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The ever-increasing demand for energy is resulting in considerable carbon
emissions from the electricity grid. In recent years, there has been growing
attention on demand-side optimizations to reduce carbon emissions from
electricity usage. A vital component of these optimizations is short-term
forecasting of the carbon intensity of the grid-supplied electricity. Many
recent forecasting techniques focus on day-ahead forecasts, but obtaining
such forecasts for longer periods, such as multiple days, while useful, has
not gotten much attention. In this paper, we present CarbonCast, a machine-
learning-based hierarchical approach that provides multi-day forecasts of
the grid’s carbon intensity. CarbonCast uses neural networks to �rst gen-
erate production forecasts for all the electricity-generating sources. It then
uses a hybrid CNN-LSTM approach to combine these �rst-tier forecasts with
historical carbon intensity data and weather forecasts to generate a carbon
intensity forecast for up to four days. Our results show that such a hierarchi-
cal design improves the robustness of the predictions against the uncertainty
associated with a longer multi-day forecasting period. We analyze which
factors most in�uence the carbon intensity forecasts of any region with a
speci�c mixture of electricity-generating sources and also show that accurate
source production forecasts are vital in obtaining precise carbon intensity
forecasts. CarbonCast’s 4-day forecasts have a MAPE of 3.42–19.95% across
13 geographically distributed regions while outperforming state-of-the-art
methods. Importantly, CarbonCast is the �rst open-sourced tool for multi-
day carbon intensity forecasts where the code and data are freely available
to the research community.

CCS Concepts: • Social and professional topics ! Sustainability; •
Computing methodologies ! Neural networks.

Additional Key Words and Phrases: grid carbon intensity, multi-day fore-
casting, hierarchical design, source production forecasts, machine learning

Availability of Data and Material:
The data and code used in this paper are available at https://github.com/
UMass-LIDS/CarbonCast (commit as of paper submission: f4c751b).

1 INTRODUCTION
Modern society depends on the electric grid to power many aspects
of our daily lives, such as lighting, heating, and cooling, to name a
few. According to the US Energy Information Administration (EIA),
electricity consumption in the US was around 3.8 trillion kWh in
2020 [34], and the total energy demand is slated to rise by nearly
50% by 2050 [32]. The grid’s energy demand exhibits temporal vari-
ations over a day and across seasons. A region’s electricity grid uses
various sources, ranging from conventional sources such as coal, oil,
and natural gas to renewable sources such as hydro, solar, and wind,
to generate su�cient electricity to meet the demand. However, elec-
tricity generation emits a signi�cant amount of greenhouse gases
and is one of the major contributors to greenhouse gas emissions
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in many regions worldwide [21, 36, 37]. These emissions, which de-
pend on the generation source, vary over time as the mix of sources
itself changes. The rising deployment of renewable sources such as
solar and wind also introduces substantial variations in the grid’s
carbon emissions due to their intermittent nature.

As part of the ongoing energy transition in line with the United
Nations’ climate goals [29], there is an emergence of carbon reduc-
tion and trading policies, as well as an increasing interest in develop-
ing techniques to reduce the carbon emissions from the electricity
grid. From an energy supply perspective, increasing the fraction of
clean, renewable sources and masking the intermittent nature of
renewable sources through energy storage are key approaches for re-
ducing grid emissions. From a demand-side perspective, techniques
to shift energy demand from periods when the carbon intensity
of energy is high to periods when it is low have started gaining
attention. Future knowledge of the grid’s carbon intensity is an
essential requirement for both complying with carbon trading poli-
cies and reducing carbon emissions using demand-side optimization
techniques. Given carbon forecasts of the electric grid’s electricity
generation, demand-side techniques can leverage this knowledge to
decide how much load to shift, where to shift, and to what hours, in
accordance with some existing policy. For example, suppose “Base-
line and Credit” [20] policy is in e�ect in a region. Then, residential
charging of electric vehicles in that region can be scheduled intelli-
gently based on future knowledge of when grid emissions are lower
[13], keeping the total carbon emissions under the baseline and earn-
ing carbon credits. In the context of buildings, �exible loads (e.g.,
laundry) can be deferred to low-carbon periods. Such techniques
are also being employed in other sectors, such as cloud computing,
driven by aggressive goals of major cloud providers to reduce their
carbon footprint [11, 26]. Since computing loads exhibit substantial
temporal elasticity (e.g., batch workloads, interruptible machine
learning), researchers have also begun to develop techniques for
shifting loads to low-carbon hours [11, 18].

Short-term forecasts of grid carbon intensity are key for building
carbon-aware systems and applications in order to reduce their car-
bon footprint. The carbon intensity of electricity is de�ned as the
average carbon per unit of electricity generated and is expressed
in the units of 6A0<B/:,⌘. Recently, grid operators have begun
releasing real-time data about the carbon intensity of their supplied
electricity [3, 25], and third-party services such as Watttime [38]
and ElectricityMap [9] have begun to aggregate such data and ex-
pose real-time carbon intensity via cloud interfaces. In addition
to exposing the real-time carbon intensity of electricity, there has
also been work on short-term forecasting of carbon intensity us-
ing historical data [16, 22]. Both Watttime and ElectricityMap have
also begun to provide such forecasts as part of their commercial
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service. Much of the work on near-term forecasting has emphasized
day-ahead forecasts, which provide carbon intensity predictions for
the next 24 hours. For example, many recent e�orts [9, 12, 14, 22]
provide day-ahead forecasts of carbon intensity, while some like
Bokde et al. [16] provide 48-hour forecasts. While such forecasts are
useful for various types of demand-side carbon optimizations, some
techniques that operate over multiple days (e.g., intelligent battery
charging, scheduling long-running cloud jobs) require forecasts for
periods longer than 24 hours. Similar to how weather forecasts
provide predictions for the next day as well as several days into
the future, the design of techniques for multi-day carbon intensity
forecasts is a problem of considerable importance but one that has
not received much attention.

Research contributions. In this paper, we present CarbonCast1,
which is a system based on machine learning to forecast multi-day
(up to 96 hours) grid carbon intensity. Extending day-ahead forecast
methods to multiple days is challenging since the factors in�uencing
carbon intensity are more unpredictable and have greater variability
over longer time horizons. To reduce prediction error for multi-day
forecasting, CarbonCast considers both historical data of the sources
used for electricity generation, as well as other factors like weather
forecasts and the electricity generation forecasts for each source.
We show that judiciously using such forecast information improves
prediction accuracy over longer time periods. For example, for a
given energy demand, a day with a forecast for high winds is likely
to have a lower carbon intensity due to more electricity generation
from wind. We make the following speci�c contributions.
(i) Hierarchical design. CarbonCast uses a two-tiered hierarchical
approach, each based on machine learning. The �rst tier uses neural
network models to provide individual source electricity generation
forecasts. The second tier, based on a hybrid CNN-LSTM combi-
nation, uses these forecasts with weather forecasts and historical
carbon intensity data to generate 96-hour carbon intensity forecasts.
Importantly, our hierarchical approach makes CarbonCast robust
to noisy or partially-missing inputs and so is suitable for multi-day
forecasts. Our two-tiered approach also provides a modular design
where each tier can be independently improved. For instance, if we
can obtain improved wind energy production forecasts from any
method, that improved forecast can be incorporated directly into
our system to improve the carbon intensity forecasts.
(ii) Multi-day forecasts. We provide 96-hour forecasts for the grid
carbon intensity of 13 regions across the US, Europe, and Australia.
We show that CarbonCast can be used in di�erent regions of the
world with minimal changes to get good multi-day carbon intensity
forecasts. We also provide forecasts based on both lifecycle (oper-
ational and infrastructural) and direct (only operational) emission
factors. Thus, our system can be incorporated by both scope 2 [30]
and scope 3 [31] carbon emission optimization solutions.
(iii) Feature importance for carbon intensity prediction.We analyze
which features are important for predicting the carbon intensity of
the electricity grid in a given region. For example, we show that in
California, solar production forecast is the most important feature
for predicting the carbon intensity. In contrast, wind forecast plays

1This paper is an extended version of an earlier paper that was published in ACM
BuildSys 2022.

a bigger role in predicting the carbon intensity in Texas.
(iv) CarbonCast error analysis. We analyze why CarbonCast per-
forms better and has lower forecasting errors in certain regions
compared to others. We show how to improve the results in regions
with higher errors. In particular, we provide guidance on which
source forecasts to improve to enhance the precision of the carbon
intensity forecast.
(v) Improving the state-of-the-art. We compare CarbonCast to state-
of-the-art methods, as well as other baselines. When averaged over
96 hours, CarbonCast using direct (resp. lifecycle) emission factors
has a MAPE of 9.78% (resp. 8.38%) across all the regions. CarbonCast
also reduces the forecasting MAPE by 9.96% (resp. 8.91%) over the
current state-of-the-art across all the considered regions.
(vi) Open source tool. Energy research in diverse areas, from buildings
to data centers, requires longer-range location-dependent predic-
tions of carbon intensity. Both the code and data of CarbonCast
are available to the public, and it is the �rst open-source tool2 for
multi-day predictions of carbon intensity. We hope that our tool
will be used by the community in energy research projects that rely
on such predictions.

Roadmap. The rest of this paper is as follows: Section 2 discusses
the background. Section 3 explains the CarbonCast system design.
Section 4 experimentally evaluates the accuracy, robustness, and
runtime of our approach and also analyzes which factors are impor-
tant in predicting the grid carbon intensity. Section 5 talks about
the compatible nature of CarbonCast and justi�es why CarbonCast
provides average carbon intensity forecasts. Section 6 discusses the
related work, and Section 7 concludes the paper.

2 BACKGROUND
In this section, we provide background on regional electricity grids,
types of sources generating electricity, carbon emission factors of
each source, carbon intensity associated with electricity generation,
and how it varies across regions and with time.

2.1 Regional grids and electricity sources
The electricity grid in each region performs three functions: genera-
tion, transmission, and distribution [33]. Electricity is generated by
power plants of various types, transmitted over a network of trans-
mission lines and �nally distributed to end customers via stations
and substations. Typically, electricity is generated from a mix of
renewable and non-renewable sources. Since supply should match
demand, the grid uses a set of dispatchable generators that can be
turned on or o� to match a time-varying demand. Sources such as
renewable solar and wind tend to be intermittent and are assumed
to be uncontrolled; other non-renewable sources are then used to
meet the remaining demand. Thus, the fraction of electricity gener-
ated by each source varies over time and across di�erent regions.
Factors like locational marginal price [28] and imported electricity
also govern the current source mix of a particular region.
In this paper, we consider electricity grids in several regions

across the US, Europe (EU), and Australia (AUS).

2https://github.com/UMass-LIDS/CarbonCast, commit as of paper submission: f4c751b
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Emission factors Coal Oil Natural gas Nuclear Solar Wind Hydro Other Biomass Geothermal
Lifecycle 820 650 490 12 45 11 24 700 230 38
Direct 760 406 370 0 0 0 0 575 0 0
Table 1. Median lifecycle and direct carbon-emission factors (6/:,⌘) for di�erent renewable and non-renewable sources.

(a) Regions in the US. (b) Regions in Europe and Australia.

Fig. 1. Average electricity production by source during the period Jan 2020 — Dec 2021 showing wide variations across regions.

• In the US, we consider the following seven regions: Califor-
nia, US (CISO), Pennsylvania-Jersey-Maryland Interconnec-
tion (PJM), Texas (ERCOT), New England (ISO-NE), Wash-
ington (BPAT), Florida (FPL), and New York (NYISO).

• In Europe, we consider �ve regions: Sweden (SE), Germany
(DE), Poland (PL), Spain (ES), and Netherlands (NL).

• In Australia, we consider Queensland (AUS-QLD).
When aggregated over all the regions, the sources include non-
renewable sources like natural gas, coal, oil, and nuclear, and re-
newable sources like solar, wind, hydro, geothermal, and biomass.
Note that the exact mix of sources used to generate electricity is not
always known accurately. If some generation source is not reported
for a region, it is assumed to be non-renewable and is listed as “other”
with an approximate carbon intensity. In other cases, some sources
may be missing in the data reported by the grid operator. These
factors introduce noise and uncertainty when estimating current
and future carbon intensity, especially over longer time horizons.

2.2 Carbon emission factor (CEF)
We de�ne the carbon emission factor (CEF, in 6/:,⌘) of a source
as the amount of carbon emitted into the atmosphere per unit of
electricity generated by that source. CEFs of non-renewable sources
are usually much higher than that of renewable sources. Based on
the type of accounting (scope 2 [30] or scope 3 [31] emissions), there
can be two types of CEFs for a source:

• Direct emission factors: These are the operational emis-
sions when a source is converted into electricity and are
used when accounting for scope 2 [30] emissions.

• Lifecycle emission factors: These include operational as
well as infrastructural emissions up the supply chain and
are considered when accounting for scope 3 [31] emissions.

CEF values for a source may vary across power plants in di�erent
regions. For example, power plants burning black coal (anthracite/
bituminous coal) to generate electricity will emit more carbon than

those burning brown coal (lignite). Determining CEFs is a separate
problem. Instead, our work considers CEFs as input to CarbonCast.
In this paper, we simplify the sources (referring to both black and
brown coal as coal) and use standardized median values of carbon
emission factors for each source [6, 7], as shown in Table 1. For
our modelling and forecasting purposes, we assume that the CEF
of “other” sources is the same across all regions. We provide fore-
casts using both types of emission factors and leave it up to the
practitioners to choose which forecast to use.

2.3 Average carbon intensity
The average carbon intensity per unit of electricity generated in a
region is the weighted average of carbon emitted by each source due
to the electricity generated by them. Mathematically, the average
carbon intensity (in 6/:,⌘) of a region at any time is as follows:

(⇠0A1>= �=C4=B8C~)0E6 =
Õ (⇢8 ⇤⇠⇢�8 )Õ

⇢8
(1)

where ⇢8 is the electricity generated (", ) by a Source 8 & ⇠⇢�8 is
the CEF (6/:,⌘) of that source.
Electricity grids often exchange electricity with neighbouring

grids to meet the demand. Hence, when calculating the average
carbon intensity of any region, we should also consider the carbon
intensity of any imported electricity. However, any grid exporting
electricity may import electricity from other neighbouring grids. We
need to �nd the origin source of electricity to calculate the carbon
intensity of imported electricity, which is not straightforward. So,
we only consider the average carbon intensity of electricity generated
in a region, ignoring any imports/exports in this paper, for simplicity.
We discuss the e�ects of imports and exports on CarbonCast in
detail in Section 5.2.

2.3.1 Spatial variability of average carbon intensity. Fig. 1
shows the average fraction of electricity generated by each source
for 2020 � 21 in all the regions. We see that the fraction of each
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renewable or non-renewable energy source varies across regions.
For example, PJM depends heavily on fossil fuels, whereas Sweden
relies heavily on renewables. Typically, the carbon intensity of a
region is proportional to the fraction of electricity generated by
fossil fuels in that region. The greener the source mix, the lower the
value of average carbon intensity.

Fig. 2. The sources of electricity vary temporally in California. This results
in a temporal variation in the average carbon intensity, with lower values
during day when solar production is high.

2.3.2 Temporal variability of average carbon intensity. The
source mix also varies with time. Renewable sources generating
electricity in a region depend on weather and are highly volatile.
Additionally, since electricity demand is ever-changing and supply
must always match the demand, additional dispatchable generators
may need to be turned on during peak load and turned o� during
low demand. The grid’s dispatch schedule and types of generators
used during periods of high load depend on the price of generating
electricity using a particular source at that time. As a result, average
carbon intensity also varies with time. Fig. 2 shows how the source
fractions change throughout a speci�c day in California and how it
a�ects the average carbon intensity. Note that the temporal pattern
of average carbon intensity is similar for both lifecycle and direct
emission factors.

3 CARBONCAST DESIGN
We present the design of our CarbonCast approach in this section.
3.1 Overview
The goal of CarbonCast is to take historical data of the source mix
used for electricity generation in a region, the carbon-emission
factors (lifecycle or direct) of each source, and weather forecasts,
to produce a multi-day hourly forecast of the carbon intensity of
electricity in that region. CarbonCast currently produces a 4-day
(i.e., 96-hour) forecast, and we believe it can be enhanced further in
the future to produce 7-day to 10-day forecasts.
CarbonCast uses a hierarchical two-tiered forecasting approach

based onmachine learning, as shown in Fig. 3. The �rst tier uses a set
of models, one for each generation source, to predict the electricity
production from that source for the next 96 hours. The second

tier takes these �rst-tier predictions along with weather forecasts
to predict the hourly carbon intensity of electricity in that region
for the next 4 days. Several challenges need to be addressed when
making multi-day forecasts, which we discuss next.
First, the amount of renewable sources in electricity generation

varies by region. In regions with signi�cant penetration, their inter-
mittent nature can complicate carbon intensity forecasting, espe-
cially since intermittent generation causes the carbon intensity of
the grid to vary noticeably over time. Our CarbonCast uses weather
forecasts, in addition to historical production data, to accurately
predict future generation from renewables.
Second, if accurate source production forecasts for all sources

were available, we could use Eq. 1 to calculate the overall carbon
intensity. This is the approach used by DACF [12]. However, source
production data may often be unavailable during some time periods,
or some sources may be unknown and listed as “other”. In such
cases, Eq. 1 can produce higher errors or may be infeasible to use.

Third, tier-1 forecasts get progressively worse with the increasing
time horizon—partly due to limitations of the models generating
these forecasts and partly due to weather forecasts becoming less
accurate as we go further into the future. In such cases, using the
equation may not be optimal, as it always assigns a �xed weight to
each source, and so cannot adjust to the inaccuracies in the inputs.
Consequently, adding a second tier of deep-learning model ar-

chitecture, which can accommodate noisy/missing inputs by read-
justing the weights assigned to each input feature, can be a better
approach to forecast multi-day carbon intensity over using Eq. 1.
Finally, the carbon intensity of a region may have noticeable

seasonal and daily patterns (e.g., carbon intensity in California is
low during the day due to high solar generation, and solar generation
is higher in summer). Hence, CarbonCast considers these patterns
when using the historical source mix and carbon intensity data.

The above observations motivate CarbonCast’s two-tier approach
to achieve its goals of multi-day carbon intensity forecasting. Sim-
ilar to DACF [12], we refer to the hourly electricity produced (in
", ) by a source (past 24 hours) as the historical source production,
whereas the hourly predicted electricity production by a source (in
", ) is referred to as the source production forecast. Speci�cally,
the �rst tier takes in hourly electricity generated by the individual
sources and outputs individual source production forecasts. These
forecasts are then fed into the second tier along with other features
like historical carbon intensity and weather forecasts. The second
tier then computes the carbon intensity forecasts using a machine
learning model which uses a combination of CNNs and LSTMs.
We now elaborate on each tier of CarbonCast and discuss how

our approach can be applied to any region with minimal changes.

3.2 First-tier design
The goal of the �rst tier is to estimate the hourly electricity generated
by each production source present in a region over the next 96
hours. In some cases, day-ahead forecasts for renewable sources,
such as solar and wind, are available from the grid operator, but such
forecasts are rarely available for all types of generation sources. Also,
when available, those are limited to 24 hours rather than 96 hours.
Consequently, CarbonCast uses ANN models, one per production
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Fig. 3. CarbonCast architecture. Historical source mix and carbon intensity values for the past 24 hours are used as inputs.

source, at the �rst tier to predict the source production forecasts.
This �rst-tier forecasting approach is inspired by other methods,
such as DACF [12], which use similar models.
Fig. 4 shows our �rst-tier architecture. For each region, we con-

sider all the sources producing electricity in that region. We have
a separate ANN model for each source that takes in the source’s
historical electricity production as input. Moreover, we include fea-
tures like hour-of-day and hour-of-year as input to the ANN model
to capture diurnal or seasonal trends. We also consider whether the
current day is a weekday or a weekend since electricity demand and
consequently, production varies across weekdays and weekends.

Fig. 4. CarbonCast uses neural network models, one per source, to predict
future generation.

For renewable sources like solar, wind and hydro, we also con-
sider weather forecasts as additional inputs. This is because weather
a�ects renewable energy production (e.g., more precipitation cor-
relates with more electricity production from hydro; solar energy
production is lower during winter months with shorter days).

3.3 Second-tier design
The second tier aims to take the hourly generation forecasts from
each source, as produced by the �rst tier, and produces an aggregate
carbon intensity estimate. As discussed earlier, our second tier relies
on a deep learning model to compute carbon intensity rather than

an analytic equation to deal with the impact of noisy or missing data,
which makes the multi-day forecasting problem more challenging.
To do so, we use a combination of CNN and LSTM models. Fig. 5
shows our CNN-LSTM design. Forecasting grid carbon intensity is
essentially a time-series forecasting problem, and LSTM is a state-
of-the-art technique used in such problems. Since the inputs to the
second tier are multiple time series data, we add two 1-D CNN
layers to extract high-level “short-term” temporal features from
those inputs and feed them to the LSTM layer, which can learn
“longer-term” temporal patterns in the time series.

In addition to the 96-hour source production forecasts obtained
from the �rst tier, we use several other features as input to the second
tier so that CarbonCast can learn more e�ectively and counter the
errors in source production forecasts. We include historical average
carbon intensity data of that region (past 24 hours), calculated from
the historical source mix using Eq. 1. We also add date-time related
features (e.g., hour-of-day, hour-of-year etc.). Finally, we add 96-hour
weather forecasts as input to this tier as well. Speci�cally, we use the
followingweather variables in both tiers: u- and v-component of wind
(in</B) at 10< height above sea level from which we derive the
wind speed (in</B), temperature (in ) and dewpoint temperature (in
 ) at 2< height above sea level, and downward short-wave radiation
�ux (DSWRF) (in, /<2) and total precipitation (in :6/<2) at the
surface level.

This second tier of deep-learning model with additional features
enables CarbonCast to accommodate noisy or even missing source
production forecast data by re-adjusting the weights of each input
feature. Consequently, this makes CarbonCast more suitable for
multi-day forecasts, as it adds robustness even if the tier-1 forecasts
get progressively worse with an increasing forecasting period.

3.4 CarbonCast implementation
CarbonCast is implemented using Keras [5] on Tensor�ow [15]. The
�rst-tier ANNmodels have three fully connected (dense) layers. The
�rst dense layer has 50 hidden units, followed by the second layer
with 34 hidden units. The �nal layer has 24 units, which outputs
the source production forecast. We use Recti�ed Linear Unit (ReLU)
activation between the layers. In the second tier, there are two CNN
layers with a max-pooling layer in between. The �rst CNN layer
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Fig. 5. CarbonCast second tier model architecture.

has four 4 x 4 �lters and necessary padding to keep the output
dimensions the same as the input dimensions. The second CNN
layer has 16 4 x 4 �lters. The CNN layers are followed by a LSTM
layer with 24 units and a dropout layer with rate 0.1. Finally, there is
a dense layer having 24 output units. In both the tiers, we obtain the
96-hour forecasts one day at a time and treat the forecasted values
for 8C⌘ day as historical data for forecasting the (8 + 1)C⌘ day. For
example, we use historical solar production data to compute the day-
ahead solar production forecasts. Then, we replace the historical
data with the forecasted data to get solar production forecasts for the
next 24 hours. We continue this process till all 96 hours of forecasts
are obtained. We obtain carbon intensity forecasts in a similar way.
We build our datasets from openly available data (refer Table 2).

Our code and datasets are available at h�ps://github.com/UMass-
LIDS/CarbonCast for practitioners and researchers to incorporate
into their carbon optimization and accounting-related solutions.
Since we provide forecasts based on both lifecycle and direct emis-
sion factors of sources, CarbonCast can be used in solutions aiming
to reduce both scope 2 [30] and scope 3 [31] emissions.
Both our design and its implementation are modular. The �rst

tier of CarbonCast individually forecasts each electricity-producing
source in the electric grid of a particular region and is decoupled
from the second tier. This modular architecture allows CarbonCast
to seamlessly integrate any new model in either tier if it improves
the overall forecasting performancewithout changing the remaining
components. It also enables CarbonCast to use the same framework
in any region of the world, regardless of signi�cant di�erences in the
source mix across the electric grids. CarbonCast needs training data
from a region to produce a two-tier model speci�c to that region.
However, our evaluation shows that we can use the same set of
features and model hyperparameters across various regions.

4 EXPERIMENTAL EVALUATION
In this section, we evaluate our design choices and CarbonCast per-
formance. First, we show the advantages of our hierarchical two-tier
approach compared with a non-hierarchical approach. Then, we
show how CarbonCast performs across electric grids in 13 di�erent
regions across the US, Europe, and Australia and analyze which
features are important in a particular region. We then analyze the
reason behind forecasting errors in CarbonCast and why some re-
gions have higher errors than others. We also compare CarbonCast
with recent carbon intensity forecasting methods and show that
CarbonCast provides better multi-day forecasts than the current

state-of-the-art. Finally, we show that it is practical to run Carbon-
Cast daily, if required, by evaluating its runtime overheads.

4.1 Experimental methodology
Data sources. Table 2 lists the data sources used in this paper. For
any region, the 96-hour weather forecasts provided by [24] need to
be aggregated over the whole region. For that, we refer to [8] to get
the bounding boxes for all the regions we have considered in this
paper. Then, following the weighted average procedure suggested in
[23], we aggregate the weather data over a particular region. These
forecasts are given at three-hour granularity, while our carbon and
electricity production data are at hourly intervals. For the sake of
simplicity, we assume that weather variables have the same values
across the three hours. If day-ahead solar and wind forecasts are
available for a region, we directly use that and compute the day-2,
3 and 4 forecasts. For other sources or regions, we compute the full
96-hour source production forecasts using our �rst tier.

Type of data Regions
US AUS EU

Historical source mix EIA [1] OpenNEM
[2] ENTSOE

[19]
Day-ahead solar/wind

forecasts

OASIS [4]
for CISO,
N/A for
others

N/A

96-hour weather
forecasts NCEP GFS ds084.1 [24]

Table 2. Publicly available sources used to build our datasets.

Although we consider only hourly granularity in this paper, many
electric grids and carbon optimization solutions operate at sub-
hourly intervals. CarbonCast can work with data of any time granu-
larity without any design changes. However, additional experiments
would be required to evaluate CarbonCast’s performance for the
�ner time granularities and is a possible direction for future work.
CarbonCast training and testing. We consider data from 2019
to 2021 for training CarbonCast and predicting average grid car-
bon intensity. The �rst tier of ANN models uses hourly historical
source production data from January 1 to December 31, 2019, for
training, and we predict individual source production forecasts for
the remaining period. As the prediction period of 2 years is long, we
only predict six months at a time and update and re-train the ANN
models with new data every six months to increase the prediction
accuracy, similar to DACF [12]. The input data to the second tier is
from January 1, 2020, to December 31, 2021, in hourly granularity.
The train-validation-test split is 50%–25%–25%.

We use the sliding-window technique for training all the models.
At each time step (⇠ 1 hour), the model looks at the most recent
24 hours as input data and values for the next 24 hours as labels.
We use Root Mean Square Error (RMSE) as the loss function that
is minimized during training. During testing, for the 8C⌘ day, we
predict the next 96 hours’ average carbon intensity at 00:00 hours,
24 hours at a time. We use the actual data from the (8 � 1)BC day
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(a) Day 1 forecasts (0-24 hr). (b) Day 2 forecasts (24-48 hr). (c) Day 3 forecasts (48-72 hr). (d) Day 4 forecasts (72-96 hr).

Fig. 6. Comparison between forecast CDF plots of Hierarchical CarbonCast vs non-hierarchical equation based approach. CarbonCast forecasts are resilient
to noises in the input and CarbonCast can still give good predictions even when source production forecasts get progressively worse with an increasing
forecasting period.

to predict the �rst 24 hours. Then, we take this forecasted data to
predict the next 24 hours and continue this process till 96 hours. We
evaluate the forecasting performance in terms of Mean Absolute
Percentage Error (MAPE). Further, since CarbonCast uses stochastic
methods, we take an average of three runs whenever we report the
values.

4.2 Benefits of a hierarchical design
First, we justify the need for our hierarchical design. Since our �rst
tier generates all the source production forecasts, we can directly
use Eq. 1 to get average carbon intensity forecasts by replacing
the fraction of electricity produced by a source with the forecasted
fraction of electricity produced by that source. However, adding a
second-tier model instead of using Eq. 1 has the following bene�ts:

4.2.1 Resiliency against missing data. A major challenge in
forecasting carbon intensity using data-driven methods is the avail-
ability of good-quality electricity production data. Any system that
calculates carbon intensity using Eq. 1 needs a consistent �ow of
electricity production data by each source. However, such data is
unavailable in su�cient detail and granularity outside the US, Eu-
rope, and Australia. Even these regions may su�er from outages
[35], which may result in electricity generated from one or multiple
sources not being reported for an extended time. In these cases,
carbon intensity forecasts cannot be calculated using the analytical
equation approach since we do not have su�cient data. If we calcu-
late by adding zero values for the missing source, forecast quality
deteriorates heavily. However, since CarbonCast uses an additional
tier of machine learning model, it is resilient against such missing
data and can perform well even if some source is unavailable.
We design a simple experiment to prove our claim. Fig. 1 shows

the fraction of electricity produced by each source in California
during the 2020 � 21 period. Solar is one of California’s most im-
portant sources of electricity, contributing to about 20% of the total
electricity generation. To prove our hypothesis, we remove solar
production forecast from both the input to our second tier and the
equation to calculate the carbon intensity forecast, to simulate a
scenario where this data is unavailable.

We see that CarbonCast performance has negligible e�ect as other
features compensate for the missing data. In this particular case,
the model assigned more weights to historical carbon intensity and
solar irradiance (DSWRF) to cope with the missing solar production

CISO Hierarchical Non-hierarchical

All
sources

No solar
data

All
sources

No solar
data

Day 1 9.40 9.53 7.51 33.54
Day 2 13.23 12.24 14.15 34.05
Day 3 15.09 13.99 18.34 36.31
Day 4 15.75 14.98 19.76 37.27

Table 3. CarbonCast performance (in terms of MAPE) is comparable even
when some source data is missing, whereas performance of the non-
hierarchical approach degrades heavily.

forecast. In contrast, the non-hierarchical performance in California
with missing solar data degrades by 2 � 5x times (refer Table 3).

While this is an extreme case and techniques like replacing miss-
ing data with data from an earlier time period can o�set such per-
formance degradation to some extent, there may still be high fore-
casting errors as past data may not always be similar to the missing
data. We show in Section 4.2.2 that CarbonCast works better than
non-hierarchical methods even in these cases.

4.2.2 Resiliency against noise in input. We can replace missing
data using various imputation techniques. Since the substitute data
is an estimate, we can treat it as noise in the input data. The amount
of noise depends on the type of data missing, but CarbonCast is
more robust than a non-hierarchical method in all such cases. To
show this, we carry out two experiments. First, we assume solar
data is missing for the test period (June – December 2021). Next,
we assume natural gas data is missing for the same time period.
We choose natural gas because it generates the most fraction of
California’s electricity and has a high CEF. Hence, noisy natural
gas data is expected to have the most e�ect on carbon intensity
forecasts. In both cases, we substitute the missing data with data
from the previous year (June – December 2020) and forecast carbon
intensity using both approaches. Table 4 lists the results. We see that
although the non-hierarchical method can cope with the previous
year’s solar data, its performance degrades by 1.3 � 2x times when
the previous year’s natural gas data is used. In contrast, CarbonCast
performance is similar in all such cases.

Additionally, even when data is available, forecast accuracy gen-
erally deteriorates as the forecasting period increases. Fig. 7 shows
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CISO Hierarchical Non-hierarchical

All sources Solar data
imputed

Nat_gas data
imputed All sources Solar data

imputed
Nat_gas data
imputed

Day 1 9.40 9.49 9.42 7.51 8.84 14.76
Day 2 13.23 12.64 13.34 14.15 14.33 19.80
Day 3 15.09 14.44 15.72 18.34 18.49 22.74
Day 4 15.75 15.08 17.24 19.76 19.67 24.18

Table 4. When original data is missing, it can be replaced via techniques like using data from an earlier time period. Non-hierarchical approach performance
can still degrade, whereas CarbonCast is more resilient to the noise introduced by such techniques.

howwind and natural gas production forecast errors increase in Cal-
ifornia with the forecasting period. Our hierarchical design is also
resilient to such noisy source production forecasts. Even for short
forecast periods, since equation-based approaches assign a �xed
weight to each source production forecast (where the weight is the
CEF of that source), the accuracy of such methods depends heavily
on the accuracy of these forecasts. However, adding another tier of
learning enables CarbonCast to re-weight the input features and ad-
just for the noise. To prove this, we set up a simple experiment. We
start with perfect source production forecasts in California and then
gradually add Gaussian noise to the natural gas production forecast
and observe its e�ect on day-ahead carbon intensity forecasts. Since
natural gas has the highest electricity-generation fraction in Cali-
fornia and also has a high CEF, if all inputs to the system are perfect
and only one is varied, a noisy natural gas forecast is expected to
have the most e�ect on carbon intensity forecasts. Fig. 8 shows that
in California, the equation-based approach worsens linearly as we
add noise to the natural gas production forecast, while CarbonCast
is more robust to the noise.

Fig. 7. Source production forecasts get more erroneous with increasing
forecasting period.

Fig. 6 shows that the CDF plots for CarbonCast become better
than that of an equation-based approach from day two onwards. The
90C⌘ percentile MAPE of CarbonCast becomes better by 18.39% (resp.
15.83%), 23.47% (resp. 22.54%), and 25.57% (resp. 21.64%) with direct
(resp. lifecycle) emission factors on average across the regions when
forecasting days 2, 3 and 4, respectively. In this paper, we only show
the CDF plots for California considering direct emission factors, but
this e�ect is visible for other regions as well as lifecycle emission
factors. Ideally, CarbonCast should be able to learn optimal weights
and match the performance of the equation-based approach even on
day one. However, any neural-network model has intrinsic errors

Fig. 8. CarbonCast is resilient to noise in the input, in contrast to equation
based approaches.

while learning, and due to this, CarbonCast performance is slightly
worse than the equation-based approach. This is evident from Fig. 12.
Even with perfect source production forecasts, CarbonCast forecasts
still have errors, whereas the equation-based approach would give
perfect forecasts in this case.
In general, we see that CarbonCast performs on par or better

as the forecasting period increases. Thus, we conclude that our
hierarchical design is more suitable for multi-day forecasts due to
the ability to re-weight the input features.

Fig. 9. CarbonCast forecasts generally match actual values, but get progres-
sively worse with larger forecasting periods.

4.3 CarbonCast forecasting performance
We now evaluate how CarbonCast performs in 13 regions across
the US, Europe, and Australia. Fig. 9 shows an hourly time series
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averaged over a week for the actual and forecasted carbon intensities
of the electricity grid in California. Table 5 (resp. Table 6) lists
CarbonCast 96-hour forecasting performance across all the regions
(in terms of MAPE) when direct (resp. lifecycle) emission factors are
considered while calculating the average carbon intensity forecast.
CarbonCast MAPE ranges from 3.42�19.95%when aggregated over
96 hours. When averaged over all the regions, CarbonCast has a
MAPE of 9.78% (resp. 8.38%) across the regions when direct (resp.
lifecycle) emission factors are considered. The day-wise MAPE in
CarbonCast ranges from 2.93 � 24.70% (resp. 2.52 � 21.12%) across
the regions with direct (resp. lifecycle) emissions. In general, we see
that CarbonCast errors increase with the forecasting period.

Region Mean Median 90th per-
centile

95th per-
centile

CISO 13.37 11.96 22.21 25.99
PJM 4.80 4.04 8.10 9.70

ERCOT 11.13 8.76 21.25 27.17
ISO-NE 6.46 5.55 11.33 13.50
NYISO 9.52 5.72 31.64 35.82
BPAT 14.71 13.49 23.73 27.86
FPL 3.54 2.93 5.93 7.45
SE 10.07 8.54 17.78 20.39
DE 13.93 11.30 24.34 29.99
PL 4.58 4.07 7.22 9.07
ES 19.95 17.25 35.47 40.74
NL 9.68 9.00 15.72 17.66

AUS-QLD 5.35 5.07 7.85 8.54
Table 5. CarbonCast 96-hour forecast performance (using direct emission
factors, in terms of MAPE)

Region Mean Median 90th per-
centile

95th per-
centile

CISO 11.45 9.91 18.58 24.27
PJM 5.29 4.51 8.74 10.17

ERCOT 11.14 8.40 21.44 28.85
ISO-NE 6.41 5.50 10.96 13.29
NYISO 9.09 5.86 28.09 32.24
BPAT 11.22 10.51 18.23 21.16
FPL 3.15 2.64 5.24 6.44
SE 5.78 5.12 9.47 11.36
DE 11.72 9.16 20.90 27.60
PL 4.37 3.76 7.49 9.31
ES 16.65 14.26 30.07 34.26
NL 8.25 7.67 13.43 14.88

AUS-QLD 4.46 4.18 6.72 7.64
Table 6. CarbonCast 96-hour forecast performance (using lifecycle emission
factors, in terms of MAPE)

The regions where we have evaluated CarbonCast are diverse in
terms of location, energy sources, and renewable production. For
example, Sweden has a high hydro and wind (renewable) generation.

In contrast, other regions have a high percentage of non-renewable
fossil fuels (e.g., PJM with natural gas and coal). Our technique
performs well and is robust enough to be re-trained and used in
these representative regions. Given that CarbonCast is able to work
in diverse regions, we conclude that it is an e�ective system for
forecasting grid carbon intensity in most regions across the world.

4.4 CarbonCast error analysis
We analyze why CarbonCast has higher forecasting errors when
aggregated over 96 hours for some regions. While we show the anal-
ysis for direct emission factors, the results are similar for lifecycle
emission factors. We posit that regions with a higher fraction of

Fig. 10. CarbonCast errors are generally higher in regions that have a larger
contribution from volatile sources such as solar and wind.

electricity generated from volatile sources have higher forecasting
errors. Since solar and wind are typically the volatile sources in
most of the regions, we plot the correlation between the fraction
of electricity generated by solar/wind in a region over the testing
period (July — December 2021) and the forecasting errors in terms
of MAPE. Fig. 10 shows a positive linear correlation between solar
and wind generation and the forecasting errors. One notable outlier
in Fig. 10 is Washington (BPAT), which has a high MAPE despite
having a relatively lower fraction of electricity generated from solar
and wind. This is because electricity in BPAT is mostly generated
from hydro (⇠ 70%), which meets any electricity requirement in the
region when volatile solar and wind are unavailable. This is shown
in Fig. 11, which shows electricity generation by each source over
a week during the test period, where hydro compensates for solar
and wind. Consequently, hydro acts as another volatile electricity-
generating source, which increases the forecasting error.

To further con�rm that errors in the source production forecasts
of volatile solar and wind are partly the reasons for higher errors, we
take three regions with high forecasting errors and replace the solar
and wind production forecasts with actual values, simulating a zero-
error forecast scenario. We keep all other inputs the same. Fig. 12
shows theMAPE of these regions with ideal solar andwind forecasts.
The MAPE decreases by 22.29%, 20.53%, and 11.58% in California
(CISO), Germany (DE), and Spain (ES), respectively, con�rming that
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Fig. 11. Washington electricity generation by source over a week. Hydro
compensates for the volatile nature of solar and wind in the region.

errors in production forecasts of volatile sources are partly why
CarbonCast has higher forecasting errors in some regions.

Fig. 12. CarbonCast performance (in terms of MAPE) improves with be�er
source production forecasts.

Next, we extend this idea and claim that for any region, the fore-
casting errors in CarbonCast are mainly due to errors in source
production forecasts. We show this by replacing all source produc-
tion forecasts with their actual values (represented as “All ideal
forecasts” in Fig. 12. With ideal forecasts, the forecasting errors
(MAPE) in these regions decrease to 3.78%, 3.32%, and 3.99%, respec-
tively. In this case, the MAPE obtained represents the error intrinsic
to our prediction method independent of the source production
forecast errors. This con�rms our hypothesis that CarbonCast fore-
casting errors are mainly due to errors in the source production
forecasts.
Thus, from this section and Section 4.2.2, we conclude that al-

though the hierarchical nature of CarbonCast adds robustness to

the forecasts against noisy inputs like erroneous source production
forecasts, the performance can be further improved by bettering
the source production forecasts themselves. In the next section, we
show which source productions to focus on for a particular region
to get the maximum improvement in performance.

4.5 Feature importance
We evaluate which features are deemed important by CarbonCast for
a particular region while forecasting the grid carbon intensity. Fig.
13 shows the top 10 features while predicting the carbon intensity
of California using direct emission factors. A higher absolute value
means more weightage has been assigned to that particular feature,
and it is more important. We see that the carbon intensity forecasts
for California rely heavily on solar production forecasts. In general,
historical carbon intensity is a strong indicator of future carbon
intensity for any region because carbon intensity has both daily and
seasonal patterns. For example, carbon intensity is generally lower
during the day in California due to solar production. The ordering
of features varies across the regions. For example, in Texas, wind
speed and wind production forecasts have a high weightage, while
coal production forecast is one of the most important features in
PJM.

Fig. 13. Features (L to R): Historical carbon intensity, hour of day (h_sin);
temperature forecast, dewpoint forecast, solar irradiance (DSWRF) forecast,
average precipitation forecast; forecasts of nuclear production, solar pro-
duction, natural gas production, and wind production.

We inferred from Section 4.4 that even though the hierarchical na-
ture of CarbonCast provides robustness against noise in inputs, the
performance can be further improved with better source production
forecasts. Our feature importance results tell us which feature to
focus on �rst to most improve CarbonCast’s performance. Suppose
we want to invest in improving a feature in California. Although
natural gas produces the highest fraction of net electricity in Cal-
ifornia (refer Fig. 1), we should �rst invest in improving the solar
production forecast to get maximum improvement.

4.6 Comparison with state-of-the-art
We now show how CarbonCast compares with the state-of-the-art.
Recent works mostly forecast only day-ahead [12, 14, 22] or 48-hour
carbon intensity [16], and extending many of those approaches to
forecast over a 96-hour period is not straightforward. Some methods
provide multi-day forecasts [25] but are proprietary, and we do not
have access to their model/data for comparison. Consequently, we
compare CarbonCast with the following two recent works, which
we could extend to give 96-hour forecasts:
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Day 1 forecast Day 2 forecast Day 3 forecast Day 4 forecast

Region SOTA1 SOTA2 CC SOTA1 SOTA2 CC SOTA1 SOTA2 CC SOTA1 SOTA2 CC
CISO 10.71 6.45 8.08 18.99 12.26 11.19 25.24 16.02 12.93 31.64 17.22 13.62
PJM 4.27 3.08 3.69 7.11 5.51 4.93 8.90 7.06 5.87 9.77 8.15 6.67

ERCOT 14.09 7.87 9.78 20.86 12.74 10.93 24.46 14.94 11.61 26.30 16.21 12.23
ISO-NE 5.54 4.32 5.10 8.10 9.23 6.33 10.07 10.69 6.97 11.26 11.57 7.25
NYISO 6.03 6.84 6.91 10.48 10.56 9.06 13.92 13.48 9.95 16.29 15.74 10.42
BPAT 8.40 6.99 7.81 12.42 10.44 10.61 14.62 13.18 12.44 16.57 15.65 14.00
FPL 2.90 2.39 2.52 4.38 3.11 3.01 5.63 3.65 3.41 6.58 4.00 3.68
SE 5.10 3.28 4.29 7.96 5.92 5.64 9.59 6.79 6.43 10.17 7.33 6.74
DE 15.54 7.21 7.81 31.56 11.82 10.69 42.16 13.95 12.80 50.85 16.57 15.55
PL 5.58 2.37 3.12 10.29 4.16 4.14 12.93 4.85 4.72 14.47 5.57 5.50
ES 13.45 10.82 10.12 26.66 17.57 16.00 34.47 20.44 19.37 40.08 21.41 21.12
NL 8.07 5.02 6.06 13.43 7.52 7.87 16.34 9.24 9.08 18.81 10.64 9.99
AUS-
QLD 4.43 3.91 3.93 7.67 5.06 3.98 10.77 5.76 4.06 12.99 6.27 5.87

Table 7. Daywise MAPE comparison of CarbonCast (CC) versus state-of-the-art methods (lifecycle emission factors).

Day 1 forecast Day 2 forecast Day 3 forecast Day 4 forecast

Region SOTA1 SOTA2 CC SOTA1 SOTA2 CC SOTA1 SOTA2 CC SOTA1 SOTA2 CC
CISO 12.40 7.51 9.40 21.92 14.15 13.23 29.14 18.34 15.09 36.64 19.76 15.75
PJM 4.25 3.32 3.44 7.08 6.03 4.56 8.89 7.97 5.25 9.78 9.35 5.94

ERCOT 13.69 7.95 9.65 20.04 12.36 10.93 23.29 14.53 11.64 25.02 15.80 12.29
ISO-NE 5.69 4.43 5.22 8.25 9.46 6.49 10.18 10.96 6.96 11.34 11.89 7.15
NYISO 6.55 7.40 7.45 11.29 11.42 9.64 15.00 14.59 10.42 17.55 16.99 10.59
BPAT 10.95 9.37 10.25 16.25 14.08 14.10 19.44 17.85 16.39 22.21 21.16 18.10
FPL 3.06 2.60 2.93 4.57 3.36 3.46 5.86 3.94 3.77 6.83 4.32 4.01
SE 7.07 6.52 7.95 10.87 10.85 9.79 13.11 12.28 11.00 14.00 13.21 11.55
DE 17.59 8.67 9.46 35.65 12.69 13.46 47.80 14.80 15.28 58.13 19.56 17.52
PL 5.84 2.59 3.50 10.76 4.47 4.24 13.58 5.16 4.85 15.23 5.90 5.73
ES 15.92 12.98 12.89 31.49 20.92 19.39 41.07 24.23 22.81 48.08 25.35 24.70
NL 8.56 5.85 6.38 14.11 9.24 8.99 17.17 11.66 10.98 19.84 13.42 12.38
AUS-
QLD 4.72 4.20 4.95 8.14 5.47 5.41 11.45 6.24 5.57 13.81 6.80 5.48

Table 8. Daywise MAPE comparison of CarbonCast (CC) versus state-of-the-art methods (direct emission factors).

1) SOTA1: Bokde et al. [16] decompose the univariate carbon inten-
sity time series into seasonality, trend and noise components. Then,
they forecast each component separately using techniques like Feed
Forward Neural Network (FFNN) and ARIMA and recombine to
get 48-hour carbon intensity forecasts. For the purpose of compar-
ison, we implement a representative univariate Seasonal-ARIMA
(SARIMA) model with a 96-hour forecasting period as an example
of such a method and compare it with CarbonCast.
2) SOTA2: DACF [12] forecasts each source individually and then
uses Eq. 1 to get day-ahead average carbon intensity forecasts. Their
approach is similar to our �rst tier, and their code is publicly avail-
able. So, we extended their approach to forecasting carbon intensity

for 96 hours. They used direct emission factors, but converting to
lifecycle emission factors for our comparison is straightforward.
Other works on forecasting short-term carbon intensities either

mostly use a combination of the methods mentioned above [22]
or have limitations in extending the forecast period [14]. Thus, we
claim that the above two implementations fairly represent any state-
of-the-art multi-day carbon forecasting systems.

Table 7 provides a day-wise comparison of all the approaches in
terms of MAPE, with the best-performing method highlighted in
bold. We see that CarbonCast almost always outperforms SOTA1
[16]. When compared with SOTA2 (DACF) [12], there is a clear dis-
tinction wherein SOTA2 gives better forecasts initially, but as the
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input data (weather forecasts, source production forecasts etc.) get
progressively worse with an increasing forecasting period, Carbon-
Cast starts to perform better as it is more robust to input noise. For
most of the regions, CarbonCast is better than SOTA2 from day 2
onwards. In some regions, SOTA2 has a better MAPE till day 2 or
even day 3. However, CDF plots of both approaches in these cases
show that their results are still comparable, and the above conclu-
sion still holds. The results are similar with both lifecycle and direct
emission factors.
When aggregated over 96 hours for the whole test period, Car-

bonCast using direct (resp. lifecycle) emission factors has an average
MAPE reduction of 9.96% (resp. 8.91%) across the regions.

4.7 CarbonCast runtime overheads
Finally, we break down the time taken by CarbonCast to generate
96-hour forecasts using commodity hardware. The �rst tier takes
2 secs per epoch to train. We limited the number of epochs to 100.
So, the �rst tier takes at most 200 secs to train. We forecast six
months at a time, which takes ⇠ 30 secs (forecasting a single 96-
hour period takes 0.15 secs on average). The time taken to generate
such forecasts is similar for all the sources, and since the source
production forecasts can be generated in parallel, we say that the
�rst tier runtime upper bound is ⇠ 4 mins. The second tier can only
be run after the �rst tier forecasts are obtained, and takes 9 secs on
average per epoch during training. Hence, it takes at most 15 mins
to train (max. 100 epochs). After training, forecasting a 4-day period
takes 0.5 secs on average.
We see that CarbonCast takes ⇠20 mins, with most of the time

taken during training. Usually, the forecast accuracy of CarbonCast
decreases as the forecast period increases. To counter the inaccu-
racies due to a longer forecasting period of 96 hours, we can train
CarbonCast periodically (say, every =C⌘ day) and generate 96-hour
forecasts daily. This method will result in CarbonCast taking ⇠20
mins on day one and taking < 1 sec on days 2 � =, and enable
practitioners to update their carbon optimization decisions daily
with an updated and more accurate forecast if required.

5 DISCUSSION
Wenowdiscuss aspects of CarbonCast that pertain to its architecture
and use.

5.1 CarbonCast compatibility and flexibility
From the results in Sections 4.2 and 4.6, we conclude that CarbonCast
is a better system for multi-day forecasts than the current state-of-
the-art. Additionally, CarbonCast’s �exibility gives practitioners
the option to use CarbonCast along with approaches like DACF
[12]. Both approaches can be run in parallel, and DACF [12] can be
used for shorter forecasting periods, while CarbonCast can replace
DACF [12] as its performance starts to degrade. For example, carbon
optimization decisions for 0 � 24 hours can be based on DACF
[12] forecasts, with the following hours’ forecasts coming from
CarbonCast. Another bene�t of CarbonCast’s hierarchical approach
is that if some source production forecast is highly erroneous and
degrades the overall performance, it can be removed since there are

other features that can compensate for the removed input, which
increases robustness.

5.2 E�ects of electricity imports and exports on
CarbonCast

When considering electricity imports, the average carbon intensity
of a region can be considered as a weighted average of the elec-
tricity generated in that region and the carbon intensities of each
importing region. Thus, for any region, if the percentage of elec-
tricity imported from other regions is small in comparison with the
amount of electricity generated or if the importing regions have a
similar average carbon intensity to that region, the average carbon
intensity of that region will not di�er signi�cantly with or without
imports.
If that is not the case, the carbon intensity of imported electric-

ity may be an important factor in calculating the average carbon
intensity of a region. In this case, more experiments are needed
to understand the e�ects of imported carbon intensity. However,
calculating the amount of electricity imported from a particular
region is complex, and we treat it as an important future work.
Having said that, CarbonCast framework will still work if we have
imported carbon intensity data without any design changes. If we
have such data, we can treat that as another electricity-generating
source in the region with carbon emission factor equal to the carbon
intensity value, and add it as an input to CarbonCast for getting
carbon intensity forecasts.

5.3 Average versus marginal carbon intensity forecasting
In this work, we focused on average carbon intensity, which is
de�ned to be the weighted average of the carbon emission factors
(CEFs) of all sources in a particular region. However, not all sources
contribute to each new unit of electricity generated in a region.
Typically, the generators of only a subset of the sources are ramped
up to produce the incremental amount of energy needed to satisfy
an incremental amount of new demand. We call these sources to be
on the margin. The marginal carbon intensity per unit of electricity
generated in a region is the weighted average of carbon emission
factors of only those sources that are on the margin.

Both average and marginal carbon intensities are relevant metrics
that are applicable in di�erent contexts. For instance, consider the
use of carbon intensity forecasts for building a carbon-aware load
balancer. If we wish to redirect a small incremental load to data
centers in greener regions in real-time, and we wish to know the
incremental carbon impact of that action, marginal carbon intensity
is a better metric for quantifying that impact. However, if we are
delaying the execution of workloads to greener times, or if the
workload is big enough to change the electricity sources in the
margin, average carbon intensity may be a better metric to use.

In the longer term, we would like CarbonCast to provide forecasts
of both types of carbon intensities and leave it to the application
developers to decide what types of forecasts to use. We started by
providing average carbon intensity forecasts since it is much easier
to obtain the ground truth and compute the MAPE for this metric.
Ground truth data for marginal carbon intensity is seldom available.
We mentioned in Section 4.2.1 that hourly electricity generation
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data is mainly available in the US, Europe, and Australia. However,
even within the aforementioned regions, grid operators generally
only publish how much electricity is generated by each source in
that region but no information about which electricity sources are
on the margin at a speci�c time, rendering the calculation of mar-
ginal carbon intensity di�cult. Although Watttime [38] publishes
marginal carbon intensity forecasts, they do not disclose their data
sources, and hence it cannot be used by other forecasting solutions.
To the best of our knowledge, only PJM has recently started pub-
lishing marginal emissions data [27]. As more grid operators start
publishing marginal emissions data, CarbonCast can use that to
provide multi-day marginal carbon intensity forecasts, and this is
listed as future work.

6 RELATED WORK
Predicting carbon intensity is becoming increasingly popular for
solving problems like smart charging of electric vehicles [13], reduc-
ing carbon footprints in residential heating [17], and other carbon
reduction optimizations. Lowry [22] provides grid carbon intensity
forecasts for heating, ventilation and air-conditioning (HVAC) sys-
tems using only historical data. Leerbeck et al. [14] forecast grid
carbon intensity for Denmark using linear regression and ARIMA.
These works have a �at design, whereas CarbonCast has a hierar-
chical architecture. CarbonCast also considers source production
forecasts for all electricity-generating sources in a region, unlike
[14, 22]. DACF [12] uses an approach similar to CarbonCast’s �rst
tier, but CarbonCast has an additional tier of deep learning models,
making it more robust to inaccuracies in the inputs. Tomorrow’s
ElectricityMap [9] provides carbon intensity forecasts for many re-
gions but is a proprietary service: its models are not public, and the
data is available at a cost. Additionally, all these techniques provide
only day-ahead carbon intensity forecasts, while CarbonCast can
forecast up to 96 hours. Among the techniques providing multi-day
forecasts, National Grid ESO [25] provides freely accessible APIs
[10], but they are constrained to the UK region since neither their
data nor models are available publicly. Watttime [38] provides up to
72-hour marginal carbon intensity forecasts, whereas CarbonCast
provides 96-hour average carbon intensity forecasts. Besides, Watt-
time [38] also have the same problems as [9]. Bokde et al. [16] use
decomposition techniques and statistical methods to get 48-hour
forecasts. However, similar to [22], they also use only historical data
and hence su�er from high forecasting errors, whereas CarbonCast
uses future knowledge to get more precise forecasts.

7 CONCLUSIONS
In this paper, we presented CarbonCast, an open-source two-tiered
hierarchical modelling framework to provide grid carbon intensity
forecasts for up to 96 hours. CarbonCast obtains source production
forecasts from its �rst tier and then combines all source forecasts
with weather forecasts and historical data in the second tier to
compute a carbon intensity forecast. Our results show that our hier-
archical design makes CarbonCast robust against the uncertainty
associated with a longer forecasting period. CarbonCast has a MAPE
of 9.78% (resp. 8.38%) across the regions using direct (resp. lifecycle)

emission factors. It achieves an average decrease of 9.96% (resp.
8.91%) in MAPE over the 96-hour forecasting period compared to
the state-of-the-art approaches. We also show which source pro-
duction forecasts are crucial to obtaining precise carbon intensity
forecasts in a particular region. Further, its plug-and-play frame-
work provides the �exibility to choose the best-performing model
for each region while also providing a general approach that works
well across various geographically distributed electric grids.

CarbonCast is the �rst open-source tool for multi-day forecasting,
with both code and data freely available for researchers. We hope
that CarbonCast will enable more research in carbon-aware systems
that require carbon intensity forecasts. As future work, we plan to
extend CarbonCast to even more regions, provide marginal carbon
intensity forecasts, incorporate the impact of energy exchange be-
tween electric grids, generate sub-hourly forecasts and also increase
its forecasting period further.
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