over T1 and
T2. Prior work on GDA such as Iridium [3] and Clarinet [1]
would first shuffle the records of T1 and/or T2 among S1 and
S2 to get all the data for each key into a single site and then
proceed with the join computations. In both the centralized as
well as WAN-aware approaches, the amount of data shuffled
across WAN links is proportional to (R1 +R2). For a multi-
way join over N tables (N > 2), the amount of data shuffled
would be proportional to

∑N
i=1(Ri). Since WAN links are

bandwidth constrained as well as costly (in terms of monetary
cost), such data transfers over WAN links are generally very
hurtful in terms of both latency and cost.

Furthermore, a naive execution of the actual join computa-
tions would first generate a Cartesian product from the rows in
C1 and C2. Then, a new intermediate column would be derived
from the existing C1 and C2 columns. Once Cnew

1 is created,
the joined table would be grouped by Key and aggregated
over Cnew to get the final result Cagg. An important point to
note here is that the size of the intermediate joined table may
increase non-linearly with the size of the tables participating
in the join. In this example, the number of rows in the
intermediate joined table would be

∑
k(R1,k · R2,k). For a

multi-way join over N tables (N > 2), the size of the
intermediate table would be

∑
k(
∏N

i=1 Ri,k). Hence, in the
case of large tables, the intermediate Cartesian product can
blow up in size easily [14]. This can cause even in-memory
processing systems such as Apache Spark [15] to spill the
intermediate results to disk if the intermediate results cannot

1Note: Cnew is derived from existing columns coming more than one table.

be accommodated within the memory. As a result, the compute
latency associated with such joins can also be very high.
Challenges. In conclusion, there are three main challenges in
computing geo-distributed joins:
• High network latency: Shuffling the raw tables over WAN

links often takes a large duration of time because WAN
bandwidths are highly constrained.

• High WAN cost: Since the shuffled tables over WAN links
can be very large in size, such shuffles also lead to high
WAN costs.

• High compute latency: The size of the intermediate joined
table can be orders of magnitude larger than the sum of
the sizes of the joining tables. and hence, can lead to high
compute latency.

IV. GEO-DISTRIBUTED JOINS

A. Recomposable and Decomposable Functions

We first define the mathematical notion of recomposable and
decomposable functions, which we use for our optimizations.
Recomposable Functions. Let Σ be the set of possible values.
Now consider two sets A,B ⊆ Σ of size m and n respectively,
a transformation function ⊕ : Σ× Σ→ Σ such that

A×B = {(ai, bj)} ∀1 ≤ i ≤ m, 1 ≤ j ≤ n

⊕(A×B) = {ai ⊕ bj} ∀1 ≤ i ≤ m, 1 ≤ j ≤ n

We define an aggregation function agg : 2Σ → Σ, i.e. it
takes a set of values and maps it to a single value. If there
exists aggregation functions, agg1 : 2Σ → Σl and agg2 :
2Σ → Σl and a transformation function ' : Σl × Σl → Σ
such that

agg(⊕(A×B)) = '(agg1(A), agg2(B)) (1)

then the pair (agg,⊕) is called as a recomposable function
pair, agg1 and agg2 are called recomposed aggregation func-
tions, and ' is called a recomposed transformation.

Recomposable function pairs cover an extensive set of
aggregations and transformations. For instance, common ag-
gregation functions such as SUM, COUNT, AVG, MIN,
MAX, VAR etc. paired with any transformation expression
comprising addition (+), subtraction (−), multiplication (·),
and division(÷) are covered under this property. Table I lists
some of these function pairs (agg,⊕) and their corresponding
(', agg1, agg2) functions. In general, this recomposability
property can be applied to more general data types such as
strings and can also be combined with local map transforma-
tions such as mapping a string to a numeric value.
Example 1. Let us consider the function pair (SUM,+) and
A = {2, 3, 4}, B = {5, 6}

A×B = {(2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6)}
SUM(+(A×B)) = (2 + 5) + (2 + 6) + (3 + 5)

+ (3 + 6) + (4 + 5) + (4 + 6) = 51

SUM(+(A×B)) can be recomposed using

416

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 30,2023 at 05:02:49 UTC from IEEE Xplore.  Restrictions apply. 



agg1(A) = (SUM(A),COUNT(A)) = (9, 3)

agg2(B) = (SUM(B),COUNT(B)) = (11, 2)

!(agg1(A), agg2(B)) = SUM(A) · COUNT(B) + SUM(B) · COUNT(A)

= 9 · 2 + 11 · 3 = 51

In this way, we see that
SUM(+(A×B)) = SUM(A) · COUNT(B) + SUM(B) · COUNT(A)

Example 2. Let us consider the function pair
(LONGEST,CONCAT) and A = {Tim, Jack}, B =
{King,Lee}

A×B = {(Tim,King), (Tim,Lee), (Jack,King), (Jack,Lee)}
LONGEST(CONCAT(A×B)) = LONGEST{Tim King,Tim Lee,

Jack King, Jack Lee} = Jack King

LONGEST(CONCAT(A×B)) can be recomposed using

agg1(A) = LONGEST(A) = Jack
agg2(B) = LONGEST(B) = King

!(agg1(A), agg2(B)) = CONCAT(LONGEST(A),LONGEST(B))

= Jack King

In this way, we see that
LONGEST(CONCAT(A×B)) = CONCAT(LONGEST(A),LONGEST(B))

Decomposable Functions. Let A1, A2, ..., AD be disjoint
subsets of A such that A1 ∪ A2 ∪ ... ∪ AD = A. Then if
the following holds

agg(A) = agg({agg(A1), agg(A2), ... agg(AD)})

then agg is said to be decomposable. In other words, we can
compute the aggregate value (agg) of a set by computing
the aggregate value of the aggregate of each disjoint subset.
Common aggregation functions such as SUM, COUNT, MIN,
MAX etc. satisfy this decomposability property.

B. Aggregation Before Join
We now explain the systematic procedure for performing

aggregation before join. We first optimize a join over two
tables, each having just a single partition i.e. without any
geo-distribution. We then extend it to include geo-distributed
partitions. Finally we generalize it to optimize multi-way joins.
Two-way join. Let us consider two tables T1 and T2 with
schema (K,C1) and (K,C2) respectively where K is the join
key2, and C1 and C2 are the value columns. Each table has
only one partition and is stored at the same site i.e. there is
no geo-distribution. The join query over these two tables can
be written as:
SELECT K, agg(⊕(C1, C2)) FROM T1, T2

WHERE T1.K = T2.K GROUP BY K
Here3, function ⊕ is a transformation function which derives
a new column ⊕(C1, C2) as a function of C1, C2 columns
(columns are from more than one table) and agg is any
aggregation function which is used to aggregate the derived
column after grouping by unique values in K.

2The join key K need not be the primary key.
3Without loss of generality, we omit other common clauses such as

HAVING, ORDER BY etc. as our focus is on optimizing join and aggregation.

Fig. 1: Two-way Join

NaiveJoin. A typical query execution plan for this query would
have the following steps in order: (Also, see Figure 1)

1) Join over T1 and T2. This creates a temporary table
having attributes (K,C1, C2) (!)

2) Create the new attribute ⊕(C1, C2). (")
3) Group by K and aggregate ⊕(C1, C2) using function agg

to get agg(⊕(C1, C2)). (#)

In the above steps, the join operation (Step !) is generally
the costliest step in terms of both the compute time and
data shuffle time. Therefore, our goal is to optimize this
step by performing the aggregation (Step #) before the join
step. Intuitively, we want to aggregate over tables T1 and
T2 individually, and then perform the join operation over
the aggregated tables. After the join operation, an additional
transformation would be required in order to get the final
aggregated result agg(⊕(C1, C2)) which requires information
from both tables.
AggFirstJoin. Our modified query execution plan would have
the following steps in order: (See Figure 1)

1) For each table, group by K and aggregate C1 as agg1(C1)
and C2 as agg2(C2). ($)

2) Join over aggregated tables T1(K, agg1(C1)) and
T2(K, agg2(C2)). (%)

3) Derive the new column as '(agg1(C1), agg2(C2)). (&)
Notice that in NaiveJoin, function ⊕ and agg require the

joined table where as in AggFirstJoin, functions agg1 and agg2
act on individual tables T1 and T2 respectively and hence, can
be computed before the join. Function ' acts on the results
of the joined table and hence, is computed after the join.

Theorem 1. Given two tables T1 and T2, performing Ag-
gFirstJoin on them yields the same result as NaiveJoin.

Proof. Follows from the recomposability property of (agg,⊕).
Distributed Joins. Let each table T1 and T2 be distributed
across D nodes4. T1d and T2d represent the dth partition of
T1 and T2 respectively. To be able to perform aggregation
before the join over distributed tables, agg1 and agg2 must be
decomposable functions.

Figure 2 shows how a distributed join would be optimized.
We can first aggregate individual partitions of each table
using agg1 and agg2 and then combine them to get a single
aggregated partition per table. Then we would proceed with

4These nodes could be in one DC or geographically distributed across
multiple DCs.
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⊕ agg1(A) agg2(B) "(agg1(A), agg2(B))

+ (SUM(A), COUNT(A)) (SUM(B), COUNT(B)) SUM(A) · COUNT(B) + SUM(B) · COUNT(A)

· SUM(A) SUM(B) SUM(A) · SUM(B)

(a) Transformations for SUM
⊕ agg1(A) agg2(B) "(agg1(A), agg2(B))

+ (SUM(A), COUNT(A)) (SUM(B), COUNT(B)) SUM(A)·COUNT(B)+SUM(B)·COUNT(A)
COUNT(A)·COUNT(B)

· (SUM(A), COUNT(A)) (SUM(B), COUNT(B)) SUM(A)·SUM(B)
COUNT(A)·COUNT(B)

(b) Transformations for AVG
⊕ agg1(A) agg2(B) "(agg1(A), agg2(B))
+ COUNT(A) COUNT(B) COUNT(A) · COUNT(B)

· COUNT(A) COUNT(B) COUNT(A) · COUNT(B)

(c) Transformations for COUNT
⊕ agg1(A) agg2(B) "(agg1(A), agg2(B))
+ MIN(A) MIN(B) MIN(A) + MIN(B)

· (MIN(A), MAX(A)) (MIN(B), MAX(B)) MIN
(

MIN(A) ·MIN(B), MIN(A) ·MAX(B), MAX(A) ·MIN(B), MAX(A) ·MAX(B)
)

(d) Transformations for MIN
⊕ agg1(A) agg2(B) "(agg1(A), agg2(B))

+ SUM(A), SUM(A2), COUNT(A) SUM(B), SUM(B2), COUNT(B) SUM(A2)·COUNT(B)+SUM(B2)·COUNT(A)+2·SUM(A)·SUM(B)
COUNT(A)·COUNT(B) −

(
SUM(A)·COUNT(B)+SUM(B)·COUNT(A)

COUNT(A)·COUNT(B)

)2

· SUM(A), SUM(A2), COUNT(A) SUM(B), SUM(B2), COUNT(B) SUM(A2)·SUM(B2)
COUNT(A)·COUNT(B) −

(
SUM(A)·SUM(B)

COUNT(A)·COUNT(B)

)2

(e) Transformations for VARIANCE
TABLE I: Example Recomposable Function Pairs. For − and ÷, replace B by −B in + and by 1/B in · resp.

Apache Spark SQL Supported by
AggFirstJoin

Sum, Count, Average, Min, Max, First, Last,
Variance, Correlation, Covariance, Std Dev,
Skewness, Kurtosis, Approx. Count Distinct,
Approx. Percentile

Yes

Count Distinct, Sum Distinct No

TABLE II: Comparison of aggregation functions in Apache
Spark SQL and AggFirstJoin.

the join and transformation as in the case of single partition
tables.

Fig. 2: Two-way Distributed Join

Multi-way Joins. We now extend the above approach to
optimize multi-way joins (joins over q ≥ 2 tables). In this case
we would have q aggregation functions aggi : 2Σ → Σl where
1 ≤ i ≤ q, ⊕ : Σq → Σ and ' : {Σl×Σl× ...×Σl}q → Σ.
If Ci ⊆ Σ where 1 ≤ i ≤ q, then

agg(⊕(C1 × ...× Cq)) = '(agg1(C1), ..., aggq(Cq)) (2)

Equation 2 generalizes the recomposability property to an
arbitrary number of tables. If the recomposed aggregation
functions aggi are also decomposable, we can perform the
multi-way join when the q tables are distributed across differ-
ent sites.
Enhancements. We now explain how to extend the above
approach for arbitrary joins and aggregations having one or
more of the below specifications:
• Multiple aggregation functions in the SELECT clause.

For queries which consist of more than one type of aggre-
gation over same or different columns, AggFirstJoin will
individually identify the required transformations for each
aggregation and combine them to enumerate all the required
transformations.

• Different join and group by attributes. When the join
attributes and the group by attributes are different in a query,
then AggFirstJoin will perform group by and aggregation
over the combination of join and group by attributes before
the join operation. Once the join is computed, an additional
aggregation over the original group by columns will need
to be performed followed by transformation over the joined
aggregated results, to yield the same result as NaiveJoin.

• Other types of joins. AggFirstJoin can be easily modified
to accommodate other types of joins such as OUTER, LEFT
and RIGHT joins. For instance, for LEFT joins, if the
COUNT of a key in the left table is non-zero and that in
right table is zero, AggFirstJoin replaces the zero by one to
ensure that all the keys in the LEFT table are included in
the joined result.

Combining everything. Algorithm 1 explains AggFirstJoin’s
query transformation at a high level. For any query consist-
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ing of general multi-way joins and arbitrary transformations,
AggFirstJoin takes the query execution tree built by the query
optimizer and tries to push the aggregation operations from the
top of the tree down to the leaf of the tree. For any join oper-
ation and corresponding aggregation, it identifies the columns
coming from each side of the join. It then tries to identify
the corresponding recomposed aggregation and transformation
functions using the pre-defined recomposition rules (such as
those described in Table I). If a suitable recomposition rule is
found, it pushes that aggregation before the join operation. It
repeats this recursively at each join operation until it reaches
the base tables i.e. leaves of the tree.
Generality of AggFirstJoin. Since recomposable and decom-
posable functions (§IV-A) cover an extensive set of commonly
used aggregations and transformations, AggFirstJoin can op-
timize a wide range of join and aggregation queries. Table II
shows that AggFirstJoin can optimize 15 out of 17 aggregation
functions supported by Apache Spark SQL [16].

Algorithm 1: AggFirstJoin
Input: Query Plan Tree QPT
Output: Transformed Query Plan Tree QPT ′

QPT ′ ← QPT
if QPT has aggregation with join and has not been

transformed yet then
foreach aggregate expression A in QPT do

rule← findTransformationRule(A)
A′ ← transform(A, rule)
foreach child C ∈ A′ do

C′ ← AggFirstJoin(C)
replace C with C′ in A′

replace A with A′ in QPT ′

C. WAN-aware task placement
Since WAN bandwidth is highly constrained and hetero-

geneous in nature, we try to reduce the network latency by
intelligently distributing the join tasks based on the WAN
bandwidth available at any DC. We use a mixed integer
programming (MIP) optimization to perform the placement
of join tasks. The notation used for the optimization is given
in Table III.

Item Notation
Available bandwidth (in Mb/sec) from DC i
to DC j

Bij

Fraction of join tasks allocated to DC j rj
Size of tables present in DC i Si

Minimum data transfer time (in seconds) z

TABLE III: Notation for optimization formulation.
We present the following MIP optimization.

min z (3)

s.t.,
∑

j

rj = 1 (4)

Si · rj
Bij

≤ z ∀i += j (5)

The above formulation solves for rj . It is similar to the
formulation used by Iridium [3] but with one major difference:
Iridium shuffles the non-aggregated table data across DCs

while we shuffle the aggregated data across DCs. Thus, we
expect our data shuffle to be significantly faster in comparison
to raw data shuffle.

D. Filtering Non-Overlapping Keys
A key would be part of the join result if it exists in all

the participating tables. We call such a key as overlapping
key. Consequently, those keys which do not form a part
of final join result are called as non-overlapping keys5. It
is unnecessary to shuffle non-overlapping keys across geo-
distributed DCs for performing the join operation. To avoid
this unnecessary data shuffle, we employ Bloom filters to filter
out non-overlapping keys before performing the aggregation
and shuffle the aggregated data only for the overlapping keys
across geo-distributed DCs.

A Bloom filter is a space-efficient probabilistic data struc-
ture that is used to verify whether an element is present in a
set or not. It is designed in such a manner that it can give
false positives (i.e. an element is present in the set when it is
actually not) but it cannot give false negatives (i.e. an element
is not present in the set when it is actually present). This
serves well for our purpose of filtering non-overlapping keys.
For space-efficiency, a Bloom filter is generally implemented
as a bit array of N bits. Bloom filters have been used in a
wide variety of large scale systems including CDN caching,
single DC joins[14].

Since each table is distributed across multiple DCs, we take
the following approach to construct a global Bloom filter for
filtering out non-overlapping keys:

• At each DC, we first construct a local Bloom filter for
each table participating in the join. Each DC sends its
local Bloom filters to the central DC.

• At the central DC, we first combine the per partition
Bloom filters for each table using OR bitwise operation
to get one Bloom filter per table.

• The per table Bloom filters are then combined using AND
bitwise operation to construct a global Bloom filter.

• This global Bloom filter is then broadcast to all the DCs.
Although the overhead of Bloom filters in terms of WAN
transfer time is negligible because of their space efficiency
(i.e. a typical Bloom filter for holding 100K keys with false
positive rate of 1% occupies around 100 KB), it can lead
to considerable computation overhead due to Bloom filter
construction and filtering operations. We evaluate the tradeoff
between the WAN usage reduction and computation overhead
due to Bloom filters in §VI.
Putting everything together:

• Filter out the non-overlapping keys in each table partition
at each DC using bloom filters (§IV-D).

• Perform aggregation for each filtered table partition using
the proposed query transformation approach (§IV-B).

• Shuffle the aggregated data among the DCs using a WAN-
aware task placement optimization approach (§IV-C).

5The definition of non-overlapping keys can be modified to accommodate
other types of joins such as LEFT and RIGHT joins.
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• Send the final join results from each DC to the central
DC.

V. IMPLEMENTATION

We implement AggFirstJoin on top of Apache Spark [15],
[16], a popular data analytics engine. Our implementation
involved four key modules:
Filter Module. This module implements the bloom filter using
the open source library [17].
Query Optimization Module. We make changes in Catalyst
[18], the default SQL optimizer used by Spark. Catalyst has
two phases of query optimization: logical plan optimization
and physical plan optimization. We make changes to the logi-
cal plan optimization to add rules to identify SELECT-JOIN-
GROUPBY blocks in the logical plan and add transformation
expressions for pushing the GROUPBY operator before the
JOIN operator as per our proposed approach. Our added rules
cover common aggregation functions such as SUM, COUNT,
AVG, MIN, MAX, VAR etc. paired with any arbitrary trans-
formation expression comprising addition (+), subtraction
(−), multiplication (·), and division (÷). For queries having
functions not covered by AggFirstJoin (See Table II), our
system throws a warning to the user about not being able to
push aggregation before join. Additionally, our system leaves
it up to Catalyst to select the best join order using cost-based
optimization in the physical plan optimization.
WAN-aware Task Placement Module. We make changes to
the default Spark scheduler and implement the MIP formula-
tion (§IV-C) for WAN-aware task placement. This requires up-
to-date bandwidth information across the WAN links connect-
ing the geo-distributed DCs. Each site periodically measures
the outgoing bandwidth to every other site, as in [3], and shares
it with the scheduler.

VI. EVALUATION

A. Experimental Setup
We evaluate AggFirstJoin using a geo-distributed setup

comprising eight regions: North California, Ohio, Mumbai,
Singapore, Ireland, Frankfurt, Sydney, and Tokyo based on
the AWS regions. We keep North California as the central
DC where final results are sent. The data is pre-generated and
assumed to be available at each site before the query arrives.
We split our experiments over two testbeds:
AWS EC2 Testbed. For each AWS region, we instantiate
sixteen m4.4xlarge EC2 instances amounting to 256 cores and
1024 GB RAM. We measured the WAN bandwidth between
every pair of AWS regions listed above using iperf3 [19]. Our
measurement strategy followed prior work [20] wherein we
measured the WAN bandwidth periodically every 15 mins for
a duration of 24 hours. Experiments in §VI-D are carried out
on this testbed.
Emulated Testbed. We also run some of our experiments on
a localized CloudLab [21] testbed comprising 16 nodes. Each
node had two Intel Xeon Silver 4114 10-core 2.20 GHz CPUs
and 192 GB RAM. We assigned two nodes to each region.
We emulated the WAN bandwidth heterogeneity (measured

on AWS EC2 as explained above) using Linux tc utility [22].
Experiments in §VI-E and are carried out on this testbed.
Evaluation Metrics. We measure and compare the latency
and WAN usage incurred by each evaluated system. Latency is
further split into compute and network (data transfer) latency.

B. Datasets and Queries
We evaluate AggFirstJoin using four datasets:

• Synthetic Datasets (Syn-U and Syn-Z). We generate tables
having (key, value) tuples with the number of keys (N) in
each table ranging from 1K to 160K. For Syn-U dataset,
the number of records per key (RPK) follows uniform
distribution with RPK ranging from 50 to 2000. For Syn-Z
dataset, RPK follows Zipf distribution with Zipf parameter
(z) varying from 2.5 to 4 and average RPK ranging from
750 to 1500.

• TPC-H Benchmark. The TPC-H benchmark [13] is a
popular decision support benchmark consisting of relational
tables and queries emulating the activities of any large scale
enterprise which manages, sells and distributes products to
customers. We use a scale factor of 650 which results in
650 GB data size.

• AmpLab Big Data Benchmark. The AmpLab Big Data
(ABD) benchmark [23] consists of dataset modelling log
files of HTTP server traffic and a collection of random
HTML documents mimicking a web crawler. We use a scale
factor of 5 which results in 135 GB.

Table IV lists the specific queries for each dataset.
Dataset Queries
Syn-U SELECT Key, SUM(C1 + C2) as Cagg FROM T1, T2

WHERE T1.Key == T2.Key GROUP BY Key
Syn-Z SELECT Key, SUM(C1 + C2) as Cagg FROM T1, T2

WHERE T1.Key == T2.Key GROUP BY Key
TPC-H Query
1

SELECT C.CUSTKEY, C.NAME, SUM(O.TotalPrice)
as Revenue FROM Customer C, Orders O WHERE
C.CustKey = O.CustKey GROUP BY C.CustKey

TPC-H Query
2

SELECT PS.SuppKey, SUM(LI.Price *
(1-LI.Discount) - LI.Quantity * PS.SuppCost)
as Profit FROM PartSupplier PS, LineItem LI
WHERE PS.SuppKey = LI.SuppKey and PS.PartKey
= LI.PartKey GROUP BY PS.SuppKey

AmpLab Big
Data

SELECT R.PageUrl, SUM(UV.AdRevenue) as
Revenue FROM Rankings R, UserVisits UV WHERE
R.PageUrl = UV.DestUrl GROUP BY R.PageUrl

TABLE IV: Queries used in evaluation.

C. Systems for Comparison
We evaluate the following systems:

• DS: This approach transfers the joining tables from all the
sites to the central DC and then the queries are run on this
data using default Spark engine (i.e. Spark without any mod-
ifications). This baseline represents centralized aggregation.

• DS-B: This approach filters out non-overlapping keys using
bloom filters (§IV-D) and sends the filtered data to the
central DC where all the join computations are performed
using default Spark engine. This baseline represents Approx-
Join [14] which also considers bloom filtering to filter out
non-overlapping keys for computing joins in an intra-DC
environment6.
6We disable ApproxJoin’s approximation module as we focus on exact

computations.
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• DS-W: This approach shuffles the raw tables across across
geo-distributed sites using the WAN-aware task placement
(§IV-C) and then computes join over raw table partitions in
a geo-distributed manner. This baseline represents Iridium
[3], a widely known GDA technique.

• AFJ-O: This approach represents AggFirstJoin but with
only query transformation technique (§IV-B) enabled. This
approach aggregates each table partition locally using the
proposed query transformation and sends the aggregated
partitions to the central DC for join computations.

• AFJ-OW: This approach represents AggFirstJoin but with
only query transformation and WAN-aware task placement
enabled. This approach first aggregates the individual table
partitions at each site and then shuffles the aggregated
partitions across geo-distributed sites based on the WAN-
aware task placement.

• AFJ-OWB: This approach refers to the entire AggFirstJoin
system with all the three techniques (query transformation,
WAN-aware task placement and Bloom Filtering) enabled.

(a) Syn-U: Latency (b) Syn-Z: Latency

(c) Syn-U: WAN Usage (d) Syn-Z: WAN Usage

(e) Syn-U: Latency Split (f) Syn-Z: Latency Split

Fig. 3: Baseline comparison for Syn-U and Syn-Z (Log scale).

D. Batch Joins: Overall Performance
Syn-U and Syn-Z datasets. Figure 3 compares the la-

tency and WAN usage for different approaches for these two
datasets. For both datasets, we fix N=160000, RPK=1500,
Overlap = 25 % and for Syn-Z, Z = 4. We study the sensitivity
of these parameters in §VI-E.

For latency, AFJ-O gives 9x - 65x and 101x - 162x reduction
in latency over the three baselines (DS, DS-B, and DS-W)
for Syn-U and Syn-Z respectively. In terms of WAN usage,
AFJ-O gives 47x - 187x and 46x - 184x reduction in WAN
usage over (DS, DS-B and DS-W) for Syn-U and Syn-Z
respectively. AFJ-OW and AFJ-OWB further increase these
reductions giving maximum reduction in latency and WAN

usage respectively. AFJ-OW gives 26x - 193x and 292x - 468x
reduction in latency over (DS, DS-B and DS-W) for Syn-U
and Syn-Z respectively. AFJ-OWB gives 188x - 750x and 193x
- 757x reduction in WAN usage over (DS, DS-B, and DS-W)
for Syn-U and Syn-Z datasets respectively.

Among AFJ-OW and AFJ-OWB, the results show a tradeoff
between latency and WAN usage. AFJ-OWB is able to reduce
WAN usage upto 4x more as compared to AFJ-OW by filtering
out keys which won’t be present in the joined result. But it
does so while incurring a computation overhead for Bloom
filter construction and filtering operations. Note that the Bloom
filter computation and filtering overhead for these two datasets
was around 7 seconds which is insignificant in comparison
with DS and DS-W.

The massive reduction in latency for AFJ is due to two
reasons: reduction in compute latency as well as reduction
in network latency. AFJ only shuffles aggregated partitions
across WAN as compared to raw table data shuffles in the
case of DS, DS-B and DS-W. This is also confirmed by
AFJ’s corresponding reduction in WAN usage. Although DS-
W reduces the latency by WAN-aware task placement, it does
not reduce the actual WAN usage as compared to DS because
both DS and DS-W are shuffling raw table data across WAN
links. DS-B also leads to reduction in network latency and
WAN usage because of shuffling only overlapping data. At
the same time, AFJ’s reduction in latency and WAN usage
are orders of magnitude larger as compared to DS-B and
DS-W. AFJ’s reduction in compute latency is because of
join computations over aggregated partitions which limits the
size of intermediate Cartesian product as compared to join
computations over raw tables which can lead to large sized
intermediate Cartesian product table.
TPC-H and ABD Datasets. Figure 4 plots the latency and
WAN usage for these datasets 7. Similar to Syn-U and Syn-Z,
AFJ-OW and AFJ-OWB give maximum reduction in latency
and WAN usage respectively for TPC-H. AFJ-OW gives 2.5x
- 31x reduction in latency while AFJ-OWB gives 5x - 6x
reduction in WAN Usage over (DS, DS-B and DS-W). For
ABD, AFJ-OW gives 3.8x - 28.5x reduction in latency and
4.8x reduction in WAN usage over (DS and DS-W). AFJ’s
reduction for these two datasets are significant but not as much
as Syn-Z and Syn-U because of lower RPK and one-to-many
joins. The RPK for these datasets range from 1 to 40 which
limits the aggregation opportunity for AFJ. Additionally, the
joins involved are all one-to-many in nature and hence, even
with raw table data, the size of intermediate joined table is not
larger than the size of original tables combined and hence,
there is limited opportunity for AFJ to reduce the compute
latency.
Multi-Way Joins. Figure 5 compares the latency and WAN
usage for multi-way joins. As the number of joining tables
increase from 2 to 5, we make the following observations.
The total latency increases exponentially (up to 2000x) for DS,

7For ABD, we do not show the DS-B and AFJ-OWB baselines since the
generated joining tables always have 100% overlap w.r.t. the join key. Hence,
it is known beforehand that filtering would never help.
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(a) TPC-H: Latency (b) TPC-H: WAN Usage

(c) ABD: Latency (d) ABD: WAN Usage

Fig. 4: Baseline comparison for TPC-H and ABD
(Log scale)

Fig. 5: Multi-way joins (Log scale)
DS-B and DS-W while it only marginally increases for AFJ-O,
AFJ-OW and AFJ-OWB (up to 1.6x). This is expected since
the size of the intermediate joined table (Cartesian product)
increases exponentially with the increase in the number of
tables for many-to-many joins, thus increasing the compute
latency proportionally. On the other hand, AFJ first aggregates
each table and hence, the size of intermediate joined table does
not increase even with the increase in the number of joining
tables. We find that the increase in network latency is linear for
all the approaches. This is also expected since the amount of
data to be shuffled across WAN is directly proportional to the
number of tables shuffled and their corresponding sizes. At the
same time, AFJ’s increase in network latency is insignificant
as compared to other baselines. For the same reason, the WAN
usage for AFJ is also significantly lower (upto 2000x lower)
as compared to DS, DS-B and DS-W for multi-way joins.

E. Batch Joins: Sensitivity Analysis

Variation of Overlap %. Figure 6 compares the latency and
WAN usage for varying overlap % (% of total number of keys
which will be present in the joined result) for Syn-U dataset
(RPK = 1500 and N = 160K). As the overlap % increases
from 5 % to 100 %, we note that the latency for DS, DS-
B and DS-W increases linearly with the increase in overlap
%. The increase in latency is more pronounced for DS-B
since at lower overlap %, DS-B is able to reduce the network
latency by filtering out the non-overlapping keys. On the other
hand, DS and DS-W don’t do any such filtering. This is also
evident from the WAN usage for these baselines. The WAN
usage remains almost same for DS and DS-W while increases
linearly for DS-B.

We don’t observe any significant changes in latency and
WAN usage for AFJ-O and AFJ-OW since these approaches

don’t perform any filtering. AFJ-OWB, on the other hand, sees
a linear increase in the WAN usage as expected. The latency
also increases for AFJ-OWB with increase in overlap % but
only marginally. We conclude that at lower overlap %, AFJ-
OWB can give significantly more reduction in WAN usage
as compared to AFJ-OW, at the cost of marginal increase in
latency. As the overlap % increases, the additional reduction in
WAN usage provided by AFJ-OWB goes on decreasing until
it does not provide any advantage for the latency overhead
(due to bloom filters) over AFJ-OW.

Fig. 6: Variation of Overlap % (Log scale)
Variation of RPK. Figure 7 compares the latency and WAN
usage for varying records-per-key (RPK) values for Syn-U
dataset (Overlap % = 50% and N=40K). As the average RPK
increases from 1 to 1500, we note that the latency and WAN
usage increase by 90x - 175x and 1500x respectively for DS,
DS-B and DS-W. On the contrary, AFJ-O, AFJ-OW and AFJ-
OWB see only an insignificant increase in latency (only 3.5x
for AFJ-OW) and no increase in WAN usage due to performing
aggregation before data shuffle and join computations.

Fig. 7: Variation of RPK (Log scale)
Variation of Number of Keys. Figure 8 compares the latency
and WAN usage for varying number of keys in the Syn-U
dataset. As the number of keys in the joining tables increase
from 4K to 40K, we note that AFJ-OW and AFJ-OWB are
always significantly better than DS, DS-B and DS-W in terms
of both latency and WAN usage. Moreover, the reductions in
latency provided by AFJ-OW and AFJ-OWB in comparison
to DS, DS-B and DS-W increase with increasing number of
keys. For instance, AFJ-OW’s reduction in latency over DS-W
increase from 6x to 22x with increasing N. The increase in
WAN usage is almost linear for all the approaches but remains
very low for AFJ-O, AFJ-OW and AFJ-OWB.

Fig. 8: Variation of number of keys (Log scale)
Variation of Skew. Figure 8 compares the latency and WAN
usage for varying skew (Zipf parameter) in the Syn-Z dataset.

422

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 30,2023 at 05:02:49 UTC from IEEE Xplore.  Restrictions apply. 



As the value of Zipf parameter changes from 4 to 2.5 (i.e. the
skew is increased), we note that the latency for (DS, DS-B, and
DS-W) increases by a factor of 20 while the WAN usage does
not show any change. This is because these approaches spend
more time in join computations for keys with high RPK (i.e.
more frequent keys) as the skew in RPK distribution increases.
On the other hand, the latency and WAN usage for (AFJ-O,
AFJ-OW, and AFJ-OWB) do not show any noticeable increase
since these approaches first aggregate and then compute the
join on aggregated values.

Fig. 9: Variation of skew in RPK distribution (Lower Zipf
signifies higher skew) (Log scale)

VII. RELATED WORK

Systems for Big Data Analytics. A number of data pro-
cessing engines [15], [24], [25], [26], [27], [28], [29] have
been proposed for efficiently processing big data workloads
and enabling useful analytics. But all of these systems are
primarily designed and engineered for intra-DC environments
where the network bandwidth as well as compute resources
are plenty. Hence, these systems cannot be used directly in
WAN environment as also confirmed by prior work [3], [12],
[1], [5]. We build our prototype on top of Apache Spark, a
very popular analytics engine.
Geo-Distributed Analytics. To address the issue of con-
strained and heterogeneous compute and network bandwidth
resources in WAN environments, geo-distributed analytics has
been proposed which processes the data in a geographically
distributed manner instead of transferring all the data to a cen-
tralized DC and processing it in a centralized manner. Systems
such as Iridium [3], Tetrium [2], Clarinet [1], WANanlytics
[5], Bohr [30], Kimchi [4], Yugong [9] and Heintz et al [31]
handle batch workloads while systems such as JetStream [32],
AWStream [33], Sana [12], WASP [34], Heintz et al [7],
[35], AggNet [36] and Kumar et al [6] support streaming
workloads in WAN environments. These systems propose
WAN-aware data and task placement as well as job scheduling
for minimizing metrics such as query latency, WAN usage,
accuracy and cost. Clarinet [1] additionally also proposes
WAN-aware query optimization and multi-query scheduling.
In the context of geo-distributed joins, these systems shuffle
raw data across geo-distributed sites and perform the join
on the raw tables or streams without any prior aggregation.
This can lead to high compute and network latency as well
as high WAN usage as shown in this work. Our proposed
system, AggFirstJoin, reduces all the three aforementioned
metrics by pre-aggregating the tables before shuffle and join
computations. Moreover, our work is complementary to the
optimizations proposed by these systems. For instance, we

augmented our query transformation approach with WAN-
aware task placement similar to Iridium.
Database Joins and Query Optimization. Database join is
one of the most fundamental building blocks in analytical
queries and hence, it has been studied in great detail in the
past [37], [38], [39], [40]. Most of these optimizations are
suited only for intra-DC environments for single node or
multi-node databases. They are not sufficient for efficient join
computations in WAN environment as shown by the existing
GDA systems (discussed above). Pushing group by before
join has been studied in the past in the context of single-
server databases [10], [11] where there is only one partition
per table. In contrast, we propose query transformation for
geo-distributed environment where we provide solution to
performing join on geo-distributed partitions of the joining
tables after performing geo-distributed aggregation. Addition-
ally, we integrate WAN constraints, heterogeneity and WAN-
aware filtering with this aggregation pushdown. Moreover,
the existing techniques only consider aggregation operations
over single table columns and supports only real number data
types while our technique works for aggregation over derived
columns which may be derived from columns spanning multi-
ple tables and supports more generic data types such as strings.
Finally, the existing techniques optimize only a limited set
of aggregation functions such as Sum, Min, Max, Average
while our technique optimizes a broader set of aggregation
functions including higher order functions such as Variance,
Skewness, Kurtosis etc. (Table II). ApproxJoin [14] proposed
approximate distributed joins using bloom filters and stratified
sampling. While ApproxJoin still computes aggregation after
the join operation, we propose query transformation which
allows us to perform aggregation before join and thus, reduce
the compute and network latency associated with joins. We
show in §VI that our approach performs better than Approx-
Join (without sampling) in terms of latency and WAN usage.
Bloom Filters. Bloom filters [41] have been used in applica-
tions such as web caching in CDNs [42], peer-to-peer overlay
networks [43], database joins [44], [45], [14]. While our bloom
filter usage in AggFirstJoin is similar to existing work, our
work differs in two ways: (1) we apply bloom filters in a geo-
distributed environment where they have not been used before
(2) we combine bloom filters with query transformation and
WAN-aware task placement to build a holistic system for geo-
distributed joins.

VIII. CONCLUSION

We proposed AggFirstJoin to minimize the cost of geo-
distributed joins using a query transformation technique which
pushes (a transformed) aggregation before join in a manner to
produce the same results as the original query. We further
augmenteded with a WAN-aware task placement and a Bloom
filtering approach. Our evaluations showed our proposed tech-
nique achieves upto 300x reduction in query execution time
and 200x reduction in WAN usage as compared to state-of-
the-art GDA techniques.
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