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Abstract
Traces from production caching systems of users accessing con-

tent are seldom made available to the public as they are considered
private and proprietary. The dearth of realistic trace data makes it
difficult for system designers and researchers to test and validate new
caching algorithms and architectures. To address this key problem,
we present TRAGEN, a tool that can generate a synthetic trace that
is “similar” to an original trace from the production system in the
sense that the two traces would result in similar hit rates in a cache
simulation. We validate TRAGEN by first proving that the synthetic
trace is similar to the original trace for caches of arbitrary size when
the Least-Recently-Used (LRU) policy is used. Next, we empirically
validate the similarity of the synthetic trace and original trace for
caches that use a broad set of commonly-used caching policies that
include LRU, SLRU, FIFO, RANDOM, MARKERS, CLOCK and
PLRU. For our empirical validation, we use original request traces
drawn from four different traffic classes from the world’s largest
CDN, each trace consisting of hundreds of millions of requests for
tens of millions of objects. TRAGEN is publicly available and can
be used to generate synthetic traces that are similar to actual pro-
duction traces for a number of traffic classes such as videos, social
media, web, and software downloads. Since the synthetic traces are
similar to the original production ones, cache simulations performed
using the synthetic traces will yield similar results to what might
be attained in a production setting, making TRAGEN a key tool for
cache system developers and researchers.
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1 Introduction
The volume and diversity of the digital content delivered over

the Internet is growing at a rapid pace. Such content include videos,
images, webpages, 360◦ videos, and software downloads. Much
of this content is delivered by large distributed networks of caches
operated by content delivery networks (CDNs). CDNs deploy hun-
dreds of thousands of servers in thousands of data centers around the
world. When a user accesses an object, say a web page or a video
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segment, the user’s request is routed to a proximal CDN server. If
that server has the requested object in its cache, a cache hit is said
to have occurred, and that object is served to the user. Otherwise,
a cache miss is said to have occurred, the CDN server fetches that
object from an (usually distant) origin server over the WAN, and
then serves it to the user.

Maximizing cache hits. Obtaining cache hits is the desired goal
of caching as the user sees a faster response when the requested
object can be downloaded from a proximal cache. A cache miss is
undesirable since it causes large latencies due to having to fetch the
requested object from an origin server over the WAN. Further, a
cache miss causes additional WAN traffic between the CDN’s cache
and the content provider’s origin, increasing the bandwidth cost for
both parties.

The key metric for evaluating cache efficiency is its hit rate that
come in two flavors. The request hit rate (RHR) is the fraction of
requests that were cache hits, whereas the byte hit rate (BHR) is the
fraction of bytes that were served from cache. The former metric
correlates with average user performance. The latter correlates with
the additional WAN traffic required to serve the cache misses, hence
indicative of the additional bandwidth cost. RHR weights all hits
equally, whether or not the requested object is big or small. But, the
BHR weights each hit by the size of the requested object.

Content caching research. Content caching is ubiquitous and is
central to the functioning of the Internet ecosystem. Not surprisingly,
algorithms for maximizing the hit rate of a cache has been a subject
of intense research over the past few decades. The research has
resulted in a vast and growing literature of how to admit and evict
objects, so as to optimize the efficiency of the cache [9, 28, 29,
31, 42]. The traditional caching policies LRU, FIFO, LFU, and
RANDOM are still commonly used [19, 25] and several variants of
these policies have been proposed to improve the cache performance
[2, 42, 57]. Adaptive algorithms for caching content in in-memory
caches has been explored in [7]. Caching has also been used to
balance the load across the backend servers in a cluster [22] and
reduce the latency variability in the requests [6], amongst several
other applications. There has also been research on using deep-
learning to improve the caching policies [34, 44]. With time varying
content popularity, new content being published at very frequent
rates, and the increasing diversity of the content, caching remains an
active research area where new caching policies and architectures
are frequently proposed and studied.

Need for realistic traces from production caches. The key en-
abler of caching system research and development is cache simu-
lations. Developers in industry routinely modify caching policies
and simulate their impact. Researchers propose new caching policies
and architectures and validate their ideas using cache simulations.
The efficacy of a caching system greatly depends on the prevailing
patterns of how/what objects are requested by users, such patterns
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Figure 1: System diagram of TRAGEN.

can be provided by traces that consist of sequences of user requests
for objects. In order to design and validate new caching policies and
system designs, researchers and developers need such traces to em-
pirically predict the likely performance of the caching system in the
field. But, caching research is seriously hampered by the dearth of
realistic traces from production caching systems. Production traces
are considered private and proprietary and increasingly hard to ob-
tain. Even when obtained, original production traces cannot be made
available publicly for other researchers to replicate the work.

Another key obstacle for using original production traces for
cache simulations is that the number of caching scenarios that need
to be simulated is often large. Consider a CDN server in the field that
must cache and serve content that belongs to several different traffic
classes, say videos, web, downloads, and images from multiple
content providers, in relative proportions that drastically vary over
time. It is not possible to find actual production traces for every
such scenario that could happen in the field. Further, given that the
production traces are voluminous and most developers do not have
access to them for reasons of privacy, the ability to generate realistic
synthetic traces is important to test the system across several possible
traffic mixes and load scenarios.
Our approach. To overcome the challenge posed by the dearth of
realistic traces, we propose a tool called TRAGEN (c.f., Figure 1)
that generates synthetic traces for a wide range of caching workloads
that can be specified by the user of the tool. Formally, a trace is a
sequence of user requests where each request is a 3-tuple consisting
of the time at which the request was made by a user, the unique
identifier (say, url) of the object that was requested, and the size of
the object. TRAGEN produces a synthetic trace 𝑆 that is “similar”
to an an original trace Π in the sense that the two traces would
produce similar hit rates in a cache simulation. Since the synthetic
trace has no information about actual objects accessed by users, it
can be generated in-place and used for cache simulations without
having to transport and store voluminous and sensitive production
traces.

TRAGEN can also produce a synthetic trace that is similar to a
mix of traffic classes, where each traffic class is represented by an
original production trace. For instance, it could produce a synthetic
trace that is a mix of 10 Gbps of video request traffic and 5 Mbps of
download request traffic. The ability to generate synthetic traces for
user-specified traffic mixes allows the developer to test their caching
systems on a wide variety of possible scenarios likely to occur in the
field.
Hit rate curves and trace similarity. The hit rate curve (HRC) of a
caching system on a given trace is the hit rate achieved by the cache

when serving requests in time sequence from the trace, expressed as
a function of cache size (c.f., Figure 3). The HRC depends on the
caching policy used by the caching system. Further, RHR and BHR
may yield different HRCs and we refer to them as rHRC and bHRC
respectively.

Our notion of trace similarity is defined in terms of the HRC.
Given a caching system that implements a given caching policy (say,
LRU), we state that two traces Π and 𝑆 are similar if the HRC of
the caching system for trace Π is similar to the HRC of the system
for trace 𝑆 . Thus, cache simulations on traces 𝑆 and Π would yield
similar results, allowing trace 𝑆 to be used in the simulation instead
of trace Π.
TRAGEN architecture. Our trace generator consists of three main
modules shown in Figure 1 and are described below.

1) The traffic modeler runs periodically on the original traces Π
collected from the production system. The original trace could be all
the requests served by a given CDN cache over a period of time, such
a trace would be a mix of requests from different traffic classes, e.g.,
videos from CNN, or images from Amazon, or software downloads
from Microsoft. Alternately, trace Π may contain traces from the
production system of a single traffic class. The output of the traffic
modeler is a succinct “model” of each traffic class, such a model
captures the caching properties of that traffic class. A commonly-
used model in large CDNs such as Akamai are footprint descriptor
(FD) described in [50] that model the rHRC of the original trace.
As FD does not capture byte hit rates, we enhance the FD to a byte-
weighted footprint descriptor (bFD) described in Section 2. The
traffic modeler also computes the object size distribution (SZ) of
each traffic class. Since the traffic modeler works on voluminous
production traces collected from the field, it runs infrequently (say,
once a week) to create the traffic class models.

2) Given the FDs, bFDs and SZ of each traffic class, the traffic
mixer component allows the user to specify the mix of traffic that
they would like to simulate, e.g., 10 Gbps of video traffic from
Amazon mixed with 5 Gbps of download traffic from Microsoft. The
traffic mixer uses footprint descriptor calculus to compute the FD or
bFD of the traffic class mix.

3) Finally, the trace generator uses the FD or bFD of the required
mix of traffic classes to generate a synthetic trace that fits require-
ments. That is, the synthetic trace is similar to the original production
traces of the required traffic mix.
Our contributions. Our main contribution is a tool that is publicly
available1 to the research and development community. The tool will
be seeded with realistic footprint descriptor models for traffic classes
hosted on Akamai’s production CDN, allowing users to generate
synthetic traces for their experiments for varying caching scenarios
according to their requirements. We prove that TRAGEN produces
synthetic traces that have a similar hit rate curve as the original trace
for caches that use the Least-Recently-Used (LRU) policy. Further,
we empirically validate TRAGEN by establishing the similarity of
the synthetic and original traces. In particular, we compare the two
traces by computing their hit rates and eviction ages.

1) We show that the average difference between the rHRCs and
bHRCs of the synthetic and original traces on a LRU cache is 3e-06
and 3.2e-06, respectively, across all traces and cache sizes in our

1It can be downloaded from https://github.com/UMass-LIDS/Tragen.
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evaluation. Thus, the hit rate curves are nearly identical for the two
traces.

2) Using cache simulations, we show that the synthetic traces
produced by TRAGEN will yield similar hit rates as the original
traces for commonly-used caching policies that include LRU, SLRU
[27], FIFO [20, 27], RANDOM [1, 33, 58], PLRU [46], MARKERS
[1, 37], and CLOCK [16]. In particular, we show that the synthetic
trace yields a RHR (resp., BHR) that differs from the RHR (resp.,
BHR) of the original trace by 1.5% (resp., 1%) on average across all
cache sizes, caching policies and traces in our evaluation.

3) We show that on an average the eviction age of the synthetic
trace differs from the original trace by 1.8% on a LRU cache across
all cache sizes in our evaluation.
Limitations of TRAGEN. TRAGEN is guaranteed to produce syn-
thetic traces that have similar caching behavior to the original traces
for the set of caching policies that we could theoretically or empiri-
cally validate. Based on our work, we conjecture that TRAGEN will
work well for the class of policies that primarily use criteria related
to recency of access for eviction, many commonly-used policies
belong in this class.

The main limitation of our work is that we offer no explicit guar-
antees for arbitrary caching policies that may use entirely different
criterion. In fact, it is not clear if there exists universal trace gener-
ators that can provably work for arbitrary caching policies, while
still producing synthetic traces that are different from the original.
The space of possible caching policies is large and include ones
that control both the admission and eviction of content into cache,
while our validated cache policies perform only eviction. Our current
approach is to continue validating TRAGEN for more policies and
making changes to the algorithms as needed to widen the scope. We
expect this evolution to continue as more developers and researchers
use our tool.
Relation to prior work. Prior work in this area have proposed
synthetic workload generators for Web traffic [5, 12, 17, 30, 32,
43, 47]. These tools from the past decades, however, do not cater to
multiple traffic classes and traffic class mixes seen in modern content
caching scenarios. Further, they lack a provable guarantee that the
generated traces have the same caching properties as the original
ones. They also do not support traffic mix scenarios that are common
in content caching, an important requirement since a CDN cache
is shared across multiple diverse traffic classes. Further, prior work
assume a fixed object catalogue which is not true in practice, since
new content is continually generated, and old content fall out of use,
e.g., the news story on the front page of CNN. In particular, as we
show in Section 5.3, the prior work that use the LRUSM algorithm
[5, 40] do not produce traces that have the same caching properties
as the original trace. Finally, the prior work often consider caches
of small size (in MBs) that do not scale to modern caches that are
many magnitudes larger (in TBs).
Roadmap. In Section 2, we describe the Traffic Modeler that cap-
tures the cache properties of the production traces. In Section 3, we
describe the Traffic Mixer that computes a model for a user specified
traffic mix. In Section 4.1, we describe our Trace Generator and
provide formal guarantees for its correctness and in Section 4.2 we
describe our tool that implements the Trace generator and will be
made available for public use. In Section 5, we provide empirical
results and also show that alternate approaches for trace generation

do not perform well. We end with related work in Section 6 and
conclude in Section 7.

2 Traffic modeler
In this section, we describe traffic classes and the footprint de-

scriptor model that is used to capture the caching properties of a
given traffic class. To model the RHR we leverage the tool of Foot-
print Descriptor (FD) from the work in [50] and extend the model
to a byte-weighted Footprint Descriptor (bFD) to capture the BHR.
The output of the traffic modeler is a model of the original produc-
tion trace that is a three-tuple consisting of its FD, bFD, and its
object size distribution. The model is a succinct representation of the
caching characteristics of the voluminous original trace from which
it is derived.

2.1 Traffic classes
The content accessed by users on the Internet is very diverse,

each with a unique set of characteristics. For the purposes of cache
management, the content is usually bucketed into traffic classes.
A traffic class is a type of content from a content provider and is
treated as a unit in the cache provisioning process [51], for example,
media (i.e., videos) from Hulu, software downloads from Microsoft,
images from Amazon, and web pages from CNN. Each traffic class
has a distinct set of characteristics such as its object size distribution,
specific access patterns, and its popularity distribution. Further, each
traffic class may need a different cache size in order to provide a
minimum hit rate guarantee. The request HRCs (rHRC) and byte
HRCs (bHRC) of the traffic classes Download, Media, Web and
Images is depicted in Figure 2a and Figure 2b, respectively. The
rHRC for the image traffic shows that despite providing a large
cache space we cannot obtain a RHR of above 0.6. This may be
attributed to the fact that a significant number of image objects are
accessed only once and the cache incurs a compulsory miss on a
request for these objects. Such an access pattern may arise with a
large product catalog where a significant fraction of products are
unpopular and their images are seldom accessed. Thus, the caching
properties of each traffic class is different from the other. Figure 2c
shows the variability in the object sizes for the various traffic classes.
As expected, objects in the Media traffic class tend to be larger as
compared those in the Web traffic class.

2.2 Footprint descriptors (FD)
A footprint descriptor (FD) is a succinct space-time representa-

tion of a trace from which its rHRC and other caching properties
can be derived. A traffic class can be characterized by collecting
typical original traces of that class from the production system and
computing their FDs. FDs were first proposed in [50] and are now
used in production CDNs to provision traffic classes to servers [51].

Our definition and presentation of FDs closely follows [50]. Let
trace Π = {𝑟1, . . . , 𝑟𝑛}, be a sequence of requests, where each request
𝑟𝑖 is a tuple ⟨𝑡𝑖 , 𝑜𝑖𝑑 , 𝑧𝑖 ⟩ of timestamp, object identifier and object size.
Now, let 𝜃 = {𝑟𝑖 , . . . , 𝑟 𝑗 }, where 𝑖 < 𝑗 , be a request subsequence con-
sisting of consecutive requests in Π. The subsequence 𝜃 is denoted
as a reuse request subsequence if the requests 𝑟𝑖 and 𝑟 𝑗 are made for
the same object that is not requested elsewhere in 𝜃 .

A FD of a trace Π is a tuple ⟨𝜆, 𝑃𝑟 (𝑠, 𝑡), 𝑃𝑎 (𝑠, 𝑡)⟩ where (i) 𝜆 is the
request rate (number of requests per second) of Π ; (ii) 𝑃𝑟 (𝑠, 𝑡) is the
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Figure 2: For the different traffic classes in TC trace (Table 2) (a) Variability in request HRCs; (b) Variability in the byte HRCs; (c) Variability in
object size distribution (SZ)

reuse-subsequence descriptor function that captures the probability
that a reuse request subsequence 𝜃 of Π contains 𝑠 unique bytes and
is of duration 𝑡 seconds. (iii) 𝑃𝑎 (𝑠, 𝑡) is the all-sequence descriptor
function that captures the probability that any request subsequence
𝜃 of Π contains 𝑠 unique bytes and is of duration 𝑡 seconds. Note
that 𝑃𝑟 (𝑠, 𝑡) considers only the reuse subsequences, whereas 𝑃𝑎 (𝑠, 𝑡)
considers all possible subsequences of Π. The number of unique
bytes 𝑠 in 𝜃 is the sum of the sizes of the unique objects in 𝜃 , and the
duration 𝑡 is the difference in the timestamp (𝑡 𝑗−𝑡𝑖 ) of the last request
𝑟 𝑗 and the first request 𝑟𝑖 . Note that the request sequence 𝜃 that starts
at the beginning of the trace and ends in the first request for an object
is considered a reuse subsequence with infinite unique bytes and
infinite duration. The number of unique bytes in a reuse request
subsequence is also known as stack distance [41]. The following
theorem is from [50].

THEOREM 1. Let rHRC(s) be the request hit rate of trace Π for
an LRU cache of size 𝑠. The rHRC(s) is computed from the FD of Π
as follows.

𝑟𝐻𝑅𝐶 (𝑠) =
∑
𝑡

∑
𝑠′≤𝑠

𝑃𝑟 (𝑠 ′, 𝑡).

Observe that the expression in RHS sums the reuse sequence
distribution function (𝑃𝑟 (𝑠 ′, 𝑡)) across all possible time durations.
In essence, the RHS captures the probability that a reuse request
subsequence, 𝜃 = {𝑟𝑖 , . . . , 𝑟 𝑗 }, contains at most 𝑠 unique bytes, thus
incurring a cache hit on the request 𝑟 𝑗 . Note that if 𝜃 contained more
than 𝑠 bytes, the LRU policy would have evicted the object requested
by 𝑟𝑖 when the request 𝑟 𝑗 is made, resulting in a miss.
FD calculus. A key property of FDs is that there is an efficient
calculus to evaluate the cache properties of any traffic class mix. For
instance, given footprint descriptors of two traces Π1 and Π2, the
calculus can be used to compute the FD of the traffic mix of Π1 and
Π2 obtained by interleaving the two traces by their timestamps. The
computation of the FD of the traffic mix uses convolution and can
be computed quickly using a Fast Fourier Transform [50]. When
synthetic traces are generated for a traffic mix, TRAGEN uses the
FD calculus to compute the FD of traffic class mix and then uses
this FD to generate a synthetic trace for the mix.

2.3 Byte-weighted footprint descriptor (bFD)
RHR can be derived from FD as shown in Theorem 1, but the

BHR cannot be derived from it. However, we know from practice
that the RHR and BHR can be significantly different. Consider the

following scenario. Let the smaller objects in a trace exhibit higher
temporal locality as compared to the large objects, thus incurring
more cache hits as compared to the larger objects. We can then expect
the BHR of the trace to be smaller than the RHR. In fact, we observe
a similar difference in the rHRC and bHRC of the VIDEO trace
(Table 1) in Figure 3. Thus, to capture the BHR properties of a trace,
we define a new type of footprint descriptor called Byte-weighted
Footprint Descriptor (bFD).

A bFD operates on a byte sequence as opposed to a request
sequence. Let Π𝐵 = {𝑏11, . . . , 𝑏1𝑧1 , . . . , 𝑏𝑛1, . . . , 𝑏𝑛𝑧𝑛 } be the byte
sequence that is obtained from a request trace Π = {𝑟1, . . . , 𝑟𝑛} by
replacing each request 𝑟𝑖 by the sequence of bytes 𝑏𝑖1, . . . , 𝑏𝑖𝑧𝑖 in
its requested object, where byte 𝑏𝑖 𝑗 corresponds to the 𝑗𝑡ℎ byte of
request 𝑟𝑖 ∈ Π and 𝑧𝑖 is the size of the requested object. Now, let
𝛽 = {𝑏𝑖 𝑗 , . . . , 𝑏𝑘𝑙 }, where 𝑖 < 𝑘, correspond to a byte subsequence
in Π𝐵 . The byte subsequence 𝛽 is called a reuse byte subsequence if
the first byte (𝑏𝑖 𝑗 ) and the last byte (𝑏𝑘𝑙 ) in 𝛽 correspond to the same
byte that does not occur elsewhere in 𝛽.

A bFD is a tuple ⟨𝜆, 𝑃𝑟𝑏 (𝑠, 𝑡), 𝑃𝑟𝑎 (𝑠, 𝑡)⟩ where (i) 𝜆 is the traffic
rate i.e., the number of bytes requested per second. (ii) 𝑃𝑟𝑏 (𝑠, 𝑡) is
the reuse byte subsequence descriptor function that captures the joint
probability that a reuse byte subsequence consists of 𝑠 unique bytes
and is for a duration 𝑡 seconds, and, (iii) 𝑃𝑟𝑎 (𝑠, 𝑡) is the all byte
subsequence descriptor function that captures the joint probability
that a byte subsequence consists of 𝑠 unique bytes and is for a
duration 𝑡 seconds.

The computation of 𝑃𝑟𝑏 (𝑠, 𝑡) is done as follows. We maintain a
counter 𝐶 (𝑠, 𝑡) that counts the number of reuse byte subsequences

0.0 2.5 5.0 7.5 10.0
Cache size (TB)

0.0

0.2

0.4

0.6

0.8

1.0

Hi
t r

at
e 

RHR
BHR

Figure 3: The rHRC and bHRC for the VIDEO trace
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that contain 𝑠 unique bytes and is of duration 𝑡 seconds. We can ob-
tain 𝐶 (𝑠, 𝑡) by enumerating all reuse byte subsequences 𝜃 of Π and
incrementing the appropriate counters. To understand the computa-
tion of 𝐶 (𝑠, 𝑡), consider a reuse byte subsequence 𝛽 = {𝑏𝑖1, . . . , 𝑏 𝑗1}
that corresponds to a reuse request subsequence 𝜃 = {𝑟𝑖 , . . . , 𝑟 𝑗 }. If
the number of unique bytes in 𝜃 is 𝑠, and the duration of 𝜃 is 𝑡 , then
counter𝐶 (𝑠, 𝑡) is incremented 𝑧𝑖 times, where 𝑧𝑖 is the size of request
𝑟𝑖 . Thus, the computation accounts for all the bytes of request 𝑟𝑖 , i.e.,
all reuse byte sequences of the form 𝛽 = {𝑏𝑖𝑘 , . . . , 𝑏 𝑗𝑘 }, 1 ≤ 𝑘 ≤ 𝑧𝑖 .
By updating counter 𝐶 (𝑠, 𝑡) for all possible reuse sequences 𝜃 of Π
we obtain 𝑃𝑟𝑏 (𝑠, 𝑡) = 𝐶 (𝑠,𝑡 )

|Π𝐵 | , where |Π𝐵 | is the total number of bytes

in Π𝐵 .
The following theorem applies to LRU whose variants are widely

used in many production systems like Akamai [38].

THEOREM 2. Let bHRC(s) be the byte hit rate of trace Π for an
LRU cache of size 𝑠. The bHRC(s) is computed from the bFD of Π
as follows.

𝑏𝐻𝑅𝐶 (𝑠) =
∑
𝑡

∑
𝑠′≤𝑠

𝑃𝑟𝑏 (𝑠 ′, 𝑡).

PROOF. Our proof is similar to the proof of Theorem 1 in [50].
Consider a byte reuse sequence 𝛽 = {𝑏𝑖 𝑗 , . . . , 𝑏𝑘𝑙 }, where 𝑏𝑖 𝑗 and
𝑏𝑘𝑙 are requests for the same byte. For a cache size 𝑠 running
LRU, the request for the byte 𝑏𝑘𝑙 is a hit if and only if the num-
ber of unique bytes accessed in 𝛽 is less than the cache size 𝑠.
The probability of the occurrence is obtained by the expression
𝑏𝐻𝑅𝐶 (𝑠) = ∑

𝑡

∑
𝑠′≤𝑠 𝑃

𝑟𝑏 (𝑠 ′, 𝑡). □

Time complexity. Using efficient data structures and stack based
algorithms FD and bFD can be computed in O(𝑁 log𝑚), where 𝑁
is the length of the trace and𝑚 is the number of unique objects in
the trace [3].

3 Traffic mixer
We describe the component that computes the model of a user-

specified traffic mix from the models of the individual traffic classes.
A traffic mix is specified as a list of traffic classes Γ = {𝜏1, . . . , 𝜏𝑛}
and a weight vector W = {𝑤1, . . . ,𝑤𝑛} that describes the traffic
contribution of each traffic class. The traffic contribution can be
specified using the required request-rate (requests/second) or the
required byte-rate (GBps) for each traffic class. The traffic mixer
uses the footprint descriptor calculus [50] to compute the 𝐹𝐷𝑚𝑖𝑥
(resp. 𝑏𝐹𝐷𝑚𝑖𝑥 ), i.e., FD (resp., bFD) of the traffic mix. Further, the
traffic mixer also computes the object size distribution of the traffic
mix.

3.1 Footprint descriptor calculus
We will now describe the FD calculus that is described in [50] and

show that it extends to bFD as well. Consider two traces Π1 and Π2
and their respective footprint descriptors 𝐹𝐷1 = ⟨𝜆1, 𝑃𝑟1 (𝑠, 𝑡), 𝑃

𝑎
1 (𝑠, 𝑡)⟩

and 𝐹𝐷2 = ⟨𝜆2, 𝑃𝑟2 (𝑠, 𝑡), 𝑃
𝑎
2 (𝑠, 𝑡)⟩. Let Π be the trace that is formed

by interleaving Π1 and Π2 by time. A key observation that facili-
tates the calculus is that for a subsequence 𝜃 of Π, of duration 𝑡 and
unique bytes 𝑠, some 𝑠1 bytes could be from Π1 and the rest 𝑠 − 𝑠1
bytes from Π2, assuming Π1 and Π2 contain disjoint objects (The
disjoint object assumption holds in many common situations, includ-
ing when Π1 and Π2 are different traffic classes). Thus, to compute a

descriptor function 𝑃 (𝑠 |𝑡) for Π from the descriptor functions 𝑃1 (𝑠 |𝑡)
and 𝑃2 (𝑠 |𝑡) for Π1 and Π2 respectively, the convolution operator is
used to enumerate and add the probabilities of all possible ways of
obtaining 𝑠1 unique bytes from Π1 and the remaining 𝑠 − 𝑠1 unique
bytes from Π2. Thus,

𝑃 (𝑠 |𝑡) = 𝑃1 (𝑠 |𝑡) ∗ 𝑃2 (𝑠 |𝑡)

=

𝑆−𝑠1∑
𝑠1=0

𝑃1 (𝑠1 |𝑡)𝑃2 (𝑆 − 𝑠1 |𝑡),

where * is the convolution operator. We can see that the same ar-
gument follows for the byte sequence Π𝐵 and hence the footprint
descriptor calculus that works for a FD also works for a bFD. We
will briefly describe the basic operations in the calculus using byte
sequences.

(i) Addition. Given two byte sequences Π𝐵1 and Π𝐵2 and their
bFDs, 𝑏𝐹𝐷1 and 𝑏𝐹𝐷2, if Π𝐵 represents a sequence with Π𝐵1 and
Π𝐵2 interleaved by time, then the addition operator provides the byte
footprint descriptor 𝑏𝐹𝐷𝑚𝑖𝑥 of the interleaved sequence Π𝐵 . By
using the Fourier transform to evaluate the convolution operator, the
addition operator runs in 𝑂 (𝑇𝑆 log 𝑆) time, where T and S are the
number of time and stack distance buckets in 𝑃𝑟𝑏 (𝑠, 𝑡).

(ii) Subtraction. Given a byte sequence Π𝐵 and its corresponding
bFD, the subtraction operator provides a means to compute the
bFD of the trace that is formed by removing all the requests (i.e.,
corresponding bytes) that are made for a subset of objects from Π𝐵 .
If Π𝐵1 is the sequence that is removed from Π𝐵 , the byte footprint
descriptor of the resultant sequence Π𝐵2 = Π𝐵 ⊖Π𝐵1 can be computed
using the subtraction operator. By using the inverse fourier transform,
the subtraction operator runs in 𝑂 (𝑇𝑆 log 𝑆) time.

(iii) Scaling. Given a byte sequence Π𝐵 and its corresponding
bFD, the scaling operator provides a means to compute the byte
footprint descriptor of a trace whose traffic rate is intensified or
rarefied i.e., the traffic volume 𝜆 is altered. The scaling operator runs
in 𝑂 (𝑇𝑆) time.

We experimentally verify that the calculus works for bFD. We
consider the trace EU that is described in Table 3. We compute bFD
of each individual traffic class in the trace and use the calculus to find
the bFD of the traffic mix. We verify that the bHRC computed using
the trace that corresponds to the traffic mix aligns with the bHRC
predicted by the calculus. The result of the experiment is depicted in
Figure 4. The Media0+Media1(trace) curve depicts the bHRC com-
puted from the subsequence of trace EU that consists of objects from
the Media0 and Media1 traffic class. The Media0+Media1(calculus)
curve depicts the bHRC computed using the addition operator from
the calculus.

3.2 Object size distribution of a traffic mix
A traffic mix is specified by a list of traffic classes Γ = {𝜏1, . . . , 𝜏𝑛}

and a weight vector W = {𝑤1, . . . ,𝑤𝑛} that specifies the traffic
contribution of each traffic class in GBps. To compute the object size
distribution of a traffic mix, we first compute an object weight vector
O that provides us the ratio of the number of objects per traffic class
that is to be present in the produced synthetic trace.

For each traffic class, we first compute the expected unique byte
rate (𝑈𝑖 ), which is the number of unique bytes requested per unit
time. Now, we can compute the expected unique object rate i.e., the
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Figure 4: The bHRC for the traffic mixes in the EU trace as predicted
by the calculus aligns with the original.

number of unique objects requested per unit time, for the traffic class
as 𝑈𝑖/𝑠𝑎𝑣𝑔𝑖

. Here, 𝑠𝑎𝑣𝑔
𝑖

is the average object size of the traffic class.
The ratio of unique object rate across the specified traffic classes
gives us the object weight vector O . The procedure is described in
Algorithm 1.

The computation of unique byte rate 𝑈𝑖 is done as follows. Let
𝑈𝑜𝑟𝑖𝑔 be the expected unique byte rate of a traffic class 𝜏𝑖 and
bFD of 𝜏𝑖 is a tuple ⟨𝜆, 𝑃𝑟𝑏 (𝑠, 𝑡), 𝑃𝑎𝑏 (𝑠, 𝑡)⟩. As described in lines
6-10 of Algorithm 1, we can compute 𝑈𝑜𝑟𝑖𝑔 from the bFD using

𝑈𝑜𝑟𝑖𝑔 =
∑
𝑡

∑
𝑠 𝑃

𝑟𝑏 (𝑠, 𝑡)
(
𝑠
𝑡

)
. Recall that 𝑃𝑟𝑏 (𝑠, 𝑡) is a joint probabil-

ity distribution that a reuse byte subsequence has 𝑠 unique bytes and
duration 𝑡 seconds. Now, 𝑈𝑖 can be computed as 𝑤𝑖

𝜆
× 𝑈𝑜𝑟𝑖𝑔 (line

13), where𝑤𝑖 is the traffic volume specified by the user and 𝜆 is the
traffic volume of the original trace.

The object size distribution, SZ, of the traffic mix can be com-
puted by weighting the SZ of individual traffic classes by a weight
proportional to its contribution in the object weight vector.

4 Trace Generator
The trace generator produces a synthetic trace with same request

hit rate curve (rHRC) or byte hit rate curve (bHRC) as the original
trace or a user-specfied traffic mix.

4.1 Trace generation algorithm
Algorithm 2 performs trace generation and is described below.

Input. The algorithm is provided with a model of a traffic class or
traffic mix:
(1) a FD ⟨𝜆, 𝑃𝑟 (𝑠, 𝑡), 𝑃𝑎 (𝑠, 𝑡)⟩,
(2) a bFD ⟨𝜆, 𝑃𝑟𝑏 (𝑠, 𝑡), 𝑃𝑎𝑏 (𝑠, 𝑡)⟩,
(3) an object size distribution 𝑆𝑍 , and
(4) the number of requests 𝑁 to be generated.
Output. A synthetic trace 𝑆 = {𝑟1, . . . , 𝑟𝑁 }, where each 𝑟𝑖 = ⟨𝑡𝑖 , 𝑜𝑖 , 𝑧𝑖 ⟩
is a tuple of timestamp, object id, and object size.
Note: The algorithm uses either the FD or bFD depending on
whether RHR or BHR is required. Let 𝑃 (𝑠) = ∑

𝑡 𝑃
𝑟 (𝑠, 𝑡) or 𝑃 (𝑠) =∑

𝑡 𝑃
𝑟𝑏 (𝑠, 𝑡) be the marginal distribution from the FD or bFD, de-

pending on the input. .

Algorithm 1 Object Weight Estimator

1: Input. (i) A list of byte footprint descriptors 𝑏𝐹𝐷 = {𝑏𝐹𝐷1, . . . , 𝑏𝐹𝐷𝑛 }
of each traffic class 𝜏𝑖 , (ii) a weight vector𝑊 = {𝑤1, . . . , 𝑤𝑛 }, where
𝑤𝑖 specifies the traffic volume (in GBps) for the traffic class 𝜏𝑖 , and
(iii) size distribution of the objects 𝑆𝑍 = {𝑆𝑍1, . . . , 𝑆𝑍𝑛 } of each traffic
class 𝜏𝑖 .

2: Output. An object weight vector O = {𝑜1, . . . , 𝑜𝑛 } that specifies the
ratio of number of objects per traffic class.

3: O← {}
4: for 𝑏𝐹𝐷𝑖 ∈ 𝑏𝐹𝐷 do // 𝐹𝐷𝑖 = ⟨𝜆, 𝑃𝑟𝑏 (𝑠, 𝑡 ), 𝑃𝑎𝑏 (𝑠, 𝑡 ) ⟩
5: 𝑈𝑜𝑟𝑖𝑔 = 0
6: for 𝑠 ∈ 𝑆 do // 𝑆 be the stack distance buckets in 𝑃𝑟𝑏 (𝑠, 𝑡 ) .
7: for 𝑡 ∈ 𝑇 do //𝑇 be the time buckets in 𝑃𝑟𝑏 (𝑠, 𝑡 ) .
8: 𝑈𝑜𝑟𝑖𝑔 + = 𝑃𝑟𝑏 (𝑠, 𝑡 ) . 𝑠𝑡
9: end for

10: end for
11: Let 𝑠𝑎𝑣𝑔

𝑖
be the average object size of the traffic class 𝜏𝑖

12: Let 𝜆𝑖 be the traffic volume (in GBps) of traffic class 𝜏𝑖
13: 𝑈𝑖 =

𝑤𝑖
𝜆𝑖
×𝑈𝑜𝑟𝑖𝑔

14: 𝑜𝑖 ← 𝑈𝑖

𝑠
𝑎𝑣𝑔

𝑖

15: Append 𝑜𝑖 to O
16: end for
17: return O

Initialization. An empty list 𝐶 that represents a cache is initialized
in line 5. Through lines 7-11, we iteratively create new objects,
assign them a size that is sampled from the object size distribution
𝑆𝑍 , and append them to the list. We repeat till the sum of the sizes
of the objects exceeds the maximum stack distance in 𝑃 (𝑠). The
maximum stack distance is the maximum number of unique bytes in
any request or byte subsequence of the original trace. Each entry in
𝐶 is thus a tuple ⟨𝑜𝑖𝑑 , 𝑧⟩ of object id and size.
Synthetic trace generation. The trace generation algorithm runs
from line 17 to line 27. In each iteration 𝑖, the object at the first
position in the list 𝐶, say 𝑜 = ⟨𝑜𝑖𝑑 , 𝑧⟩, is appended to the trace 𝑆 that
is being produced. Now, a stack distance 𝑠𝑖 is sampled from 𝑃 (𝑠)
and the list is manipulated based on the value of 𝑠𝑖 . There are two
cases:

(i) if 𝑠𝑖 is finite (lines 17-21): the object 𝑜 is removed and re-
inserted back at a position 𝑗 in 𝐶, by moving the objects at positions
≥ 𝑗 by a step. The location 𝑗 is decided as follows. We find the first
position in the list, say 𝑘 , such that the sum of the sizes of the objects
at locations from 1 to 𝑘 in 𝐶 is greater than 𝑠𝑖 . Let the sum of the
sizes of the objects be 𝑆𝑘 and the size of the object at position 𝑘 be
𝑧𝑘 . Now, if 𝑠𝑖 ≤ 𝑆𝑘−1 + 𝑧𝑘2 , i.e., the stack distance 𝑠𝑖 falls on the first
half of the object at position 𝑘, then 𝑗 is set to 𝑘 − 1 and set to 𝑘
otherwise. This ensures that object 𝑜 is re-inserted at a location that
is as close as possible to stack distance 𝑠𝑖 .

(ii) if 𝑠𝑖 is∞ (lines 21-25): object 𝑜 is removed from 𝐶 and a new
object 𝑜 ′ is inserted at the end of the list.

Now in line 28, a timestamp 𝑡𝑖 is assigned to each request 𝑟𝑖 in the
synthetic trace 𝑆 . We assign timestamp to the synthetic trace based
on the byte rate 𝜆 obtained from the bFD.
Time complexity. We implement the list𝐶 as the leaves of a 𝐵+-tree
[15], and thus, the complexity of the algorithm is O(𝑁 log𝑚), where
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𝑁 is the length of the synthetic trace and𝑚 is the number of unique
objects in the synthetic trace. The algorithm runs for 𝑁 iterations
and in each iteration it takes log(𝑚) time to insert the object back
into the list at the sampled stack distance (line 19).

We will now formally prove that the algorithm produces a syn-
thetic trace that has approximately the same HRCs as predicted
by the footprint descriptors. In particular, if Footprint Descriptor
(FD) is provided as the input, the algorithm produces a trace with
approximately the same rHRCs (Theorem 3). When Byte-weighted
Footprint Descriptor (bFD) is provided as the input, the algorithm
produces a trace with approximately the same bHRCs (Theorem 4).

Algorithm 2 Synthetic trace generator

1: Input. (i) A Footprint Descriptor (FD) ⟨𝜆, 𝑃𝑟 (𝑠, 𝑡 ), 𝑃𝑎 (𝑠, 𝑡 ) ⟩, (ii) Byte-
weighted Footprint Descriptor (bFD) ⟨𝜆, 𝑃𝑟𝑏 (𝑠, 𝑡 ), 𝑃𝑎𝑏 (𝑠, 𝑡 ) ⟩, (iii) Ob-
ject size distribution (𝑆𝑍 (𝑧)) and (iv) trace length 𝑁 .

2: Output. A synthetic trace 𝑆 = {𝑟1, . . . , 𝑟𝑁 }, where 𝑟𝑖 = ⟨𝑡𝑖 , 𝑜𝑖 , 𝑧𝑖 ⟩ is a
tuple of timestamp, object identifier and object size.

3: Phase 1 - Initialization.
4: 𝑃 (𝑠) = ∑

𝑡 𝑃
𝑟 (𝑠, 𝑡 ) or 𝑃 (𝑠) = ∑

𝑡 𝑃
𝑟𝑏 (𝑠, 𝑡 ) depending on whether RHR

or BHR is required.
5: 𝐶 ← {},𝐶𝑠𝑖𝑧𝑒 = 0.
6: 𝐶𝑚𝑎𝑥 is the maximum finite 𝑠 in 𝑃 (𝑠) .
7: while𝐶𝑠𝑖𝑧𝑒 < 𝐶𝑚𝑎𝑥 do
8: Create object 𝑜 and assign a size 𝑧 sampled from 𝑆𝑍 .
9: Add object 𝑜 to the list𝐶.

10: 𝐶𝑠𝑖𝑧𝑒 ← 𝐶𝑠𝑖𝑧𝑒 + 𝑧.
11: end while

12: Phase 2 - Synthetic trace generation.
13: 𝑆 ← 𝜙 , 𝑖 ← 0.
14: while 𝑖 < 𝑁 do
15: Append the first object 𝑜 = ⟨𝑜𝑖𝑑 , 𝑧 ⟩ in𝐶 to the trace 𝑆 .
16: Sample stack distance 𝑠 from 𝑃 (𝑠) .
17: if 𝑠 is not∞ then
18: Remove 𝑜 from𝐶.
19: Compute 𝑗 =𝑚𝑖𝑛{𝑘 :

∑𝑘
𝑖=1 𝑧𝑘 ≥ 𝑠 }; where 𝑧𝑖 is the size of the

object at𝐶 [𝑖 ].
20: Re-insert object 𝑜 at position 𝑗 in𝐶 by moving objects at posi-

tions ≥ 𝑗 by a step.
21: else//∞ means a new object was introduced in the trace.
22: Remove the object 𝑜 that is at the first index in𝐶.
23: Create new object 𝑜′ and assign it a size 𝑧 sampled from 𝑆𝑍 .
24: Add object 𝑜′ at the end of the list𝐶.
25: end if
26: 𝑖 ← 𝑖 + 1
27: end while
28: Assign timestamps to requests in 𝑆 using 𝜆 from bFD.
29: return 𝑆

THEOREM 3. Given a FD, ⟨𝜆, 𝑃𝑟 (𝑠, 𝑡), 𝑃𝑎 (𝑠, 𝑡)⟩, and a size distri-
bution 𝑆𝑍 of an original trace Π, Algorithm 2 produces a synthetic
trace 𝑆 = {𝑟1, . . . , 𝑟𝑁 }, where 𝑟𝑖 is a tuple ⟨𝑡𝑖 , 𝑜𝑖 , 𝑧𝑖 ⟩ of timestamp,
object id and object size and 𝑁 is the synthetic trace length. As
𝑁 →∞, the rHRC of traces 𝑆 and Π for an LRU cache are approxi-
mately equal.

PROOF. Let 𝑃 (𝑠) = ∑
𝑡 𝑃

𝑟 (𝑠, 𝑡), where 𝑃𝑟 (𝑠, 𝑡) is the reuse subse-
quence descriptor function of trace Π. Consider the synthetic trace
𝑆 = {𝑟1, . . . , 𝑟𝑁 }. In each iteration 𝑖 of the algorithm, we sample a
stack distance 𝑠𝑖 from 𝑃 (𝑠) and request 𝑟𝑖 is added to the synthetic
trace 𝑆 . Let request 𝑟𝑖 be made for an object 𝑜 . We know 𝑠𝑖 can either
be a finite quantity or be∞. We consider both cases and show that
in either case 𝑠𝑖 is approximately represented in the synthetic trace.

Case 1: 𝑠𝑖 is finite. In the 𝑖𝑡ℎ iteration, let 𝑘 be the smallest index
in 𝐶 such that the sum of the sizes of the objects from position 1
to 𝑘 in 𝐶 is greater than or equal to 𝑠𝑖 . Let 𝑧𝑘 be the size of the
object at position 𝑘. As 𝑜 is inserted at the position 𝑘 in 𝐶, it is
inserted at a stack distance that is at least 𝑠𝑖 and at most 𝑠𝑖 + 𝑧𝑘
(line 19, Algorithm 2). Now, if 𝑟 𝑗 is the subsequent request in 𝑆 that
was made for object 𝑜, the request subsequence 𝜃 = {𝑟𝑖 , . . . , 𝑟 𝑗 } is
a reuse request subsequence in 𝑆 . The unique objects in 𝜃 are the
objects present at positions 1 to 𝑘 in 𝐶 in the 𝑖𝑡ℎ iteration of the
algorithm. We know the sum of the sizes of these objects is at least
𝑠𝑖 and at most 𝑠𝑖 + 𝑧𝑘 . Since the number of objects in the trace is
typically large, the reuse request sequences often have many unique
objects, hence 𝑠𝑖 ≫ 𝑧𝑘 . Therefore, the number of unique bytes in 𝜃
is approximately 𝑠𝑖 and the sampled stack distance 𝑠𝑖 is represented
by the request subsequence 𝜃 in 𝑆 .

Case 2: 𝑠𝑖 is ∞. If we sampled a stack distance that is ∞, the
algorithm discards the object 𝑜 from the list and introduces a new
object at the end of the list. Recall that in the computation of a
Footprint Descriptor (FD), the first access to an object is counted as
infinite stack distance (see Section 2.2).

Thus, in each iteration, the sampled stack distance is approxi-
mately represented in the synthetic trace. As 𝑁 → ∞, the distri-
bution of unique bytes across the reuse subsequences in 𝑆 approxi-
mately converges to the 𝑃 (𝑠) of trace Π. Now, since the rHRC can
be computed from 𝑃 (𝑠) using Theorem 1, both traces Π and 𝑆 have
approximately the same rHRC. □

THEOREM 4. Given a bFD, ⟨𝜆, 𝑃𝑟𝑏 (𝑠, 𝑡), 𝑃𝑎𝑏 (𝑠, 𝑡)⟩ and a size
distribution 𝑆𝑍 of an original trace Π, Algorithm 2 produces a
synthetic trace 𝑆 = {𝑟1, . . . , 𝑟𝑁 }, where 𝑟𝑖 is a tuple ⟨𝑡𝑖 , 𝑜𝑖 , 𝑧𝑖 ⟩ of
timestamp, object id and object size, and 𝑁 is the synthetic trace
length. As 𝑁 →∞, the bHRC of traces 𝑆 and Π for an LRU cache
are approximately equal.

PROOF. Given a bFD ⟨𝜆, 𝑃𝑟𝑏 (𝑠, 𝑡), 𝑃𝑎𝑏 (𝑠, 𝑡)⟩, Algorithm 2 com-
putes 𝑃 (𝑠) =

∑
𝑡 𝑃

𝑟𝑏 (𝑠, 𝑡) and uses 𝑃 (𝑠) for sampling the stack
distance. Using Theorem 3, we know that the rHRC of the synthetic
trace 𝑆 approximately equals

∑
𝑠′≤𝑠 𝑃 (𝑠 ′), i.e., rHRC of 𝑆 approx-

imately equals the bHRC of Π. We will now show that rHRC and
bHRC of 𝑆 are equal, and hence, bHRC of 𝑆 approximately equals
bHRC of Π.

Let 𝑟ℎ𝑟𝑐 (𝑠) (resp., 𝑏ℎ𝑟𝑐 (𝑠)) be the probability that a reuse request
subsequence (resp., reuse byte subsequence) in 𝑆 contains exactly 𝑠
unique bytes. We will show that 𝑟ℎ𝑟𝑐 (𝑠) = 𝑏ℎ𝑟𝑐 (𝑠).

Let 𝑘 be an object of size 𝑧𝑘 in 𝑆 and 𝜃𝑘 be the set of reuse request
subsequences of 𝑆 that end in object 𝑘 . The set 𝜃𝑘 consists of reuse
request subsequences such that the subsequence either (i) starts at the
beginning of the trace and ends in the first access for object 𝑘 , or (ii)
that begin and end in object 𝑘. Now, the expected number of reuse
request subsequences in 𝜃𝑘 that contain 𝑠 unique bytes is given by
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𝑟ℎ𝑟𝑐 (𝑠) .|𝜃𝑘 | and the number of reuse byte subsequences that contain
𝑠 unique bytes and end in a byte that belongs to object 𝑘 is obtained
as 𝑟ℎ𝑟𝑐 (𝑠) .|𝜃𝑘 |.𝑧𝑘 . Therefore, if 𝐾 is the set of all objects that are
requested in 𝑆 , the expected number of reuse byte subsequences in 𝑆
that contain 𝑠 unique bytes is given by,

𝐵𝑠 = 𝑟ℎ𝑟𝑐 (𝑠)
∑
𝑘∈𝐾
|𝜃𝑘 |.𝑧𝑘 . (1)

Now, the term |𝜃𝑘 |.𝑧𝑘 in the above expression gives us the number
of reuse byte subsequences that end in any byte of object 𝑘, and
thus, the summation across all objects

∑
𝑘∈𝐾 |𝜃𝑘 |.𝑧𝑘 , gives us the

total number of reuse byte subsequences in 𝑆 . Let 𝐵 =
∑
𝑘∈𝐾 |𝜃𝑘 |.𝑧𝑘 .

Equation 1 can be simplified as,

𝑟ℎ𝑟𝑐 (𝑠) = 𝐵𝑠∑
𝑘∈𝐾 |𝜃𝑘 |𝑧𝑘

=
𝐵𝑠

𝐵
= 𝑏ℎ𝑟𝑐 (𝑠)

Since bHRC and rHRC of 𝑆 can be computed from 𝑏ℎ𝑟𝑐 (𝑠) and
𝑟ℎ𝑟𝑐 (𝑠), respectively, the bHRC of 𝑆 equals rHRC of 𝑆 . As rHRC of 𝑆
approximately equals the bHRC of Π, the bHRC of 𝑆 approximately
equals the bHRC of Π.

□

4.2 How to use TRAGEN
The tool is written in python with around 2000 lines of code. The

tool can be accessed through a GUI or a command line interface. A
screenshot of the GUI is shown in Figure 5. The user is expected to
fill in the following details:
(1) Select hit rate type. Select if the synthetic trace is to have the

same RHR or BHR as the original.
(2) Enter trace length. Specify the number of requests in the syn-

thetic trace.
(3) Select traffic volume unit. Select if the traffic volume field in

the third column of the table will be input as requests/second or
Gigabits per second (Gbps).

(4) Select required traffic classes and specify the traffic volume.
Select traffic classes from the first column of the table and spec-
ify a traffic volume for the selected traffic classes in the third
column of the table. The synthetic trace will be similar to origi-
nal production traffic with the specified mix. The second column
provides a description of each choice. Each choice is either a
pure traffic class such as video, web, or social media traffic class.
Or, it is a traffic mix itself, e.g., EU a mix of all traffic served by
a cache located in Europe in the production CDN.

(5) Generate. Hit the generate button and TRAGEN will start pro-
ducing the synthetic trace.

Based on the selected hit rate type, the tool uses the FD or the
bFD calculus to generate the properties of the traffic mix. The tool
then implements the algorithm defined in Section 4.1 to produce
a synthetic trace. A command line version of the tool will also be
made available.
Performance. The tool implements a 𝐵+-tree [15] to represent the
cache (list 𝐶 in Algorithm 2). Both insert and delete take time
O(log𝑚), where𝑚 is the number of objects in the cache. In each
iteration of the Algorithm 2, we incur a deletion and insertion, there-
fore if 𝑁 is the length of required trace, the tool runs with time
complexity O(𝑁 log𝑚). The tool takes around 580 to 640 seconds

Figure 5: TRAGEN GUI

to generate a trace of 10 million requests for the four traffic classes
in Table 1.
Downloading TRAGEN. We have made the tool open-source and
is publicly available for download2. Apart from the code that is used
to generate traces, we have also released the code that computes the
FDs, bFDs and SZ from original traces. So, in addition to our traffic
models, users can compute and seed TRAGEN with traffic classes
from their own environment.

5 Empirical evaluation
We empirically validate TRAGEN by showing that it produces a

synthetic trace that is similar to the original production trace, for a
range of commonly-used caching policies and for a range of traffic
classes from Akamai’s production CDN. We collect four produc-
tion traces from the Akamai CDN, each consisting of hundreds of
millions of requests made for a few million objects. The traces are
described in Table 1. The VIDEO and WEB traces are collected
from CDN servers that are predominantly serving video and web
traffic, respectively. The EU and TC traces are collected from CDN
servers that serve a mix of traffic. The EU trace consists of 10 differ-
ent traffic classes with varying characteristics (Table 3), while TC
trace consists of requests for Download, Images, Media and Web
(Table 2). In each experiment, we generate a synthetic trace of 100
million requests, unless otherwise specified.

5.1 TRAGEN validation
We first show results individually for traces in Table 1 and then

show results for the traffic mixes.

2It can be downloaded from https://github.com/UMass-LIDS/Tragen.

https://github.com/UMass-LIDS/Tragen
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Trace Video (V) Web (W) TC EU

Length (mil. reqs) 596 6167 288 595
Req. rate (reqs/sec) 382 7414 820 382
Traffic (GBps) 1.5 2.29 0.36 1.31
No. of objects (mil.) 127 279 51 99
Avg. obj. size (KB) 1756 291 122 1268
Year collected 2018 2015 2018 2015

Table 1: Trace description

0.0 2.5 5.0 7.5 10.0
Cache size (TB)

0.0

0.2

0.4

0.6

0.8

1.0

Re
qu

es
t h

it 
ra

te
 (R

HR
)

EU-Synth
EU-Orig
W-Synth
W-Orig
TC-Synth
TC-Orig
V-Synth
V-Orig

Figure 6: rHRC of original and synthetic traces in Table 1
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Figure 7: bHRC of original and synthetic traces in Table 1

Validation by comparing hit rate curves. We show that the HRCs
of original and synthetic trace are similar for a LRU cache. For
rHRCs, we use FDs of the original traces in Table 1 to produce
synthetic traces. To show that the bHRCs are equal, we use bFDs
to produce synthetic traces. The rHRCs and bHRCs of the original
and the synthetic traces are shown in Figure 6 and Figure 7, respec-
tively. The curves are computed at intervals of 200 MB cache size.
We compute average difference defined as

∑
𝑠∈𝐶 |𝐻𝑅𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 (𝑠) −

𝐻𝑅𝐶𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 (𝑠) |/|𝐶 |, where 𝐶 is the set of all cache sizes the hit
rates are computed for. We observe an average difference of 2.4e-07,
8.2e-07, 1.6e-06, and 4.6e-07 in the rHRCs and an average difference
of 4.6e-07, 1.4e-06, 1.1e-06, and 5.6e-07 in the bHRCs of traces
VIDEO, WEB, TC and EU, respectively. Thus, the average differ-
ence is extremely small and the HRCs of the original and synthetic
traces are nearly identical.

Validation by simulating different caching policies. We empiri-
cally validate that TRAGEN produces a synthetic trace that will
yield similar RHRs and BHRs as the original trace by implementing
and running cache simulations for commonly-used caching policies
that are listed below.

(1) FIFO. The First In First Out caching policy evicts objects from
the cache in the order they were inserted. FIFO is easily imple-
mentable, provides comparable hit rates as LRU in practice [20],
and provides better performance on SSDs as compared to other
caching policies [36]. Hence, we expect FIFO to be widely used.

(2) RANDOM. RANDOM caching policy evicts a random object
from cache upon the insertion of a new object. Due to its simplic-
ity, RANDOM caching policy and its variants are widely studied
[1, 33] and used in practice (for instance, in ARM Processors
[58]).

(3) SLRU (and S4LRU). Segmented LRU divides the cache into two
segments that individually run the LRU caching policy. Upon a
cache miss, the requested object is first inserted into the lower
segment. On a subsequent request, if the requested object is in the
lower segment, it is moved to the upper segment. SLRU is used
as the caching policy for Facebook photo caching [27]. S4LRU is
similar to SLRU, but divides the cache into four segments.

(4) MARKERS. The markers caching policy runs in phases. At the
beginning of each phase, all objects in the cache are unmarked.
On a cache hit, the requested object is marked. On a cache miss,
the requested object is inserted into the cache and marked. Upon
insertion, one of the unmarked objects is evicted. A new phase
begins when all objects in the cache are marked [1, 37].

(5) CLOCK. The clock caching policy maintains a circular list of
the objects that are present in cache and an iterator that points
to the last examined object in the list. To evict an object, a R
(referenced) bit is inspected at the iterators location. If R is 0, the
object at the iterators location is evicted. If not, R is unset and
the iterator is incremented to point to the next object. The process
repeats till an object is evicted from the cache [16].

(6) PLRU. The Pseudo-LRU caching policy is a tree based policy
that approximates LRU. PLRU arranges objects in the cache as
leaves of a binary tree and maintains pointers in the non leaf nodes
to point to an object that has not been recently used. This object
is evicted upon an insertion of a new object into the cache. These
pointers are updated on every cache access and eviction. PLRU
is used in the TC1798 CPU and several POWERPC variants
(MPC603E, MPC755, MPC7448) [46].

We verify that an LRU cache yields the same RHR and BHR
for the original and synthetic traces, across all the traces and cache
sizes that we tested on. The results for the VIDEO and EU trace
are shown in Figure 10. This validates Theorem 3 and Theorem 4.
The RHRs of the synthetic trace and the original trace are similar
for the other caching policies with a maximum difference of around
5% that is observed for the EU trace on a cache of size 2 TB that
uses CLOCK caching policy. For the other caching policies, the
difference in RHRs for the original and synthetic trace is below 2%
across all cache sizes. We observe similar results in the BHRs for the
tested caching policies. We observe a maximum difference of around
3.5% in the BHRs for the VIDEO trace on a cache size of 2TB that
uses the MARKERS caching policy. The difference is smaller than
2% for other caching policies for the VIDEO and EU trace.
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Thus, TRAGEN produces a synthetic trace that yields a RHR
(resp., BHR) that differs from the RHR (resp., BHR) of the original
trace by 1.5% (resp., 1%) on average and at most 5% (resp., 3%) in
the worst-case, across all cache sizes, caching policies and traces in
our evaluation.

Trace Download Image Media Web

Length (mil. reqs) 8.06 85.4 49.8 144
Req. rate (reqs/sec) 22.9 243 141 406.7
Traffic (MBps) 70 8 40 250
No. of objects (mil.) 0.32 33 7.1 11.1
Avg. obj. size (KB) 603 20.5 368 255

Table 2: Trace description for the TC trace

Eviction age. We also compare the expected eviction age of the
original trace and of the synthetic trace for a LRU cache. Eviction
age is an important caching metric since it measures how long an
object stays in cache after its last access – a smaller eviction age
means that the content in the cache is churning too quickly, leading
to worse cache performance. Upon assigning a timestamp to the
synthetic trace based on the byte rate of the original, the average
eviction age of the original and synthetic trace align for various
cache sizes (Figure 9). Particularly, eviction age of the synthetic
trace differs from the original trace by 1.8% on an average across all
cache sizes for the VIDEO trace.
Evaluating traffic mixes. We now show that our tool can generate
a synthetic trace for any specified traffic mix. We consider two case
studies. First, we consider the EU trace and a traffic mix specified
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Figure 8: Converging to the required hit rates for an LRU cache of size
500GB. (a) Cumulative RHR; (b) Cumulative BHR.
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Figure 9: Mean eviction age across cache sizes for VIDEO trace.

by the Media-0, Media-1 and Media-2 traffic classes with traffic
volumes 40, 140 and 90 requests/second, respectively. We then
generate a trace as described in Section 4. The result is seen in
Figure 11a. The curves RHR-Gen (resp., BHR-Gen) and RHR-Orig
(resp., BHR-Orig) depict the rHRC (resp., bHRC) of the synthetic
trace and the original trace as predicted by FD (resp., bFD) calculus.
Next, we consider a traffic mix of the Image, Media and Web traffic
classes from the TC trace with traffic volumes 80, 8 and 250 MBps,
respectively. We observe similar results (Figure 11b).

5.2 Determining the synthetic trace length
For using TRAGEN for cache simulations, it is necessary to

determine how long a cache simulation should run, starting from
an empty cache. The answer depends on how quickly the hit rates
converge to a stationary value, such convergence depends on the
caching policy, cache size, and the nature of the trace. As an example,
we explore the convergence of the hit rate of the synthetic trace
produced by TRAGEN to the stationary RHR and BHR for an LRU
cache of size 500 GB. For the WEB and TC trace, the convergence
to a stationary RHR is slower and takes up to 20 million requests.
However, for the traces VIDEO and EU the convergence occurs
within a million requests. A possible explanation is that for the EU
and VIDEO trace, a cache size of 500 GB is small as compared to
the overall footprint of the trace. Whereas, for the WEB and TC
trace a cache size of 500 GB is large enough. Results are shown in
Figure 8a. Similarly, we explore the convergence of BHR for the
various traces in Figure 8b.

5.3 Comparison with alternate approaches
We will now discuss two alternate approaches that can be used to

generate synthetic traces, LRUSM and Naive Merge, and show why
both approaches fail to produce synthetic traces that have similar hit
rates as the original. Thus, neither approach allows the synthetic trace
to take the place of an original trace in realistic cache simulations.

5.3.1 LRUSM Algorithm. The LRUSM algorithm has been used
extensively in the synthetic trace generation community for CPU
caches and Web Caches. LRUSM generates synthetic traces that
capture the temporal locality of the original trace [5, 12, 26]. All
prior work in the synthetic trace generation literature that capture
temporal correlations use the LRUSM algorithm [5, 12].

We experimented with the LRUSM algorithm to produce a syn-
thetic trace. We find that the synthetic trace in almost all cases does
not have the same HRCs as the original trace. For instance, Fig-
ure 12a depicts the HRCs for the VIDEO trace (Table 1). Thus, we
conclude that LRUSM algorithm fails to generate a synthetic trace
with similar hit rate curves as the original trace.
Adapting LRUSM to variable-sized objects. The LRUSM algo-
rithm considers unit size objects to produce a synthetic trace, and
then assigns each object a size from the object size distribution. If a
FD is provided as an input, the LRUSM algorithm can be updated as
follows. The LRU stack is initialized with objects and are assigned
sizes from the object size distribution. In each iteration, on sampling
a stack distance 𝑠 from 𝑃 (𝑠), where 𝑃 (𝑠) = ∑

𝑡 𝑃
𝑟 (𝑠, 𝑡), the object

that falls at a stack distance 𝑠 is added to the synthetic trace and
re-inserted at the top of the stack. Now, observe that the probability
of 𝑠 falling on a large object is higher as compared to a small object.



TRAGEN: A Synthetic Trace Generator for Realistic Cache Simulations IMC ’21, November 2–4, 2021, Virtual Event, USA

Trace Media-0 Media-1 Media-2 Media-3 Media-4 Media-5 Media-6 Web-7 Media-8 Web-9

Length (mil. reqs) 32.04 109.3 70.3 91.92 43.98 66.48 36.56 9.73 128.44 6.95
Req. rate (reqs/sec) 20.64 70.44 45.32 59.2 28.33 42.82 23.55 6.248 82.73 5.38
Traffic (MBps) 12 480 13 36 288.3 434.8 26.8 0.8 27.682 0.756
No. of objects (mil.) 15.55 2.66 18.62 39.64 2.31 2.49 14.45 0.028 22.56 0.02
Avg. object size (KB) 679.2 9727 286.4 653 10286 10291 1026 71.65 151.3 69.83

Table 3: Trace description for the EU trace
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Figure 10: Observed RHRs and BHRs of the Original and Synthetic trace for the various caching policies and cache sizes for the Video and EU trace.
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Figure 11: Traffic mix results for (a) EU Trace, and (b) TC trace
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Figure 12: LRUSM approach. (a) HRCs under the LRUSM approach
with stack initialized with unit size objects, (b) HRCs under LRUSM
approach with stack initialized with object sizes.

Thus, the synthetic trace is likely to have a much higher proportion
of large objects. This in turn, causes the BHR of the synthetic trace
to be much higher than the RHR of the original trace. The results for
the VIDEO trace can be seen in Figure 12b.

5.3.2 Naive Merge. TRAGEN uses FD (resp., BFD) calculus
to compute a model for traffic class mixes and uses that model for
synthetic trace generation. We now ask if a naive approach (which
we call Naive Merge) could be used to derive synthetic traces for
traffic class mixes instead. Naive Merge uses TRAGEN to generate
synthetic traces for individual traffic classes and then merges them
in time-order by assigning each request a time stamp.

We consider three ways of assigning timestamps to the synthetic
trace, (i) request rate (number of requests per second), (ii) byte rate
(number of bytes requested per second), and (iii) unique byte rate
(number of unique bytes requested per second) of the traffic class.
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Figure 13: Approach naive merge. (a) rHRCs of the synthetic traces for
the EU trace (b) bHRCs of the synthetic traces for the TC trace.

Figure 13a and Figure 13b depict our findings. For the result in Fig-
ure 13a, we consider traffic classes eu-0 and eu-1 from the EU trace
(Table 3). We observe that the rHRC of the trace computed using
Footprint Descriptor (FD) of the traffic mix and the one computed
using the calculus align. Whereas, the rHRC of the trace computed
by using any of the merge techniques are not equal to the rHRC of
the original trace. To compare bHRCs, we repeat the experiment
using the traffic classes Download and Images from the TC trace (Ta-
ble 2). Again, we observe similar results, results seen in Figure 13b.
Thus, simpler timestamp-based approaches to traffic mixing does
not produce realistic synthetic traces, providing support for our use
of FD and bFD calculus.

6 Related work
Synthetic workload generation has been an active research area

in several disciplines of computer science. We briefly review the
relevant literature on workload characterization and generation in
internet based systems.
Tools for synthetic trace generation. The tool SpecWeb96 [17] is
amongst the first tools to generate a synthetic web workload. The
tool generates a sequence of HTTP GET requests such that the re-
quests satisfy the size and popularity distribution of an expected
web trace. The tool is however dormant. HttpPerf [43] is a similar
tool that is used to generate a trace to test the performance of a web
server. SURGE [5] is a more realistic web workload generator and
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generates a trace that matches the empirical measurements of popu-
larity distribution, object size distribution, request size distribution,
relative object popularity, temporal locality of reference, idle periods
of individual users. Some of the other tools with similar capabilities
are Web Polygraph [47], Globetraff [32], Geist [30]. Unlike our
work, these tools do not generate a synthetic trace that is similar to
the original trace in terms of hit rates.

The work in [45] captures the correlations between requests and
the popularity distribution of the original workload and generates a
trace that satisfies both. The work does not consider the size distri-
bution of the objects. The tool MediSyn [52], generates a trace with
properties specific to streaming media characteristics such as file
duration, encoding bit rate, session duration and non-stationary pop-
ularity of media accesses, but does not consider the cache hitrates.

The tool closest to our work is ProwGen [12]. ProwGen was used
to study the workload characteristics that impact the cache hit rate
of a proxy server by generating a synthetic trace that closely satisfies
the workload characteristics. The tool however is limited to gener-
ating web traffic traces and is unable to generate a trace with the
same cache hit rates as the original trace as it relies on the LRUSM
algorithm. We have shown in Section 5.3 that the LRUSM algorithm
fails to produce a synthetic trace that is similar to original production
traces. Further, the tool considers very small cache sizes (order of
MBs) and runs in O(𝑛2), which makes it impractical considering the
current workload and much larger cache sizes. A comprehensive sur-
vey of the available workload generation tools and their capabilities
is provided in [18].

Unlike prior work, TRAGEN is the first tool to produce synthetic
traces with similar hit rates as the original traces for a cross-section
of modern traffic classes. This makes TRAGEN suitable for realistic
cache simulations. Further, unlike prior work that produce traces
that cater only to small cache sizes and trace lengths, TRAGEN
incorporates better data structures to produce sufficiently long traces
that satisfy the caching properties of large caches.
Characterizing the workload of Internet services. There exist
several work that characterize the workload of the Internet and the
services based on it [4, 14, 39, 48, 55, 56]. In 1997, Arlitt et al.
provided an extensive study of the web workload characteristics
using data sets obtained from 6 websites and identified 10 invari-
ant characteristics of the workload. The authors revisited the study
in 2007 [55] to find that the invariants still hold. A similar study
was performed by Mahanti et al. in [39]. In both the studies, the
workload was predominantly Web traffic. However, in recent times,
with applications such as streaming, online gaming, social media
and software downloads that use the Internet, the Internet traffic has
become highly diversified [14, 48, 49, 56]. CDNs like Akamai, serve
multiple traffic classes from their servers [50] and each traffic class
is shown to have unique access patterns and content properties. The
caching properties of each traffic class was captured with a succinct
representation of Footprint Descriptor and the caching properties of
a traffic mix is obtained using the Footprint Descriptor calculus [50].
Considering the vast diversity in the Internet traffic and given that
a production cache serves various time-varying mixes of the traffic
classes, the flexibility that TRAGEN provides in generating synthetic
traces for any prescribed traffic mix is essential.
Stack distance distribution. Stack distance or reuse distance as a
metric has been a useful tool to capture the temporal locality and

the cache properties for CPU caches and web caches [8]. The stack
distance distribution of a trace can be used to compute the rHRC
of an LRU cache for the trace. Over time, several methods have
been proposed to speed up the computation of the stack distance
distribution [3, 54]. However, the metric can only provide the rHRC
of the trace. We introduce the byte-weighted footprint descriptor that
extends the footprint descriptor to capture the bHRC of the trace.
The Independent Reference Model (IRM). The IRM model has
been widely used to describe the request process in several appli-
cations. The IRM model assumes that each request references an
object and the reference is independent of prior requests. Further,
each object is assigned a popularity that fits a zipfian distribution
[10, 24, 40]. Under this model, there exists considerable work that
quantifies the expected hit rates the requests would incur [13, 21].
However, it is well known that real traffic does not follow IRM
that completely ignores temporal locality [23, 35, 53] and thus re-
searchers have proposed statistical models such as shot noise model
[35], markovian arrival process [11]. But they are not known to
be accurate and it is also not known if they capture the expected
HRCs accurately. Hence, we rely on a more robust model of foot-
print descriptors that capture caching properties without making any
statistical assumptions and is now used in industry.

7 Conclusion
We design and implement TRAGEN, the first tool to produce

synthetic traces that are similar to original production traces in terms
of hit rates and eviction ages. TRAGEN supports user-specified
traffic mixes that allow developers and researchers to generate a
wide range of realistic workloads for cache simulations.

TRAGEN is available to the public and comes with footprint
descriptor models of major traffic classes from a large production
CDN. This allows users to generate realistic synthetic traces that
accurately represent the immense variety of content access patterns
on the internet. Further, we provide the tools for users to generate
footprint descriptor traffic models from their own original traces.
This allows researchers and developers to use TRAGEN for simu-
lations in their own caching application domains. Thus, TRAGEN
provides a platform for industry and academia to publish traffic
models (FDs and bFDs) from their own caching systems, allowing
other researchers and system designers to compute similar synthetic
traces, while preserving the privacy of the original production traces.

TRAGEN is guaranteed to produce synthetic traces that have
similar caching behavior to the original traces for the set of caching
policies that we could theoretically or empirically validate. Providing
strict guarantees for a broader set of caching policies is future work.
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