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Abstract
A major obstacle for caching research is the increasing diffi-

culty of obtaining original traces from production caching systems.
Original traces are voluminous and also may contain private and
proprietary information, and hence not generally made available to
the public. The lack of original traces hampers our ability to evaluate
new cache designs and provides the rationale for JEDI, our new
synthetic trace generation tool. JEDI generates a synthetic trace that
is “similar” to the original trace collected from a production cache,
in particular, the two traces have similar object-level properties and
produce similar hit rates in a cache simulation. JEDI uses a novel
traffic model called Popularity-Size Footprint Descriptor (pFD) that
concisely captures key properties of the original trace and uses the
pFD to generate the synthetic trace. We show that the synthetic traces
produced by JEDI can be used to accurately simulate a wide range of
cache admission and eviction algorithms and the hit rates obtained
from these simulations correspond closely to those obtained from
simulations that use the original traces. JEDI will be provided to
the public as open-source, along with a library of pFD’s computed
from traffic classes hosted on Akamai’s production CDN. This will
allow researchers to produce realistic synthetic traces for their own
caching research.
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1 Introduction
Billions of users access the Internet daily to download many

forms of content, including videos, documents, images, web pages,
and software. Content caching is ubiquitous and critical to the func-
tioning of the Internet. Most of the content accessed by users are
delivered by content delivery networks (or, CDNs) [24, 47] consist-
ing of hundreds of thousands of caches deployed in thousands of
datacenters around the world. CDNs enable fast and reliable access
to content by caching it in servers proximal to users.

Cache hits and misses. When a user accesses a web page or a
video, a request is sent to a proximal CDN server that serves the
content if it is present in its cache (called a cache hit). If the content
is not found in its cache (called a cache miss), the CDN server
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fetches that content over the WAN from an origin server and serves
it to the user. The efficiency of a cache is often measured by two
different metrics: the request hit rate (RHR) which is the fraction of
requests for content that resulted in cache hit and the byte hit rate
(BHR) which is the fraction bytes that were served from cache hits.

Caching benefits. Content caching provides both performance
and cost benefits. Caching provides better performance by enabling
users to download content from a proximal cache with low latency
and higher reliability, allowing web pages to download faster and
video streams to play with better quality. Maximizing the RHR is key
to maximizing the performance benefit since a cache miss introduces
large WAN latencies, resulting in users experiencing slow content
downloads. Caching also provides a cost benefit since retrieving the
content from a nearby cache avoids fetching that content over the
WAN, resulting in a reduction in traffic between the CDN cache and
the content provider’s origin server, decreasing the bandwidth cost
[55] incurred by the CDN for the cache miss traffic. Further, caching
reduces the content provider’s origin infrastructure cost of serving
the cache miss traffic. Maximizing BHR is key to minimizing cost,
since BHR weights each cache hit by the size of the object and
the traffic (in bits per second) caused by cache misses is directly
proportional to the byte miss rate that equals 1 - BHR.

Cache admission and eviction. A cache management system
has two components designed to maximize RHR and/or BHR: the
cache admission algorithm decides what objects are admitted into
cache and the cache eviction algorithm decides what objects will
be evicted from cache when it is full. Both cache admission and
eviction algorithms have been topics of intense research over the
past decades [7, 17, 32, 33, 35, 44, 61]. Caching continues to be
a focus for innovative research both within academia and industry
as the characteristics of the content and the manner in which it is
accessed becomes more diverse and complex.

Content features used in caching. The algorithms that imple-
ment cache management policies typically rely on features of the
objects that are being requested by users to make their decision. Tra-
ditionally, cache admission algorithms have used popularity or size
of the object to decide whether or not to admit an object into cache.
For instance, a common popularity-based approach implemented by
production CDNs such as Akamai is to an admit an object into the
disk cache only after it is request 𝑘 times, typically 𝑘 = 2 and a bloom
filter is used to detect the second access of an object [41]. For smaller
caches, such as the hot-object cache in memory, algorithms such as
AdaptSize [15] use a size threshold and allow only objects smaller
than the threshold to be admitted to cache. The use of a size thresh-
old is common for smaller caches since admitting a large object into
cache could result in the eviction of numerous smaller objects. In
contrast, cache eviction policies have commonly relied on features
related to recency or frequency of access [7, 23, 29, 44, 61], evicting
those objects that are less recently or less frequently accessed.

Challenges obtaining original traces. Caching research is in-
creasingly important as newer content types and access patterns
challenge the effectiveness of existing caching algorithms. However,
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Figure 1: System architecture of JEDI.

a major obstacle for research progress is the increasing difficulty of
obtaining original traces from production CDN caches. An original
trace is a sequence of records where each record corresponds to a
request for an object made by an user. Each record contains at least
the id (such as url) of the requested object, the size of that object, and
the time when it was accessed. Thus, the original trace has all the
information needed for performing realistic cache simulations. The
reason for the dearth of original traces are manifold. First, the origi-
nal traces are voluminous, making it hard to collect and distribute.
Second, the original traces often have private or proprietary infor-
mation, making it difficult to share across enterprise boundaries and
to provide publicly for researchers. Finally, even if original traces
can be obtained, they represent only a few of the possible scenarios
that may occur in the field, making it harder to investigate what-if
questions that go beyond those scenarios. These challenges motivate
our research on synthetic trace generation.

Traffic classes and composability. Modern CDNs serve highly-
diverse content that vary in type, size, and access patterns. For ease
of traffic management, it is customary to partition the content served
by a CDN into traffic classes [54] where each class corresponds
to a specific content type of a specific content provider, example,
images from Facebook, software downloads from Microsoft, and
video segments from Netflix each form a traffic class. A large CDN
may serve several hundred traffic classes overall and each cache may
serve time-varying mix of multiple traffic classes.

Goal of synthetic trace generation. The goal of synthetic trace
generation is to produce a synthetic trace Π𝑠 that is “similar” to an
original trace Π𝑜 of a traffic class in the following two respects: (i)
Traces Π𝑜 and Π𝑠 have similar object-level properties, i.e., the total
variation distances [3] of the respective object-size distributions,
popularity distributions, and request-size distributions are small,
and (ii) Traces Π𝑜 and Π𝑠 have similar cache-level properties, in
particular, a cache simulation that uses trace Π𝑠 and another that uses
trace Π𝑜 must produce similar values for metrics such as RHR and
BHR. In addition, given original traces for multiple traffic classes,
the trace generator should be able to generate a synthetic trace
corresponding to an arbitrary mix of those classes.

Our approach. We propose a model-based trace generator JEDI
(c.f., Fig. 1) that works as follows. Given an original trace Π𝑜 , a
traffic modeler computes a model that we call Popularity-Size Foot-
print Descriptor (pFD) that captures key properties of the original
trace. The traffic mixer enables pFD’s of multiple individual traffic
classes to be used to derive the pFD of an arbitrary mix of those
classes. Finally, the trace generator produces a synthetic trace from
the pFD of the traffic class (or, mix). Our approach is most similar to

TRAGEN [50] that also uses a model-driven approach using two dif-
ferent models called Footprint Descriptor (FD) and Byte-weighted
Footprint Descriptor (bFD). Our work is significant advance over
TRAGEN as we explain below.

Our contributions. We make the following contributions.
(1) JEDI uses a novel traffic model called Popularity-Size Foot-

print Descriptor (pFD) that captures both the object-level properties
and cache-level properties of an original trace. The important char-
acteristics of our traffic model are: (i) pFD’s are succinct and are
orders of magnitude smaller than the original production traces. The
pFDs computed from original traces of size 100’s of GB are around
100MB and hence 1000 times smaller; (ii) pFD’s are efficiently com-
putable from an original trace in 𝑂(𝑁 log𝑚) where 𝑁 is the length
of the original trace and 𝑚 is the number of objects in the trace.
In our implementation that uses python, a pFD can be computed
in around 120 minutes for a trace that consists of 100 million re-
quests; (iii) pFDs are composable i.e., the pFD of a traffic mix can
be efficiently computed from the pFDs of individual traffic class by
leveraging Fast Fourier Transforms. Our implementation, in python,
takes around 30 minutes to compute the pFD of a traffic mix given
individual pFDs.

(2) JEDI is the first tool that can produce a synthetic trace Π𝑠

that has similar object-level properties and cache-level properties
as that of the original trace Π𝑜 . In particular, the total variation dis-
tance between the object-size distributions, popularity distributions
and request-size distributions derived from traces Π𝑠 and Π𝑜 are
1.1 × 10−3, 5.7 × 10−3, 1.1 × 10−2 respectively. Further, for cache-
level properties, the average difference in RHR (resp. BHR) for Π𝑆

and Π𝑜 is 1.2% (resp. 0.6%) across all cache simulations that we
performed. In contrast, the state-of-the-art synthetic trace genera-
tion tool TRAGEN does not produce a synthetic trace with similar
object-level properties as the original. While TRAGEN produces a
synthetic trace that has a similar size distribution as the original trace,
the popularity distributions and the request-size distributions of the
two traces are not similar. Further, TRAGEN can only produce a
synthetic trace that has either a similar RHR or BHR as the original,
and not both simultaneously. JEDI meets a higher bar of similarity
by simultaneously matching three key object-level distributions and
two key cache-level metrics of the synthetic and original traces.

(3) Since JEDI produces a synthetic trace that matches the origi-
nal trace in object-level properties, it can be reliably used to simulate
cache admission algorithms that use object size and popularity fea-
tures for decision making. In particular, we show that traces produced
by JEDI provide more accurate simulations of cache admission al-
gorithms that use object size and popularity features than TRAGEN.
Likewise, the traces produced by JEDI provide more accurate simu-
lations of cache eviction algorithms that use object size (e.g., GDSF)
than TRAGEN. However, JEDI and TRAGEN perform similarly
for cache eviction algorithms that rely only on recency features. In
summary, synthetic traces produced by JEDI produces more accu-
rate simulations for a broader set of cache admission and eviction
algorithms than TRAGEN.

(4) JEDI is publicly available for download as an open-source1

contribution, along with a library of pFD’s computed from traf-
fic classes hosted on Akamai’s production CDN. This will allow

1It can be downloaded from https://github.com/UMass-LIDS/Jedi
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researchers to produce realistic synthetic traces for their own caching
research. Our traffic modeler component also allows other researchers
to create pFD’s for their own original traces.

JEDI limitations. We are able to prove that the trace generation
algorithm works for an LRU cache, using theoretical models such
as footprint descriptors [54] that capture the caching properties of
an LRU cache. However, proving that a trace generation algorithm
works for arbitrary (non-LRU) cache algorithms is hard because
there are no theoretical models that capture the caching properties of
such algorithms. Even though we do not prove that hit rates match for
non-LRU algorithms, the synthetic trace generated by JEDI captures
essential features of the original trace such as the access patterns
(temporal locality), popularity distribution, and the size distribution
of the objects in the trace. So, (non-LRU) cache algorithms that
use these features to make cache admission and eviction decisions
provide similar hit rates on the synthetic trace as the original trace,
despite the lack of theoretical guarantee on hit rates. We demonstrate
this fact for a wide range of cache algorithms through extensive
empirical evaluations (§6).

Relation to prior work. Most prior work on synthetic trace gener-
ation propose tools that generate synthetic traces that are representa-
tive of web traffic [13, 18, 34, 36, 46]. These tools from past decades
do not cater to the diverse traffic classes and traffic mix scenarios
that modern content caches serve. Most importantly, these tools fail
to generate a synthetic trace that satisfies the cache-level properties
of an original trace as we show in §6.5. A recent tool, TRAGEN
[50], partially overcomes this challenge by producing a synthetic
trace that has the same cache-level properties as the original trace
for cache algorithms that use recency as a feature to make eviction
decisions. However, recency based cache eviction algorithms form
only a subset of the cache algorithms that are used in practice. There
exist many cache algorithms that use object-level properties such
as popularity and size to make cache admission and cache eviction
decisions (§10.1 and §10.2). TRAGEN fails to produce a synthetic
trace with same cache-level properties as the original trace for these
algorithms as it does not incorporate the object-level properties
such as popularity distribution and request-size distribution. Further,
TRAGEN produces two distinct synthetic traces that have either a
similar RHR or a similar BHR as the original trace. Producing a
single synthetic trace that has similar cache-level properties (RHR
and BHR) and object-level properties (size distribution, popularity
distribution and request-size distribution) as an original trace is the
challenge we overcome in this work.

JEDI is the first tool that can produce a single synthetic trace
with similar cache-level and object-level properties as the original
trace. Thus, the synthetic traces produced by JEDI can be used
in the simulation of a wide range of cache algorithms that span
(A) popularity and size based admission algorithms; (B) popularity
and size based eviction algorithms; and (C) recency based eviction
algorithms. This work does not raise any ethical issues.

2 Traffic classes and their properties
We show how the digital content hosted on the internet can be

classified into traffic classes (c.f., § 2.1) and describe the object-level
properties and cache-level properties (§ 2.2) of a traffic class that
are important for realistic trace-based simulations.

Trace Video (V) Web (W) TC EU

Length (mil. reqs) 596 6167 288 595
Req. rate (reqs/sec) 382 7414 820 382
Traffic (GBps) 1.5 2.29 0.36 1.31
No. of objects (mil.) 127 279 51 99
Avg. obj. size (KB) 1756 291 122 1268
Year collected 2018 2015 2018 2015

Table 1: Trace description

2.1 Traffic classes
There exists a wide variety of digital content on the Internet,

for example, images, web pages, videos, 360◦ videos, software
downloads, that is hosted by a multitude of content providers. For
the ease of cache management, traffic is often bucketed into traffic
classes. Each traffic class refers to a content type hosted by a specific
content provider, for example, images from Facebook, videos on
Netflix, software downloads from Microsoft. Cache provisioning
decisions in a CDN are generally made at the granularity of a traffic
class and a large CDN may have a few hundred traffic classes [55].
Each traffic class has unique object-level and cache-level properties.

2.1.1 Original traces for traffic classes. To illustrate the proper-
ties of the traffic classes and for other empirical work in this paper,
we use the same original traces from Akamai’s CDN as that used to
evaluate TRAGEN [50]. We provide the details of these traces that
were first described in [50] (Table 1). Each trace consists of hundreds
of millions of requests that were made for millions of objects for
different traffic classes such as web, video, software downloads, me-
dia. Each trace is collected over a period of few days. The WEB and
VIDEO trace were collected from a CDN edge cluster that consists
of 10 servers. The WEB and VIDEO trace contain requests that were
made predominantly for the web and video traffic class. The TC and
EU traces consists of requests made for a variety of traffic classes
such as downloads, media, web and images and are described in
Table 3 and Table 2, respectively.

2.2 Object-level and Cache-level Properties
The three object-level properties are the object size distribution,

popularity distribution, and request size distribution as described
below, The two cache-level properties of interest are RHR and BHR.

Object size distribution (SZ). The object sizes of content on
the Internet vary considerably across and within traffic classes. For
instance, web pages or images are generally much smaller as com-
pared to media segments or software downloads. And within a traffic
class, say media segments from Netflix, the segments with the lowest
quality (bitrate) are much smaller in size as compared to segments
with the highest quality. The object size distribution SZ(𝑧) of a trace
gives us the probability that an object in the trace is of size 𝑧. Fig. 3a
depicts the object size distribution for the various traffic classes.

Why SZ matters for cache simulations? The SZ of the trace has
a direct impact on the observed hit rates. For instance, if the trace
consists of requests made to large media objects, then we can only
store a small number of objects in cache, leading to cache misses.
Further, there also exist many cache algorithms such as ThLRU,
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Trace Media-0 Media-1 Media-2 Media-3 Media-4 Media-5 Media-6 Web-7 Media-8 Web-9

Length (mil. reqs) 32.04 109.3 70.3 91.92 43.98 66.48 36.56 9.73 128.44 6.95
Req. rate (reqs/sec) 20.64 70.44 45.32 59.2 28.33 42.82 23.55 6.248 82.73 5.38
Traffic (MBps) 12 480 13 36 288.3 434.8 26.8 0.8 27.682 0.756
No. of objects (mil.) 15.55 2.66 18.62 39.64 2.31 2.49 14.45 0.028 22.56 0.02
Avg. object size (KB) 679.2 9727 286.4 653 10286 10291 1026 71.65 151.3 69.83

Table 2: EU trace description

Adaptsize, GDSF (described in § 10.1) that use object size as an
admission or eviction criteria. Thus, for the synthetic trace and the
original trace to have the same cache-level properties across different
cache algorithms, it is desirable that their SZ is similar.

Popularity distribution (POP) We define popularity of an ob-
ject as the number of requests made for it in a given trace [13, 18].
Specifically, the popularity distribution POP(𝑝) gives us the proba-
bility that an object is requested 𝑝 times in the duration of the trace.
Observe that popularity of an object depends on the length of the
trace that is collected. If the length is doubled, the popularity of
some objects in the trace could increase. However, we chose not to
normalize the popularity by the trace length for the following reason.
For sufficiently large traces, such as the ones we have collected and
described in Table 1, we find that there exist very few objects that
are requested through the span of the trace. Most objects have a short
lifespan i.e., the first and last request for an object are not far apart.
Thus, if the trace is sufficiently large, POP remains unchanged as its
length is increased.

We find that POP varies significantly across different traffic
classes (shown in Figure 3b). For the traffic class WEB (Table 1),
there exist a few really popular objects that make up to 15% of the
requests. The skew in POP of the VIDEO and the EU traffic class is
lesser as compared to the WEB traffic class. Nonetheless, in each
traffic class, we observe that there exist few objects that are really
popular and there exist a large fraction of objects that are accessed
only once. For instance, in the VIDEO and EU trace 55% of the
objects are requested only once.

Why POP matters for cache simulations? We now analyse the
access patterns of requests based on the popularity of the requested
object. Figure 2a depicts the average inter-arrival-time i.e., the time
between consecutive requests to an object based on its popularity.
As expected, the inter-arrival-time of popular objects is considerably
smaller as compared to the unpopular objects. Hence, popular objects
exhibit a higher temporal locality. And on a subsequent request to
a popular object, it is likely to be found in the cache and we would
observe a cache hit. Figure 2b shows the RHR of the objects based
on their popularity. Popular objects have a much higher RHR as
compared to unpopular objects. Thus, the POP of a trace indirectly
dictates the hitrates we observe on cache simulations. Further, there
exist many cache algorithms such as LFU, LRFU, GDSF, Bloomfilter
(described in § 10.1 and § 10.2) that use frequency of access as a
feature to make eviction or admission decisions. Thus, it is desirable
to have POP of the original trace and synthetic trace to be similar.

Request size distribution (REQSZ) The request size distribution
REQSZ(𝑧) of a trace gives us the probability that a request is for
an object of size 𝑧. Note that REQSZ and SZ are not equivalent.
An object 𝑜 of size 𝑧 and popularity 𝑝, is counted only once in the
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Figure 2: (a) Popularity vs Avg. inter arrival time; and (b) Popularity vs
Avg. RHR

computation of SZ, but is counted 𝑝 times (for each request for
object 𝑜) in the computation of REQSZ.

Why REQSZ matters for cache simulations? The REQSZ for the
various traffic classes is depicted in Fig. 3c. The REQSZ has the
following effect on the RHR and BHR of a trace during a cache
simulation. Consider the following scenario. If the popular objects
that experience more cache hits are smaller in size as compared to
the unpopular objects, the fraction of bytes that would be served
from the cache is smaller as compared to the fraction of requests
that are served from the cache. Hence, we would observe a smaller
BHR than RHR. We observe this phenomena in the VIDEO trace.
The BHR of VIDEO trace on an LRU cache of size size 500GB is
0.26, whereas the RHR is 0.42 . Therefore, it is desirable to have
REQSZ of the original trace and synthetic trace to be similar.

3 The Traffic Modeler
In this section, we define a novel traffic model called Popularity-

Size Footprint Descriptor (pFD) that captures the cache-level prop-
erties and object-level properties of traffic classes and their mixes.

3.1 Traffic Model Requirements
A traffic model derived from an original trace should have the

following properties.
(1) Generative. The traffic model should capture the object-level

properties and cache-level properties of a traffic class and those
properties must be derivable from the model. Further, the traffic
model should serve as sufficient input for generating synthetic
traces with those properties.

(2) Succinct. The traffic model should be orders of magnitude
smaller than the original traces from which it is computed. A
small traffic model is easy to store, retrieve and analyze.

(3) Efficiently computable. As original traces are voluminous, we
should be able to compute the traffic model from the traces in a
time and space efficient manner.

(4) Shareable. Our traffic model should be shareable across organi-
zations and even made publicly available. Hence, they should
contain only aggregate information and not contain any personal
identifiable information that may be present in the original trace.
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Trace Download Image Media Web

Length (mil. reqs) 8.06 85.4 49.8 144
Req. rate (reqs/sec) 22.9 243 141 406.7
Traffic (MBps) 70 8 40 250
No. of objects (mil.) 0.32 33 7.1 11.1
Avg. obj. size (KB) 603 20.5 368 255

Table 3: TC trace description

(5) Composable. Given traffic models of individual traffic classes,
we should be able to efficiently compute the traffic model of any
traffic mix scenario. Since caches serve a varying mix of traffic
classes, composability helps model the various scenarios that
could play out in a production environment.

3.2 Popularity-Size Footprint Descriptor
We now describe our traffic model – Popularity-Size Footprint

Descriptor (pFD) – and show how it satisfies all five requirements.
The pFD of a traffic class is computed from original traces of that
traffic class obtained from the production system. An original trace
Π is a sequence of requests {𝑟1, . . . , 𝑟𝑛}, where each 𝑟𝑖 is a tuple
(𝑡𝑖 , 𝑜𝑖 , 𝑧𝑖 ), where 𝑡𝑖 is the timestamp at which the request is made, 𝑜𝑖
is object identifier that uniquely identifies the requested object, and
𝑧𝑖 is the size of the object. Let 𝑝𝑖 be the popularity of the object 𝑜𝑖 .
Now 𝜃 = {𝑟𝑖 , . . . , 𝑟 𝑗 }, with 𝑖 < 𝑗 , is a reuse request subsequence if
𝑟𝑖 and 𝑟 𝑗 are requests made for the same object 𝑜𝑖 = 𝑜 𝑗 = 𝑜 , and 𝑜 is
not requested elsewhere in 𝜃 .

The pFD of a trace Π is described as ⟨𝜆, 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ), 𝑃𝑎(𝑠, 𝑡 )⟩.
Here, 𝜆 is the request rate of Π i.e., the number of requests per unit
time of Π. 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ) denotes the popularity-size reuse subsequence
descriptor. It is the probability that a reuse request subsequence
𝜃 = {𝑟𝑖 , . . . , 𝑟 𝑗 } of Π has the following properties, (1) requests 𝑟𝑖 and
𝑟 𝑗 are made for the same object 𝑜 and the object 𝑜 is of size 𝑧 and has
a popularity 𝑝; (2) 𝜃 consists of 𝑠 unique bytes i.e., sum of the sizes
of the unique objects in 𝜃 is 𝑠; and (3) 𝜃 has an inter-arrival-time of 𝑡
seconds i.e. 𝑡 = 𝑡 𝑗 −𝑡𝑖 . The number of unique bytes in a reuse request
subsequence is also known as stack distance [43]. By convention,
reuse request subsequences that begin at the start of a trace and end
on the first request to an object are considered to have infinite unique
bytes and an infinite inter-arrival-time.

Now, 𝑃𝑎(𝑠, 𝑡 ) denotes the all subsequence descriptor and is the
probability that any request subsequence of Π consists of 𝑠 unique
bytes and has an inter-arrival-time of 𝑡 seconds. Note that 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 )
considers only reuse request subsequences whereas, 𝑃𝑎(𝑠, 𝑡 ) con-
siders all request subsequences. And for all practical purposes,
the all subsequence descriptor can be approximated as 𝑃𝑎(𝑠, 𝑡 ) =∑
𝑝,𝑧 𝑃

𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ), i.e., the statistical properties of a request subse-
quence and a reuse request subsequence that consists of 𝑠 unique
bytes and are of duration 𝑡 seconds are similar.

Relation to other Footprint Descriptors. Footprint Descriptors
(FDs) are succinct traffic models that capture the caching properties
of a trace. The FD approach to cache provisioning was pioneered in
[54], FDs are now routinely computed and widely used in making
cache provisioning decisions in major CDNs [55]. A limitation of
the original FDs is that it can be only be used to compute the RHR of
a trace and not the BHR. Work in [50] extends the notion of a FD to

a byte-weighted Footprint Descriptor (bFD) that is used to compute
the BHR of a trace. Therefore, FD or bFD can compute either RHR
or BHR of a trace and not both. Further, FDs and bFDs do not
capture finer object-level properties such as object size distribution,
popularity distribution and request size distribution of a trace. Our
new traffic model – Popularity-Size Footprint Descriptor (pFD)
– overcomes these limitations by succinctly capturing object-level
properties and cache properties of a trace. By incorporating object-
level properties, pFD can be used to compute both the RHR and
BHR of a trace.

3.3 How pFD satisfies model requirements
We now show that our traffic model pFD satisfies the requirements

that were described in §3.1.
(1) Generative. Cache-level properties and the object-level prop-

erties of a trace can be computed from a pFD.
a) Object-level properties. The SZ, POP and REQSZ can be

computed from pFD as follows.

𝑆𝑍 (𝑧) =
1
𝑍

(∑︁
𝑝

𝑃𝑟 (𝑝, 𝑧,∞,∞)
)
, (1)

𝑃𝑂𝑃 (𝑝) =
1
𝑍

(∑︁
𝑧

𝑃𝑟 (𝑝, 𝑧,∞,∞)
)
, (2)

𝑅𝐸𝑄𝑆𝑍 (𝑧) =
∑︁
𝑝,𝑠,𝑡

𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ), (3)

where 𝑍 is a normalizing factor,

𝑍 =
∑︁
𝑝,𝑧

𝑃𝑟 (𝑝, 𝑧,∞,∞).

Recall that, in the trace, the first request made for an object
is considered to have an infinite stack distance and an infinite
inter-arrival-time. The fraction of such requests is given by 𝑍 =∑
𝑝,𝑧 𝑃

𝑟 (𝑝, 𝑧,∞,∞). These requests were made for new objects i.e.,
objects not previously seen in the trace. Now, 𝑃𝑟 (𝑝, 𝑧,∞,∞) gives
us the fraction of requests that were made for a new object and the
new object has a popularity 𝑝 and size 𝑧. Therefore, the probabil-
ity that the new object has a popularity 𝑝 and size 𝑧 is computed
as 1

𝑍

(
𝑃𝑟 (𝑝, 𝑧,∞,∞)

)
. Thus, the computation of SZ(𝑧) and POP(𝑝)

follow from Eq. 1 and Eq. 2, respectively. The REQSZ(z) is the
probability that a request is made for an object of size 𝑧 and can be
obtained from Eq. 3.

b) Cache-level properties. We will now describe how the rHRC
and the bHRC of a trace can be computed from a pFD.

THEOREM 1. Let rHRC(s) and bHRC(s) be the request hitrate
and byte hitrate of trace Π for an LRU cache of size 𝑠. The rHRC(s)
and bHRC(s) are computed from pFD of Π as follows,

𝑟𝐻𝑅𝐶(𝑠) =
∑︁
𝑝,𝑧,𝑡

∑︁
𝑠′≤𝑠

𝑃𝑟 (𝑝, 𝑧, 𝑠′, 𝑡 ), (4)

𝑏𝐻𝑅𝐶(𝑠) =
(

1
𝑍

) ∑︁
𝑝,𝑧,𝑡

𝑧.
∑︁
𝑠′≤𝑠

𝑃𝑟 (𝑝, 𝑧, 𝑠′, 𝑡 ), (5)

where 𝑍 = ∑
𝑝,𝑧,𝑠,𝑡 𝑧.𝑃

𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ).

PROOF. Consider an LRU cache of size 𝑠. Let 𝜃 = {𝑟𝑖 , . . . , 𝑟 𝑗 }
be a reuse request subsequence of trace Π and let 𝑟𝑖 (and 𝑟 𝑗 ) be a
request for an object 𝑜 . On request 𝑟𝑖 , object 𝑜 is moved to the most
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Figure 3: Variability in object-level properties of different traffic classes (Table 3)

recently used (MRU) position in the cache. Now, if the sum of the
sizes of the unique objects that are requested before 𝑟 𝑗 exceeds 𝑠,
then the LRU cache evicts object 𝑜. And on request 𝑟 𝑗 , we would
incur a cache miss. Thus, for an LRU cache of size 𝑠, 𝑟 𝑗 is served
from cache only if 𝜃 contains less than 𝑠 unique bytes, such an event
occurs with probability given by Eq. 4.

Now, let Π𝐵 be a byte sequence that is obtained by replacing
each request in Π by its constituent bytes. Let 𝛽 = {𝑏𝑖 𝑗 , . . . , 𝑏𝑘𝑙 } be
a reuse byte subsequence of Π𝐵 i.e., 𝑏𝑖 𝑗 and 𝑏𝑘𝑙 correspond to the
same byte and is not requested elsewhere in 𝛽. Let the number of
unique bytes in 𝛽 be 𝑠′. We will now derive an expression that gives
us the probability that the request for byte 𝑏𝑘𝑙 will be a cache hit.
As previously argued, the request for byte 𝑏𝑘𝑙 will be a cache hit if
𝑠′ ≤ 𝑠. To obtain 𝑃 (𝑠′ ≤ 𝑠), we first define a random variable 𝑋 that
captures the size of the object that byte 𝑏𝑘𝑙 belonged to. Therefore,

𝑃 (𝑠′ ≤ 𝑠) =
∑︁
𝑧

𝑃 (𝑠′ ≤ 𝑠 |𝑋 = 𝑧) 𝑃 (𝑋 = 𝑧)

Now, consider 𝑃 (𝑋 = 𝑧). Let 𝑁 be the number of requests in Π.
The number of requests in Π that were made for an object of size 𝑧
is 𝑃𝑟 (𝑧).𝑁 . Here 𝑃𝑟 (𝑧) = ∑

𝑝,𝑠,𝑡 𝑃
𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ). Therefore, the number

of bytes in Π that belonged to requests that were made for an object
of size 𝑧 is 𝑃𝑟 (𝑧).𝑁 .𝑧. And the total bytes in the trace is given by∑
𝑧′ 𝑧.
′𝑃𝑟 (𝑧′).𝑁 . Thus, 𝑃 (𝑋 = 𝑧) = 𝑃𝑟 (𝑧).𝑧∑

𝑧′ 𝑧′ .′𝑃𝑟 (𝑧′) . Hence,

𝑃 (𝑠′ ≤ 𝑠) =
∑︁
𝑧

𝑃 (𝑠′ ≤ 𝑠 |𝑋 = 𝑧)
𝑃𝑟 (𝑧).𝑧∑
𝑧′ 𝑧
′ .𝑃𝑟 (𝑧′)

,

=
∑︁
𝑧

∑
𝑠′≤𝑠 𝑃𝑟 (𝑧, 𝑠′)
𝑃𝑟 (𝑧)

𝑃𝑟 (𝑧).𝑧∑
𝑧′ 𝑧
′ .𝑃𝑟 (𝑧′)

,

=
1∑

𝑧′ 𝑧
′ .𝑃𝑟 (𝑧′)

∑︁
𝑧

𝑧.
∑︁
𝑠′≤𝑠

𝑃𝑟 (𝑧, 𝑠′),

=
1∑

𝑝,𝑧,𝑠,𝑡 𝑧.𝑃
𝑟 (𝑝, 𝑧, 𝑠, 𝑡 )

∑︁
𝑝,𝑧,𝑡

𝑧.
∑︁
𝑠′≤𝑠

𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ),

=
1
𝑍

∑︁
𝑝,𝑧,𝑡

𝑧.
∑︁
𝑠′≤𝑠

𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 )

This completes the proof. □

(2) Succinct. pFD’s are much smaller than the original traces. For
instance, an original trace of size 100GB results in a pFD of size
100MB, a reduction factor of 1000.

(3) Efficiently computable. Using efficient a B-Tree style data
structure [1] to represent the cache, pFD can be computed in O(𝑁 log𝑚)

using methods described in [8]. Here, 𝑁 and𝑚 are the length and
the number of unique objects, respectively, in the trace.

(4) Shareable. In contrast to original traces, since pFD’s contain
only aggregate distributions and no object or personal identifiers,
they contain no personal identifiable information (PII), making it
easier to share across organizations.

(5) Composable. In § 4, we derive a calculus to show that pFD’s
are composable, leading to design of the traffic mixer.

4 Traffic mixer
CDNs host and deliver thousands of traffic classes through their

globally distributed servers. It is customary for a cache to serve
varying mixes of traffic classes. An example of a traffic class mix
that a production cache may serve is 5Mbps of Hulu videos, 10
Mbps of Microsoft downloads and 20 Mbps of Facebook images.
This requires us to efficiently derive the pFD of the traffic mix
given pFD’s of individual traffic classes. We now describe a calculus
that enables us to perform addition and scaling operations on the
pFD’s of traffic classes using efficient Fourier domain operations.
The main advantage of the calculus is that it enables efficiently
manipulating concise footprint descriptors without having to operate
on the voluminous original traces.

4.1 Addition operator
Given pFD1 and pFD2 of original traces Π1 and Π2 respectively,

we would like to compute the pFD of the traffic mix Π = Π1⊕Π2 that
is obtained by interleaving requests in Π1 with requests in Π2 based
on time. Let the resultant trace be Π. A key observation made in [54]
that facilitates the calculus is that for a reuse request subsequence
𝜃 of Π that consists of 𝑠 unique bytes and is of duration 𝑡 , some
𝑠1 unique bytes are from Π1 and the rest 𝑠 − 𝑠1 unique bytes are
from Π2. This holds under the assumption that Π1 and Π2 consist
of disjoint objects. The disjoint object assumption commonly holds,
for example, when Π1 and Π2 are traces of different traffic classes.
Thus, to compute the probability that the reuse request subsequence
𝜃 contains 𝑠 unique bytes (𝑃 (𝑠 |𝑡 )), a product of the probabilities of
obtaining 𝑠1 unique bytes from Π1, and 𝑠 − 𝑠1 unique bytes from Π2
(𝑃1(𝑠1 |𝑡 )𝑃2(𝑠 − 𝑠1 |𝑡 )) is computed and summed over all possible 𝑠1.
It is expressed by the following,

𝑃 (𝑠 |𝑡 ) =
∑︁
𝑠1≤𝑠

𝑃1(𝑠1 |𝑡 )𝑃2(𝑠 − 𝑠1 |𝑡 ),

= 𝑃1(𝑠 |𝑡 ) ∗ 𝑃2(𝑠 |𝑡 ),
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where ∗ is the convolution operator. The computation can be sped
up from 𝑂(𝑛2) to 𝑂(𝑛 log𝑛) using the Fast Fourier Transform [54].

We will now adapt this observation to find the pFD of the inter-
leaved sequence Π. Let pFD of Π be ⟨𝜆, 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ), 𝑃𝑎(𝑠, 𝑡 )⟩, pFD1
of Π1 be ⟨𝜆1, 𝑃𝑟1 (𝑝, 𝑧, 𝑠, 𝑡 ), 𝑃𝑎1 (𝑠, 𝑡 )⟩ and pFD2 of Π2 be ⟨𝜆2, 𝑃𝑟2 (𝑝, 𝑧, 𝑠, 𝑡 ),
𝑃𝑎2 (𝑠, 𝑡 )⟩. The request rate of Π can be simply computed as 𝜆 = 𝜆1+𝜆2.
We will now find an expression to quantify 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ). Consider the
reuse request subsequence 𝜃 = {𝑟𝑖 , . . . , 𝑟 𝑗 }, where 𝑖 < 𝑗 , of Π. Recall
that by definition, the first and last request in a reuse request subse-
quence is made for the same object. And the expression 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 )
denotes that probability that 𝜃 has the following properties: (1) 𝑟𝑖
(and 𝑟 𝑗 ) is made for an object 𝑜 that has popularity 𝑝 and is of size
𝑧; (2) it consists of 𝑠 unique bytes; (3) is of duration 𝑡 seconds. To
find 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ) we make use of the fact that 𝜃 is composed of sub-
sequences 𝜃1 and 𝜃2 that are from Π1 and Π2, respectively. The first
request 𝑟𝑖 in 𝜃 could belong to either 𝜃1 or 𝜃2. Therefore,

𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ) = 𝑃 (𝑝, 𝑧, 𝑠, 𝑡 |𝑟𝑖 ∈ 𝜃1) 𝑃 (𝑟𝑖 ∈ 𝜃1)
+ 𝑃 (𝑝, 𝑧, 𝑠, 𝑡 |𝑟𝑖 ∈ 𝜃2) 𝑃 (𝑟𝑖 ∈ 𝜃2)

(6)

Now, consider first half of the RHS, say 𝑃1, in Equation 6.

𝑃1 = 𝑃 (𝑝, 𝑧, 𝑠, 𝑡 |𝑟𝑖 ∈ 𝜃1) 𝑃 (𝑟𝑖 ∈ 𝜃1)
= 𝑃 (𝑠 |𝑟𝑖 ∈ 𝜃1, 𝑝, 𝑧, 𝑡 ) 𝑃 (𝑝, 𝑧, 𝑡 |𝑟𝑖 ∈ 𝜃1) 𝑃 (𝑟𝑖 ∈ 𝜃1)

Here, the term 𝑃 (𝑠 |𝑟𝑖 ∈ 𝜃1, 𝑝, 𝑧, 𝑡 ) is the probability that 𝜃 contains
𝑠 unique bytes given (1) the first request 𝑟𝑖 (and 𝑟 𝑗 ) is from 𝜃1; (2) 𝑟𝑖
is for an object of popularity 𝑝 and size 𝑧; and (3) 𝜃 is of duration
𝑡 seconds. We now use of the observation that among the s unique
bytes, some 𝑠1 unique bytes come from 𝜃1 and the rest 𝑠 − 𝑠1 come
from 𝜃2. As the first request in 𝜃 is from 𝜃1 and is for an object with
popularity 𝑝 and size 𝑧, the probability that 𝑠1 unique bytes are from
𝜃1 is obtained as 𝑃𝑟1 (𝑠1 |𝑝, 𝑧, 𝑡 ). The rest 𝑠 − 𝑠1 unique bytes that are
from 𝜃2 could be from any object and the probability of which is
given by 𝑃𝑎2 (𝑠 − 𝑠1 |𝑡 ). Therefore, we can expand the above equation,

𝑃1 =

(∑︁
𝑠1

𝑃𝑟1 (𝑠1 |𝑝, 𝑧, 𝑡 )𝑃𝑎2 (𝑠 − 𝑠1 |𝑡 )
)
𝑃 (𝑝, 𝑧, 𝑡 |𝑟𝑖 ∈ 𝜃1) 𝑃 (𝑟𝑖 ∈ 𝜃1).

Now, 𝑃 (𝑝, 𝑧, 𝑡 |𝑟𝑖 ∈ 𝜃1) is the probability that (1) 𝑟𝑖 is a request
for an object with popularity 𝑝 and size 𝑧, and (2) 𝜃1 is of duration
𝑡 seconds. This can be computed as

∑
𝑠′ 𝑃

𝑟
1 (𝑝, 𝑧, 𝑠′, 𝑡 ). And finally,

𝑃 (𝑟𝑖 ∈ 𝜃1) can be obtained as 𝜆1
𝜆1+𝜆2

. We now arrive at the final
expression by making appropriate substitutions.

𝑃1 =

(∑︁
𝑠1

𝑃𝑟1 (𝑠1 |𝑝, 𝑧, 𝑡 )𝑃𝑎2 (𝑠 − 𝑠1 |𝑡 )
) (∑︁

𝑠′
𝑃𝑟1 (𝑝, 𝑧, 𝑠′, 𝑡 )

) (
𝜆1

𝜆1 + 𝜆2

)
(7)

Now, the computation
∑
𝑠1 𝑃

𝑟
1 (𝑠1 |𝑝, 𝑧, 𝑡 )𝑃𝑎2 (𝑠 − 𝑠1 |𝑡 )) is identified as a

convolution. Therefore,

𝑃1 =
(
𝑃𝑟1 (𝑠 |𝑝, 𝑧, 𝑡 ) ∗ 𝑃𝑎2 (𝑠 |𝑡 )

) (∑︁
𝑠′
𝑃𝑟1 (𝑝, 𝑧, 𝑠′, 𝑡 )

) (
𝜆1

𝜆1 + 𝜆2

)
. (8)

Now, we can leverage tools from Fast Fourier Transform (FFT) to
compute the convolution operator. Using FFT, the time complexity of
the convolution is reduced from𝑂(𝑆2) to𝑂(𝑆 log 𝑆). The second half
of the RHS in Eq. 6, say 𝑃2, can be similarly derived by interchanging
subscripts 1 with 2 in Eq. 8. The procedure is in Alg. 1.

Algorithm 1 Addition operator

1: Input. pFD1 = ⟨𝜆1, 𝑃
𝑟
1 (𝑝, 𝑧, 𝑠, 𝑡 ), 𝑃𝑎

1 (𝑠, 𝑡 )⟩ of trace Π1 and pFD2 =
⟨𝜆2, 𝑃

𝑟
2 (𝑝, 𝑧, 𝑠, 𝑡 ), 𝑃𝑎

2 (𝑠, 𝑡 )⟩ of trace Π2. Let 𝑄 , 𝑍 , 𝑆 and𝑇 be the buckets
for 𝑝, 𝑧, 𝑠 and 𝑡 , respectively.

2: Output. The 𝑝𝐹𝐷 = ⟨𝜆, 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ), 𝑃𝑎 (𝑠, 𝑡 )⟩ of the interleaved trace
Π = Π1 ⊕ Π2.

3: 𝜆 = 𝜆1 + 𝜆2
4: for 𝑡 ∈ 𝑇 do
5: 𝑃𝑎 (𝑡 ) = 𝜆1

𝜆1+𝜆2
𝑃𝑎

1 (𝑡 ) + 𝜆2
𝜆1+𝜆2

𝑃𝑎
2 (𝑡 )

6: for 𝑝 ∈ 𝑄 do
7: for 𝑧 ∈ 𝑍 do
8: 𝑃

𝑝,𝑧,𝑡

1 = ∑
𝑠′ 𝑃

𝑟
1 (𝑝, 𝑧, 𝑠′, 𝑡 )

9: 𝑃
𝑝,𝑧,𝑡

2 = ∑
𝑠′ 𝑃

𝑟
2 (𝑝, 𝑧, 𝑠′, 𝑡 )

10: 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ) = 𝜆1
𝜆1+𝜆2

𝑃
𝑝,𝑧,𝑡

1
(
𝑃𝑟

1 (𝑠 |𝑝, 𝑧, 𝑡 ) ∗ 𝑃𝑎
2 (𝑠 |𝑡 )

)
+

11: 𝜆2
𝜆1+𝜆2

𝑃
𝑝,𝑧,𝑡

2
(
𝑃𝑟

2 (𝑠 |𝑝, 𝑧, 𝑡 ) ∗ 𝑃𝑎
1 (𝑠 |𝑡 )

)
12: end for
13: end for
14: 𝑃𝑎 (𝑠 |𝑡 ) = 𝑃𝑎

1 (𝑠 |𝑡 ) ∗ 𝑃𝑎
2 (𝑠 |𝑡 )

15: 𝑃𝑎 (𝑠, 𝑡 ) = 𝑃𝑎 (𝑡 )𝑃𝑎 (𝑠 |𝑡 )
16: end for
17: pFD =⟨𝜆, 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ), 𝑃𝑎 (𝑠, 𝑡 )⟩
18: return pFD
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Figure 4: The rHRC and bHRC as predicted by the pFD calculus aligns
with the original

Now, the all subsequence descriptor 𝑃𝑎(𝑠, 𝑡 ) is the probability that
any subsequence, say 𝜃 of Π, consists of 𝑠 unique bytes and is of
duration 𝑡 seconds. The computation does not depend on which
trace, 𝜃1 or 𝜃2, the first request 𝑟𝑖 belongs to. This computation is as
described in [54] and is mentioned for completeness.

𝑃𝑎(𝑠 |𝑡 ) = 𝑃𝑎1 (𝑠 |𝑡 ) ∗ 𝑃𝑎2 (𝑠 |𝑡 )
Time complexity. The time complexity of Alg. 1 is given by

𝑂(|𝑄 | |𝑍 | |𝑇 | |𝑆 |log|𝑆 |), where 𝑄 , 𝑍 , 𝑆 and 𝑇 are the buckets for 𝑝, 𝑧, 𝑠
and 𝑡 in pFD. The product |𝑄 | |𝑍 | |𝑇 | is for the three for loops in lines
4,6 and 7. And the convolution operator in line 10 is evaluated in
𝑂(𝑆 log 𝑆).

Empirical evidence. We empirically validate the Addition op-
erator (Alg. 1). We obtain a subsequence (say Π) of the EU trace
that consist of requests made to either Media0 and Media1 traffic
class and compute the pFD 𝑜𝑟𝑖𝑔 of Π. Next, we obtain individual
subsequences Π1 and Π2 of the EU trace that consist of requests
made to traffic classes Media0 and Media1, respectively and com-
pute their individual pFD’s. Let the pFD’s be pFD1 and pFD2. Now,
we compute the pFD of the traffic mix, pFD 𝑚𝑖𝑥 , using Alg.1. The
rHRC and bHRC of the two scenarios is shown in Figure 4.
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4.2 Scaling operator
Given a pFD of a trace Π we would like to compute the pFD𝜏

of trace Π𝜏 that is obtained by either increasing or decreasing the
request rate of Π by a scaling factor of 𝜏 . By scaling Π by a factor 𝜏 ,
we effectively alter the inter-arrival-time between the requests in Π
by a factor 1

𝜏 . Thus, we compute pFD𝜏 as follows,

𝜆𝜏 = 𝜏𝜆; 𝑃𝑟𝜏 (𝑝, 𝑧, 𝑠, 𝑡 ) = 𝑃𝑟 (𝑝, 𝑧, 𝑠,
𝑡

𝜏
); 𝑃𝑎𝜏 (𝑠, 𝑡 ) = 𝑃𝑎(𝑠,

𝑡

𝜏
) (9)

The operator is similar to the scaling operator described in [54].

4.3 Parallelizing pFD operations
On taking a closer look at Equation 8, we observe that to compute

the pFD of the traffic mix, the addition operator performs convolu-
tions for every unique pair of 𝑝, 𝑧 and 𝑡 in the trace. A similar number
of computations have to performed to obtain the scaled pFD. This
results in a large number of operations that need to be performed.
However, these operations are independent and can be performed in
parallel. In our implementation (in python), we observe that the ad-
dition operator takes around 20 minutes for the experiment depicted
in Figure 4 when run on a 56 core machine.

5 Trace Generator
In this section, we describe our algorithm that generates a syn-

thetic trace with similar object-level properties and cache-level prop-
erties as the original trace. The procedure is described in Algorithm
2. The inputs to the algorithm are as follows,
(1) A pFD = ⟨𝜆, 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ), 𝑃𝑎(𝑠, 𝑡 )⟩ of the original trace Π𝑜 .
(2) Length 𝑁 of the synthetic trace that is to be generated.
For the output, the algorithm generates a synthetic trace Π𝑠 =
𝑟1, . . . , 𝑟𝑛 , where each 𝑟𝑖 is a request for an object and is represented
by a tuple 𝑟𝑖 = ⟨𝑡𝑖 , 𝑜𝑖 , 𝑧𝑖 ⟩ of timestamp, unique object identifier and
object size.

Initialization phase. We first compute the joint POPSZ distribu-
tion from pFD using,

𝑃𝑂𝑃𝑆𝑍 (𝑝, 𝑧) =
1
𝑍

(
𝑃𝑟 (𝑝, 𝑧,∞,∞)

)
, (10)

where 𝑍 = ∑
𝑝,𝑧 𝑃

𝑟 (𝑝, 𝑧,∞,∞). Recall that the first request made
for an object in a trace is considered to have an infinite stack dis-
tance and an infinite inter-arrival-time. Therefore, 𝑍 gives us the
probability that the request is for a new object i.e., the object has
not yet been seen in the trace. Now, the distribution POPSZ gives
us the probability that the object has a popularity 𝑝 and size 𝑧 It
is computed in line 5 of Alg. 2. An empty list 𝐶 that represents a
cache is initialized in line 7. From lines 10-15, we create objects
and assign the object a popularity 𝑝 and size 𝑧 by sampling from
the joint POPSZ distribution. The process is repeated till the sum of
the sizes of the objects in 𝐶 exceeds the maximum stack distance 𝑠
in 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ). The term stack distance is commonly used to denote
the number of unique bytes in a reuse request subsequence [43].
Alternatively, a definition that will be relevant to our algorithm is as
follows. The 𝑆𝑡𝑎𝑐𝑘𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[ 𝑗] of an object at position 𝑗 in 𝐶 is the
sum of the sizes of the objects in positions [1, 𝑗 ) in 𝐶.

Trace generation phase. To generate a synthetic trace, we first
compute 𝑃𝑟 (𝑠 |𝑝, 𝑧) for each pair of (𝑝, 𝑧) in 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ). This is done

Algorithm 2 Synthetic trace generator

1: Input. (i) A pFD⟨𝜆, 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ), 𝑃𝑎 (𝑠, 𝑡 )⟩ (ii) trace length 𝑁 .

2: Output. A synthetic trace Π𝑠 = {𝑟1, . . . , 𝑟𝑁 }, where 𝑟𝑖 = ⟨𝑡𝑖 , 𝑜𝑖 , 𝑧𝑖 ⟩ is
a tuple of timestamp, object identifier and object size.

3: Phase 1 - Initialization.
4: 𝑃𝑂𝑃𝑆𝑍 (𝑝, 𝑧) = 1

𝑍

(
𝑃𝑟 (𝑝, 𝑧,∞,∞)

)
.

5: Compute 𝑃𝑟 (𝑠 |𝑝, 𝑧) for each pair of 𝑝, 𝑧 in pFD.

6: 𝐶 ← {}, 𝐶𝑠𝑖𝑧𝑒 = 0.
7: 𝐶𝑚𝑎𝑥 is the maximum finite 𝑠 in 𝑃𝑟 .
8: 𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑐𝑜𝑢𝑛𝑡 ← {}
9: while 𝐶𝑠𝑖𝑧𝑒 < 𝐶𝑚𝑎𝑥 do

10: Create object 𝑜 and assign it a popularity 𝑝 and size 𝑧 by sampling
from 𝑃𝑂𝑃𝑆𝑍 (𝑝, 𝑧).

11: Add object 𝑜 to the list 𝐶.
12: 𝐶𝑠𝑖𝑧𝑒 ← 𝐶𝑠𝑖𝑧𝑒 + 𝑧.
13: end while

14: Phase 2 - Synthetic trace generation.
15: Π𝑠 ← 𝜙 , 𝑖 ← 0.
16: while 𝑖 < 𝑁 do
17: Append the first object 𝑜 = ⟨𝑜𝑖𝑑 , 𝑧⟩ in 𝐶 to the trace Π𝑠 .
18: 𝑟𝑒𝑞_𝑐𝑜𝑢𝑛𝑡[𝑜] += 1
19: Let 𝑝𝑜 and 𝑧𝑜 be the popularity and size of object 𝑜 .
20: if 𝑟𝑒𝑞_𝑐𝑜𝑢𝑛𝑡[𝑜] = 𝑝𝑜 then
21: Remove the object 𝑜 from 𝐶.
22: Create new object 𝑜′ and assign it a popularity 𝑝 and size 𝑧 by

sampling from 𝑃𝑂𝑃𝑆𝑍 (𝑝, 𝑧).
23: Add object 𝑜′ at the end of the list 𝐶.
24: else
25: Sample stack distance 𝑠 from 𝑃𝑟 (𝑠 |𝑝𝑜 , 𝑧𝑜 , 𝑠 < ∞)
26: Remove 𝑜 from 𝐶.
27: Compute 𝑗 = 𝑚𝑖𝑛{𝑘 : 𝑆𝑡𝑎𝑐𝑘𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑘] > 𝑠 }.
28: For each 𝑙 > 𝑗 move object at the 𝑙𝑡ℎ position in 𝐶 to the 𝑙 + 1𝑠𝑡

position.
29: Re-insert object 𝑜 at position 𝑗 in 𝐶

30: end if
31: 𝑖 ← 𝑖 + 1
32: end while
33: Assign timestamps to each request Π𝑠 using the request rate 𝜆.
34: return Π𝑠

in line 11 and it gives us the probability that a reuse request subse-
quence 𝜃 = {𝑟𝑖 , . . . , 𝑟 𝑗 } of Π𝑜 consists of 𝑠 unique bytes provided
request 𝑟𝑖 (and 𝑟 𝑗 ) is made for an object of size 𝑧 and a popularity 𝑝.

The trace generation phase runs through lines 13 to 20. We initial-
ize an empty synthetic trace Π𝑠 in line 13. Further, we also maintain
a statistic 𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑐𝑜𝑢𝑛𝑡 that counts the number of requests made
for each object in Π𝑠 so far. In each iteration 𝑖, the object at the first
position of𝐶 is examined. Let the object be identified as 𝑜 . A request
for object 𝑜 is appended to the synthetic trace 𝑆 and we increment
𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑐𝑜𝑢𝑛𝑡[𝑜]. Let the popularity and size of object 𝑜 be 𝑝𝑜 and
𝑧𝑜 respectively. Now there are two cases,

(1) If the 𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑐𝑜𝑢𝑛𝑡[𝑜] equals 𝑝𝑜 , then the object is removed
from𝐶 and a new object 𝑜′ is inserted at the end of the list𝐶. Object
𝑜′ is assigned a popularity and size by sampling from the POPSZ
distribution.
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(2) Otherwise, we sample a stack distance 𝑠 from 𝑃𝑟 (𝑠 |𝑝𝑜 , 𝑧𝑜 , 𝑠 <
∞). The object 𝑜 is removed from 𝐶 and re-inserted into 𝐶 at a
position 𝑗 =𝑚𝑖𝑛{𝑘 : 𝑆𝑡𝑎𝑐𝑘𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒[𝑘] > 𝑠}.

As a final step, we assign a timestamp to the requests in Π𝑠 using
the request rate 𝜆 from pFD.

We will now prove that the total variation distance for the 𝑆𝑍 ,
𝑃𝑂𝑃 and 𝑅𝐸𝑄𝑆𝑍 of the synthetic trace Π𝑠 and original trace Π𝑜

tends to zero. Further, we will prove that the total variation distance
for the rHRC and bHRC of traces Π𝑠 and Π𝑜 for an LRU cache tends
to zero.

THEOREM 2. Given a pFD ⟨𝜆, 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ), 𝑃𝑎(𝑠, 𝑡 )⟩ of an origi-
nal trace Π𝑜 , Alg. 2 produces a synthetic trace Π𝑠 = {𝑟1, . . . , 𝑟𝑁 },
where the 𝑖𝑡ℎ request 𝑟𝑖 is a tuple ⟨𝑡𝑖 , 𝑜𝑖 , 𝑧𝑖 ⟩ of timestamp, object id
and object size and 𝑁 is the synthetic trace length. As 𝑁 →∞, the
total variation distances for the SZ, POP and REQSZ distributions
of traces Π𝑠 and Π𝑜 tends to zero.

PROOF. Each object 𝑜 in Π𝑠 is assigned a size 𝑧 and popularity
𝑝 by sampling from the joint popularity-size distribution of Π𝑜 . As
𝑁 →∞, the number of objects in Π𝑠 tends to∞. Therefore, as the
number of objects in Π𝑠 tends to ∞, the total variation distance of
SZ for traces Π𝑜 and Π𝑠 tends to zero. We will now show that the
object 𝑜 is requested 𝑝 times in Π𝑠 . In each iteration 𝑖 (line 20) of
Alg. 2, we add the first object in the list 𝐶 to Π𝑠 . We also check if
the request count of the object in {𝑟1, . . . , 𝑟𝑖 } equals the assigned
popularity. If yes, the object is removed from the list and no further
requests are made for it in {𝑟𝑖+1, . . . , 𝑟𝑁 }. If not, the object is added
back into the list at the sampled stack-distance. Now, observe that as
𝑁 →∞, the only objects that will have a request count lesser than
their assigned popularity are the objects that remain in the list𝐶. The
number of such objects is small as compared to the total number of
objects in Π𝑠 . Thus, the total variation distance of the POP for traces
Π𝑜 and Π𝑠 tends to zero as 𝑁 →∞. Now, as each object is assigned
a popularity and size from the joint popularity-size distribution of
Π𝑜 , the total variation distance of REQSZ for traces Π𝑠 and Π𝑜 tends
to zero. □

THEOREM 3. Given a pFD ⟨𝜆, 𝑃𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ), 𝑃𝑎(𝑠, 𝑡 )⟩ of an origi-
nal trace Π𝑜 , Alg. 2 produces a synthetic trace Π𝑠 = {𝑟1, . . . , 𝑟𝑁 },
where the 𝑖𝑡ℎ request 𝑟𝑖 is a tuple ⟨𝑡𝑖 , 𝑜𝑖 , 𝑧𝑖 ⟩ of timestamp, object id
and object size and 𝑁 is the synthetic trace length. As 𝑁 →∞, the
total variation distance for the rHRC and bHRC of traces Π𝑠 and
Π𝑜 for an LRU cache tends to zero.

PROOF. Let 𝑃 (𝑝, 𝑧, 𝑠) = ∑
𝑡 𝑃

𝑟 (𝑝, 𝑧, 𝑠, 𝑡 ). It is the probability that a
reuse request subsequence 𝜌 in Π𝑜 has the following properties: (i)
the last (and first) request in 𝜌 is for an object of popularity 𝑝 and
size 𝑧, and (ii) the sum of the sizes of unique objects in 𝜌 is 𝑠. From
Theorem 1, we know that the rHRC and the bHRC of the original
trace Π𝑜 for an LRU cache can be computed from 𝑃 (𝑝, 𝑧, 𝑠). Now,
consider a reuse request subsequence 𝜃 in Π𝑠 . Let 𝑃 ′(𝑝, 𝑧, 𝑠) be the
probability that (i) the last (and first) request in 𝜃 is for an object
of popularity 𝑝 and size 𝑧, and (ii) the sum of the sizes of unique
objects in 𝜃 is 𝑠. We will show that 𝑃 ′(𝑝, 𝑧, 𝑠) = 𝑃 (𝑝, 𝑧, 𝑠). Hence, the
total variation distance for the rHRC and bHRC of Π𝑠 and Π𝑜 for an
LRU cache tends to zero.

Let 𝑟 𝑗 be the last request in 𝜃 . The probability that 𝑟 𝑗 is a re-
quest for an object with popularity 𝑝 and size 𝑧 is obtained as

𝑃 ′(𝑝, 𝑧) = ∑
𝑠 𝑃
′(𝑝, 𝑧, 𝑠). Now, we know that each object in Π𝑠 is

assigned a popularity and size by sampling from the joint popularity-
size distribution of the original trace Π𝑜 . Further, in Theorem 2 we
showed that if an object is assigned a popularity 𝑝, it is requested
𝑝 times in Π𝑠 . Therefore, the probability that a request 𝑟 𝑗 in Π𝑠 is
for an object of popularity 𝑝 and size 𝑧 equals the probability that a
request 𝑠 𝑗 in Π𝑜 is for an object of popularity 𝑝 and size 𝑧. Thus,

𝑃 ′(𝑝, 𝑧) = 𝑃 (𝑝, 𝑧) =
∑︁
𝑠

𝑃 (𝑝, 𝑧, 𝑠). (11)

We will now show that 𝑃 ′(𝑠 |𝑝, 𝑧) = 𝑃 (𝑠 |𝑝, 𝑧). There are two cases.
Case 1. 𝑠 = ∞. In this case, 𝑟 𝑗 is the first request for an object in

Π𝑠 , i.e., the object has not been requested in {𝑟1, . . . , 𝑟 𝑗−1}. Recall
that the first request for any object in the trace is considered to have
an infinite stack distance. Now, as 𝑃 ′(𝑝, 𝑧) = 𝑃 (𝑝, 𝑧), the fraction
requests made for an object with popularity 𝑝 and size 𝑧 in Π𝑠 and
Π𝑜 is equal. This implies that the fraction of first requests made
for an object with popularity 𝑝 and size 𝑧 in Π𝑠 and Π𝑜 is equal.
Therefore,

𝑃 ′(𝑠 = ∞|𝑝, 𝑧) = 𝑃 (𝑠 = ∞|𝑝, 𝑧). (12)
Case 2. 𝑠 < ∞. Let 𝑟 𝑗 be a request for object 𝑜 . In this case, object

𝑜 has been previously requested in Π𝑠 i.e., object 𝑜 is requested in
{𝑟1, . . . , 𝑟 𝑗−1}. Now, consider the previous request 𝑟𝑖 that was made
for object 𝑜 in Π𝑠 . The request 𝑟𝑖 was added to Π𝑠 in the 𝑖𝑡ℎ iteration
of Alg. 2 (line 17). In the 𝑖𝑡ℎ iteration, we sampled a stack distance
𝑠 from the probability distribution 𝑃 (𝑠 |𝑝, 𝑧, 𝑠 < ∞) (line 25). We will
now show that Alg. 2 ensures that the number of unique bytes in
𝜃 = {𝑟𝑖 , . . . , 𝑟 𝑗 } is 𝑠 and hence,

𝑃 ′(𝑠 |𝑝, 𝑧, 𝑠 < ∞) = 𝑃 (𝑠 |𝑝, 𝑧, 𝑠 < ∞). (13)

In the 𝑖𝑡ℎ iteration, let 𝑘 be the smallest index in 𝐶 such that the
sum of the sizes of objects in positions 1 to 𝑘 in 𝐶 is greater than or
equal to 𝑠. Let 𝑧𝑘 be the size of the object at position 𝑘 . The object 𝑜
that was at the first position in 𝐶 was inserted back into 𝐶 at a stack
distance of at least 𝑠 and at most 𝑠 + 𝑧𝑘 . The subsequent request for
object 𝑜 in Π𝑠 is made on request 𝑟 𝑗 . Now, the unique objects in
𝜃 = {𝑟𝑖 , . . . , 𝑟 𝑗 } are the objects present in C from positions 1 to 𝑘.
Therefore the number of unique bytes in 𝜃 is at least 𝑠 and at most
𝑠 + 𝑧𝑘 . Now, since the number of unique objects in reuse request
subsequences are typically large, 𝑧𝑘 ≪ 𝑠. Therefore, the number of
unique bytes in 𝜃 tends to 𝑠.

Therefore, from Eq. 12 we know that for 𝑠 = ∞, the probability
𝑃 ′(𝑠 = ∞|𝑝, 𝑧) = 𝑃 (𝑠 = ∞|𝑝, 𝑧) and from Eq. 13 we know that for
𝑠 < ∞, 𝑃 ′(𝑠 |𝑝, 𝑧, 𝑠 < ∞) = 𝑃 (𝑠 |𝑝, 𝑧, 𝑠 < ∞). This implies,

𝑃 ′(𝑠 |𝑝, 𝑧) = 𝑃 (𝑠 |𝑝, 𝑧) (14)
for all possible stack distances 𝑠. Now 𝑃 ′(𝑝, 𝑧, 𝑠) = 𝑃 ′(𝑠 |𝑝, 𝑧)𝑃 ′(𝑝, 𝑧).
Using Eq. 11 and Eq. 14, 𝑃 ′(𝑝, 𝑧, 𝑠) = 𝑃 (𝑠 |𝑝, 𝑧)𝑃 (𝑝, 𝑧) = 𝑃 (𝑝, 𝑧, 𝑠).
Now, as the rHRC and bHRC of Π𝑠 and Π𝑜 for an LRU cache can be
computed from 𝑃 (𝑝, 𝑧, 𝑠), the total variation distance for the rHRC
and bHRC of traces Π𝑠 and Π𝑜 for an LRU cache tends to zero. □

Time complexity. The list 𝐶 in Alg. 2 is implemented as a B-
Tree that allows insertion and deletion in log𝑚 time, where𝑚 is the
number of objects in the list. In each iteration of the algorithm, an
object is either removed from the list or re-inserted back into the list.
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Figure 5: rHRC of original and synthetic traces in Table 1
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Figure 6: bHRC of original and synthetic traces in Table 1

Now, as the algorithm runs for 𝑁 iterations, the time complexity of
Alg. 2 is 𝑂(𝑁 log𝑚).

6 Empirical evaluation
In this section, we show that JEDI produces a synthetic trace that

has similar object-level and cache-level properties as the original
trace. We use the original production traces described in Table 1
for our evaluation. We use JEDI to first compute the pFD from the
original traces and then produce a synthetic trace from it. The trace
produced by JEDI will be denoted as JSynth. Further, we evaluate
JEDI against TRAGEN, the current state-of-the-art synthetic trace
generation tool [50]. To facilitate the comparison, we use TRAGEN
to first compute the footprint descriptor traffic models, FD and bFD
[50, 54], of the original traces. We then use TRAGEN to produce
a synthetic trace from it. We denote the synthetic trace produced
from FD and bFD as Tragen-R and Tragen-B, respectively. TRA-
GEN guarantees that Tragen-R and Tragen-B have similar rHRC
and bHRC, respectively, as the original trace for an LRU cache.
The traces JSynth, Tragen-R and Tragen-B consist of 200 million
requests each. Finally, we show that prior tools other than TRA-
GEN produce synthetic traces that also fail to satisfy cache-level
properties since they use the LRUSM approach.

6.1 JEDI satisfies object-level properties
We show that JEDI produces a synthetic trace with similar object-

level properties i.e., SZ, POP and REQSZ as the original trace. The
results are shown in Fig. 7. We observe that the both JSynth and

Tragen-R have similar SZ as the original trace Fig. 7a. We use the
original trace VIDEO for the experiment. The result is as expected,
as both TRAGEN and JEDI use SZ to assign object sizes. The total
variation distance in SZ of JSynth and original trace is 3.1 × 10−3.

Next, we observe that the POP of JSynth and the original trace
are similar (Fig. 7b) with a total variation distance of 3.66 × 10−3.
However, the POP of Tragen-R differs considerably from that of
the original. TRAGEN does not model popularity distribution, and
hence, Tragen-R cannot have a similar POP as the original trace.

Further, the REQSZ of JSynth and original trace are similar but
the REQSZ of Tragen-R differs from that of the original (Fig. 7c).
The total variation distance in the REQSZ of JSynth and the original
trace is 4.22 × 10−3. Again, as TRAGEN does not model popularity
distribution, Tragen-R cannot have a similar REQSZ as the original
traces. We observe similar results for Tragen-B.

6.2 JEDI satisfies cache-level properties
We now show that JSynth has similar cache-level properties as

the original traces. We first show that the total variation distance for
the rHRCs and bHRCs of the original traces and JSynth traces is
small for an LRU cache. The rHRC(𝑧) (resp. bHRC(𝑧)) of a trace
for a cache algorithm 𝐴 gives the RHR (resp. BHR) for a cache of
size 𝑧 that uses the cache algorithm 𝐴. We then show that JSynth
and the original traces yield similar RHR and BHR for a wide
variety of cache algorithms by implementing the cache algorithms
and performing cache simulations.

6.2.1 Hitrace curves for an LRU cache. The bHRC and the
rHRC of the original trace and the corresponding JSynth trace for
an LRU cache is depicted in Fig. 5 and Fig. 6, respectively. We
observe that both the rHRCs and bHRCs of the original traces and
JSynth align. We observe a total variation distance of 9.82 × 10−3,
4.4 × 10−2, 8.68 × 10−3, 5.9 × 10−3 in the rHRC for the VIDEO,
WEB, EU and TC trace, respectively. And observe a total variation
distance of 5.5 × 10−4, 1.26 × 10−2, 4.8 × 10−3, 6.1 × 10−2 in the
bHRC for the VIDEO, WEB, EU and TC trace, respectively. As
the differences are small in all cases, we conclude that the HRCs of
original trace and the synthetic trace produced by JEDI are nearly
equal and are hence, similar.

A key difference between JEDI and TRAGEN is that JEDI pro-
duces a single trace that has similar rHRC and bHRC as the original.
Whereas, TRAGEN can produce a synthetic trace that has either a
similar rHRC or bHRC as the original, and not both simultaneously.
If rHRC of the Tragen-B (resp. Tragen-R) trace is compared with
the rHRC (resp. bHRC) of the original trace we observe an error of
16 % (resp. 14 %) on an average across all cache sizes (Fig. 7d).

6.2.2 Validation on other cache algorithms. We now show that
the synthetic trace and the original trace yield similar RHR and BHR
for a wide variety of cache algorithms. Most cache algorithms that
are deployed in production systems use some combination of access
patterns (temporal locality), popularity distribution, and the size
distribution of the objects to make caching decisions. We choose
algorithms from the literature that are commonly-used in practice
and that also span the space of features used for decision making. We
broadly categorize the cache algorithms as (A) popularity and size
based admission algorithms; (B) popularity and size based eviction
algorithms; and (C) recency based eviction algorithms. We show that
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Figure 7: (a), (b) and (c) Comparing object-level properties of synthetic trace and the original trace. (d) Comparing TRAGEN and JEDI

while Tragen-R and Tragen-B traces yield similar RHRs and BHRs
for a subset of cache algorithms (mainly recency based eviction
algorithms), the trace JSynth yields similar RHRs and BHRs for all
the cache algorithms we experimented on.

The cache simulation experiments are performed as follows. We
first select a subset of the original traces from Table 1 and produce
their corresponding synthetic traces JSynth, Tragen-R and Tragen-B.
Now, to evaluate the performance of a synthetic trace for a cache
algorithm, we run cache simulations using the original traces and
the corresponding synthetic traces on multiple cache sizes. Now,
the simulation error for the synthetic trace is mean of the absolute
difference in hitrates. We multiply this quantity by 100 as hitrates
are more easily understandable in percentages. The simulation error
is thus an aggregate metric that quantifies the performance of a
synthetic trace for a cache algorithm.

(A) Popularity and size based admission algorithms. We con-
sider the following algorithms: ThLRU-𝑧, Bloomfilter-𝑛, ThLRU-
Prob, ThLRU-z/Bloomfilter-𝑛, Adaptsize. The algorithms are de-
scribed in the §10.1. Note that each algorithm uses LRU for eviction.
We use traces VIDEO and WEB for the experiments.

We first consider cache algorithms that use object size as the
admission criteria i.e., objects larger than a size threshold are not
admitted into the cache. The algorithms are designed to maximize
the RHR [14]. Fig. 8 depicts the simulation error in the RHR for the
various cache algorithms. For each algorithm, we run simulations
on cache sizes 64GB, 128GB and 256GB that are representative
of commonly used RAM cache sizes on production servers. We
observe an average simulation error of 0.9%, 3% and 6% for the
traces JSynth, Tragen-R and Tragen-B, respectively, across all cache
algorithms. The maximum simulation error of 2.5 % is observed
for the JSynth trace for Adaptsize. Whereas, a maximum simulation
error of 4.7% and 9% is observed for the traces Tragen-R and Tragen-
B, respectively, for the cache algorithms ThLRU-Prob and THLRU-
8MB. Therefore, we conclude that the simulation error for the JSynth
is much smaller than the simulation error for the traces Tragen-R
and Tragen-B for all size-based cache admission algorithms.

We now evaluate JEDI for cache admission algorithms that use
popularity as the admission criteria. The results of our simulations
are shown in Fig. 9. We observe that the simulation error for the trace
JSynth is lesser than 0.6% across all cache algorithms. The average
simulation error for the JSynth trace is 0.5%. However, the simulation
error is considerably larger for the Tragen-R and Tragen-B traces,
with the minimum simulation error being 11%. As TRAGEN does not
aim to produce a synthetic trace with similar popularity distribution
as original traces, TRAGEN performs poorly on popularity based
admission algorithms. Therefore,the simulation error for the JSynth
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Figure 8: Simulation error in RHR values for Tragen and Synthetic trace
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Figure 9: Observed simulation error for cache admission algorithms
that use popularity as a criteria

is much smaller than the simulation error for the traces Tragen-R
and Tragen-B for all popularity-based cache admission algorithms.

(B) Popularity and size based eviction algorithms. We now
evaluate JEDI on cache algorithms that use the popularity and size
of the objects to make eviction decisions (Figure 10). We use traces
VIDEO and EU for the experiments. We consider following algo-
rithms: GDSF, LRU, LRFU, ARC, 2Q (described in §10.2).

We observe that JSynth produces an average simulation error of
2% and 1.3% in RHR and BHR, respectively, across all the cache al-
gorithms. Whereas, the trace Tragen-R produces an average error of
5% and 9% in RHR and BHR, respectively. And Tragen-B produces
a simulation error of 14% and 7.5% in RHR and BHR, respectively.
Further, JEDI provides a smaller simulation error as compared to
TRAGEN for each of the size and popularity based cache eviction al-
gorithms. Therefore, we conclude that the JSynth produces a smaller
simulation error, on an average by 6%, across all popularity and size
based cache eviction algorithms.

(C) Recency based eviction algorithms. We use traces VIDEO
and EU for the experiments. Apart from LRU, we evaluate FIFO,
RANDOM, SLRU, PLRU and CLIFFHANGER (§10.3).
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Figure 11: Observed simulation error for recency based cache eviction
algorithms

We observe that both JEDI and TRAGEN produce synthetic traces
that yield small simulation errors across all the recency-based cache
eviction algorithms (Fig. 11). In particular, the trace JSynth and
Tragen-R produce an average simulation error of 1.5% and 0.6%,
respectively, in the RHR across all the algorithms. And JSynth and
Tragen-B produce an average simulation error of 0.5% and 1%, re-
spectively, in the BHR. Thus, JEDI provides similar simulation error
as TRAGEN for recency based cache eviction algorithms. How-
ever, a key difference between JEDI and TRAGEN, is that JEDI
produces a single synthetic trace that has similar RHR and BHR
as the original; whereas, TRAGEN produces two distinct synthetic
traces Tragen-R and Tragen-B that have similar RHR and BHR, re-
spectively, as the original. Additionally, the simulation error in BHR
(resp. RHR) on using the Tragen-R (resp. Tragen-B) is significant
and is on an average 12% (resp. 11%) across all cache algorithms.
Therefore, Tragen-R and Tragen-B cannot be used interchangeably.

6.3 Determining synthetic trace length
We now answer the following question. What trace length should

be used for cache simulations? The answer is that trace should be
long enough that the hitrates reach a stable value in the duration of a
cache simulation that starts with an empty cache. The length varies
based on the access patterns in the trace, cache size and the cache
algorithm. The observed RHRs and BHRs for the synthetic trace
over time on a cache simulation that uses an LRU cache of size 500
GB is shown in Fig. 12. We observe that across the various traces
used for our analysis, the hitrates stabilize after around 100 million
requests. Hence, we recommend that users of JEDI use a trace length
of at least a 100 million requests.

6.4 Synthetic traces for traffic mix scenarios
We now show that JEDI can produce a synthetic trace for any

specified traffic mix scenario. As an example, consider a traffic
mix scenario consisting of 20 reqs/second of the Media-0 traffic
class and 70 reqs/second of the Media-1 traffic class from the EU
trace. The traffic mixer module of JEDI computes the pFD of the
specified traffic mix and the synthetic trace is generated from it.
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Figure 12: Convergence in RHR and BHR for the synthetic trace.

We compare the HRCs of the synthetic trace with the HRCs of the
original EU trace. Fig. 12 depicts our HRCs derived from the pFDs
of the synthetic and the original traces. We observe a total variation
difference of 0.0067 (resp. 0.01154) in the rHRC (resp. bHRC) of the
original and the synthetic trace.

6.5 Comparison with alternate approaches
Prior work in synthetic trace generation for CPU caches and Web

caches use the LRUSM algorithm [13, 18]. Upon experimenting with
the LRUSM algorithm to produce a synthetic trace, we found that
the synthetic trace seldom has the same cache-level properties as the
original trace. Fig. 14a depicts the HRCs of the synthetic trace and
the original trace for an LRU cache. We observe a large difference
in the HRCs of the original and synthetic trace. The experiment was
performed using the VIDEO trace (Table 1).

On adapting the LRUSM algorithm for variable-size objects, we
find that the BHR of the synthetic trace is much higher than the BHR
of the original trace. This is because the synthetic trace contained a
large fraction of large objects as compared to the original trace. The
results for the VIDEO trace is depicted in Fig. 14b. Therefore, we
conclude that the LRUSM approach fails to produce synthetic traces
with similar cache-level properties as the original trace.

7 Related work
In this section, we first review prior work that study the char-

acteristics of the Internet traffic and then provide an overview of
the various synthetic workload generators that produce synthetic
workloads representative of the identified characteristics.
Characterizing the Internet traffic. There exist several studies
carried over the past two decades that characterize the workload of
various Internet services [5, 9, 11, 12, 19, 27, 31, 42, 52, 53, 57, 60].
A first such study was done by Arlitt et. al. [11]. The work analyses
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Figure 13: Traffic mix results for the EU trace
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Figure 14: LRUSM approach. (a) HRCs under the LRUSM approach
with stack initialized with unit size objects, (b) HRCs under LRUSM
approach with stack initialized with object sizes.

six different datasets collected from different Internet web servers
to identify ten salient characteristics of the web workload. The
work also discusses the impact of the characteristics on caching
and performance. The authors revisit the study 10 years hence [58]
to show that the previously identified workload characteristics are
still in tact. Similar studies that characterized the web workload
were performed in [12, 42]. However, in the past decade, the content
delivered on the Internet has significantly diversified and there exist
several recent works that characterize the diverse workload [27, 31,
53, 60].

The work in [54], characterizes the workload of a content de-
livery network (CDN). CDNs serve content belonging to a diverse
set of traffic classes, each with distinct set of properties such as
access patterns, popularity distributions and size distributions. The
cache-level properties of a traffic class are captured by a succinct
composable model called Footprint Descriptors (FD). Further, the
FD of a traffic mix scenario can be computed from individual FDs
using the Footprint Descriptor Calculus. A limitation of FD is that it
can only be used to compute the RHR of a traffic class. This limita-
tion was addressed in [50], by proposing a byte-weighted Footprint
Descriptor (bFD) that can be used to compute the BHR of a traffic
class. However, neither FD nor bFD, capture both the bHRC and
rHRC of a traffic class. Further, they do not capture finer object-level
properties such as size distribution and popularity distribution, that
are salient characteristics of any workload.

In this work, we overcome limitations of FD and bFD by propos-
ing a succinct Popularity-Size Footprint Descriptor (pFD) traffic
model that captures object-level properties and the cache-level prop-
erties of a traffic class. Further, we also derive a calculus to compute
the pFD of a traffic mix given the pFDs of individual traffic classes.
Tools for synthetic trace generation. The first synthetic trace gen-
eration tools are SpecWeb96 [22] and HttpPerf [46]. Both tools
generate representative http request workload with the same size
and popularity distributions as the original workload. SURGE [13]
produces a synthetic web workload that matches the size distribution,
popularity distribution, request size distribution, temporal locality
of request accesses, idle periods of individual users. Several other
tools that satisfy all or a subset of the mentioned properties are Geist
[34], WebPolygraph [49], Globetraff [36], MediSyn [56]. However,
the tools do not generate a synthetic trace with similar hitrates as
the original. The tool Prowgen [18] identifies specific properties of
a workload that impact the hitrates of a proxy cache by generating
a synthetic trace. Prowgen (and other tools mentioned above) use
the LRUSM algorithm (Section 6.5) and hence cannot generate a
synthetic trace with the same cache-level properties as the original.

A recent tool the produces a synthetic trace that has similar cache-
level properties as the original is TRAGEN [50]. Specifically, TRA-
GEN produces a synthetic trace that has either a similar RHR or
BHR as the original trace for only caches that use recency based
eviction algorithms. Further, TRAGEN does not produce a synthetic
trace with finer object-level properties such as popularity distribution
and request size distribution. In this work, we address the limitations
of TRAGEN. We propose JEDI that produces a single synthetic trace
that produces similar RHR and BHR as the original trace for a wide
set of cache algorithms and also satisfies the object-level properties.
ML-based synthetic trace generation. We are not aware of ML-
based synthetic trace generation tools for simulating cache algo-
rithms. However, there exist several tools in the networking com-
munity such as STAN [59], DoppelGANger [40], Netshare [62]
that generate network packet-level traces that incorporate packet-
level features such as source/destination IP, port, start and end times
for the packet-flow etc. These tools use modern machine learning
techniques like GANs [10, 28] to produce synthetic traces. While
the ML-based techniques can be used to generate synthetic traces,
they do not provide any theoretical guarantees. Whereas, our work
relies on a sound theoretical model – the popularity-size footprint
descriptors (pFDs) – that captures the cache-level and object-level
properties of a trace.

8 Conclusion
In this work, we design and develop JEDI that significantly ad-

vances the state-of-the-art in synthetic trace generation. JEDI is
the first tool that produces a synthetic trace that simultaneously
matches the object-level properties (object size distribution, pop-
ularity distribution, request size distribtuion) and the cache-level
properties (RHR and BHR) of the original trace. By matching both
the object-level properties and the cache-level properties, JEDI is
able to produce a synthetic trace that yields similar RHR and BHR
as the original trace for a wide range of cache algorithms. JEDI will
be seeded with pFD models computed from the original production
traces obtained from Akamai’s production servers and will allow
researchers to produce realistic traces for their own caching research.
JEDI is made open-source and is publicly available for download2.
Further, we believe that the techniques developed in our work are
more broadly applicable and can be used to generate synthetic traces
for other caching systems such as DNS caches, CPU caches, Mem-
cached [26], and not just CDN caches. Producing synthetic traces
for caching systems across other domains is future work.
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10 Description of the cache algorithms

10.1 Popularity and size based admission
algorithms

(1) ThLRU-𝑧. The ThLRU-𝑧 algorithm only admits objects that are
smaller than the specified threshold 𝑧.

(2) Bloomfilter-𝑛. The Bloomfilter-𝑛 algorithm only admits objects
on their 𝑛𝑡ℎ access [41]. We set 𝑛 to the values 2 and 3 in
our experiments and are abbreviated as Bloom-2 and Bloom-3,
respectively, in Figure 9.

(3) ThLRU-Prob. ThLRU-Prob admits objects with a probability
𝑒−𝑧/𝑐 , where 𝑧 is the size of the requested object and 𝑐 is a user
defined parameter. We set 𝑐 = 500𝐾𝐵.

(4) ThLRU-𝑧/Bloomfilter-𝑛. The ThLRU-𝑥 /Bloomfilter-𝑦 admits
objects that have a size smaller than 𝑥 . Further, these objects are
admitted only on their 𝑛𝑡ℎ access. We set 𝑧 = 8𝑀𝐵 and 𝑛 = 2 for
our experiments.

(5) Adaptsize. Adaptsize is an adaptive size-aware cache admission
policy that dynamically tunes the size threshold to maximize the
RHR. Adaptsize admits objects with a probability 𝑒−𝑧/𝑐 , where
𝑧 is the size of the requested object and 𝑐 is a parameter that is
learnt dynamically by solving a markov model [15].

10.2 Popularity and size based eviction algorithms
(1) GDSF. The Greedy-Dual-Size-Frequency cache algorithm as-

signs a priority to each object in the cache. The priority is com-
puted as a function of last access time, frequency and the size of
the object. The GDSF algorithm evicts an object from the cache
with the least priority. The GDSF has been shown to provide a
better performance than LRU for proxy web caches [20]. It is
currently implemented in Squid – an open source proxy cache.
[51].

(2) LFU. The Least-Frequently-Used cache algorithm evicts an
object that is requested the least number of times. Despite its
popularity, LFU is not used in practice as it performs poorly.

(3) LRFU. The Least-Recently/Frequently-Used cache algorithm
uses both the recency as well as the frequency of the. objects to
make an eviction decision. [38]. LRFU overcomes the pitfalls of
the LFU algorithm.

(4) ARC. The Adaptive replacement cache algorithm keeps track
recently used and frequently used objects and recent eviction his-
tory for both. It has been shown to provide a better performance
than LRU on a wide range of workloads [45]. ARC is used in
many production systems such as Sun Microsystems’s ZFS [4],
VMware’s vSAN [30], OpenZFS [2].

(5) 2Q. The 2Q cache algorithm maintains two caches. The first
cache uses FIFO eviction algorithm and the second uses LRU.
On a cache miss, the requested object is added to the FIFO cache

and on a subsequent request to the object it is moved to the LRU
list [33].

10.3 Recency based eviction algorithms
(1) FIFO. The First In First Out eviction algorithm evicts objects

from the cache in the order they are inserted, without any regard
to the number of accesses or the recency of the objects. FIFO is
easy to implement and has been shown to provide similar hitrates
as LRU on a variety of production workloads [25]. Further, FIFO
provides a better cache performance on SSDs as compared to
other cache algorithms [39]. Hence, FIFO is widely used in
practice.

(2) RANDOM. The RANDOM eviction algorithm evicts a random
object from the cache on inserting a new object into the cache. It
is easy to implement as it does not maintain access information
of the objects in the cache. The RANDOM eviction algorithm
and its variants are studied extensively [6, 16, 37] and widely
used. For example, in ARM processors [63].

(3) SLRU (and S4LRU). The Segmented LRU cache eviction al-
gorithm segments the cache into an equal sizes upper and lower
segments that independently use the LRU eviction algorithm.
On a cache miss, the requested object is first inserted into the
lower segment and moved to the upper segment on a subsequent
access. The object that is evicted from the upper segment is in-
serted into the lower segment. S4LRU operates similar to SLRU
but segments the cache into 4 equal size segments. SLRU and
S4LRU have been used in Facebook photo caching [31].

(4) PLRU. The Pseudo-LRU caching algorithm approximates LRU.
PLRU stores objects in the cache as leaf nodes of a binary tree.
The non-leaf nodes maintain pointers to the nodes that have not
been recently used. The pointers are updated on every access
and are used to find a leaf node that has not been recently used.
The object in the leaf node is evicted. PLRU is used in TC1798
CPU and POWERPC variants (MPC603E, MPC755, MPC7448)
[48].

(5) CLIFFHANGER. CLIFFHANGER [21] is a set-associative
cache and allocates a segment of the cache for each set of objects.
The size of each segment is determined dynamically using the
access patterns of the objects across the sets. Each segment uses
the LRU eviction algorithm.
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