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ABSTRACT
The ever-increasing demand for energy is resulting in considerable
carbon emissions from the electricity grid. In recent years, there has
been growing attention on demand-side optimizations to reduce
carbon emissions from electricity usage. A vital component of these
optimizations is short-term forecasting of the carbon intensity of
the grid-supplied electricity. Many recent forecasting techniques
focus on day-ahead forecasts, but obtaining such forecasts for longer
periods, such as multiple days, while useful, has not gotten much
attention. In this paper, we present CarbonCast, a machine-learning-
based hierarchical approach that provides multi-day forecasts of
the grid’s carbon intensity. CarbonCast uses neural networks to
first generate production forecasts for all the electricity-generating
sources. It then uses a hybrid CNN-LSTM approach to combine
these first-tier forecasts with historical carbon intensity data and
weather forecasts to generate a carbon intensity forecast for up to
four days. Our results show that such a hierarchical design improves
the robustness of the predictions against the uncertainty associated
with a longer multi-day forecasting period. We also analyze which
factors most influence the carbon intensity forecasts of any region
with a specific mixture of electricity-generating sources. We show
that CarbonCast’s 4-day forecasts have a MAPE of 4.80–13.93%
across six geographically distributed regions while outperforming
state-of-the-art methods. Importantly, CarbonCast is the first open-
sourced tool for multi-day carbon intensity forecasts where the
code and data are freely available to the research community.

CCS CONCEPTS
• Social and professional topics → Sustainability; • Comput-
ing methodologies → Neural networks.
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1 INTRODUCTION
Modern society depends on the electric grid to power many aspects
of our daily lives, such as lighting, heating, and cooling, to name a
few. According to the US Energy Information Administration (EIA),
electricity consumption in the US was around 3.8 trillion kWh in
2020 [31], and the total energy demand is slated to rise by nearly
50% by 2050 [29]. The grid’s energy demand exhibits temporal vari-
ations over a day and across seasons. A region’s electricity grid uses
various sources, ranging from conventional sources such as coal, oil,
and natural gas to renewable sources such as hydro, solar, and wind,
to generate sufficient electricity to meet the demand. However, elec-
tricity generation emits a significant amount of greenhouse gases
and is one of the major contributors to greenhouse gas emissions
in many regions worldwide [19, 33, 34]. These emissions, which
depend on the generation source, vary over time as the mix of
sources itself changes. The rising deployment of renewable sources
such as solar and wind also introduces substantial variations in the
grid’s carbon emissions due to their intermittent nature.

As part of the ongoing energy transition in line with the United
Nations’ climate goals [26], there is increasing interest in develop-
ing techniques to reduce the carbon emissions from the electricity
grid. From an energy supply perspective, increasing the fraction
of clean, renewable sources and masking the intermittent nature
of renewable sources through energy storage are key approaches
for reducing grid emissions. From a demand-side perspective, tech-
niques to shift energy demand from periods when the carbon in-
tensity of energy is high to periods when it is low have started
gaining attention. For example, in the context of buildings, flexible
loads (e.g., laundry) can be deferred to low carbon periods. Sim-
ilarly, residential charging of electric vehicles can be scheduled
intelligently based on future knowledge of when grid emissions
are lower [12]. Such techniques are also being employed in other
sectors, such as cloud computing, driven by aggressive goals of
major cloud providers to reduce their carbon footprint [10, 24].
Since computing loads exhibit substantial temporal elasticity (e.g.,
batch workloads, interruptible machine learning), researchers have
also begun to develop techniques for shifting loads to low-carbon
hours [10, 17]. Future knowledge of the grid’s carbon intensity is an
essential requirement of all of these demand-side carbon reduction
techniques. Given carbon forecasts of the electric grid’s electricity
generation, such techniques can leverage this knowledge to decide
how much load to shift, where to shift, and to what hours.

Short-term forecasts of grid carbon intensity are key for building
carbon-aware systems and applications in order to reduce their
carbon footprint. The carbon intensity of electricity is defined as
the average carbon per unit of electricity generated and is expressed
in the units of 𝑔𝑟𝑎𝑚𝑠/𝑘𝑊ℎ. Recently, grid operators have begun
releasing real-time data about the carbon intensity of their supplied
electricity [2, 23], and third-party services such as Watttime [35]
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and ElectricityMap [8] have begun to aggregate such data and
expose real-time carbon intensity via cloud interfaces. In addition
to exposing the real-time carbon intensity of electricity, there has
also been work on short-term forecasting of carbon intensity using
historical data [15, 20]. Both Watttime and ElectricityMap have
also begun to provide such forecasts as part of their commercial
service. Much of the work on near-term forecasting has emphasized
day-ahead forecasts, which provide carbon intensity predictions for
the next 24 hours. For example, many recent efforts [8, 11, 13, 20]
provide day-ahead forecasts of carbon intensity, while some like
Bokde et al. [15] provide 48-hour forecasts. While such forecasts are
useful for various types of demand-side carbon optimizations, some
techniques that operate over multiple days (e.g., intelligent battery
charging, scheduling long-running cloud jobs) require forecasts
for periods longer than 24 hours. Similar to how weather forecasts
provide predictions for the next day as well as several days into
the future, the design of techniques for multi-day carbon intensity
forecasts is a problem of considerable importance but one that has
not received much attention.

Research contributions. In this paper, we present CarbonCast,
a system based on machine learning to forecast multi-day (up to 96
hours) grid carbon intensity. Extending day-ahead forecast methods
to multiple days is challenging since the factors influencing carbon
intensity are more unpredictable and have greater variability over
longer time horizons. To reduce prediction error for multi-day fore-
casting, CarbonCast considers both historical data of the sources
used for electricity generation, as well as other factors like weather
forecasts and the electricity generation forecasts for each source.
We show that judiciously using such forecast information improves
prediction accuracy over longer time periods. For example, for a
given energy demand, a day with a forecast for high winds is likely
to have a lower carbon intensity due to more electricity generation
from wind. We make the following specific contributions.
(i) Hierarchical design. CarbonCast uses a two-tiered hierarchical
approach, each based on machine learning. The first tier uses neural
network models to provide individual source electricity generation
forecasts. The second tier, based on a hybrid CNN-LSTM combi-
nation, uses these forecasts with weather forecasts and historical
carbon intensity data to generate 96-hour carbon intensity forecasts.
Importantly, our hierarchical approach makes CarbonCast robust
to noisy or partially-missing inputs and so is suitable for multi-day
forecasts. Our two-tiered approach also provides a modular design
where each tier can be independently improved. For instance, if we
can obtain improved wind energy production forecasts from any
method, that improved forecast can be incorporated directly into
our system to improve the carbon intensity forecasts.
(ii) Multi-day forecasts.We provide 96-hour forecasts for the grid
carbon intensity of six regions across the US and Europe. We show
that CarbonCast can be used in different regions of the world with
minimal changes to get good multi-day carbon intensity forecasts.
We also provide forecasts based on both lifecycle (operational and
infrastructural) and direct (only operational) emission factors. Thus,
our system can be incorporated by both scope 2 [27] and scope 3
[28] carbon emission optimization solutions.
(iii) Feature importance for carbon intensity prediction.We analyze
which features are important for predicting the carbon intensity of
the electricity grid in a given region. For example, we show that in

California, solar production forecast is the most important feature
for predicting the carbon intensity. In contrast, wind forecast plays
a bigger role in predicting the carbon intensity in Texas. Our feature
importance analysis provides guidance on which source forecasts to
improve to enhance the precision of the carbon intensity forecast.
(iv) Improving the state-of-the-art.We compare CarbonCast to state-
of-the-art methods, as well as other baselines. When averaged over
96 hours, CarbonCast using direct (resp. lifecycle) emission factors
has a MAPE of 9.96% (resp. 8.63%) across all the regions. Carbon-
Cast also reduces the forecasting MAPE by 14.38% (resp. 11.91%)
over the current state-of-the-art across all the considered regions.
(v) Open source tool. Energy research in diverse areas from buildings
to data centers requires longer-range location-dependent predic-
tions of carbon intensity. Both the code and data of CarbonCast
are available to the public, and it is the first open-source tool for
multi-day predictions of carbon intensity1.

Roadmap. The rest of this paper is as follows: Section 2 dis-
cusses the background. Section 3 explains the CarbonCast system
design. Section 4 experimentally evaluates the accuracy, robust-
ness, and runtime of our approach and also analyzes which factors
are important in predicting the grid carbon intensity. Section 5
discusses the related work and Section 6 concludes the paper.

2 BACKGROUND
In this section, we provide background on regional electricity grids,
types of sources generating electricity, carbon emission factors of
each source, carbon intensity associated with electricity generation,
and how it varies across regions and with time.

2.1 Regional grids and electricity sources
The electricity grid in each region consists of three components:
generation, transmission, and distribution [30]. Electricity is gener-
ated by power plants of various types, transmitted over a network
of transmission lines and finally distributed to end customers via
stations and substations. Typically, electricity is generated from a
mix of renewable and non-renewable sources. Since supply should
match demand, the grid uses a set of dispatchable generators that
can be turned on or off to match a time-varying demand. Sources
such as renewable solar and wind tend to be intermittent and are
assumed to be uncontrolled; other non-renewable sources are then
used to meet the remaining demand. Thus, the fraction of electric-
ity generated by each source varies over time and across different
regions. Factors like locational marginal price [25] and imported
electricity also govern the current source mix of a particular region.

We consider electricity grids in six geographically distributed
regions across the US and Europe (EU). In the US, we consider
electric grids in California (CISO), Pennsylvania-Jersey-Maryland
Interconnection (PJM), Texas (ERCOT) and New England (ISO-NE).
In Europe, we consider Sweden (SE) and Germany (DE). When
aggregated over all the regions, the sources include non-renewable
sources like natural gas, coal, oil, and nuclear, and renewable sources
like solar, wind, hydro, geothermal, and biomass. Note that the exact
mix of sources used to generate electricity is not always known
accurately. If some generation source is not reported for a region,
it is assumed to be non-renewable and is listed as “other” with an
1https://github.com/UMass-LIDS/CarbonCast
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Emission factors Coal Oil Natural gas Nuclear Solar Wind Hydro Other Biomass Geothermal
Lifecycle 820 650 490 12 45 11 24 700 230 38
Direct 760 406 370 0 0 0 0 575 0 0

Table 1: Median lifecycle and direct carbon-emission factors (𝑔/𝑘𝑊ℎ) for different renewable and non-renewable sources.

approximate carbon intensity. In other cases, some sources may
be missing in the data reported by the grid operator. These factors
introduce noise and uncertainty when estimating current and future
carbon intensity, especially over longer time horizons.

2.2 Carbon emission factor (CEF)
We define the carbon emission factor (CEF, in 𝑔/𝑘𝑊ℎ) of a source
as the amount of carbon emitted into the atmosphere per unit of
electricity generated by that source. CEFs of non-renewable sources
are usually much higher than that of renewable sources. Based on
the type of accounting (scope 2 [27] or scope 3 [28] emissions),
there can be two types of CEFs for a source:

• Direct emission factors: These are the operational emis-
sions when a source is converted into electricity and are
used when accounting for scope 2 [27] emissions.

• Lifecycle emission factors: These include operational as
well as infrastructural emissions up the supply chain and are
considered when accounting for scope 3 [28] emissions.

CEF values for a source may vary across power plants in different
regions. For example, power plants burning black coal (anthracite/
bituminous coal) to generate electricity will emit more carbon than
those burning brown coal (lignite). Determining CEFs is a separate
problem. Instead, our work considers CEFs as input to CarbonCast.
In this paper, we simplify the sources (referring to both black and
brown coal as coal) and use standardized median values of carbon
emission factors for each source [5, 6], as shown in Table 1. For
our modelling and forecasting purposes, we assume that the CEF
of “other” sources is the same across all regions. We provide fore-
casts using both types of emission factors and leave it up to the
practitioners to choose which forecast to use.

2.3 Average carbon intensity
The average carbon intensity per unit of electricity generated in a
region is the weighted average of carbon emitted by each source
due to electricity generated by them. Mathematically, the average
carbon intensity (in 𝑔/𝑘𝑊ℎ) of a region at any time is as follows:

(𝐶𝑎𝑟𝑏𝑜𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦)𝑎𝑣𝑔 =

∑ (𝐸𝑖 ∗𝐶𝐸𝐹𝑖 )∑
𝐸𝑖

(1)

where 𝐸𝑖 is the electricity generated (𝑀𝑊 ) by a Source 𝑖 & 𝐶𝐸𝐹𝑖 is
the CEF (𝑔/𝑘𝑊ℎ) of that source.

Electricity grids often exchange electricity with neighbouring
grids to meet the demand. Hence, when calculating the average
carbon intensity of any region, we should also consider the carbon
intensity of any imported electricity. However, any grid exporting
electricitymay import electricity from other neighbouring grids.We
need to find the origin source of electricity to calculate the carbon
intensity of imported electricity, which is not straightforward. So,
we only consider the average carbon intensity of electricity generated
in a region, ignoring any imports/exports in this paper, for simplicity.

2.3.1 Spatial variability of average carbon intensity. Fig. 1
shows the average fraction of electricity generated by each source

Figure 1: Average electricity production by source in 2020.

in the year 2020 in all the regions. We see that the fraction of each
renewable or non-renewable energy source varies across regions.
For example, PJM depends heavily on fossil fuels, whereas Sweden
relies heavily on renewables. Typically, the carbon intensity of a
region is proportional to the fraction of electricity generated by
fossil fuels in that region. The greener the source mix, the lower
the value of average carbon intensity.

Figure 2: Avg. carbon intensity vary temporally in California,
with lower values during day when solar production is high.

2.3.2 Temporal variability of average carbon intensity. The
source mix also varies with time. Renewable sources generating
electricity in a region depend on weather and are highly volatile.
Additionally, since electricity demand is ever-changing and supply
must always match the demand, additional dispatchable genera-
tors may be needed to be turned on during peak load and turned
off during low demand. The grid’s dispatch schedule and types of
generators used during periods of high load depend on the price of
generating electricity using a particular source at that time. As a
result, average carbon intensity also varies with time. Fig. 2 shows
how the source fractions change throughout a specific day in Cal-
ifornia and how it affects the average carbon intensity. Note that
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Figure 3: CarbonCast architecture. Historical values refer to the past 24 hours.

the temporal pattern of average carbon intensity is similar for both
lifecycle and direct emission factors.

3 CARBONCAST DESIGN
We present the design of our CarbonCast approach in this section.

3.1 Overview
The goal of CarbonCast is to take historical data of the source mix
used for electricity generation in a region, the carbon-emission
factors (lifecycle or direct) of each source, and weather forecasts,
to produce a multi-day hourly forecast of the carbon intensity of
electricity in that region. CarbonCast currently produces a 4-day
(i.e., 96-hour) forecast, and we believe it can be enhanced further
in the future to produce 7-day to 10-day forecasts.

CarbonCast uses a hierarchical two-tiered forecasting approach
based on machine learning, as shown in Fig. 3. The first tier uses
a set of models, one for each generation source, to predict the
electricity production from that source for the next 96 hours. The
second tier takes these first-tier predictions along with weather
forecasts to predict the hourly carbon intensity of electricity in that
region for the next 4 days. Several challenges need to be addressed
when making multi-day forecasts, which we discuss next.

First, the amount of renewable sources in electricity genera-
tion varies by region. In regions with significant penetration, their
intermittent nature can complicate carbon intensity forecasting, es-
pecially since intermittent generation causes the carbon intensity of
the grid to vary noticeably over time. Our CarbonCast uses weather
forecasts, in addition to historical production data, to accurately
predict future generation from renewables.

Second, if accurate source production forecasts for all sources
were available, we could use Eq. 1 to calculate the overall carbon
intensity. This is the approach used by DACF [11]. However, source
production data may often be unavailable during some time periods,
or some sources may be unknown and listed as “other”. In such
cases, Eq. 1 can produce higher errors or may be infeasible to use.

Third, tier-1 forecasts get progressively worse with the increas-
ing time horizon—partly due to limitations of the models generating
these forecasts and partly due to less accurate weather forecasts
further the future. In such cases, using the equation may not be
optimal as it always assigns a fixed weight to each source, and so
cannot adjust to the inaccuracies in the inputs.

Consequently, adding a second tier of deep-learning model ar-
chitecture, which can accommodate noisy/missing inputs by read-
justing the weights assigned to each input feature, can be a better
approach to forecast multi-day carbon intensity over using Eq. 1.

Finally, the carbon intensity of a region may have noticeable sea-
sonal and daily patterns (e.g., carbon intensity in California is low
during the day due to high solar generation, and solar generation
is higher in summer). Hence, CarbonCast considers these patterns
when using the historical source mix and carbon intensity data.

The above observationsmotivate CarbonCast’s two-tier approach
to achieve its goals of multi-day carbon intensity forecasting. Sim-
ilar to DACF [11], we refer to the hourly electricity produced (in
𝑀𝑊 ) by a source (past 24 hours) as the historical source production,
whereas the hourly predicted electricity production by a source (in
𝑀𝑊 ) is referred to as the source production forecast. Specifically,
the first tier takes in hourly electricity generated by the individual
sources and outputs individual source production forecasts. These
forecasts are then fed into the second tier along with other features
like historical carbon intensity and weather forecasts. The second
tier then computes the carbon intensity forecasts using a machine
learning model which uses a combination of CNNs and LSTMs.

We now elaborate on each tier of CarbonCast and discuss how
our approach can be applied to any region with minimal changes.

3.2 First-tier design
The goal of the first tier is to estimate the hourly electricity gener-
ated by each production source present in a region over the next
96 hours. In some cases, day-ahead forecasts for renewable sources,
such as solar and wind, are available from the grid operator, but
such forecasts are rarely available for all types of generation sources.
Also, when available, those are limited to 24 hours rather than 96
hours. Consequently, CarbonCast uses ANN models, one per pro-
duction source, at the first tier to predict the source production
forecasts. This first-tier forecasting approach is inspired by other
methods, such as DACF [11], which use similar models.

Fig. 4 shows our first-tier architecture. For each region, we con-
sider all the sources producing electricity in that region. We have
a separate ANN model for each source that takes in the source’s
historical electricity production as input. Moreover, we include fea-
tures like hour-of-day and hour-of-year as input to the ANN model
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to capture diurnal or seasonal trends. We also consider whether the
current day is a weekday or a weekend since electricity demand and
consequently, production varies across weekdays and weekends.

Figure 4: CarbonCast uses neural network models, one per
source, to predict future generation.

For renewable sources like solar, wind and hydro, we also con-
sider weather forecasts as additional inputs. This is because weather
affects renewable energy production (e.g., more precipitation cor-
relates with more electricity production from hydro; solar energy
production is lower during winter months with shorter days).

3.3 Second-tier design
The second tier aims to take the hourly generation forecasts from
each source, as produced by the first tier, and produce an aggre-
gate carbon intensity estimate. As discussed earlier, our second
tier relies on a deep learning model to compute carbon intensity,
rather than an analytic equation, to deal with the impact of noisy or
missing data, which makes the multi-day forecasting problem more
challenging. To do so, we use a combination of CNN and LSTM
models. Fig. 5 shows our CNN-LSTM design. Forecasting grid car-
bon intensity is essentially a time-series forecasting problem, and
LSTM is a state-of-the-art technique used in such problems. Since
the inputs to the second tier are multiple time series data, we add
two 1-D CNN layers to extract high-level “short-term” temporal
features from those inputs and feed them to the LSTM layer, which
can learn “longer-term” temporal patterns in the time series.

In addition to the 96-hour source production forecasts obtained
from the first tier, we use several other features as input to the sec-
ond tier so that CarbonCast can learn more effectively and counter
the errors in source production forecasts. We include historical
average carbon intensity data of that region (past 24 hours), cal-
culated from the historical source mix using Eq. 1. We also add
date-time related features (e.g., hour-of-day, hour-of-year etc.). Fi-
nally, we add 96-hour weather forecasts as input to this tier as well.
Specifically, we use the following weather variables in both tiers:
u- and v-component of wind (in𝑚/𝑠) at 10𝑚 height above sea level
from which we derive the wind speed (in𝑚/𝑠), temperature (in 𝐾 )
and dewpoint temperature (in 𝐾 ) at 2𝑚 height above sea level, and
downward short-wave radiation flux (DSWRF) (in𝑊 /𝑚2) and total
precipitation (in 𝑘𝑔/𝑚2) at the surface level.

This second tier of deep-learning model with additional features
enables CarbonCast to accommodate noisy or even missing source

production forecast data by re-adjusting the weights of each input
feature. Consequently, this makes CarbonCast more suitable for
multi-day forecasts, as it adds robustness even if the tier-1 forecasts
get progressively worse with an increasing forecasting period.

Figure 5: CarbonCast second tier model architecture.

3.4 CarbonCast implementation
CarbonCast is implemented using Keras [4] on Tensorflow [14].
The first-tier ANNmodels have three fully connected (dense) layers.
The first dense layer has 50 hidden units, followed by the second
layer with 34 hidden units. The final layer has 24 units, which
outputs the source production forecast. We use Rectified Linear
Unit (ReLU) activation between the layers. In the second tier, there
are two CNN layers with a max-pooling layer in between. The
first CNN layer has four 4 x 4 filters and necessary padding to
keep the output dimensions the same as the input dimensions. The
second CNN layer has 16 4 x 4 filters. The CNN layers are followed
by a LSTM layer with 24 units and a dropout layer with rate 0.1.
Finally, there is a dense layer having 24 output units. In both the
tiers, we obtain the 96-hour forecasts one day at a time and treat
the forecasted values for 𝑖𝑡ℎ day as historical data for forecasting
the (𝑖 + 1)𝑡ℎ day. For example, we use historical solar production
data to compute the day-ahead solar production forecasts. Then,
we replace the historical data with the forecasted data to get solar
production forecasts for the next 24 hours. We continue this process
till all 96 hours of forecasts are obtained. We obtain carbon intensity
forecasts in a similar way.

We build our datasets from openly available data (refer Table 2).
Our code and datasets are available at https://github.com/UMass-
LIDS/CarbonCast for practitioners and researchers to incorporate
into their carbon optimization and accounting-related solutions.
Since we provide forecasts based on both lifecycle and direct emis-
sion factors of sources, CarbonCast can be used in solutions aiming
to reduce both scope 2 [27] and scope 3 [28] emissions.

Both our design and its implementation are modular. The first
tier of CarbonCast individually forecasts each electricity-producing
source in the electric grid of a particular region and is decoupled
from the second tier. This modular architecture allows CarbonCast
to seamlessly integrate any new model in either tier if it improves
the overall forecasting performance without changing the remain-
ing components. It also enables CarbonCast to use the same frame-
work in any region of the world regardless of significant differences
in the source mix across the electric grids. CarbonCast needs train-
ing data from a region to produce a two-tier model specific to that
region. However, our evaluation shows that we can use the same
set of features and model hyperparameters across various regions.

https://github.com/UMass-LIDS/CarbonCast
https://github.com/UMass-LIDS/CarbonCast
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4 EXPERIMENTAL EVALUATION
In this section, we evaluate our design choices and CarbonCast
performance. First, we show the advantages of our hierarchical two-
tier approach compared with a non-hierarchical approach. Then,
we show how CarbonCast performs across electric grids in six
different regions across the US and Europe and analyze which
features are important in a particular region. We also compare
CarbonCast with recent carbon intensity forecasting methods and
show that CarbonCast provides better multi-day forecasts than the
current state-of-the-art. Finally, we show that it is practical to run
CarbonCast daily, if required, by evaluating its runtime overheads.

4.1 Experimental methodology
Data sources. Table 2 lists the data sources used in this paper. For
any region, the 96-hour weather forecasts provided by [22] need to
be aggregated over the whole region. For that, we refer [7] to get
the bounding boxes for all the regions we have considered in this
paper. Then, following theweighted average procedure suggested in
[21], we aggregate the weather data over a particular region. These
forecasts are given at three-hour granularity, while our carbon and
electricity production data are at hourly intervals. For the sake of
simplicity, we assume that weather variables have the same values
across the three hours. If day-ahead solar and wind forecasts are
available for a region, we directly use that and compute the day-2,
3 and 4 forecasts. For other sources or regions, we compute the full
96-hour source production forecasts using our first tier.

Type of data US regions EU regions
Historical source mix EIA [1]

ENTSOE [18]Day-ahead solar/wind
forecasts

OASIS [3] for
CISO, N/A for

others
96-hour weather

forecasts NCEP GFS ds084.1 [22]

Table 2: Publicly available sources used to build our datasets.
Although we consider only hourly granularity in this paper,

many electric grids and carbon optimization solutions operate at
sub-hourly intervals. CarbonCast can work with data of any time
granularity without any design changes. However, since Carbon-
Cast needs to generate more values with finer time granularities,
additional experiments are required to evaluate CarbonCast’s per-
formance and exploring this direction is considered future work.
CarbonCast training and testing.We consider data from 2019 to
2021 for training CarbonCast and predicting average grid carbon
intensity. The first tier of ANNmodels uses hourly historical source
production data from January 1 to December 31, 2019 for training
and predict individual source production forecasts for the remaining
period. As the prediction period of 2 years is long, we only predict
six months at a time and update and re-train the ANN models with
new data every six months to increase the prediction accuracy,
similar to DACF [11]. The input data to the second tier is from
January 1, 2020 to December 31, 2021 in hourly granularity. The
train-validation-test split is 50%–25%–25%.

We use the sliding-window technique for training all the models.
At each time step (∼ 1 hour), the model looks at the most recent 24
hours as input data and values for the next 24 hours as labels.We use

Root Mean Square Error (RMSE) as the loss function to minimize
during training. During testing, for the 𝑖𝑡ℎ day, we predict the next
96 hours’ average carbon intensity at 00:00 hours, 24 hours at a
time. We use the actual data from the (𝑖 − 1)𝑡ℎ day to predict the
first 24 hours. Then, we take this forecasted data to predict the next
24 hours and continue this process till 96 hours. We evaluate the
forecasting performance in terms of Mean Absolute Percentage
Error (MAPE). Further, since CarbonCast uses stochastic methods,
we take an average of three runs whenever we report the values.

4.2 Benefits of a hierarchical design
First, we justify the need for our hierarchical design. Since our first
tier generates all the source production forecasts, we can directly
use Eq. 1 to get average carbon intensity forecasts by replacing
the fraction of electricity produced by a source with the forecasted
fraction of electricity produced by that source. However, adding a
second-tier model instead of using Eq. 1 has the following benefits:

4.2.1 Resiliency against missing data. A major challenge in
forecasting carbon intensity using data-driven methods is the avail-
ability of good-quality electricity production data. Any system that
calculates carbon intensity using Eq. 1 needs a consistent flow of
electricity production data by each source. However, such data is
unavailable in sufficient detail and granularity outside the US and
Europe. Even the US and European regions may suffer from outages
[32], which may result in electricity generated from one or multiple
sources not being reported for an extended time. In these cases,
carbon intensity forecasts cannot be calculated using the analytical
equation approach since we do not have sufficient data. If we calcu-
late by adding zero values for the missing source, forecast quality
deteriorates heavily. However, since CarbonCast uses an additional
tier of machine learning model, it is resilient against such missing
data and can perform well even if some source is unavailable.

CISO Hierarchical Non-hierarchical

All
sources

No solar
data

All
sources

No solar
data

Day 1 9.40 9.53 7.51 33.54
Day 2 13.23 12.24 14.15 34.05
Day 3 15.09 13.99 18.34 36.31
Day 4 15.75 14.98 19.76 37.27

Table 3: CarbonCast performance (in terms of MAPE) is com-
parable even when some source data is missing, whereas per-
formance of the non-hierarchical approach degrades heavily.

We design a simple experiment to prove our claim. Fig. 1 shows
the fraction of electricity produced by each source in California in
2020. Solar is one of California’s most important sources of elec-
tricity, contributing to about 20% of the total electricity generation.
To prove our hypothesis, we remove solar production forecast from
both the input to our second tier and the equation to calculate the
carbon intensity forecast, to simulate a scenario where this data is
unavailable. We see that CarbonCast performance has negligible
effect, as other features like historical carbon intensity and, in this
case, solar irradiance (DSWRF) compensate for the missing data.
In contrast, the non-hierarchical performance in California with
missing solar data degrades by 2 − 5x times (refer Table 3).
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(a) Day 1 forecasts (0-24 hr). (b) Day 2 forecasts (24-48 hr). (c) Day 3 forecasts (48-72 hr). (d) Day 4 forecasts (72-96 hr).

Figure 6: Comparison between forecast CDF plots of Hierarchical CarbonCast vs non-hierarchical equation based approach.
CarbonCast forecasts are resilient to noises in the input and CarbonCast can still give good predictions even when source
production forecasts get progressively worse with an increasing forecasting period.

4.2.2 Resiliency against noise in input. Our hierarchical de-
sign is also resilient to noisy source production forecasts. In general,
as the forecasting period increases, forecast accuracy deteriorates.
Fig. 7 shows how wind and natural gas production forecast errors
increase in California with the forecasting period. Even for short
forecast periods, since equation-based approaches assign a fixed
weight to each source production forecast (where the weight is the
CEF of that source), the accuracy of such methods depends heavily
on the accuracy of these forecasts. However, adding another tier of
learning enables CarbonCast to re-weight the input features and
adjust for the noise. To prove this, we set up a simple experiment.
We start with perfect source production forecasts in California and
then gradually add Gaussian noise to the natural gas production
forecast, and observe its effect on day-ahead carbon intensity fore-
casts. We choose natural gas because it generates the most fraction
of California’s electricity and has a high CEF. Hence, if all inputs
to the system are perfect and only one is varied, a noisy natural
gas forecast is expected to have the most effect on carbon inten-
sity forecasts. Fig. 8 shows that in California, the equation-based
approach gets worse linearly as we add noise to the natural gas
production forecast, while CarbonCast is more robust to the noise.

Figure 7: Source production forecasts get more erroneous
with increasing forecasting period.

Fig. 6 shows that the CDF plots for CarbonCast become better
than that of an equation-based approach from day two onwards.
The 90𝑡ℎ percentile MAPE of CarbonCast becomes better by 18.39%
(resp. 15.83%), 23.47% (resp. 22.54%), and 25.57% (resp. 21.64%) with
direct (resp. lifecycle) emission factors on average across the regions
when forecasting days 2, 3 and 4, respectively. In this paper, we
only show the CDF plots for California considering direct emission
factors, but this effect is visible for other regions as well as lifecycle
emission factors. In general, we see that CarbonCast performs on

Figure 8: CarbonCast is resilient to noise in the input, in
contrast to equation based approaches.

par or better as the forecasting period increases. Thus, we conclude
that our hierarchical design is more suitable for multi-day forecasts
due to the ability to re-weight the input features.

Figure 9: CarbonCast forecasts generally match actual values,
but get progressively worse with larger forecasting periods.

4.3 CarbonCast forecasting performance
We now evaluate how CarbonCast performs in the six regions
across the US and Europe. Fig. 9 shows an hourly time series aver-
aged over a week for the actual and forecasted carbon intensities
of the electricity grid in California. Table 4 (resp. Table 5) lists Car-
bonCast 96-hour forecasting performance across all the regions (in
terms of MAPE) when direct (resp. lifecycle) emission factors are
considered while calculating the average carbon intensity forecast.
CarbonCast MAPE ranges from 4.80 − 13.93% when aggregated
over 96 hours. When averaged over all the regions, CarbonCast has
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a MAPE of 9.96% (resp. 8.63%) across the regions when direct (resp.
lifecycle) emission factors are considered. The day-wise MAPE in
CarbonCast ranges from 3.44 − 17.52% (resp. 3.69 − 15.55%) across
the regions with direct (resp. lifecycle) emissions. In general, we
see that CarbonCast errors increase with the forecasting period.

Region Mean Median 90th per-
centile

95th per-
centile

CISO 13.37 11.96 22.21 25.99
PJM 4.80 4.04 8.10 9.70

ERCOT 11.13 8.76 21.25 27.17
ISO-NE 6.46 5.55 11.33 13.50

SE 10.07 8.54 17.78 20.39
DE 13.93 11.30 24.34 29.99

Table 4: CarbonCast 96-hour forecast performance (using
direct emission factors, in terms of MAPE)

Region Mean Median 90th per-
centile

95th per-
centile

CISO 11.45 9.91 18.58 24.27
PJM 5.29 4.51 8.74 10.17

ERCOT 11.14 8.40 21.44 28.85
ISO-NE 6.41 5.50 10.96 13.29

SE 5.78 5.12 9.47 11.36
DE 11.72 9.16 20.90 27.60

Table 5: CarbonCast 96-hour forecast performance (using
lifecycle emission factors, in terms of MAPE)

We posit that regions with more solar and wind production
have higher forecasting errors, because solar and wind are volatile
sources and generating such forecasts is difficult. This in turn in-
creases the error in CarbonCast second-tier. Fig. 10 shows the cor-
relation between the fraction of electricity generated by solar/wind
in a region and the MAPE, and confirms our hypothesis. The results
are similar for both direct and lifecycle emission factors.

Figure 10: CarbonCast errors are higher in regions with more
solar and wind penetration.

The regions where we have evaluated CarbonCast are diverse in
terms of location, energy sources, and renewable production. For
example, Sweden has a high hydro andwind (renewable) generation.
In contrast, other regions have a high percentage of non-renewable
fossil fuels (e.g., PJM with natural gas and coal). Our technique
performs well and is robust enough to be re-trained and used in

these representative regions. Given that CarbonCast is able to work
in diverse regions, we conclude that it is an effective system for
forecasting grid carbon intensity in any region across the world.

4.4 Feature importance
We evaluate which features are deemed important by CarbonCast
for a particular region while forecasting the grid carbon intensity.
Fig. 11 shows the top 10 features while predicting the carbon inten-
sity of California using direct emission factors. A higher absolute
value means more weightage has been assigned to that particular
feature, and it is more important. We see that the carbon intensity
forecasts for California rely heavily on solar production forecasts.
In general, historical carbon intensity data is a strong indicator of
future carbon intensity for any region because carbon intensity
has both daily and seasonal patterns. For example, carbon inten-
sity is generally lower during the day in California due to solar
production. The ordering of features varies across the regions. For
example, in Texas, wind speed and wind production forecasts have
a high weightage, while coal production forecast is one of the most
important features in PJM.

Figure 11: Features (L to R): Historical carbon intensity, hour
of day (h_sin); forecasts of temperature, dewpoint, DSWRF,
and precipitation; forecasts of nuclear production, solar pro-
duction, natural gas production, and wind production.

Suppose we want to invest in improving a feature in a particular
region. Our feature importance results tell us which feature to
focus on to most improve CarbonCast performance. For example,
although natural gas produces the highest fraction of net electricity
in California (refer Fig. 1), we should first invest in improving the
solar production forecast to get maximum improvement.

4.5 Comparison with state-of-the-art
We now show how CarbonCast compares with the state-of-the-art.
Recent works mostly forecast only day-ahead [11, 13, 20] or 48-hour
carbon intensity [15] and extending many of those approaches to
forecast over a 96-hour period is not straightforward. Somemethods
provide multi-day forecasts [23] but are proprietary, and we do not
have access to their model/data for comparison. Consequently, we
compare CarbonCast with the following two recent works, which
we could extend to give 96-hour forecasts:
1) SOTA1: Bokde et al. [15] decompose the univariate carbon inten-
sity time series into seasonality, trend and noise components. Then,
they forecast each component separately using techniques like Feed
Forward Neural Network (FFNN) and ARIMA and recombine to
get 48-hour carbon intensity forecasts. For the purpose of compar-
ison, we implement a representative univariate Seasonal-ARIMA
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Day 1 forecast Day 2 forecast Day 3 forecast Day 4 forecast

Region SOTA1 SOTA2 CC SOTA1 SOTA2 CC SOTA1 SOTA2 CC SOTA1 SOTA2 CC
CISO 10.71 6.45 8.08 18.99 12.26 11.19 25.24 16.02 12.93 31.64 17.22 13.62
PJM 4.27 3.08 3.69 7.11 5.51 4.93 8.90 7.06 5.87 9.77 8.15 6.67

ERCOT 14.09 7.87 9.78 20.86 12.74 10.93 24.46 14.94 11.61 26.30 16.21 12.23
ISO-NE 5.54 4.32 5.10 8.10 9.23 6.33 10.07 10.69 6.97 11.26 11.57 7.25

SE 5.10 3.28 4.29 7.96 5.92 5.64 9.59 6.79 6.43 10.17 7.33 6.74
DE 15.54 7.21 7.81 31.56 11.82 10.69 42.16 13.95 12.80 50.85 16.57 15.55
Table 6: Daywise MAPE comparison of CarbonCast (CC) versus state-of-the-art methods (lifecycle emission factors).

(SARIMA) model with a 96-hour forecasting period as an example
of such a method and compare it with CarbonCast.
2) SOTA2: DACF [11] forecasts each source individually and then
uses Eq. 1 to get day-ahead average carbon intensity forecasts. Their
approach is similar to our first tier, and their code is publicly avail-
able. So, we extended their approach to forecasting carbon intensity
for 96 hours. They used direct emission factors, but converting to
lifecycle emission factors for our comparison is straightforward.

Other works on forecasting short-term carbon intensities either
mostly use a combination of the methods mentioned above [20]
or have limitations in extending the forecast period [13]. Thus,
we claim that the above two implementations fairly represent any
state-of-the-art multi-day carbon forecasting systems.

Table 6 provides a day-wise comparison of all the approaches
in terms of MAPE, with the best performing method highlighted
in bold. We see that CarbonCast always outperforms SOTA1 [15].
When compared with SOTA2 (DACF) [11], there is a clear distinc-
tion wherein SOTA2 gives better day-1 forecasts, but as the input
data (weather forecasts, source production forecasts etc.) get pro-
gressively worse with an increasing forecasting period, CarbonCast
starts to perform better as it is more robust to input noise. The
results are similar with direct emission factors — CarbonCast is
better than SOTA2 from day 2 onwards. The only exception is in
Germany, where we see SOTA2 having a better MAPE till day 3.
However, a CDF plot of both the approaches show that their results
are still comparable, and the above conclusion still holds.

When aggregated over 96 hours for the whole test period, Car-
bonCast using direct (resp. lifecycle) emission factors has an average
MAPE reduction of 14.38% (resp. 11.91%) across the regions.

4.6 CarbonCast runtime overheads
Finally, we break down the time taken by CarbonCast to generate
96-hour forecasts using commodity hardware. The first tier takes
2 secs per epoch to train. We limited the number of epochs to 100.
So, the first tier takes at most 200 secs to train. We forecast six
months at a time, which takes ∼ 30 secs (forecasting a single 96-
hour period takes 0.15 secs on average). The time taken to generate
such forecasts is similar for all the sources, and since the source
production forecasts can be generated in parallel, we say that the
first tier runtime upper bound is ∼ 4mins. The second tier can only
be run after the first tier forecasts are obtained, and takes 9 secs
on average per epoch during training. Hence, it takes at most 15
mins to train (max. 100 epochs). After training, forecasting a 4-day
period takes 0.5 secs on average.

We see that CarbonCast takes ∼20 mins, with most of the time
taken during training. Usually, the forecast accuracy of CarbonCast

decreases as the forecast period increases. To counter the inaccu-
racies due to a longer forecasting period of 96 hours, we can train
CarbonCast periodically (say, every 𝑛𝑡ℎ day) and generate 96-hour
forecasts daily. This method will result in CarbonCast taking ∼20
mins on day one and taking < 1 sec on days 2 − 𝑛, and enable
practitioners to update their carbon optimization decisions daily
with an updated and more accurate forecast if required.

4.7 Discussion
From the results in Sections 4.2 and 4.5, we conclude that Car-
bonCast is a better system for multi-day forecasts. Additionally,
CarbonCast’s flexibility gives practitioners the option to use Car-
bonCast along with approaches like DACF [11]. Both approaches
can be run in parallel, and DACF [11] can be used for shorter fore-
casting periods, while CarbonCast can replace DACF [11] as its
performance starts to degrade. For example, carbon optimization
decisions for 0 − 24 hours can be based on DACF [11] forecasts,
with following hours’ forecasts coming from CarbonCast. Another
benefit of CarbonCast’s hierarchical approach is that if some source
production forecast is highly erroneous and degrades the overall
performance, it can be removed since there are other features that
can compensate for the removed input, which increases robustness.

5 RELATEDWORK
Predicting carbon intensity is becoming increasingly popular for
solving problems like smart charging of electric vehicles [12], reduc-
ing carbon footprints in residential heating [16], and other carbon
reduction optimizations. Lowry [20] provides grid carbon intensity
forecasts for heating, ventilation and air-conditioning (HVAC) sys-
tems using only historical data. Leerbeck et al. [13] forecast grid
carbon intensity for Denmark using linear regression and ARIMA.
These works have a flat design, whereas CarbonCast has a hierar-
chical architecture. CarbonCast also considers source production
forecasts for all electricity-generating sources in a region, unlike
[13, 20]. DACF [11] uses an approach similar to CarbonCast’s first
tier, but CarbonCast has an additional tier of deep learning models,
making it more robust to inaccuracies in the inputs. Tomorrow’s
ElectricityMap [8] provides carbon intensity forecasts for many re-
gions but is a proprietary service: its models are not public, and the
data is available at a cost. Additionally, all these techniques provide
only day-ahead carbon intensity forecasts, while CarbonCast can
forecast up to 96 hours. Among the techniques providing multi-day
forecasts, National Grid ESO [23] provides freely accessible APIs
[9], but they are constrained to the UK region since neither their
data nor models are available publicly. Watttime [35] provides up to
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72-hour marginal carbon intensity forecasts, whereas CarbonCast
provides 96-hour average carbon intensity forecasts. Besides, Watt-
time [35] also have the same problems as [8]. Bokde et al. [15] use
decomposition techniques and statistical methods to get 48-hour
forecasts. However, similar to [20], they also use only historical data
and hence suffer from high forecasting errors, whereas CarbonCast
uses future knowledge to get more precise forecasts.

6 CONCLUSIONS
In this paper, we presented CarbonCast, an open-source two-tiered
hierarchical modelling framework to provide grid carbon intensity
forecasts for up to 96 hours. CarbonCast obtains source production
forecasts from its first tier and then combines all source forecasts
with weather forecasts and historical data in the second tier to
compute a carbon intensity forecast. Our results show that our
hierarchical design makes CarbonCast robust against the uncer-
tainty associated with a longer forecasting period. CarbonCast
has a MAPE of 9.96% (resp. 8.63%) across the regions using direct
(resp. lifecycle) emission factors. It achieves an average decrease of
14.38% (resp. 11.91%) in MAPE over the 96-hour forecasting period
compared to the state-of-the-art approaches. We also show which
source production forecasts are crucial to obtaining precise carbon
intensity forecasts in a particular region. Further, its plug-and-play
framework provides the flexibility to choose the best-performing
model for each region while also providing a general approach that
works well across various geographically distributed electric grids.

CarbonCast is the first open-source tool for multi-day forecast-
ing, with both code and data freely available for researchers. We
hope that CarbonCast will enable more research in carbon-aware
systems that require carbon intensity forecasts. As future work, we
plan to extend CarbonCast to more regions, incorporate the impact
of energy exchange between electric grids, generate sub-hourly
forecasts and also increase its forecasting period further.
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