
FOCAS: Practical Video Super Resolution using Foveated
Rendering

Lingdong Wang

University of Massachusetts Amherst

Amherst, Massachusetts, USA

lingdongwang@umass.edu

Mohammad Hajiesmaili

University of Massachusetts Amherst

Amherst, Massachusetts, USA

hajiesmaili@cs.umass.edu

Ramesh K. Sitaraman

University of Massachusetts Amherst

Amherst, Massachusetts, USA

ramesh@cs.umass.edu

Figure 1: Left: low-resolution (LR) input; Middle: FOCAS takes 24 ms to construct a foveated high-resolution (HR) frame; Right:
Traditional (non-foveated) super-resolution (SR) takes 64ms to construct a full HR frame. Traditional SR upgrades the entire
frame of the LR input to HR, incurring large computational costs, high latencies, and low frame rates, making it unsuitable for
real-time video streaming. However, human vision is more sensitive to video quality in the central foveal region, and less sen-
sitive in the periphery. FOCAS upgrades only the central foveal region of each frame to HR, resulting in reduced computational
cost, lower latency, and higher frame rates, while nearly matching the perceptual video quality of traditional SR.

ABSTRACT
Super-resolution (SR) is a well-studied technique for reconstructing

high-resolu- tion (HR) images from low-resolution (LR) ones. SR

holds great promise for video streaming since an LR video segment

can be transmitted from the video server to the client that then

reconstructs the HR version using SR, resulting in a significant

reduction in network bandwidth. However, SR is seldom used in

practice for real-time video streaming, because the computational

overhead of frame reconstruction results in large latency and low

frame rate.

To reduce the computational overhead and make SR practi-

cal, we propose a deep-learning-based SR method called Foveated
Cascaded Video Super Resolution (FOCAS). FOCAS relies on the fact

that human eyes only have high acuity in a tiny central foveal

region of the retina. FOCAS uses more neural network blocks in the

foveal region to provide higher video quality, while using fewer

blocks in the periphery as lower quality is sufficient. To optimize the

computational resources and reduce reconstruction latency, FOCAS
formulates and solves a convex optimization problem to decide

the number of neural network blocks to use in each region of the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MM ’21, October 20–24, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8651-7/21/10. . . $15.00

https://doi.org/10.1145/3474085.3475673

frame. Using extensive experiments, we show that FOCAS reduces
the latency by 50% − 70% while maintaining comparable visual

quality as traditional (non-foveated) SR. Further, FOCAS provides a

12 − 16× reduction in the client-to-server network bandwidth in

comparison with sending the full HR video segments.

CCS CONCEPTS
•Computingmethodologies→Computer vision;Neural net-
works; Perception.

KEYWORDS
super resolution, foveated rendering, deep learning, latency

ACM Reference Format:
Lingdong Wang, Mohammad Hajiesmaili, and Ramesh K. Sitaraman. 2021.

FOCAS: Practical Video Super Resolution using Foveated Rendering. In

Proceedings of the 29th ACM International Conference on Multimedia (MM
’21), October 20–24, 2021, Virtual Event, China. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3474085.3475673

1 INTRODUCTION
Super-resolution (SR) is a well-studied mechanism to reconstruct

high-resolution (HR) frames of a video from low-resolution (LR)

ones. A key benefit of SR is that it reduces the network bandwidth

required for video streaming, since a video client can download

the LR version of a video segment from the video server and re-

construct the HR version using SR. Thus, SR alleviates the network

bandwidth bottleneck of video streaming at the cost of additional

computation at the video client [19]. However, state-of-the-art SR

https://doi.org/10.1145/3474085.3475673
https://doi.org/10.1145/3474085.3475673

methods incur a large computational overhead, resulting in high

latency to construct each frame, leading to unacceptably low frame

rates. So, despite its potential, SR is seldom used for real-world

real-time video streaming.

With the goal of making SR practical, we propose Foveated
Cascaded Video Super Resolution (FOCAS), a real-time foveated

video SR method based on deep learning. Human eyes only possess

high acuity in the fovea, the central 5.2◦ region of the retina [3].

FOCAS uses this property to render the foveal region around the eye

fixation in high quality, while rendering the peripheral region in low

quality. Specifically, FOCAS downloads LR video segments and uses

neural network to perform SR. But unlike a traditional SR, FOCAS
uses more neural network blocks to produce a higher quality image

in the foveal region, while using fewer blocks in the peripheral

region where a lower quality will suffice. Thus, FOCAS offers similar

visual quality as traditional SR, but using far fewer computation

resources. FOCAS can also be contrasted with traditional foveated

rendering that requires high-resolution (HR) content to fill in the

foveal region. Traditional foveated rendering requires the server to

download HR content, thus consuming significantly more network

bandwidth than FOCAS that downloads only LR content.

The main technical challenge of foveated SR is meeting the strin-

gent real-time latency requirement of 30–50 ms [2] to perform

SR on each frame, so that an adequate frame rate can be main-

tained. Note that the latency requirement imposes a budget on the

computational cycles available for performing SR. FOCAS optimally

allocates the computational budget by spending more computa-

tional cycles for performing SR in the foveal region where higher

quality is desired, and significantly fewer computational cycles in

the peripheral region where a lower quality is sufficient.

Our Contributions.We now list our key contributions.

(1) We propose the novel idea of foveated SR that combines the

best aspects of foveated rendering and traditional SR. Foveated

SR achieves the same reduction in bandwidth as traditional SR by

enabling the client to download only LR video segments from the

server. However, foveated SR has significantly less computational

overhead than traditional SR, allowing it to achieve similar video

quality with smaller latency. Likewise, foveated SR is similar to

traditional foveated rendering in that the foveal region is rendered

in high quality. However, traditional foveated rendering does not

reduce bandwidth significantly as HR versions of the video segment

will still need to be downloaded for display in the foveal region.

(2)We design FOCAS that implements foveated SR using a deep

learning approach. FOCAS shrinks the intermediate feature map

in a cascaded manner during the inference phase. It can be easily

applied to any traditional SR model to perform foveated SR.

(3) FOCAS formulates the problem of performing foveated SR

within a latency budget as a convex optimization problem that can

then be solved efficiently. The optimization determines how many

neural network blocks to use in which parts of the frame.

(4) We finally conduct extensive experiments and show that

FOCAS can reduce the latency by 50% − 70%, leading to a 2 × −3×
frame rate improvement, while achieving visual quality that is com-

parable to traditional SR. Also, by downloading LR video segments

instead of HR ones, FOCAS achieves 12−16× bandwidth saving. Our

implementation is available at github.com/UMass-LIDS/focas.

2 BACKGROUND AND RELATEDWORK
2.1 Foveated Rendering
Human eyes have high sensitivity in the fovea, the central 5.2◦

region of retina. But the acuity of human eye rapidly decreases

outside fovea towards the periphery [3]. To utilize this property,

foveated rendering only renders the foveal region with high quality,

while rendering the peripheral region with low quality. In this way,

the computation required for rendering is largely reduced, as 5.2◦

covers only 0.8% of total pixels on a regular display [9].

Multiresolution [9] proposes to render a frame in three concen-

tric regions with different qualities, while each region’s resolution

is assigned according to a linear model of human visual acuity. [23]

proposes a foveated rendering system that varies pixel shading rate

based on its eccentricity. DeepFovea [16] proposes a deep-learning-

based video reconstruction method. But DeepFovea reconstructs

HR frames from discrete pixels instead of LR frames as in our case.

Prior foveated rendering methods assume that the HR versions

of the video are readily available in the video client. While foveated

rendering also haswide applications in video streamingwhere video

segments are transferred through the wide-area network (WAN). A

foveated video streaming strategy is proposed in [25] that divides

one frame intomultiple tiles, sends HR tiles for the foveal region and

LR tiles for the periphery. This method uses a commodity webcam

to trace eye movement instead of professional eye trackers. [13]

utilizes foveated video streaming for cloud gaming. [24] develops a

foveated streaming system for 360
◦
video. [20] streams 360

◦
video

using both a foveated scheme and semantic saliency.

2.2 Super Resolution
Single-image super-resolution (SISR) aims at improving the resolu-

tion of one single image. The first deep-learning model for SISR is

SRCNN [6], a 3-layer convolutional neural network (CNN). VDSR

[17] then proposes a deep network and introduces residual learn-

ing. ESPCN [27] designs sub-pixel convolution, an efficient way to

upscale the feature map while maintaining locality. Later, DBPN

[10], HAN [22], CAR [28] and many other methods further improve

the performance of SISR.

By extending SISR, video super-resolution (VSR) tries to enhance

the resolution of the video. The key difference of VSR from SISR

is that VSR can utilize temporal information from other frames, as

scenes in a video typically have a strong correlation and locality.

From a technical standpoint, the literature on VSR could be divided

into two categories: non-recurrent methods and recurrent methods.

Non-recurrent VSR methods are usually based on 2D or 3D CNN.

Viewing each frame as a 2D tensor, EDVR [30] uses stacked 2D

deformable convolution layers to conduct VSR. TOFlow [31] per-

forms optical flow estimation and warp operation between frames,

then aggregates frames to generate high-quality output. But inaccu-

rate motion estimation and motion compensation (MC&ME) might

incur artifacts. To avoid explicit MC&ME, PFNL [33] utilizes pro-

gressive fusion and non-local operation to capture features. From

another aspect, considering time as the third dimension, DUF [15]

adopts 3D convolution to generate dynamic upsampling filters to

capture spatio-temporal features.

Recurrent VSR methods adopt recurrent neural network (RNN)

to capture historical semantic information from previous frames.

FRVSR [26] improves frame resolution by using MC&ME to align

adjacent frames in a recurrent manner. RBPN [11] extends back-

projection operation from SISR to VSR and performs it recurrently.

RLSP [7] propagates both previous SR output and previous feature,

and processes them with stacked convolutional layers. Following

RLSP, RRN [14] uses stacked residual blocks and achieves a better

SR quality. We take RRN as the base model for our work because of

its straightforward structure and good performance.

In traditional video SR, the full-size input will go through the

whole model, resulting in an output with uniform quality every-

where. However, since human eye pays much more attention to

the foveal region, this is an inefficient approach to allocate com-

putational resources. As a result, when traditional SR methods are

applied to scenarios like real-time video streaming, they largely

sacrifice model capacity and SR performance to meet the stringent

latency requirement [4, 32, 34]. In contrast, FOCAS allocates quality

only where it matters to the human visual system, achieving lower

latencies without a noticeable quality degradation.

3 FOCAS SYSTEM DESIGN
FOCAS includes three phases as shown in Fig. 2. In the first training

phase, we obtain a trained CNN model. The cornerstone of FOCAS
is the second phase, where through an optimization process, we

find the feature depth and region size to maximize foveated SR

quality given the latency constraint. Finally, we apply the settings

to model, and generate foveated SR results in the inference phase.

In what follows, we first present the model structure in Sec-

tion 3.1. In Section 3.2, we explain how we construct a customized

inference phase of FOCAS that takes into account the foveated SR.

Finally, we introduce how to train a model as required in the infer-

ence phase in Section 3.3. Note that we present the details of the

quality allocation phase in Section 4.

3.1 Model Structure
The architecture of FOCAS is built based on RRN [14] as shown in

Fig. 3. Here we briefly introduce it and refer to [14] for details.

FOCAS adopts a recurrent structure. In recurrent iteration 𝑡 , it

takes the current and previous frames 𝐼𝑡 and 𝐼𝑡−1, previous feature
𝐻𝑡−1 and previous SR output 𝑂𝑡−1 as the inputs. At the end of

iteration, the model will output 𝐻𝑡 and𝑂𝑡 . The output 𝐻𝑡 is a deep

learning feature map carrying global information of the video. 𝑂𝑡

is the result of SR, an upsampled image with higher resolution.

At first, the image 𝑂𝑡−1 is reshaped by a Pixel Unshuffle layer.

Pixel Unshuffle layer moves data from the spatial dimension to the

depth dimension, transforming the tensor shape from𝐶 × 𝑠𝐻 × 𝑠𝑊
to 𝑠2𝐶 ×𝐻 ×𝑊 , where 𝑠 is an upscale factor. Pixel Unshuffle layer

is the inverse operation of Pixel Shuffle layer [27], which will be

used to transform a deep feature back to an image.

Later, input data are concatenated and fed into a convolution

(Conv) layer followed by ReLU [8]. Then the feature enters some

stacked residual blocks (ResBlock) [12]. ResBlock is composed of

Conv-ReLU-Conv layers, with a skip connection adding the input

to the output. In one branch, the feature from ResBlocks is sent into

a Conv-ReLU layer to be the output feature 𝐻𝑡 . In the other branch,

the feature is processed by a Conv layer, reshaped by a Shuffle layer,

and added with the bicubic-upsampled 𝐼𝑡 to be the SR result 𝑂𝑡 .

Despite its recurrent structure, FOCAS can simulate non-recurrent

video SR methods by not using recurrent states. Specifically, by

setting the recurrent state 𝑂𝑡−1, 𝐻𝑡−1 as null and still inputting

[𝐼𝑡−1, 𝐼𝑡], the model only receives recent frames without global

knowledge. As the state-of-art video SR methods may adopt recur-

rent or non-recurrent structure, we examine the performance of

both types of FOCAS model for comprehensiveness.

3.2 Inference Phase
The idea of FOCAS inference comes from the observation that each

ResBlock in the model will introduce finer details to the feature

map, hence improve the visual quality of SR output. On the other

hand, human eyes only identify high visual quality in a small foveal

region, and endure low quality in the large peripheral region.

Leveraging these properties, FOCAS only allows the feature map

for foveal region to go through more ResBlocks and gain higher

quality, while let the feature map for peripheral region early exit

to decrease the overall latency. As a result, the foveal region of SR

output is high-quality, while the peripheral region ends up with

lower but acceptable quality. Such a foveated SR strategy achieves

comparable visual quality with full-size SR, but greatly reduces the

latency by spending less computation on the periphery.

Following the common practice in foveated rendering [9, 25],

we adopt a three-region quality distribution. That is, FOCAS will

output an image consisting of three regions with decreasing visual

qualities. The foveal region around the eye fixation will have the

highest quality, the peripheral region will have the lowest quality,

and the blending region in the middle will have a medium quality.

The inference process of such a three-region FOCAS model is

illustrated in the third phase of Fig. 2, where the eye fixation is

assumed to be the center. At first, the input data 𝐼𝑡 , 𝐼𝑡−1,𝑂𝑡−1, 𝐻𝑡−1
are concatenated into a feature map and processed by a Conv layer.

Then, the feature map is processed by several ResBlocks to be a

low-quality feature, which can be interpreted as a low-quality im-

age. Secondly, we crop a sub-feature around the eye fixation from

the low-quality feature. Due to the locality of convolution opera-

tions, the feature map has a spatial correspondence with the output

image. Hence this sub-feature can be viewed as the blending region

in the final output. Only this sub-feature is sent into successive

ResBlocks and enhanced to achieve middle quality, while the rest

part is no longer computed. Finally, a small feature map for the

foveal region is cropped out of middle-quality feature, goes through

several additional ResBlocks, and achieves the highest quality.

After the above steps, we have a large low-quality feature map

for the periphery, middle-size medium-quality feature for the blend-

ing region, and a small high-quality feature for the foveal region.

We then stack these three features together centered at the eye

fixation. Finally, we send this mixed-quality feature map into the

last Conv layers, and obtain the output image and feature, both

with decreasing quality from the gaze point to periphery.

In the inference phase, the size of intermediate feature map

shrinks in a cascaded way. Therefore our method is named as

Foveated Cascaded Video Super Resolution. We argue that the

design of cascade inference suits the sequential architecture of mod-

ern CNN. Therefore, FOCAS can be pervasively applied to existing

SR methods, transforming them into their foveated SR counterparts.

Figure 2: Overview of FOCAS.

Figure 3: Model structure of FOCAS.

3.3 Training Phase
In contrast to the inference phase, our model is trained without

cascade. One may argue that the training for foveated SR could

be based on different quality levels. But we claim that a cascaded

training strategy is highly inefficient, since only a small region of

input data goes deeply into the model. As a result, the input data is

not fully utilized, and the deeper ResBlocks are not fully trained.

Another challenge is the need for adaptability of “interpreter”

layers, the last Conv layers before outputs working as the inter-

preter of feature maps. As required in the inference, the interpreter

must adapt to features of different qualities from different ResBlocks.

One can force the interpreter to adapt by feeding these features

to it in the training phase. But, it degrades the performance since

the model wastes its capacity on peripheral features, instead of

focusing on learning high-quality feature for the foveal region.

The solution to both problems is the same — train the end-to-end

model just like a regular RRN model without cascade. In this way,

the complete input data goes through the full model, leading to full

data utilization and full model training. Besides, the residual con-

nections will bypass features from all ResBlocks to the interpreter

layers. So the interpreter can eventually handle features of different

qualities, even if they are never directly received in training.

Since FOCAS shares the same model structure and training pro-

cess with RRN, it can also share the same model parameter with

RRN. In other words, FOCAS can be derived from a pre-trained RRN

model, transforming a traditional SR model to a foveated SR one.

It proves that FOCAS is easy-to-use and can be applied to many

existing models even without re-training.

4 OPTIMUM QUALITY ALLOCATION
In this section, we focus on the optimization process of FOCAS,
where we make two decisions for each region— how large the

region size should be, and what is the right feature depth, i.e., how

many ResBlocks should each region’s feature go through. These two

decisions jointly determine the amount of computational resources

we allocate for each region, leading to different visual quality and

different latency. It is vital to allocate quality to each region wisely,

so that we can achieve the maximum visual quality under a limited

amount of resources. We formulate the problem as an optimization

problem in Section 4.1 and show how to solve it in Section 4.2.

4.1 Problem Modeling and Formulation
We first provide a model for visual quality. Then, we introduce

visual importance to model human vision. Next, we present the

estimation method of inference latency. Finally, we formulate the

optimization problem in Eq. (4) using all these concepts.

4.1.1 Visual quality and its relation to feature depth. It is challeng-
ing to model the visual quality for two reasons. Firstly, there is no

perfect measurement of video quality in human vision. Here we just

adopt normalized PSNR as the metric of visual quality. Secondly,

the visual quality of an SR result has a complicated relationship

with the content of the input image, recurrent state, and the feature

depth.When we have access to the target video or the target dataset,

an intuitive solution is to measure and record the mapping between

these factors and the visual quality of our pre-trained model over

the target data. Our goal in FOCAS, however, is to be generic and

adaptive to unknown input data. Hence, we model visual quality

as being content-independent and related only to feature depth. In

other words, we model all feature maps going through the same

number of ResBlocks result as having the same visual quality.

We now define a function𝑞(𝑑) that maps feature depth𝑑 to visual

quality. We use Vimeo-90K dataset [31] as our training dataset,

assume that it has a generic data distribution, and use it as the

input to the optimization module of FOCAS. We then feed the output

features from all ResBlocks to the last Conv layer, and obtain output

images with different qualities. Finally, we measure the PSNR scores

of these images and normalize them to [0, 1]. These normalized

PSNR scores are used as visual qualities for different feature depths

as shown in Fig. 4, where the x-coordinate is feature depth 𝑑 , and

the y-coordinate is the visual quality 𝑞(𝑑) ∈ [0, 1]. Note that Fig. 4
represents the visual quality of FOCAS with recurrent states.

Figure 4: Visual quality as a function of feature depth.

FOCAS divides each frame into concentric squares centered at the

position of eye fixation as shown in Figure 5. The smallest center

square and the annular regions between two consecutive squares

form quality regions that are shown in different colors. FOCAS as-
signs the same feature depth to pixels within the same region,

resulting in similar video quality. Note that the center square would

receive the highest feature depth and the feature depth decreases

as moving towards the periphery.

Figure 5: Quality regions. Figure 6: Visual importance.

4.1.2 Visual Importance. We adopt the model in [21] to assign a

weight to each pixel according to its importance in human vision,

and the weight follows a normalized 2D Gaussian function centered

at the gaze point. The mathematical formula is shown as follows:

𝑤𝑢,𝑣 =
1

2𝜋𝜎𝑢𝜎𝑣
𝑒
−((𝑢−𝑢𝑒)

2

2𝜎2

𝑢
+ (𝑣−𝑣𝑒)

2

2𝜎2

𝑣
)
, (1)

where𝑤𝑢,𝑣 is the weight for position (𝑢, 𝑣), (𝑢𝑒 , 𝑣𝑒) is the position
of eye fixation, and both 𝜎𝑢 , 𝜎𝑣 are set to be the foveal size 64 pixels

(2
◦
) as in [21]. Denoting 𝜎 = 𝜎𝑢 = 𝜎𝑣 , we can rewrite Eq. (1) into

𝑤 (𝑥) = 1

2𝜋𝜎2
𝑒
− 𝑥2

2𝜎2 , (2)

where 𝑥 =
√
(𝑢 − 𝑢𝑒)2 + (𝑣 − 𝑣𝑒)2 represents the distance from a

pixel to the position of eye fixation. An illustration of the visual

importance weight mask is shown in Fig. 6, where eye fixation is

the center and brightness means a higher value.

4.1.3 Inference Latency. The inference latency of the FOCAS model

is dominated by the computation time of ResBlocks. Since we as-

sign intermediate features with the same number of channels, the

runtime of a single ResBlock is proportional to the area (height ×
width) of the input feature. So, the runtime of FOCAS for one region

is proportional to the number of ResBlocks and the area of input

feature. We model the total inference latency as a linear function

of the sum of latency for each region, i.e.,

𝑡 (𝒅, 𝒓) = 𝐴 + 𝐵
∑𝑁

𝑖=1
(𝑑𝑖 − 𝑑𝑖+1)𝑟2𝑖 . (3)

where 𝐴, 𝐵 are the linear coefficients. For a region 𝑖 , the area of

input feature is the square of region size 𝑟𝑖 . Because a higher-quality

feature is computed based on a lower-quality feature, the feature

for a new region only need to go through 𝑑𝑖 − 𝑑𝑖+1 ResBlocks,

where 𝑑𝑖 is the current region’s feature depth and 𝑑𝑖+1 is the outer
region’s. Overall, (𝑑𝑖 −𝑑𝑖+1)𝑟2𝑖 represents the latency of region 𝑖 . To

measure the coefficients 𝐴 and 𝐵 in Eq. (3), we randomly generate

108 models with different feature depths as well as input areas,

and then measure their latency. As shown in Fig. 7, we can obtain

relatively accurate 𝐴 and 𝐵 using linear regression.

Figure 7: Linear fitting for latency estimation.

4.1.4 Optimization Problem Formulation. The objective of the opti-
mization is to maximize the overall visual quality under a foveated

view by assigning region size and feature depth for each region.

Meanwhile, the latency of the process must obey a specified time

bound. Putting them together, this problem is formulated as

max

𝒅,𝒓

𝑁∑
𝑖=1

𝑟𝑖∑
𝑥=𝑟𝑖−1

𝑥𝑒
− 𝑥2

2𝜎2 𝑞(𝑑𝑖)

s.t. 𝑡 (𝒅, 𝒓) ≤ 𝑇,
𝑟𝑖−1 ≤ 𝑟𝑖 , ∀𝑖,
𝑑𝑖−1 ≥ 𝑑𝑖 , ∀𝑖,

(4)

where the optimization variables are 𝒅 and 𝒓 . More specifically, vari-

able 𝒅 = (𝑑1, 𝑑2, · · · , 𝑑𝑁) represents the vector of feature depths
with element 𝑑𝑖 as the feature depth of region 𝑖 . Further, 𝒓 =

(𝑟1, 𝑟2, · · · , 𝑟𝑁−1) represents the region sizes. Note that the out-

ermost region is always the full input, so 𝑟𝑁 = 𝐿, where 𝐿 is the

input feature size. In this work we have 𝐿 = 270, 4× downscaled

from the image height 1080. We set 𝑟0 = 0 and 𝑑𝑁+1 = 0 for consis-

tency.

We note that the closed-form representation of the objective

function in Problem (4) is derived by substituting 𝑤 (𝑥) in Eq. (2)

into the following equation:

2𝜋𝑥𝑤 (𝑥)𝑞(𝑑𝑖) =
1

𝜎2
𝑥𝑒
− 𝑥2

2𝜎2 𝑞(𝑑𝑖). (5)

We now further explain the derivation of the above objective func-

tion. The foveated visual quality of SR output is the dot product of

its visual quality and the visual importance. Here we assume that

the gaze point is always at the center of the image. Then an intuitive

interpretation of foveated visual quality is to stack the visual quality

distribution in Fig. 5 with the visual importance weight mask in Fig.

6, and sum up the values in Fig. 5 weighted by Fig. 6. To do so, we

further assume that regions are circular for mathematical tractabil-

ity. Then, the objective function in Eq. (5) could be interpreted as

follows. There are 𝑁 regions and 𝑥 is the distance from a pixel to

the eye fixation. For each region 𝑖 , 1 ≤ 𝑖 ≤ 𝑁 , 𝑥 varies from the

inner boundary 𝑟𝑖−1 to the outer boundary 𝑟𝑖 . At a given distance

𝑥 , there are 2𝜋𝑥 pixels on the ring, all with visual importance𝑤 (𝑥).
While within the same region 𝑖 , all pixels have the same visual

quality 𝑞(𝑑𝑖). In other words, we traverse all pixels, sum up their

visual quality scores weighted by their visual importance scores. A

sanity check is that, the full-size SR result has the highest quality 1

everywhere, and the sum of𝑤 (·) over all pixels equals 1, so full-size
SR has the highest possible foveated visual quality 1. In the end, by

removing the constant factors in Eq. (5), we obtain an equivalent

but simplified objective function in Eq. (4).

Finally, we explain the three constraints in Problem (4). Firstly,

the inference latency defined in Eq. (3) is no more than a pre-

specified time limit 𝑇 . As discussed in Section 2.1, 𝑇 should be

between 30-50 ms. Our experiments show that ∼ 20 ms is enough

for FOCAS to achieve performance near the full SR approach. The

second constraint enforces that the radii are monotonically non-

decreasing. Thirdly, feature depth of the inner region is no less than

the outer region. The third constraint comes from the intuition that

𝑞 is monotonically increasing with𝑑 , and wewant to assign a higher

visual quality to inner regions compared to the outer regions.

4.2 Solving the Optimization Problem
In this section, we develop our solution approach to solve Prob-

lem (4). To facilitate our algorithm design, we first simplify Prob-

lem (4) to deal with one optimization variable. To do so, we leverage

the fact that there are only 10 ResBlocks in the FOCASmodel, so the

value of feature depth is between 1 to 10, i.e., 𝑑𝑖 ∈ {1, 2, · · · , 10}.
Besides, the number of region is also small (3 in FOCAS). As a result,
the search space of 𝒅 is limited and can be fully traversed by an

exhaustive search. In this way, we can view 𝒅 as a pre-specified

constant and focus on optimizing the region sizes 𝒓 .
As the second step, we relax the objective function in Eq. (4) by

viewing discrete pixels as continuous as follows:

𝑁∑
𝑖=1

𝑟𝑖∑
𝑥=𝑟𝑖−1

𝑥𝑒
− 𝑥2

2𝜎2 𝑞(𝑑𝑖) ≈
𝑁∑
𝑖=1

∫ 𝑟𝑖

𝑟𝑖−1
𝑥𝑒
− 𝑥2

2𝜎2 𝑞(𝑑𝑖) 𝑑𝑥

= 𝜎2 [𝑞(𝑑1)𝑒−
𝑟2
0

2𝜎2 +
𝑁−1∑
𝑖=1

(𝑞(𝑑𝑖+1) − 𝑞(𝑑𝑖))𝑒−
𝑟2
𝑖

2𝜎2 − 𝑞(𝑑𝑁)𝑒
−

𝑟2
𝑁

2𝜎2],

(6)

where the second line in above equation is obtained by solving

the integral. We then replace the objective function in Eq. (4) with

Eq. (6) to obtain an approximate problem. Since 𝜎, 𝑟0, 𝑟𝑁 , 𝑞(𝑑𝑖) are
all constants, we only keep the middle term for simplicity without

loss of generality. Finally, we reverse the maximization problem

Algorithm 1 Quality Allocation of FOCAS

Input: Time limit 𝑇 . Number of regions 𝑁 .

Output: Optimal region sizes 𝒓∗. Optimal feature depths 𝒅∗.
for every 𝒅 = (𝑑1, 𝑑2, · · · , 𝑑𝑁) s.t. 𝑑1 ≥ 𝑑2 ≥ 𝑑𝑁 do

Solve problem Eq. (8) with 𝑁,𝑇 , 𝒅 to get the result 𝒂.
𝒓 ← (⌈√𝑎1⌉, ⌈

√
𝑎2⌉, · · · , ⌈

√
𝑎𝑁−1⌉) .

Compute the score of objective function in Eq. (5) with 𝒅, 𝒓 .
end for
return 𝒅, 𝒓 with the highest score.

into a minimization one as follows:

min

𝒓=(𝑟1, · · · ,𝑟𝑁−1)

𝑁−1∑
𝑖=1

(𝑞(𝑑𝑖) − 𝑞(𝑑𝑖+1))𝑒−
𝑟2
𝑖

2𝜎2

s.t. 𝐴 + 𝐵
𝑁∑
𝑖=1

(𝑑𝑖 − 𝑑𝑖+1)𝑟2𝑖 ≤ 𝑇,

𝑟𝑖−1 ≤ 𝑟𝑖 , ∀𝑖 .

(7)

We then transform the constraint 𝑟𝑖−1 ≤ 𝑟𝑖 , into an equivalent one

by squaring both sides, hence, the variables all become square, i.e.,

in the format of 𝑟2
𝑖
. Then, we can replace the optimization variable

with 𝑎𝑖 = 𝑟2
𝑖
, and re-write the problem as

min

𝒂=(𝑎1, · · · ,𝑎𝑁−1)

𝑁−1∑
𝑖=1

(𝑞(𝑑𝑖) − 𝑞(𝑑𝑖+1))𝑒−
𝑎𝑖

2𝜎2

s.t. 𝐴 + 𝐵
𝑁∑
𝑖=1

(𝑑𝑖 − 𝑑𝑖+1)𝑎𝑖 ≤ 𝑇,

0 ≤ 𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝑁−1 ≤ 𝐿2 .

(8)

Theorem 4.1. Problem (8) is a convex optimization problem.

Proof. Denote the objective function in Eq. (8) as 𝑓 , whose

Hessian matrix is ∇2 𝑓 = diag((· · · , 1

4𝜎4
(𝑞(𝑑𝑖) −𝑞(𝑑𝑖+1))𝑒−𝑎𝑖 , · · ·)).

Since visual quality of the inner region is always higher than the

outer, we have 𝑞(𝑑𝑖) − 𝑞(𝑑𝑖+1) > 0, which means ∇2 𝑓 ≥ 0. Hence,

the objective function 𝑓 is convex.Meanwhile, all the constraints are

linear. Therefore, Problem (8) is a convex optimization problem. □

Since Problem (8) is convex, we can solve it optimally using

convex solvers. We adopt CVXPY [1, 5], a Python framework for

convex optimization, to solve the problem optimally.

In summary, the algorithm to set region sizes and feature depths

for a FOCAS model is shown in Alg. 1. The user needs to indicate

the latency requirement 𝑇 and the number of regions 𝑁 . The al-

gorithm will exhaustively search every 𝒅, and then compute the

corresponding 𝒓 by solving a convex optimization problem. At the

end, the combination of 𝒅, 𝒓 with the highest foveated visual quality
is returned as the solution.

5 EXPERIMENTAL RESULTS
5.1 Overview and Setup
5.1.1 Dataset. Our training dataset is Vimeo-90K [31], a common

training dataset for SR containing 91,701 7-frame video segments

without eye trace. We train the FOCAS model on the training set of

Vimeo-90K, and then measure the visual quality w.r.t. feature depth

in Fig. 4 on its testing set. All frames are originally in 448 × 256
resolution, and randomly cropped into 256 × 256 tiles to be the

ground truth. Targeting at 4× SR task, we downsample ground-

truth examples 4× to be 64× 64 as input. Downsampling is realized

by Gaussian blur with 𝜎 = 1.6 as used in [14]. We use horizontal

and vertical flips with probability 0.5 for data augmentation.

We adopt [29] as our testing dataset, which contains videos and

eye traces from human observers. We use 37 HD videos in the

dataset. All videos have 1920 × 1080 resolution and around 300

frames, with contents varying from people, buildings to natural

scenes. We further divide each video into 50-frame (2-second) clips

as input examples. For each video, there are 34 eye traces. We use

the average position of left eye and right eye’s gaze points as the

eye fixation. Only the first eye fixation during a frame is considered,

and the eye fixation is set to the center when losing track.

5.1.2 Performance Metrics. We adopt two performance metrics to

measure visual quality. Both metrics are applied to the luminance

channel, that is, Y channel of a YCbCr-format image.

The first metric is Peak Signal to Noise Ratio (PSNR). It is a non-

foveated metric that treats everywhere equally, representing the

visual quality under a global view.

The second metric is Eye-Weighted PSNR (EWPSNR) [21]. EW-

PSNR is similar to PSNR, but assigns weights to pixels according

to a 2D-Gaussian model of human vision. The EWPSNR metrics is

obtained as follows:

EWPSNR = 10 log

(
(2𝑛 − 1)2
EWMSE

)
, (9)

where

EWMSE =

∑𝑈
𝑢=1

∑𝑉
𝑣=1

(
𝑤𝑢,𝑣 · (𝐼 ′𝑢,𝑣 − 𝐼𝑢,𝑣)2

)
𝑈𝑉

∑𝑈
𝑢=1

∑𝑉
𝑣=1𝑤𝑢,𝑣

, (10)

𝑈 and 𝑉 are the image height and width, (𝑢, 𝑣) is a position,𝑤𝑢,𝑣

is defined in Eq. (1), and 𝑛 is the number of bits per sample set to

8. EWPSNR is a foveated metric that cares more about the foveal

region but less about the periphery, measuring the foveated visual

quality in human vision.

5.1.3 Implementation. We implement FOCAS using the PyTorch

framework. We adopt CVXPY [1, 5] as the convex optimization

solver for Alg. 1. Experiments are all conducted on GTX 2080Ti

GPU. We follow the same hyper-parameters and training setting

as RRN [14]. Specifically, intermediate features have 128 channels.

The learning rate is 10
−4
, and then decreases to 10

−5
at epoch 60,

with a total of 70 epochs. The model is optimized by the Adam [18]

optimizer towards ℓ1 loss function. Lastly, the settings of the Adam

optimizer are 𝛽1 = 0.9, 𝛽2 = 0.999 and 5 × 10−4 weight decay.

5.1.4 Stability. SR methods might incur artifacts or noises in the

video, which severely harms the visual quality. Here we develop

two strategies to prevent artifacts and improve the SR stability.

In the inference phase, directly stacking feature maps of different

qualities causes obvious artifacts at region boundaries. To solve this

problem, we perform a 4-pixel linear interpolation at the boundary,

blending the features of adjacent regions.

In recurrent FOCAS, the feature depth for one position may vary

among frames, resulting in the possibility of small reconstruction

Table 1: FOCAS with Different Quality Allocation Settings

Name 𝑇 𝑑1 𝑑2 𝑑3 4𝑟1 4𝑟2 𝐿 (ms) Score

FOCAS-15 15 10 4 1 128 224 14.12 0.5474

FOCAS-16 16 10 8 1 224 256 14.82 0.8800

FOCAS-17 17 10 4 1 288 368 16.11 0.9603

FOCAS-20 20 10 8 1 416 448 18.47 0.9984

FOCAS-25 25 10 3 1 544 824 23.64 0.9999

error. The impact of this small error, however, could be accumu-

lated and amplified since it is sent into future steps together with

recurrent states. As a result, it spreads out and becomes a major

artifact. This problem only appears when FOCAS runs for too long.

Hence, we solve it by alternating FOCAS inference and full-size

SR inference. The full-size inference will correct the small error

in recurrent states and prevent it from accumulating, while we

can still adopt foveated inference to gain latency reduction for the

remaining frames.

5.2 Results
5.2.1 Quality Allocation. Since the visual quality function mea-

sured on FOCASwith and without recurrent state are similar, we use

the function in Fig. 4 for both experiments. We adopt a three-region

foveated scheme, i.e., 𝑁 = 3. Then, by setting different latency

constraint 𝑇 , we can derive different versions of FOCAS from Alg. 1

with different performance-latency trade-offs. Here we report 5

variants of quality allocation settings in Table 1.

In this table, 𝑇 is the latency limit in ms, and we name the corre-

sponding FOCAS version after their 𝑇 . With 3 regions, 𝑑𝑖 represents

the feature depth of region 𝑖 and 𝑟𝑖 is the region size. Note that 𝑟3 is

always the full input size so we omit it in Table 1. Beyond these, col-

umn 𝐿 refers to the actual inference latency in runtime. And “Score”

represents the value of objective function described in Eq. (5). Tar-

geting at 4× SR task, all these models gain 16× theoretic bandwidth
saving since the size of uncompressed LR resource to download is

1

16
of its HR origin. With the MPEG4 compression codec, FOCAS

achieves 12.85× bandwidth saving on our testing dataset.

The input feature to ResBlocks are 4× down-scaled in width and

height by the Pixel Unshuffle layer. For an intuitive comparison

with the ground-truth image of size 1080× 1920, we show 4𝑟𝑖 in the

table. Taking the architecture of FOCAS-20 as an example. Firstly,

the input of size 1080×1920 (actually 270×480) goes through 𝑑3 = 1

ResBlock, achieving low quality as the peripheral region. Then, a

blending region of 𝑟2 = 448 × 448 is cropped and goes through 7

more blocks to achieve depth 𝑑2 = 8. Finally, the foveal region of

𝑟1 = 416 × 416 reaches depth 𝑑1 = 10 for the highest quality.

The results show that runtime inference latency always satisfies

the latency limit 𝑇 . As for the SR performance, FOCAS-15 performs

poorly due to its stringent latency requirement. But FOCAS-20 per-
forms satisfyingly with 0.9984 score in 18.47 ms, and FOCAS-25
achieves 0.9999 in 23.64 ms. As the latency increases, the objective

score rises rapidly at first but gradually saturates. This diminishing

return observation is reasonable since we can easily improve the

visual quality by enhancing the quality of foveal region when the

score is low. But once it reaches the limit, we can barely benefit

from increasing the peripheral quality.

Table 2: Comparison of Non-Recurrent SR Methods

Method Foveated Latency(ms) PSNR EWPSNR

Bicubic 1.14 27.77 91.00

RRN-10L 63.55 34.13 97.72
RRN-3L 24.01 33.30 96.90

FOCAS-15 ✓ 14.12 30.86 95.70

FOCAS-16 ✓ 14.82 30.90 96.90

FOCAS-17 ✓ 16.11 30.92 97.42

FOCAS-20 ✓ 18.47 31.04 97.71

FOCAS-25 ✓ 23.64 31.23 97.72

Table 3: Comparison of Recurrent SR Methods

Method RRN/FOCAS Latency(ms) PSNR EWPSNR

Bicubic - 1.14 27.77 91.00

RRN-10L - 63.55 34.88 98.50
RRN-5L - 35.17 30.78 97.30

FOCAS-15 3/4 35.30 32.30 96.82

FOCAS-16 3/4 35.70 32.33 97.69

FOCAS-17 3/4 36.44 32.36 98.11

FOCAS-20 2/3 36.50 32.27 98.37

FOCAS-25 1/3 33.61 31.95 98.41

5.2.2 Non-recurrent FOCAS. We compare the performance of non-

recurrent FOCAS with other non-recurrent SR methods in Table 2.

The full-size SR baselines are bicubic upsampling and non-recurrent

RRN [14]. We report the 10-block RRN (RRN-10L), which has the

highest visual quality, as well as 3-block RRN (RRN-3L), which has

similar latency with FOCAS-25.
The results show that FOCAS-20 and FOCAS-25 achieve compara-

ble foveated visual quality (EWPSNR) with RRN-10L but gaining

71% and 63% latency reduction, respectively. Comparing with RRN-

3L, FOCAS-25 has similar latency and lower PSNR, but significantly

higher EWPSNR. This means that FOCAS is worse than RRN-3L from
a global view but looks better in human eyes. Note that RRN-3L

can be viewed as letting the whole image go through 3 ResBlocks,

allocating uniform quality to the image. In contrast, FOCAS will let

the foveal region go through 10 blocks but let the periphery go

through just 1 block. Verified by the experiments, we conclude that

foveated SR performs better than traditional SR in a non-recurrent

setting.

Figure 8: Results of recurrent SR methods. Top: peripheral
region. Bottom: foveal region.

5.2.3 Recurrent FOCAS. For recurrent SRmethods, we take bicubic

upsampling, 10-block RRN, and 5-block RRN as baselines and show

the experimental results in Table 3. As discussed in Section. 5.1.4,

to make recurrent FOCAS stable, we need to alternatively use full-

size SR and FOCAS inference. ‘RRN/FOCAS’ = 1/3 means that one

out of four frames is processed by RRN-10L and rest are by FOCAS.
We deliberately set the ratio so that all FOCAS models have similar

latency with RRN-5L for fair comparisons.

As 𝑇 increases, FOCAS model will perform increasingly better

in terms of foveated visual quality (EWPSNR). FOCAS-16 to FOCAS-
25 suppress the EWPSNR score of RRN-5L with similar inference

time. The best one among them, FOCAS-25, can achieve comparable

EWPSNR with RRN-10L in only a half of runtime. The same obser-

vation is also illustrated in Fig. 8. The performance of FOCAS-25 is
very close to RRN-10L and clearly better than RRN-5L in the foveal

region, at the cost of peripheral quality.

Different from the perfect performance of non-recurrent FOCAS,
recurrent FOCAS performs slightly worse than full-size SR and gains

less latency reduction. This is because the greedy nature of FOCAS
conflicts with its recurrent manner. Uniform-quality SR will en-

hance somewhere not being watched at the moment, which is

wasteful in non-recurrent scenarios. But in recurrent scenarios, the

computation of an unseen position will contribute to the future

through recurrent states. In contrast, FOCAS never invests in the

future. FOCAS greedily allocates resources according to the current

gaze point, leading to performance loss in the long run. Despite this,

by comparing FOCAS-25 with RRN-5L, we conclude that foveated

SR also outperforms full-size SR in a recurrent setting.

6 CONCLUSION
Exploiting the fact that human visual acuity rapidly decreases out-

side the fovea, we proposed the idea of foveated SR to reduce the

inference latency without noticeable visual quality degradation.

Toward this, we designed FOCAS that generates HR videos out of LR

ones by reconstructing the foveal region with more computational

resources, and paying less attention to the periphery. In this way,

FOCAS reduces the inference latency significantly while maintain-

ing similar visual quality. The unique technical challenge in FOCAS
is to find the right size and quality of the foveated regions. We

addressed this challenge by formulating and optimally solving a

convex optimization problem that determines feature depths and

region sizes of all regions. As proven by extensive experiments, non-

recurrent FOCAS achieves the same foveated visual quality while

saving about 70% latency. Meanwhile, recurrent FOCAS achieves

visual quality that is comparable to the baseline, while also attain-

ing a 50 − 70% latency reduction, 2 − 3× frame rate improvement,

and 12 − 16× bandwidth saving. Thus, FOCAS is a practical way to

employ foveated SR in real-time video streaming.

ACKNOWLEDGMENTS
We acknowledge the support from the U.S. National Science Foun-

dation (NSF) under grant numbers CNS-2102963, CAREER-2045641,

CNS-1763617, CNS-1901137.

REFERENCES
[1] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. 2018.

A rewriting system for convex optimization problems. Journal of Control and
Decision 5, 1 (2018), 42–60.

[2] Rachel Albert, Anjul Patney, David Luebke, and Joohwan Kim. 2017. Latency

Requirements for Foveated Rendering in Virtual Reality. ACM Trans. Appl. Percept.
14, 4, Article 25 (Sept. 2017), 13 pages. https://doi.org/10.1145/3127589

[3] Christine A. Curcio, Kenneth R. Sloan, Robert E. Kalina, and Anita E. Hen-

drickson. 1990. Human photoreceptor topography. Journal of Compara-
tive Neurology 292, 4 (1990), 497–523. https://doi.org/10.1002/cne.902920402

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cne.902920402

[4] Mallesham Dasari, Arani Bhattacharya, Santiago Vargas, Pranjal Sahu, Aruna

Balasubramanian, and Samir R. Das. 2020. Streaming 360-Degree Videos Using

Super-Resolution. In IEEE INFOCOM 2020 - IEEE Conference on Computer Com-
munications. 1977–1986. https://doi.org/10.1109/INFOCOM41043.2020.9155477

[5] Steven Diamond and Stephen Boyd. 2016. CVXPY: A Python-embedded modeling

language for convex optimization. Journal of Machine Learning Research 17, 83

(2016), 1–5.

[6] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2014. Learning a

Deep Convolutional Network for Image Super-Resolution. In Computer Vision –
ECCV 2014, David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (Eds.).

Springer International Publishing, Cham, 184–199.

[7] D. Fuoli, S. Gu, and R. Timofte. 2019. Efficient Video Super-Resolution through

Recurrent Latent Space Propagation. In 2019 IEEE/CVF International Conference
on Computer Vision Workshop (ICCVW). 3476–3485. https://doi.org/10.1109/

ICCVW.2019.00431

[8] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep Sparse Rectifier

Neural Networks. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics (Proceedings of Machine Learning Research,
Vol. 15), Geoffrey Gordon, David Dunson, and Miroslav Dudík (Eds.). JMLR

Workshop and Conference Proceedings, Fort Lauderdale, FL, USA, 315–323. http:

//proceedings.mlr.press/v15/glorot11a.html

[9] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and John Snyder. 2012.

Foveated 3D Graphics. ACM Trans. Graph. 31, 6, Article 164 (Nov. 2012), 10 pages.
https://doi.org/10.1145/2366145.2366183

[10] Muhammad Haris, Gregory Shakhnarovich, and Norimichi Ukita. 2018. Deep

Back-Projection Networks for Super-Resolution. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).

[11] Muhammad Haris, Gregory Shakhnarovich, and Norimichi Ukita. 2019. Recur-

rent Back-Projection Network for Video Super-Resolution. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[13] Gazi Karam Illahi, Thomas Van Gemert, Matti Siekkinen, Enrico Masala, Antti

Oulasvirta, and Antti Ylä-Jääski. 2020. Cloud Gaming with Foveated Video

Encoding. ACM Trans. Multimedia Comput. Commun. Appl. 16, 1, Article 7 (Feb.
2020), 24 pages. https://doi.org/10.1145/3369110

[14] Takashi Isobe, Fang Zhu, Xu Jia, and Shengjin Wang. 2020. Revisiting Temporal

Modeling for Video Super-resolution. arXiv:2008.05765 [eess.IV]

[15] Younghyun Jo, Seoung Wug Oh, Jaeyeon Kang, and Seon Joo Kim. 2018. Deep

Video Super-Resolution Network Using Dynamic Upsampling Filters Without

Explicit Motion Compensation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[16] Anton S. Kaplanyan, Anton Sochenov, Thomas Leimkühler, Mikhail Okunev,

Todd Goodall, and Gizem Rufo. 2019. DeepFovea: Neural Reconstruction for

Foveated Rendering and Video Compression Using Learned Statistics of Natural

Videos. ACM Trans. Graph. 38, 6, Article 212 (Nov. 2019), 13 pages. https:

//doi.org/10.1145/3355089.3356557

[17] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. 2016. Accurate Image Super-

Resolution Using Very Deep Convolutional Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[18] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Opti-

mization. arXiv:1412.6980 [cs.LG]

[19] Royson Lee, Stylianos I. Venieris, and Nicholas D. Lane. 2020. Neural Enhance-

ment in Content Delivery Systems: The State-of-the-Art and Future Directions

(DistributedML’20). Association for Computing Machinery, New York, NY, USA,

34–41. https://doi.org/10.1145/3426745.3431336

[20] Wei-Tse Lee, Hsin-I Chen, Ming-Shiuan Chen, I-Chao Shen, and Bing-Yu Chen.

2017. High-resolution 360 Video Foveated Stitching for Real-time VR. Computer
Graphics Forum 36, 7 (2017), 115–123. https://doi.org/10.1111/cgf.13277

[21] Zhicheng Li, Shiyin Qin, and Laurent Itti. 2011. Visual attention guided bit

allocation in video compression. Image and Vision Computing 29, 1 (2011), 1–14.

https://doi.org/10.1016/j.imavis.2010.07.001

[22] Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lianping Yang, Shuzhen Wang,

Kaihao Zhang, Xiaochun Cao, and Haifeng Shen. 2020. Single Image Super-

Resolution via a Holistic Attention Network. In Computer Vision – ECCV 2020,

Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.).

Springer International Publishing, Cham, 191–207.

[23] Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir

Benty, David Luebke, and Aaron Lefohn. 2016. Towards Foveated Rendering for

Gaze-Tracked Virtual Reality. ACM Trans. Graph. 35, 6, Article 179 (Nov. 2016),
12 pages. https://doi.org/10.1145/2980179.2980246

[24] Miguel Fabian Romero-Rondón, Lucile Sassatelli, Frédéric Precioso, and Ramon

Aparicio-Pardo. 2018. Foveated Streaming of Virtual Reality Videos. In Proceedings
of the 9th ACMMultimedia Systems Conference (Amsterdam, Netherlands) (MMSys
’18). Association for Computing Machinery, New York, NY, USA, 494–497. https:

//doi.org/10.1145/3204949.3208114

[25] Jihoon Ryoo, Kiwon Yun, Dimitris Samaras, Samir R. Das, and Gregory Zelinsky.

2016. Design and Evaluation of a Foveated Video Streaming Service for Com-

modity Client Devices (MMSys ’16). Association for Computing Machinery, New

York, NY, USA, Article 6, 11 pages. https://doi.org/10.1145/2910017.2910592

[26] Mehdi S. M. Sajjadi, Raviteja Vemulapalli, and Matthew Brown. 2018. Frame-

Recurrent Video Super-Resolution. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[27] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P. Aitken,

Rob Bishop, Daniel Rueckert, and Zehan Wang. 2016. Real-Time Single Image

and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural

Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[28] W. Sun and Z. Chen. 2020. Learned Image Downscaling for Upscaling Using

Content Adaptive Resampler. IEEE Transactions on Image Processing 29 (2020),

4027–4040. https://doi.org/10.1109/TIP.2020.2970248

[29] Toinon Vigier, Josselin Rousseau, Matthieu Perreira Da Silva, and Patrick Le Callet.

2016. A New HD and UHD Video Eye Tracking Dataset. In Proceedings of the 7th
International Conference on Multimedia Systems (Klagenfurt, Austria) (MMSys ’16).
Association for Computing Machinery, New York, NY, USA, Article 48, 6 pages.

https://doi.org/10.1145/2910017.2910622

[30] Xintao Wang, Kelvin C.K. Chan, Ke Yu, Chao Dong, and Chen Change Loy.

2019. EDVR: Video Restoration With Enhanced Deformable Convolutional

Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops.

[31] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. 2019.

Video Enhancement with Task-Oriented Flow. International Journal of Computer
Vision (IJCV) 127, 8 (2019), 1106–1125.

[32] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo Shin, and Dongsu Han.

2018. Neural Adaptive Content-aware Internet Video Delivery. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). USENIX
Association, Carlsbad, CA, 645–661. https://www.usenix.org/conference/osdi18/

presentation/yeo

[33] Peng Yi, Zhongyuan Wang, Kui Jiang, Junjun Jiang, and Jiayi Ma. 2019. Progres-

sive Fusion Video Super-Resolution Network via Exploiting Non-Local Spatio-

Temporal Correlations. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV).

[34] Anlan Zhang, Chendong Wang, Bo Han, and Feng Qian. 2021. Efficient Volu-

metric Video Streaming Through Super Resolution. In Proceedings of the 22nd
International Workshop on Mobile Computing Systems and Applications (Virtual,
United Kingdom) (HotMobile ’21). Association for Computing Machinery, New

York, NY, USA, 106–111. https://doi.org/10.1145/3446382.3448663

https://doi.org/10.1145/3127589
https://doi.org/10.1002/cne.902920402
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cne.902920402
https://doi.org/10.1109/INFOCOM41043.2020.9155477
https://doi.org/10.1109/ICCVW.2019.00431
https://doi.org/10.1109/ICCVW.2019.00431
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
https://doi.org/10.1145/2366145.2366183
https://doi.org/10.1145/3369110
https://arxiv.org/abs/2008.05765
https://doi.org/10.1145/3355089.3356557
https://doi.org/10.1145/3355089.3356557
https://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3426745.3431336
https://doi.org/10.1111/cgf.13277
https://doi.org/10.1016/j.imavis.2010.07.001
https://doi.org/10.1145/2980179.2980246
https://doi.org/10.1145/3204949.3208114
https://doi.org/10.1145/3204949.3208114
https://doi.org/10.1145/2910017.2910592
https://doi.org/10.1109/TIP.2020.2970248
https://doi.org/10.1145/2910017.2910622
https://www.usenix.org/conference/osdi18/presentation/yeo
https://www.usenix.org/conference/osdi18/presentation/yeo
https://doi.org/10.1145/3446382.3448663

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Foveated Rendering
	2.2 Super Resolution

	3 FOCAS System Design
	3.1 Model Structure
	3.2 Inference Phase
	3.3 Training Phase

	4 Optimum Quality Allocation
	4.1 Problem Modeling and Formulation
	4.2 Solving the Optimization Problem

	5 Experimental Results
	5.1 Overview and Setup
	5.2 Results

	6 Conclusion
	Acknowledgments
	References

