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Abstract. In this paper we study the ability of array-based networks to tolerate worst-case
faults. We show that an N × N two-dimensional array can sustain N1−ε worst-case faults, for
any fixed ε > 0, and still emulate T steps of a fully functioning N × N array in O(T + N) steps,
i.e., with only constant slowdown. Previously, it was known only that an array could tolerate a
constant number of faults with constant slowdown. We also show that if faulty nodes are allowed to
communicate, but not compute, then an N -node one-dimensional array can tolerate logk N worst-
case faults, for any constant k > 0, and still emulate a fault-free array with constant slowdown, and
this bound is tight.
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1. Introduction. In a truly large parallel computer, some components are bound
to fail. Knowing this, a programmer can write software that explicitly copes with
faults in the computer. But building fault tolerance into every piece of software is
cumbersome. The programmer would prefer to program a fault-free virtual computer
and leave the job of coping with faults to the hardware. Ideally, the emulation of the
fault-free computer should entail little slowdown, even if there are many faults in the
actual hardware.

The emulation of the fault-free computer consists of two tasks. The faulty com-
puter must emulate the computations performed by the processors of the fault-free
computer, and it must emulate the communications between those processors. Emu-
lating the computations does not incur much slowdown. The computation performed
by each faulty processor is simply mapped to a fault-free processor. But once the
computations are moved around, processors that are neighbors in the fault-free com-
puter may no longer be neighbors in the faulty computer. Thus, there is a risk that
the communications will be slowed down. The solution to this problem depends on
the communication topology of the computer.

One of the most popular ways to construct a parallel computer is to arrange the
processors as a two-dimensional or three-dimensional array. Commercial machines
including the Cray T3D [10] and MasPar MP-1 [3] have this topology, as do exper-
imental machines such as iWarp [4] and the J-Machine [18]. In this paper we study
the ability of machines like these to tolerate faults. We show, for example, that an
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Fig. 1. A 4× 4 mesh.

N ×N two-dimensional array can sustain N1−ε worst-case faults, for any fixed ε > 0,
and still emulate a fault-free N ×N array with constant slowdown.

1.1. Arrays and the fault model. A d-dimensional array with side length
N consists of Nd nodes, each labeled with a distinct d-tuple (r1, r2, . . . , rd), where
1 ≤ ri ≤ N for 1 ≤ i ≤ d. Two nodes are connected by a pair of oppositely directed
edges if their labels differ by 1 in precisely one coordinate. For example, in a four-
dimensional array with side length 8, nodes (3, 2, 4, 8) and (3, 2, 3, 8) are neighbors,
but (3, 2, 4, 8) and (3, 2, 3, 7) are not. A two-dimensional array is also called a mesh.
A 4 × 4 mesh is shown in Figure 1. For each i, the mesh nodes labeled (i, j), where
1 ≤ j ≤ N , are said to belong to the ith row. For each j, the mesh nodes labeled (i, j),
where 1 ≤ i ≤ N , are said to belong to the jth column. Sometimes two nodes are
considered to be neighbors if they differ in precisely one coordinate and their values
in that coordinate are 1 and N . In this case we say that the array has wraparound
edges. A two-dimensional array with wraparound edges is also called a torus. All of
the results in this paper hold whether or not the array has wraparound edges.

The nodes in an array represent processors and the edges represent communication
links. We assume that the array operates in a synchronous fashion. At each time step,
each node can receive a message from each of its neighbors, perform a simple local
computation, and then send a message to each of its neighbors.

In this paper we assume that only nodes fail, that these failures are static, and
that their locations are known. We also assume that the faults appear in a worst-case
pattern, i.e., that an adversary decides where to put the faults in the network. We
allow information about the locations of the faults to be used in reconfiguring the
network. We assume that a faulty node can neither compute nor communicate. All
of our results can be extended to handle edge failures by viewing an edge failure as
the failure of one of the nodes incident on the edge. In section 4, we use a weaker
fault model for one-dimensional arrays by allowing faulty nodes to communicate but
not compute. We observe that even in this weaker fault model linear arrays cannot
tolerate as many worst-case faults as two-dimensional arrays. In another paper, we
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RECONFIGURING ARRAYS WITH FAULTS PART I 1583

consider random fault patterns. In the case of random faults, we assume that each
node fails independently with some fixed probability p.

1.2. Embeddings. The simplest way to show that a network with faults, H,
can emulate a fault-free network, G, is to find an embedding of G into H. We call
H the host network and G the guest network. An embedding maps nodes of G to
nonfaulty nodes of H, and edges of G to nonfaulty paths in H. The three important
measures of an embedding are its load, congestion, and dilation. The load of an
embedding is the maximum number of nodes of G that are mapped to any node of
H. The congestion of an embedding is the maximum number of paths that use any
edge of H. The dilation is the maximum length of any path. Given an embedding
of G into H, H can emulate each step of the computation of G by routing a packet
for each edge of G along the corresponding path in H. Leighton, Maggs, and Rao
[11] showed that if the embedding has load l, congestion c, and dilation d, then the
packets can be routed so that the slowdown of the emulation is O(l + c+ d).

In order for an embedding-based emulation scheme to have constant slowdown, the
load, congestion, and dilation of the embedding must all be constant. Unfortunately,
by placing f(N) faults in an N -node two- or three-dimensional array H, where f(N)
is any function that is ω(1), it is possible to force either the load, congestion, or
dilation of every embedding of an array G of the same size and dimension to be larger
than a constant [7, 8, 12]. Similarly, if Θ(N) faults are placed in H at random, then
with high probability every embedding of G in H will have ω(1) load, congestion, or
dilation. Thus, in order to tolerate more than a constant number of worst-case faults
or constant-probability failures, a more sophisticated emulation technique is required.

1.3. Redundant computation. All of the emulations in this paper use a tech-
nique called redundant computation. The basic idea is to allow H to emulate each
node of G in more than one place. This extra freedom makes it possible to tolerate
more faults, but it adds the complication of ensuring that different emulations of the
same node of G remain consistent over time. The technique of redundant computation
was previously used to tolerate faults in hypercubic networks [13], and to construct
work-preserving emulations in fault-free networks [6, 9, 15, 16, 17, 21].

1.4. Previous work. A large number of researchers have studied the ability of
arrays and other networks to tolerate faults. The most relevant papers are described
below.

Raghavan [20] devised a randomized algorithm for solving one-to-one routing
problems on N ×N meshes. He showed that even if each node fails with some fixed
probability p ≤ .29, then for almost all random fault patterns, any packet that can
reach its destination does so in O(N logN) steps, with high probability. Mathies [14]
improved the p ≤ .29 bound to p ≈ .4.

Kaklamanis et al. [8] improved Raghavan’s result by devising a deterministic
routing algorithm. For almost all random fault patterns, the algorithm guarantees
that any packet that can reach its destination does so within O(N) steps. This
algorithm can also tolerate worst-case faults. If there are k faults in the network, it
runs in time O(N + k2). Kaklamanis et al. also showed that an N × N mesh with
constant-probability failures or Θ(N) worst-case faults can sort or route N2 items,
or multiply two N × N matrices in O(N) time. They also showed that, with high
probability, an N × N mesh with constant-probability failures can emulate a fault-
free N

√
logN × N

√
logN mesh with O(logN) slowdown. (Throughout this paper

the base of the function log is 2.)
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1584 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

Aumann and Ben-Or [2] used Rabin’s information dispersal technique [19] to show
that an N ×N mesh H with slack s, s = Ω(logN log logN), can emulate a fault-free
N × N mesh G with slack s with constant slowdown, even if every node or edge in
H fails with some fixed probability p > 0 at some point during the emulation. (In a
slack s computation, each node v in G emulates s virtual nodes. In each superstep, v
emulates one step of each virtual node, and each virtual node can transmit a message
to one of v’s four neighbors.) Aumann and Ben-Or assumed that in a single step, an
edge in H can transmit a message that is logN times as large as the largest message
that can be transmitted in a single step by G.

Bruck, Cypher, and Ho [5] showed that by adding some spare nodes and edges to
a mesh, it is possible for the mesh to sustain many faults and still contain a working
fault-free N×N mesh as a subgraph. In particular, they showed that by adding O(k3)
spare nodes, it is possible to tolerate k worst-case faults, and by adding k spare nodes,
for k = O(N2/3), it is possible to tolerate k random faults, with high probability. In
both cases, the networks have bounded degree. Tamaki [24] showed how to construct
an O(N)-node network with degree O(log logN) with the property that, for any d ≥ 2,
even if every node fails with constant probability, with high probability the network
contains a fault-free N -node d-dimensional array as a subgraph. He also showed how

to construct a bounded-degree network with the property that even if N (1−2−d)/d

worst-case faults are placed in the network, the network is guaranteed to contain an
N -node d-dimensional array as a subgraph. Ajtai et al. [1] analyzed the technique of
adding spare nodes to larger classes of networks that include meshes. In all of these
constructions the very large scale integration (VLSI) layout area requirements of the
networks with spare nodes and edges are much larger than those of the arrays that
they contain as subgraphs.

Leighton, Maggs, and Sitaraman [13] showed that an N -node butterfly can tol-
erate N1−ε worst-case faults, for any fixed ε > 0, and still emulate a fault-free N -
node butterfly with constant slowdown. They proved the same result for the shuffle-
exchange network. They also showed that, for any constant k > 0, an N -node mesh
of trees can tolerate logkN worst-case faults and still emulate a fault-free mesh of
trees with constant slowdown. Finally, they showed that, with high probability, an N -
node butterfly (or shuffle-exchange network) can tolerate constant-probability failures
with slowdown 2O(log∗N). Tamaki independently showed that, with high probability,
an N -node butterfly can be embedded in an N -node butterfly containing constant-
probability node failures with load O(1), congestion O((log logN)8.2), and dilation
O((log logN)2.6) [22]. In [23], he proved a similar result for a class of networks called
cube-connected arrays.

1.5. Our results. In section 2 we show that an N×N array can tolerate logkN
worst-case faults, for any constant k > 0, and still emulate T steps of a fault-free array
in O(T +N) steps, i.e., with constant slowdown. Previously it was only known that
a constant number of worst-case faults could be tolerated with constant slowdown.
Section 2 introduces most of the terminology that is used throughout this paper.

In section 3 we present a method called multiscale emulation for tolerating N1−ε

worst-case faults on an N × N mesh with constant slowdown, for any fixed ε > 0.
This result nearly matches the O(N) upper bound on the number of worst-case faults
that can be tolerated with constant slowdown.

In section 4 we show that if faulty nodes are allowed to communicate but not com-
pute, then an N -node one-dimensional array can tolerate logkN worst-case faults, for
any constant k > 0, and still emulate a fault-free N -node linear array only with
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RECONFIGURING ARRAYS WITH FAULTS PART I 1585

K

K

CORE

SKIRT

Fig. 2. A finished box.

constant slowdown. We also show that an N -node linear array cannot tolerate more
than logkN worst-case faults without suffering more than constant slowdown, pro-
vided that the emulation is static. In a static emulation, each host node a emulates
a fixed set ψ(a) of guest nodes. Redundant computation is allowed; a guest node u
may belong to ψ(a) and ψ(b) for distinct host nodes a and b. In this case we say
that there are multiple instances of the guest node u. For each guest time step, host
node a emulates the computation performed by each node u in ψ(a). Furthermore,
for every guest edge e = (v, u) into u, for each instance u′ of u in the host, there is a
corresponding instance v′ of v at some host node such that for each guest time step
the same instance v′ sends a packet for the edge e to u′. (Note that v′ may also send
packets to other instances of u.) The emulations that use redundant computation in
this paper and in [6, 9, 13, 21] are all static.

2. A simple method for tolerating worst-case faults on the mesh. In
this section, we show that, for any constant k > 0, an N × N mesh with logkN
worst-case faults can emulate any computation of an N ×N fault-free mesh with only
constant slowdown. The procedure for reconfiguring the computation around faults
consists of two steps. The first is a process by which the faults are enclosed within
square regions of the mesh called boxes. We call this step the growth process. We
describe this process in section 2.1. The next is an emulation technique that maps the
computation of the fault-free mesh (the guest) to nodes in the faulty mesh (the host).
The boxes grown in the first step determine how the mapping of the computation is
done. This process is described in section 2.2. For simplicity, we assume that the
mesh has wraparound edges. This assumption can be easily done away with at the
cost of considering some special cases for faults near the border of the mesh.

2.1. The growth process. The growth process grows boxes on the faulty mesh,
i.e., the host. There are two types of boxes. The first type is called a core. A core
has too many faults in it to perform any role in the emulation. The second type is
a finished box . A finished box can emulate a submesh of the same side length with
constant slowdown. (The side length of a box or submesh is the number of nodes on
each side, i.e., a box or submesh with side length k has k2 nodes.) A finished box of
side length 3k consists of a core of side length k surrounded by a skirt , which contains
no faults, of width k as shown in Figure 2. (Like side length, width is measured in
nodes.)

At every stage of the growth process, the algorithm maintains a set of boxes, some
of which are cores while others are finished boxes. At the beginning of the growth
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1586 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

process, every fault is enclosed in a box with unit side length that is a core. In every
stage of the growth process, we pick a core—say, of side length k—and grow a skirt of
width k around it. If the core or the skirt intersects some other core, we merge the two
cores to form a new core whose boundary is the smallest square that contains both
cores. If the core or the skirt intersects a finished box, we find the smallest square box
that contains both the core and the core of the finished box and turn this bounding
box into a core. We also remove the finished box from the list of finished boxes. If the
skirt does not intersect any other boxes, the newly created box is labeled a finished
box. We continue applying these rules until either some core grows to be too large
to grow a skirt around it or no core remains and no two finished boxes intersect. For
the former outcome, some core must have side length greater than N/3. (Recall that
the mesh has wraparound edges.) In Lemma 2.1 we show that this cannot happen if
there are fewer than (logN)/2 faults.

Our rules for growing cores assign each fault to a unique core. Initially, every
fault is assigned to the unit-sized core enclosing it. Inductively, when two or more
cores are merged to form a new core, every fault assigned to the old cores is now
assigned to the new core. A core is said to contain all the faults assigned to it. Note
that if two cores overlap, it is possible for a fault to be geometrically located inside
of a core and yet not be contained by that core.

Lemma 2.1. If the number of faults is less than (logN)/2, then the growth process
terminates with nonoverlapping finished boxes.

Proof. Let F (k) denote the minimum number of faults that a core of side length
k must contain. We show by induction that F (k) ≥ (log k)/2 + 1. As the base case,
F (1) = 1, which satisfies the hypothesis. Assume that we have a core of side length
k > 1. This core must have been created by merging two cores according to one of
the two merging rules stated previously. Let x and y denote the side lengths of these
two cores. In both cases, x+ y ≥ bk/2c+ 1. Using the inductive hypothesis, we have

F (k) ≥ F (x) + F (y)

≥ (log x)/2 + 1 + (log y)/2 + 1.

The values of x and y that minimize the right-hand side of this inequality are x =
bk/2c and y = 1. Substituting these values, we have

F (k) ≥ (log bk/2c)/2 + 2

≥ (log k)/2 + 1.(1)

This proves our inductive hypothesis.
Now suppose that there is a core of side length greater than N/3. Then it must

contain at least F (bN/3c+1) faults, which is more than (logN)/2, which is a contra-
diction. Therefore, the growth process must terminate with a set of nonintersecting
finished boxes.

2.2. The emulation. In this section, we show that if the growth process termi-
nates with a set of nonintersecting finished boxes, then the host H can emulate the
guest G with constant slowdown.

The emulation of G by H is described as a pebbling process. There are two kinds
of pebbles. With every node v of G and every time step t, we associate a state pebble
(s-pebble), 〈v, t〉, which contains the entire state of the computation performed at
node v at time t. With each directed edge e in G and every time step t, we associate
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RECONFIGURING ARRAYS WITH FAULTS PART I 1587

a communication pebble (c-pebble), [e, t], which contains the message transmitted
along edge e at time step t.

The host H will emulate each step t of G by creating at least one s-pebble 〈v, t〉
for each node v of G and a c-pebble [e, t] for each edge e of G. A node of H can create
an s-pebble 〈v, t〉 only if it contains s-pebble 〈v, t−1〉 and all of the c-pebbles [e, t−1],
where e is an edge into v. The creation of an s-pebble takes unit time. A node of H
can create a c-pebble [g, t] for an edge g out of v only if it contains an s-pebble 〈v, t〉.
The creation of a c-pebble also takes unit time. Finally, a node of H can transmit a
c-pebble to a neighboring node in H in unit time. A node of H is not permitted to
transmit an s-pebble since an s-pebble may contain a lot of information. All of our
emulations are static, i.e., each node of H emulates a fixed set of nodes of G, and for
each guest edge e = (v, u) and each instance of u, there is a corresponding instance of
v such that for each guest time step, the host node creating s-pebbles for that instance
of v sends a c-pebble [e, t] to the host node creating s-pebbles for u. Initially, each
node of H contains an s-pebble 〈v, 0〉 for each node v of G that is mapped to it.

Using the growth process of the previous section, we grow a collection of nonin-
tersecting finished boxes on the faulty mesh H. If the faulty mesh H has fewer than
(logN)/2 faults, then the growth process will terminate with a set of nonintersecting
finished boxes. Every node of H that does not belong to any of the finished boxes
will emulate the computation of the corresponding node of G. Every finished box of
H will be responsible for emulating the corresponding submesh of G. However, since
some of the nodes inside the core of a finished box are faulty, we must make sure that
no computation is mapped to them. In fact, there will be no computation mapped
to any node inside a core. All the computations will be mapped to the skirt of the
finished box, which is completely fault free. Since we would like each finished box to
do its share of the emulation with constant slowdown, we need to avoid long commu-
nication delays caused by the fact that the core is unusable. As we shall see, we can
hide the latency involved in sending c-pebbles long distances across the mesh using
a technique called redundant computation. In an emulation that performs redundant
computation, some nodes of G are emulated by more than one node in H.

The computation of G corresponding to a finished box is mapped with replication
to the skirt of that finished box as follows (see Figure 3). Suppose that the core has
side length k and the finished box has side length 3k. We begin by dividing the
submesh of G corresponding to a finished box into two regions, the patch and the
outerskirt. The patch is a square region of side length 2k whose center is also the
center of the finished box. The outerskirt consists of the entire submesh of G with a
square of side length k removed from its center. As shown in Figure 3, the patch and
the host overlap in an annular region of width k. The patch and the outerskirt are
mapped to the finished box as follows. The outerskirt is the same size and shape as the
skirt of the finished box; every node in the outerskirt is mapped to its corresponding
node in the skirt. The patch, which is a square of side length 2k, is mapped to a
square of side length k/2 called the patch region shown in Figure 3; the patch region
is contained within the skirt of the finished box. This is done in the simplest manner
by mapping squares of side length 4 of the patch to one node of the square in the
finished box.

We now observe some properties of the mapping. A ring is a set of nodes that
form the four sides of a square. The nodes in the finished box to which the border of
the patch and the inner border of the outerskirt are mapped form rings in the finished
box. We call these rings the border rings, or b-rings for short. The nodes on the
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1588 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

3k 2k k 

outerskirt

patch

overlapping region
core

i-rings

patch region

b-rings

Fig. 3. Mapping the computation inside a finished box. A finished box in H is shown on the
right and the corresponding submesh in G is shown on the left.

border of the patch have duplicates in the interior of the outerskirt. Similarly, the
nodes on the inner border of the outerskirt have duplicates in the interior of the patch.
These duplicate nodes in the interior of the patch and the interior of the outerskirt
are also mapped to rings in the finished box. We call these rings the interior rings,
or i-rings for short.

In order for a node m in H to create an s-pebble for a node v in G, it must receive
c-pebbles for each of the edges into v in G. If v is in the interior of the patch or the
outerskirt, then the s-pebbles for the neighbors of v are created either by m or by the
neighbors of m. In this case the required c-pebbles can be obtained in constant time.
The s-pebbles for the neighbors of a node v on the border of the patch or outerskirt,
however, may not be created near m in H. In our emulation, every node v on the
border receives the c-pebbles for all of its incoming edges from its duplicate v′ that
is mapped to a node m′ on one of the i-rings in the finished box. These c-pebbles
are first created by the four neighbors of v′, then sent to m′ (in constant time), then
forwarded on to m along a path that we call a communication path. Thus, for each
node m′ on an i-ring, we will need to route a communication path to its duplicate
m on a b-ring. Note that these paths are determined off-line, before the start of the
emulation. The skirt, which is fault free, can be used as a crossbar to route the paths
with dilation O(k) and constant congestion. For the sake of brevity, the details are
omitted.

We now describe the actual emulation. Each node m of H executes the following
algorithm which proceeds as a sequence of macrosteps. Each macrostep consists of
the following three substeps.

(1) Computation step: For each node v of G that has been assigned to m, m
creates a new s-pebble 〈v, t〉, provided that m has already created 〈v, t − 1〉
and has received c-pebbles [e, t− 1] for every edge e into v.

(2) Communication step: For every node v such that s-pebble 〈v, t〉 was created
by m in the computation step of the current macrostep, and for every edge e
out of v, node m creates c-pebble [e, t]. If [e, t] is needed by a neighbor m′ of
m, then m sends [e, t] to m′.

(3) Routing step: If m lies on an i-ring, then m makes copies of any c-pebbles
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RECONFIGURING ARRAYS WITH FAULTS PART I 1589

that were sent to m during the communication step of the current macrostep.
Then (whether or not m lies on an i-ring), for every c-pebble [e, t] at m
that has not yet reached its destination, m forwards it one step along its
communication path.

Lemma 2.2. A macrostep takes a constant number of time steps.

Proof. At each node of H, there are at most 17 s-pebbles to be updated in the
computation step and hence this step takes constant time. Each s-pebble update can
cause at most 4 c-pebbles (the outdegree of the node in G) to be sent. Thus the
communication step takes only constant time. If the s-pebble is on the i-ring, it must
send four additional c-pebbles to its duplicate on the b-ring. Since the paths used
for routing have constant congestion and since a c-pebble in transit to its destination
moves in every macrostep, there are at most a constant number of c-pebbles resident
in a node at any time step that have not yet reached their destinations. Therefore,
the routing step also takes constant time.

Theorem 2.3. Any computation on a fault-free mesh G that takes time T can be
emulated by the faulty mesh H with less than (logN)/2 worst-case faults in O(T +N)
time steps.

Proof. From Lemma 2.1, we know that since the number of worst-case faults in
H is less than (logN)/2, the growth process terminates with a set of nonintersecting
finished boxes. The computation of G is mapped inside each of these finished boxes
as described earlier in this section, and each node m of H performs the emulation
algorithm. We will show that only O(T + N) macrosteps are required to emulate a
T -step computation of G. The theorem will then follow from Lemma 2.2.

The dependency tree of an s-pebble represents the functional dependency of this
s-pebble on other s-pebbles and can be defined recursively as follows. As the base
case, if t = 0, the dependency tree of 〈v, t〉 is a single node, 〈v, 0〉. If t > 0, the
creation of s-pebble 〈v, t〉 requires an s-pebble 〈v, t−1〉 and all c-pebbles [e, t−1] such
that e is an incoming edge of node v in G. These c-pebbles are sent by some other
s-pebbles 〈u, t− 1〉, where u is a neighbor of v in G. The dependency tree of 〈v, t〉 is
defined recursively as follows. The root of the tree is 〈v, t〉. The subtrees of this tree
are the dependency trees of 〈v, t − 1〉 and 〈u, t − 1〉, for all s-pebbles 〈u, t − 1〉 that
send c-pebbles to 〈v, t〉.

We now look at the dependency tree of the s-pebble that was created last. Let
the emulation of T steps of G take T ′ time (in macrosteps) on H. Let 〈v, T 〉 be
an s-pebble that was updated in the last macrostep. For every tree node s, we can
associate a time (in macrosteps) τ(s) when that s-pebble was created. We choose a
critical path, sT , sT−1, . . . , s0, of tree nodes from the root to the leaves of the tree as
follows. Let sT = 〈v, T 〉 be the root of the tree. sT requires the s-pebble 〈v, T−1〉 and
c-pebbles [e, T −1]. Let φ be the function that maps an s-pebble, 〈v, t〉 to the node in
H that contains it. If the s-pebble 〈v, T − 1〉 was created after all the c-pebbles were
received then choose sT−1 to be 〈v, T − 1〉. Otherwise, choose the s-pebble that sent
the c-pebble that arrived last at node φ(〈v, T 〉) to be sT−1. After choosing sT−1, we
choose the rest of the sequence recursively in the subtree with sT−1 as the root. We
define a quantity li as follows. If φ(si) and φ(si−1) are the same node or neighbors in
H, then li = 1. Otherwise, li is the length of the path by which a c-pebble generated
by si−1 is sent to si. From the definition of our critical path, τ(si) − τ(si−1) equals
li. This is because a c-pebble moves once along its communication path in every
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1590 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

macrostep. Therefore

T ′ =
∑

0<i≤T
(τ(si)− τ(si−1)) =

∑
0<i≤T

li.

Now suppose that some li is greater than 1. Then φ(si) must lie on the b-ring of
a finished box, and some c-pebble must have taken a communication path of length li
from a node m on an i-ring of the same finished box. In this case either φ(si−1) = m
or φ(si−1) is a neighbor of m. The key observation is that since φ(si−1) is either on
or next to an i-ring, in going down the critical path from si−1 to s0 we can encounter
no more communication paths until we reach an s-pebble embedded in the b-ring;
i.e., the values of li−1, li−2, . . . , lmax{i−q,1} are all equal to 1 for some q = Θ(li). As
li = O(N), for all i, T ′ =

∑
i li = O(T +N).

It is possible to apply the construction described in this section recursively to
show that, for any constant k > 0, an N × N mesh can sustain logkN worst-case
faults and still emulate a fault-free mesh with slowdown. Because a stronger result is
proven in section 3, the proof is omitted.

Theorem 2.4. For any constant k > 0, an N ×N mesh with logkN worst-case
faults can emulate T steps of the computation of a fault-free N×N mesh in O(T +N)
steps with constant slowdown.

The construction described in this section assumes that large buffers are available
at each node in the host to hold c-pebbles that reach their destinations early. Early
arrivals can be prevented by slowing down the computation of some nodes and by
finding communication paths with the property that all paths within a given finished
box have the same length.

3. Multiscale emulation. In this section, we show that an N × N mesh, H,
with any set of N1−ε faults, for any fixed ε > 0, can emulate any computation of a
fault-free N ×N mesh, G, with constant slowdown.

The major difference between the emulation scheme in this section and that in
section 2 is that in this section we allow a finished box to contain smaller finished
boxes. In emulating the region of the guest mesh assigned to it, a finished box will in
turn assign portions of this computation to each of the smaller boxes that it contains.
These smaller boxes might in turn contain even smaller boxes and hence the term
multiscale emulation.

For simplicity, we assume that the mesh has wraparound edges. This assumption
can be easily done away with at the cost of considering some special cases for faults
near the border of the mesh.

3.1. The growth process. In this section, we show how to grow boxes on the
faulty mesh H. There are two types of boxes: cores and finished boxes. A core is
not capable of performing any portion of the emulation. A finished box consists of a
core surrounded by a skirt. An (α-β)-ensemble is a collection of possibly intersecting
finished boxes. Every finished box B in an (α-β)-ensemble has a distinct round
number. The intersecting region of a finished box B in the ensemble is defined to be
the region formed by nodes that lie both in the skirt of B and in some other finished
box with a smaller round number than B. The boxes in an (α-β)-ensemble satisfy
the following properties.

(1) Every fault in the mesh H is contained in and assigned to the core of some
finished box in the ensemble.

(2) If the core of a finished box has side length k, then the width of the skirt of
the finished box is bαkc.
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RECONFIGURING ARRAYS WITH FAULTS PART I 1591

(3) The sum of the side lengths of the finished boxes in the intersecting region of
every finished box B is at most β times the width of the skirt of B.

The growth process produces an (α-β)-ensemble of boxes, where 0 < α, β < 1. It
proceeds in rounds until there are no more cores left. Initially, every fault is enclosed
in a core with side length d1/αe. Each round produces either a new core or a new
finished box. Each new finished box is numbered with the round in which it was
created. At the beginning of each round, a core of the smallest side length (say, k) is
selected and a skirt of width bαkc is grown around it to form a box (call this box B).
If k+2bαkc > N , then the side length of B will have to be larger than the size of the
mesh itself and this is not possible. If this condition arises the growth process halts
and is said to have failed. If this condition does not arise then one of the following
steps is executed after which the growth process proceeds to the next round.

Expand Step. If the sum of the side lengths of the finished boxes in the intersecting
region of B is more than β times the width of the skirt of B (i.e., βbαkc), then we
find the smallest bounding box that contains the core of B as well as the cores of all
the finished boxes that intersect the skirt or core of B and turn this box into a new
core. The finished boxes whose cores were included in this new core cease to exist,
and their faults are assigned to the new core.

Create Step. Otherwise, if the sum of the side lengths of the finished boxes in the
intersecting region of B is at most βbαkc, then we declare box B to be a finished box.

Note that in the expand step the intersecting region of B is computed using the
collection of finished boxes that exist during that round.

Lemma 3.1. The growth process produces an (α-β)-ensemble of finished boxes,
provided that it does not fail.

Proof. We must show that all three of the properties of an (α-β)-ensemble are
satisfied when the growth process does not fail. The growth process must terminate
since at each round either the expand step increases the side length of a core without
changing the number of cores, or the create step decreases the total number of cores
by one. Property 1 is satisfied initially and since the expand step forms a new core
by enclosing a group of old cores, by induction this property will hold after every
round. Property 2 is satisfied by construction. Finally, when a finished box B is
created in the create step, the sum of the side lengths of the finished boxes in the
intersecting region of B is at most β times the width of the skirt of B. New finished
boxes created in later rounds do not affect this intersecting region since they all have
greater round numbers than B. Some of the finished boxes with round numbers less
than B may cease to exist due to the application of the expand step in some later
rounds. However, this can only decrease the sum of the side lengths of the finished
boxes in the intersecting region of B. Thus, Property 3 will be true for all of the
finished boxes when the growth process terminates.

Theorem 3.2. For any fixed constants β and ε, where 0 < β < 1 and 0 < ε < 1,
there is a constant α, where 0 < α < 1, such that for sufficiently large N , for any set
of N1−ε faults in H the growth process grows an (α-β)-ensemble of finished boxes.

Proof. We must show that for any fixed ε and β there is a constant α such that
the growth process never fails, i.e., no core of side length more than N/(2α + 1) is
ever created. Then, by using Lemma 3.1, we can infer the theorem.

The key idea is to prove a lower bound, F (k), on the number of faults that any
core of side length k must contain. Let δ = ε/2. We show by induction on k that
F (k) ≥ Ak1−δ, for some constant A. In order to satisfy the basis of the induction, we
will choose A to be small enough that F (k) ≥ Ak1−δ for small values of k. Inductively,
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1592 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

suppose that a new core of side length k is formed in some round. Let x be the side
length of the core selected in this round and let y1, y2, . . . , ym be the side lengths of
the other cores that were enclosed to form the new core. Since the new core contains
these cores, we have k > x and k > yi, for 1 ≤ i ≤ m. Since the number of faults in
the new core is at least as large as the number of faults in the cores used to form it,
using the inductive hypothesis we have

F (k) ≥ F (x) + F (y1) + · · ·+ F (ym)

≥ Ax1−δ +Ay1−δ
1 + · · ·+Ay1−δ

m .(2)

Let y1 and y2 be the side lengths of the two largest cores. If a new core was formed,
then it must have been formed in the expand step. Thus, the side length k of the new
core is at most (y1 + y2)(1 +α) + x(1 + 2α). Thus, to prove the inductive hypothesis,
it suffices to show that

x1−δ +
m∑
i=1

y1−δ
i ≥ [(y1 + y2)(1 + α) + x(1 + 2α)]1−δ.(3)

Since the cores with side lengths yi belong to finished boxes created in earlier rounds,
yi ≤ x, for all i. Furthermore, since a new core was created,

∑m
i=1 (yi + 2bαyic) ≥

βbαxc, which implies that
∑m

i=1 yi ≥ βαx/6 for 0 < α < 1. Since β < 1, there

must be a largest index j ≥ 2 such that βαx/6 ≤ ∑j
i=1 yi ≤ 2x. Let y =

∑j
i=1 yi.

Then y ≥ y1 + y2. Also, because of the convexity of the function f(z) = z1−δ,
y1−δ ≤∑j

i=1 y
1−δ
i ≤∑m

i=1 y
1−δ
i . Thus, inequality (3) must hold if

[y(1 + α) + x(1 + 2α)]1−δ ≤ x1−δ + y1−δ(4)

holds for all y such that βαx/6 ≤ y ≤ 2x.
Proving that inequality (4) holds for sufficiently small α requires some elementary

(but painstaking) calculations. Let λ = y/x. In terms of λ, we need to show that for
sufficiently small α, the inequality

[(1 + α)λ+ (1 + 2α)]1−δ − 1− λ1−δ ≤ 0(5)

holds for all λ such that βα/6 ≤ λ ≤ 2. (As we shall see, α ≤ min{(β/24)1/δ, δ/16}
suffices.) There are three cases to consider.

First, suppose that λ ≤ α. In this case, we have

[(1 + α)λ+ (1 + 2α)]1−δ − 1− λ1−δ ≤ (1 + 4α)1−δ − 1− (βα/6)1−δ(6)

≤ 4α−
(

(β/6)1−δ

αδ

)
α(7)

≤
(

4− β

6αδ

)
α.(8)

Equation (6) is derived using the inequalities (1 + α) ≤ 2, λ ≤ α, and βα/6 ≤
λ. Equation (7) is derived from (6) using the inequality (1 + 4α)1−δ ≤ (1 + 4α).
Equation (8) is derived from (7) using the inequality β/6 ≤ (β/6)1−δ. For α ≤
(β/24)1/δ, the right-hand side of (8) is at most 0.

Second, suppose that α ≤ λ ≤ 1. In this case we have

[(1 + α)λ+ (1 + 2α)]1−δ − 1− λ1−δ ≤ [1 + λ+ 3α]1−δ − 1− λ1−δ(9)

≤ (1− δ)(λ+ 3α)− λ1−δ(10)

≤ 3α+ λ− δλ− λ1−δ.(11)
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RECONFIGURING ARRAYS WITH FAULTS PART I 1593

Equation (9) is derived using the inequality λ ≤ 1. Equation (10) is derived from (9)
using the fact that (1 + a)b ≤ 1 + ab for any a ≥ 0 and 0 ≤ b ≤ 1. Equation (11) is
derived from (10) using the inequality 3αδ > 0. Now let h(λ) = 3α+ λ− δλ− λ1−δ.
Differentiating with respect to λ, we have h′(λ) = 1− δ − (1− δ)λ−δ. For 0 < λ < 1,
h′(λ) < 0, and for λ = 1, h′(λ) = 0. Thus for α ≤ λ ≤ 1, h(λ) takes on its maximum
value when λ = α. Returning to (9)–(11), we have

[(1 + α)λ+ (1 + 2α)]1−δ − 1− λ1−δ ≤ 4α− δα− α1−δ(12)

≤ (4− α−δ)α.(13)

Equation (13) is derived from (12) using the inequality δ > 0. The right-hand side of
(13) is at most 0, provided that α ≤ (β/24)1/δ, as in the first case.

Finally, suppose that 1 < λ ≤ 2. In this case, we have

[(1 + α)λ+ (1 + 2α)]1−δ − 1− λ1−δ(14)

≤ [(1 + λ) + 4α]1−δ − 1− λ1−δ

≤ (1 + λ)1−δ(1 + 4α)1−δ − 1− λ1−δ(15)

≤ λ1−δ
(

1 +
1− δ

λ

)
(1 + 4α(1− δ))− 1− λ1−δ(16)

=
1− δ

λδ
+ λ1−δ

(
1 +

1− δ

λ

)
(4α(1− δ))− 1(17)

≤ 16α− δ.(18)

Equation (14) is derived using the inequality λ ≤ 2. Equation (15) is derived from
(14) using the inequality 1/(1 + λ) ≤ 1. Equation (16) is derived from (15) using the
fact that (1+a)b ≤ 1+ab for any a ≥ 0 and 0 ≤ b ≤ 1 (in two places). Equation (18)
is derived from (17) using the inequalities 1/λδ < 1, λ1−δ < 2, (1 − δ)/λ < 1, and
1− δ < 1. For α ≤ δ/16 the right-hand side of (18) is at most 0.

The growth process fails only if a core of side length k is created where k+2dαke >
N . In this case k > (N −2)/(2α+1) > N/(2α+3), for N > 2α+3. Such a core must
contain at least F (k) ≥ Ak1−δ ≥ A(N/(2α+3))1−δ faults. Recall that δ = ε/2. Thus,
for sufficiently large N , A(N/(2α+ 3))1−δ > N1−ε. So, if there are fewer than N1−ε

faults in the mesh, then no such core is created, and the growth process produces an
(α-β)-ensemble of finished boxes.

3.2. Mapping the computation. In this section, we show how to map the
computation of the fault free N × N mesh G onto an N × N mesh H with N1−ε

faults. The mapping requires that an (α-β)-ensemble of finished boxes be grown in
H, for some constants α and β, where 0 < α < 1 and 0 < β < 1. As it turns out,
β can be chosen independently of α and ε. So we choose β first. Next, we choose α
such that for fixed β and ε and any set of N1−ε faults an (α-β)-ensemble of boxes can
be grown using the growth process outlined in section 3.1.

We will use the pebbling terminology introduced in section 2 to describe the
mapping. The mapping is produced by a mapping process that progresses iteratively
in rounds. Initially, an s-pebble for each node of G is mapped to the corresponding
node of H. Like a regular mesh computation, each s-pebble gets c-pebbles from the
s-pebbles mapped to the neighboring nodes in H. The mapping process selects a
finished box in the ensemble at the beginning of each round in the decreasing order
of their round numbers. In each round, the mapping process changes the mapping
inside the selected finished box so that no s-pebbles are mapped to the core of that
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1594 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

finished box. This is done by removing s-pebbles from the core, duplicating some s-
pebbles, and setting up constant-congestion communication paths between duplicated
s-pebbles that avoid routing through any finished boxes with smaller round numbers.
The mapping process terminates when all finished boxes in the ensemble have been
selected.

A mapping of the computation of G to H is said to be valid if no s-pebble of G
is mapped to a faulty node in H and no communication path between two s-pebbles
passes through a faulty node in H. The initial mapping is not valid since it maps
s-pebbles to faulty nodes of H. After all the rounds are completed, no s-pebble will
be mapped to a faulty node and no communication will pass though a faulty node.
Thus, the final mapping will be valid.

The computation mapped onto a finished box B is said to be meshlike if each
node in B has exactly one s-pebble mapped to it and each s-pebble that is mapped to
a node m in B receives a c-pebble from each of the s-pebbles mapped to neighboring
nodes of m in B. Our mapping process will ensure that the following invariant will
hold true at the beginning of every round.

Invariant 3.3. Suppose that B is a finished box with round number l that is
selected at some round. At the beginning of the round, for every finished box B′

with round number k, k ≤ l, either no computation is mapped to B′, or a meshlike
computation is mapped to B′. Furthermore, no communication path passes through
any node in B′.

The invariant is true at the beginning of the first round since every finished box
has a meshlike computation mapped to it and there are no communication paths. At
the end of each round, this invariant will hold true inductively. Later in this section,
we will outline the steps involved in a specific round of the mapping process in which
the computation within the chosen finished box is remapped. We now show that the
invariant guarantees that upon termination the mapping process produces a mapping
that does not map computation or communication to faulty processors.

Theorem 3.4. The mapping process produces a valid mapping of the computation
of G into H.

Proof. We must show that every faulty node of H has neither an s-pebble mapped
to it nor a communication path passing through it in the final mapping produced by
the iterative mapping process. A node v of H is said to be active at a particular
round of the mapping process if it either has an s-pebble mapped to it or has a
communication path passing through it in the beginning of this round. A node is said
to be inactive if it is not active. In the first round, every node in H is active.

A key property of the iterative mapping process is that if in some round a node
v becomes inactive it remains inactive through the remaining rounds. For a contra-
diction, suppose that an inactive node v becomes active. Let B be the finished box
selected in the last round in which v was inactive. Since only nodes inside B are
affected by the remapping, v must be in B. From Invariant 3.3 and the fact that v
is inactive, it must be the case that no computation was mapped to B. This means
that no computation was remapped in this round, which is a contradiction.

We now show that no faulty node remains active at the end of the mapping
process. From Property 1 of an (α-β)-ensemble of finished boxes, every fault in H is
contained in some core of some finished box. Let v be a faulty node in H and let B be
the finished box whose core contains this fault. If v is already inactive in some round
before B is selected, it will remain inactive through the rest of the rounds. Otherwise,
if v is active in the round that B is selected, it follows from Invariant 3.3 that there
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RECONFIGURING ARRAYS WITH FAULTS PART I 1595

must be an s-pebble mapped to v but no communication paths passing through v at
the beginning of this round. The remapping of computation inside B will remove the
computation from v and no new communication path will pass through v. Therefore,
v becomes inactive and remains that way through the rest of the mapping process.
Thus, no faulty node remains active at the end of the mapping process.

3.2.1. Remapping the computation within a finished box. In this section,
we show how to remap the computation within a finished box chosen in some round
of the iterative mapping process. Let B be a box with round number l and side length
(2α + 1)k that is selected at some round of the mapping process. (In the remainder
of this paper we ignore the issue of whether quantities such as 2αk are integral.) We
assume that Invariant 3.3 is true at the beginning of this round. Later we show that
this invariant is true at the end of the round after the remapping. If there is no
computation mapped to B at the beginning of the round, no remapping needs to be
done and the invariant holds at the end of the round.

The other possibility is that a meshlike computation is mapped to the nodes of B
at the beginning of this round. In this case, the computation is partitioned into two
overlapping pieces, the patch and the outerskirt. The precise sizes of the patch and
the outerskirt will be specified later. The set of nodes in the finished box to which
the border of the patch is mapped forms a ring in the finished box, as does the set
of nodes to which the inner border of the outerskirt is mapped. We call these rings
the border rings, or b-rings for short. Because the patch and the outerskirt overlap,
the nodes on the border of the patch have duplicates in the interior of the outerskirt
that perform the same computation. Similarly, the nodes in the inner border of the
outerskirt have duplicates in the interior of the patch. These duplicate nodes in the
interior of the outskirt and the interior of the patch are also mapped to rings in the
finished box. We call these rings the interior rings, or i-rings for short.

The region consisting of nodes in B not more than distance αk/5 from the outer
border of B is called the outer region. The outerskirt will be embedded in this region.
Similarly, a square box of side length 3αk/5 is called the patch region. As shown in
Figure 4, the patch region is located below and to the left of the core, and does not
intersect the outer region. The patch will be embedded in this region.

The first step in remapping the computation within B is to place a b-ring and
an i-ring in each of the two regions (see Figure 4). A free ring in the patch region
or outer region is defined to be a ring that does not pass through any finished boxes
B′ with smaller round numbers than B. The b- and i-rings satisfy the following ring
properties.

(1) The i-ring and the b-ring of the outer region must be free rings. Furthermore,
between the i-ring and the b-ring of the outer region there must be Θ(k) free
rings. The same condition must hold for the i-ring and the b-ring of the patch
region. Further, the i-ring of the patch region must have side length Θ(k).

(2) For any constant-load embedding of s-pebbles into a side of the i-ring of one
region and any constant-load embedding of the duplicates of these s-pebbles
into the corresponding side of the b-ring of the other region, there must be
paths of length Θ(k) from every s-pebble to its duplicate. These paths must
have constant congestion, must be completely contained in B, and must not
pass through any finished boxes B′ with smaller round numbers than B.

The procedure for finding rings with these properties is outlined in section 3.4.

Having determined the i-rings and the b-rings, the next step is to determine the
size and layout of the patch and the outerskirt. Recall that a meshlike computation
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Outer Region

Patch Region

I-Rings

Core

B-Rings

Fig. 4. Layout of finished box B in the host.

was mapped into box B at the beginning of this round. The size of the outerskirt
and patch will depend on the choice of the i- and b-rings. The computation mapped
between the b-ring of the outer region and the border of B at the beginning of this
round forms the outerskirt. The computation mapped within the i-ring of the outer
region at the beginning of this round forms the patch. Remapping the outerskirt and
the patch to nodes within B must be done with care so that Invariant 3.3 is true at
the end of this round.

The outerskirt is embedded in the region of B between the b-ring in the outer
region and the border of B. Since the size and shape of the outerskirt are the same
as the region in which it is embedded, we simply map each s-pebble in the outerskirt
to the corresponding node in that region of B.

The patch must be embedded into the square region enclosed by the b-ring in
the patch region. This is trickier since the patch is a constant factor larger in size
than the square region in which it is embedded. In particular, we must ensure that
each finished box B′ with a smaller round number than B that intersects this square
region receives a meshlike computation or receives no computation at all. A column
or row in this square region that intersects such a finished box B′ will be called a
bad column or a bad row . The remaining rows and columns are said to be good rows
and good columns respectively. Since the sum of the side lengths of such boxes B′

is at most βαk, if we choose β < 1/10, then a majority of the αk/5 columns and
rows will be good. Our embedding is described by two functions ρ and κ such that
a node in the ith row and the jth column of the patch is mapped to the ρ(i)th row
and the κ(j)th column of the square region. The function ρ is selected so that for all
i, ρ(i) ≤ ρ(i+ 1) ≤ ρ(i) + 1. Further, for any value of j there are at most a constant
number of values of i with ρ(i) = j and if the jth row is bad there is exactly one
value of i with ρ(i) = j. The function κ is chosen with similar properties for the
columns. That such functions ρ and κ exist follows from the fact that the patch is
at most a constant factor larger than the square region and that a majority of the
rows and columns of the square region are good. This completes the embedding of
the s-pebbles to nodes within B.

Finally, the constant-congestion paths between the s-pebbles in the i-ring and
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RECONFIGURING ARRAYS WITH FAULTS PART I 1597

their duplicates in the b-ring are set up. These paths must not pass through any
finished boxes with round numbers smaller than that of B. These paths can be set
up since the i-ring and b-ring satisfy the second ring property. Using these paths,
each s-pebble on the b-ring receives c-pebbles from its duplicate on the i-ring. The
procedure for finding these paths is given in section 3.4.

Now we show inductively that Invariant 3.3 holds at the end of the round in which
B was selected.

Theorem 3.5. Invariant 3.3 is true after the computation within B has been
remapped.

Proof. We must show that each finished box B′ with a smaller round number
than B has a meshlike computation mapped to it or no computation mapped to it
at all. All such boxes B′ that do not intersect B are not affected by the remapping
at all. From ring property 1, we know that no box B′ with a smaller round number
than B can intersect the b-ring in the outer region. Therefore, any intersecting box
B′ not entirely contained in B must intersect the region only where the outerskirt is
embedded. Since the embedding of this region does not change in the course of the
remapping, all such boxes B′ still have a meshlike computation mapped to them.

We will now look at boxes B′ contained entirely within B. Since the b-rings and
i-rings do not pass through B′, either B′ is contained entirely in the region where
the outerskirt is embedded or entirely in the region between the b-ring of the outer
region and the core of the box or entirely inside the square region where the patch
is embedded. In the first case, the embedding inside B′ does not change by the
remapping and it continues to have a meshlike computation mapped to it. In the
second case, no computation is mapped to B′ and no communication path passes
through the nodes in it. In the third case, observe that every row or column of B′ is
in a bad row or bad column of the square region. Thus ρ and κ map exactly one row
and one column respectively of the patch to these rows and columns. Thus a meshlike
computation is mapped to B′. Finally, none of the newly formed communication
paths pass through any of the finished boxes B′.

3.3. The emulation. In this section, we show that if the growth process termi-
nates with a set of nonintersecting finished boxes, then the host H can emulate the
guest G with constant slowdown.

In order for a node in H to create an s-pebble for a node v of G, it must receive
c-pebbles for each of the edges into v in G. If this s-pebble is in the interior of a patch
or an outerskirt, the s-pebbles for the neighbors of v are created either by the same
node in H or by the neighbors of that node in H. Thus, the required c-pebbles can
be obtained in constant time. However, the s-pebbles for the neighbors of an s-pebble
on the border of the patch or on the inner border of the outerskirt may not be created
nearby in H. But, since the patch and the outerskirt overlap, for every s-pebble on
the border of the patch or the inner border of the outerskirt there is a duplicate in the
interior of the outerskirt or the patch, respectively. In our emulation, every s-pebble
on the border will receive the c-pebbles for all of its incoming edges from its duplicate
that is mapped to one of the i-rings in the finished box.

The emulation consists of a series of macrosteps as in section 2.2.
Lemma 3.6. Each macrostep takes only a constant number of time steps to

execute.
Proof. We will prove that the maximum number of s-pebbles mapped to any

node of H and the maximum number of communication paths passing through any
node of H is a constant when the mapping process terminates. We prove this by
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1598 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

induction on the rounds of the mapping process. At the beginning of the first round
of the mapping process there is exactly one s-pebble mapped to every node of H
and no communication paths pass through any node, so the hypothesis is true at the
beginning of the first round. Suppose that the hypothesis is true at the beginning
of some round. Let the finished box selected at this round be B. There are two
possibilities. If there is no computation mapped to B and no communication passing
through it, no remapping is done and the hypothesis remains true at the beginning
of the next round. Otherwise, from Invariant 3.3, there is a meshlike computation
mapped to B and no communication path passes through any of its nodes. Remapping
the computation within each finished box B causes at most a constant number of s-
pebbles to be mapped to any node within it. Furthermore, the maximum number
of paths created in this round that pass through a node in B is a constant. Since
no communication path created before this round uses a node in B, the inductive
hypothesis is true at the beginning of the next round.

Since there are only a constant number of s-pebbles mapped to any node of H,
the computation step takes only constant time. Since each s-pebble can produce at
most four c-pebbles in the communication step, there are at most a constant number
of c-pebbles created at each step by each node. Thus, the communication step takes
only constant time. Since there are only a constant number of paths passing through
every node and since every c-pebble moves in every macrostep and only a constant
number of c-pebbles enter a particular path at any macrostep, there can be only a
constant number of c-pebbles on a particular path resident at a particular node at
a particular time. Thus the routing step also takes only a constant number of time
steps.

Theorem 3.7. For sufficiently large N , any computation on an N ×N fault-free
mesh G that takes time T can be emulated by an N × N faulty mesh H with N1−ε

worst-case faults (for any constant ε > 0) in time O(T +N).

Proof. We show that only O(T + N) macrosteps are required to emulate any
T -step computation of G. The final result then follows from Lemma 3.6.

Let B1, B2, . . . , Bm be the finished boxes in the descending order of their round
numbers and let their side lengths be k1, k2, . . . , km. The iterative mapping process
produces a series of mappings, φ0, φ1, . . . , φm, where φi is the mapping of s-pebbles
to H at the end of the ith round. The mapping φi is obtained from the mapping φi−1

by remapping the computation within box Bi. The final mapping generated by the
mapping process is φm. Note that because the guest network can be redundant, it is
possible for two distinct s-pebbles s and s′ to have the same label 〈v, t〉; i.e., v is the
node of G whose state after t steps of computation is represented by both s-pebbles
s and s′. Furthermore, it is possible for different mappings φi and φj , i 6= j, to map
different numbers of s-pebbles to H. For example, for each node v in G and each time
step t, φ0 maps only one s-pebble to H. For i > 0, however, unless there are no faults
in H, φi maps at least two s-pebbles s and s′ with the same label to different nodes
in H.

The dependency tree and critical path for the final mapping φm are defined as
in section 2.2. In general, a sequence of s-pebbles si,T , si,T−1, . . . , si,0 is called a T -
sequence with respect to a mapping φi if, for 0 ≤ j < T−1, ti,j+1 = ti,j+1, and either
vi,j and vi,j+1 are the same node of G and φi(si,j) = φi(si,j+1), or vi,j and vi,j+1 are
neighbors in G and under φi, si,j sends a c-pebble to si,j+1. For a given mapping φi
and a T -sequence si,T , si,T−1, . . . , si,0, li,j is 1 if nodes φi(si,j) and φi(si,j−1) are the
same node or neighbors in H. Otherwise, li,j is the length of the communication path
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RECONFIGURING ARRAYS WITH FAULTS PART I 1599

by which a c-pebble generated by si,j−1 is sent to si,j . With each mapping φi we
associate one T -sequence. The T -sequence for φm is the critical path. For i < m, the
T -sequence for φi is derived from the T -sequence for φi+1. Let 〈vi+1,j , ti+1,j〉 be the
label of si+1,j . If φi+1 does not map si+1,j to the border of the patch or the outerskirt
of box Bi+1, then both φi+1 and φi map a single pebble labeled 〈vi+1,j , ti+1,j〉 to H.
In this case, si,j is the pebble with label 〈vi+1,j , ti+1,j〉 that φi maps to H. Otherwise,
φi+1 maps two duplicate s-pebbles, both labeled 〈vi+1,j , ti+1,j〉, to box Bi+1, but φi
maps only one pebble with that label to Bi+1. In this case, si,j is the one s-pebble
with label 〈vi+1,j , ti+1,j〉 that φi maps to Bi+1.

We now show that for any T -sequence sm,T , sm,T−1, . . . , sm,0 with respect to φm,∑
0<j≤T lm,j is O(T +N). For each mapping φi, we define a series of weights ci, di,

and wi,j , where 0 ≤ i ≤ m and 0 < j ≤ T . The weights are chosen such that for any
value i the following two properties are satisfied:

(1)
∑

j li,j ≤
∑

j wi,j +
∑

r≤i(cr + dr),
(2) For all j, wi,j is less than some fixed constant.

We will find an upper bound on
∑

j lm,j , and hence on T ′, by finding upper bounds
on the wm,j (they will be constant) and on

∑
r≤m(cr + dr) (which will be O(N)).

Initially, we define c0 = d0 = 0 and w0,j = l0,j for all values of j. Since φ0 simply
maps the s-pebbles of G to the corresponding nodes of H, every l0,j and hence every
w0,j is 1. Thus

∑
j l0,j =

∑
j w0,j + c0 + d0. Furthermore, for all values of j, w0,j can

be bounded from above by a fixed constant.

We choose ci, di, and wi,j , 0 < j ≤ T as follows. Inductively assume that we
have determined the weights cr, dr, 0 ≤ r ≤ i − 1, and wi−1,j , 0 < j ≤ T , such that
the two properties listed above are satisfied. Suppose that φi−1 maps no computation
onto box Bi. Then no remapping is necessary and so li,j = li−1,j for all values of
j. In this case we set wi,j = wi−1,j for all j and set ci = di = 0. Otherwise, from
Invariant 3.3, φi−1 maps a meshlike computation onto box Bi. The mapping φi differs
from φi−1 in that s-pebbles inside box Bi are remapped. Since s-pebbles outside Bi

are not affected, li,j = li−1,j for all j such that φi−1(si−1,j) is not in Bi. We define
wi,j = wi−1,j for all such values of j. (Note that if φi−1 maps an s-pebble si−1,j

outside Bi but adjacent to its border and maps si−1,j−1 to the border of Bi, then
li,j = li−1,j . This is because the remapping inside Bi will not the change the location
of the pebble with the same label as si−1,j−1.)

We now look at s-pebbles mapped inside Bi by φi−1. The new mapping φi
introduces communication paths for s-pebbles si,j such that φi−1(si−1,j) lies on a
b-ring of Bi. For all such s-pebbles si,j , li,j equals the length of the communica-
tion path in Bi which is Θ(ki), where ki is the side length of Bi. For all other
s-pebbles si,j , li,j = li−1,j . We determine the weights wi,j for each s-pebble si,j such
that φi−1(si−1,j) is in Bi as follows. We will consider every maximal subsequence,
si−1,h+p, si−1,h+p−1, . . . , si−1,h, of the T -sequence such that φi−1(si−1,h+q) is in Bi

for 0 ≤ q ≤ p. Let I be a set of integers q such that li,h+q > 1. There are three cases
depending on the value of |I|.

If |I| = 0, there are no communication paths and for every q such that 0 ≤ q ≤ p,
li,h+q = li−1,h+q = 1. Therefore, we will define wi,h+q = wi−1,h+q for every 0 ≤ q ≤ p
and set ci = di = 0.

If |I| 6= 0, let L =
∑

q∈I(li,h+q − li−1,h+q), which equals the net increase in the
values of li,h+q in the subsequence.

If |I| = 1, there is exactly one communication path. Note that this can happen
only if either φi−1(si−1,0) or φi−1(si−1,T ) is in box Bi. This is so because a maximal
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1600 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

subsequence of s-pebbles mapped to Bi that contains neither si−1,0 nor si−1,T must
necessarily begin and terminate with s-pebbles mapped to the border of Bi. Therefore
such a subsequence must necessarily use communication paths an even number of
times. If φi−1(si−1,0) is in Bi, make ci = L, where L = Θ(ki) (since there is only
one path). Otherwise set ci = 0. Similarly, if φi−1(si−1,T ) is in Bi, make di = L.
Otherwise set di = 0. For every 0 ≤ q ≤ p, set wi,h+q = wi−1,h+q.

If |I| > 1, let J be the set of integers q such that φi(si−1,h+q) is in some free
ring either in the patch region or in the outer region. Recall that nodes in the free
rings are not contained in any finished box Bl, l > i. The value of L is |I|Θ(ki)
since each communication path in Bi is Θ(ki) in length. This increase must be
distributed evenly among the weights of the s-pebbles si,h+q, q ∈ J . Thus for all
q ∈ J , wi,h+q = wi−1,h+q + L/|J |. For any two s-pebbles si−1,h+q1 and si−1,h+q2

such that q1 < q2 and q1, q2 ∈ I, the subsequence si−1,h+q1 , . . . , si−1,h+q2 contains at
least Θ(ki) s-pebbles si−1,h+q′ , such that q′ ∈ J . This is so because the i-ring and
the b-ring of the patch region or the outer region were chosen such that there are
Θ(ki) free rings between them. This implies that |J | = Θ(ki|I|) and thus L/|J | is
a constant. For all other q 6∈ |J |, li,h+q = li−1,h+q and wi,h+q = wi−1,h+q. We also
set ci = di = 0. After all such subsequences have been dealt with we go to the next
iteration.

The weight assignments in all three cases maintain the condition that
∑

j li,j ≤∑
j wi,j +

∑
r≤i(cr +dr). Further, for all i and j, wi,j is at most a constant. This is so

because if the weight of some si−1,j increases at the ith iteration, i.e., wi,j > wi−1,j ,
then it will never increase again since φi−1(si−1,j) is in a free ring of the finished
box selected in the ith iteration and hence is not contained in any of the finished
boxes with smaller round numbers that will be considered in future rounds. Thus its
weight will never change after this iteration. Further, as we saw earlier, the increment
wi,j − wi−1,j is also a constant.

We bound
∑

j lm,j by bounding
∑

j wm,j and
∑

i≤m(ci + di). The fact that wm,j

is a constant for all j implies that
∑

j wm,j is O(T ). We bound the summation∑
i(ci+di) as follows. The value of ci or di is either zero or Θ(ki). Thus

∑
i ci can be

no more than the sum of the side lengths of all the boxes in the (α-β)-ensemble, i.e.,∑
i ki. We show that this quantity is O(N). By the proof of Theorem 3.2 we know

that the core of each Bi has at least Ak
1−ε/2
i > Ak1−ε

i faults, where A is a constant.
Since each fault is contained in a unique core and there are at most N1−ε faults in
the mesh,

∑
i

Ak1−ε
i ≤ N1−ε.

The maximum value of
∑

i ki that satisfies the above constraint occurs when all but
one of the values of ki equal zero, i.e., when one value of ki is Θ(N) and the rest
are zero. Thus

∑
i ki and hence

∑
i ci is O(N). Similarly,

∑
i di can be shown to be

O(N). Therefore,

∑
j

lm,j ≤
∑
j

wm,j +
∑
i≤m

(ci + di) = O(T +N).

3.4. Finding the i- and b-rings. In this section, we show how to find i- and
b-rings in a finished box B in H with side length (2α + 1)k satisfying the two ring
properties listed in section 3.2.1.
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An Outer Trapezoid

A Fitting

Core

A Patch Trapezoid

Patch Region

Outer Region

Fig. 5. Finding i- and b-rings in H.

Recall that the patch region is a square region in B of side length 3αk/5 and the
outer region is an annular region of width αk/5. In the center of the patch region, we
place a square of size αk/5 (see Figure 5). The i-ring of the patch is required to enclose
this square. This guarantees that the i-ring of the patch has size Θ(k). A trapezoid is
a four-sided figure consisting of two parallel sides and two nonparallel sides. We define
the ith column of a trapezoid to be the set of nodes in the trapezoid at a distance i
from the longer parallel side of the trapezoid. By joining the corners of the square in
the patch region to the respective corners of the patch region, we partition the patch
region, excluding the area enclosed by the square, into four trapezoidal regions (one
of these regions is shown in Figure 5). Similarly, the outer region is also partitioned
into four trapezoidal regions by joining each corner of the box B to the corresponding
corner of the square forming the inner boundary of the outer region. Each ring in the
outer or patch region consists of four sides, and each side is a column of one of the
trapezoids.

We will define four distinct zones, each of which is made up of three parts. (A
zone is marked with dotted lines in Figure 5.) The first part of a zone consists of
one of the four trapezoids in the outer region (called the outer trapezoid) and the
last part consists of the corresponding trapezoid in the patch region (called the patch
trapezoid). The middle part is called the fitting and joins the outer trapezoid to
the patch trapezoid (see Figure 5). The fitting is either a trapezoidal region or a
rectangular region adjoining a trapezoidal region. (The patch region is positioned
below and to the left of the core so that this is true.) Each of the four sides of a
ring in the patch region or the outer region is a trapezoidal column in one of the four
zones. Choosing b- and i-rings is equivalent to finding two trapezoidal columns in the
patch trapezoid and two trapezoidal columns in the outer trapezoid of each of the
four zones. Further, the four trapezoidal columns, one in each zone, that correspond
to a particular ring must be chosen so as to have the same column number.

Since it is easier to work with rectangular grids than trapezoids, we will embed
each of the four zones into a single rectangular grid R with αk/5 rows and 3αk/5
columns. Note that R is not part of the guest or the host. It is a tool of the
construction only. The grid formed by the first αk/5 columns of R is called the outer
grid , the next αk/5 columns the fitting grid , and the last αk/5 columns the patch grid .
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1602 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

The outer trapezoid, the fitting, and the patch trapezoid of each zone are embedded
into the outer grid, fitting grid, and patch grid, respectively.

Since the outer trapezoid and the patch trapezoid each have αk/5 columns, em-
bedding them into their respective grids can be done by embedding the nodes in the
ith trapezoidal column of the outer or the patch trapezoid to nodes in the ith column
of the respective grid. Any constant-load and constant-dilation embedding will do for
our purposes. We describe such an embedding below. The nodes in each trapezoidal
column are grouped into αk/5 groups such that each group contains some constant
number of consecutive nodes of the column. Further, the cardinality of any two groups
in a column differ by at most one and for all i < j the cardinality of the ith group is
at most the cardinality of the jth group of the same column. For every trapezoidal
column, the ith such group is mapped to the ith node of the corresponding column
of the grid. The dilation of this embedding is at most two and the load is constant.

Note that the four sides that form a ring either in the outer region or in the
patch region are embedded into the same column in the outer grid or the patch grid,
respectively. Therefore, a column in the outer or patch grid corresponds to the ring
in the outer or patch region that gets mapped to it.

We can use the above technique to embed the fitting as well. The only difference
is that since the fitting may have more than αk/5 columns, we may have to embed a
constant number of columns of the fitting in each column of the fitting grid.

We define regions in R called obstacles as follows. The region of R to which a
finished box B′ (or a portion of it) with a smaller round number than B is embedded
is defined to be an obstacle. Note that the total perimeter of the obstacles in R is at
most some constant times the total perimeter of the intersecting region of B.

A free column of R is defined to be one that does not pass through any obstacles.
From the correspondences between columns in R and rings in the finished box B, in
order to find i- and b-rings in B with the required ring properties, it is sufficient to
choose i- and b-columns in R with the following column properties.

(1) The i-column and the b-column of the outer grid must be free columns. Fur-
ther, between the i-column and the b-column of the outer grid there must be
Θ(k) free columns. A similar condition must hold for the i-column and the
b-column of the patch grid.

(2) The nodes of the i-column in one grid can be connected to the b-column of
the other grid in any permutation using constant-congestion paths of length
Θ(k) that do not pass through any of the obstacles.

Note that from the definition of the obstacles, if path p in R avoids all obstacles, then
the paths in the four zones that are mapped to p also avoid all the finished boxes with
smaller round numbers than B.

For technical reasons, we would like the placement of the obstacles in the outer
grid, the patch grid, and the entire rectangular grid R itself to be symmetric about
the columns in the centers of these respective grids, i.e., the obstacles in the first half
of the columns of the grid are a mirror image of the obstacles in the second half of
the columns of each of these three grids. To satisfy this condition we first copy every
obstacle in one half of the outer grid to the other half by reflecting this obstacle about
its center column. We do the same for the patch grid and then finally for the entire
rectangular grid R. This copying can increase the perimeter of the obstacles by at
most a constant factor.

We define a square box in R to be flowless as follows.

Definition 3.8. A square box F of side length q is said to be flowless if and
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RECONFIGURING ARRAYS WITH FAULTS PART I 1603

only if either more than q/4 rows or more than q/4 columns pass through obstacles.

A column of R that does not intersect any of the flowless boxes is called a live
column. Note that a live column is also a free column, since a box of size 1 that is
not flowless can contain no obstacles.

Theorem 3.9. For a small enough value of β, a majority of the columns in the
outer grid, fitting grid, and patch grid are live columns.

Proof. Let f denote the number of columns in R that are not live. We can bound
f in terms of the total perimeter of the obstacles in the grid by the following counting
argument. Initially, let each nonlive column have one unit of credit associated with
it. The total amount of credit in the system is f . For each nonlive column h let the
largest flowless box that intersects h be box H. This nonlive column distributes its
unit of credit evenly to nodes on the perimeters of the obstacles contained entirely in
H. After every nonlive column has redistributed its unit of credit, the total number
of credits in the nodes on the perimeters of the obstacles is still f .

Now we will determine the maximum credit received by any node s on the perime-
ter of an obstacle. Node s may receive credits from many different nonlive columns.
First we look at nonlive columns with smaller column numbers than the column of s.
Let the farthest such column from s that contributes to s be at a distance q from s.
The flowless box F that intersects this nonlive column and contains s must have side
length at least q. The total perimeter of the obstacles of a flowless box of size at least
q must be at least q/4, since such a flowless box has at least q/4 rows or q/4 columns
that pass through obstacles. Therefore the contribution of this nonlive column is at
most 4/q. Further, note that every nonlive column between this nonlive column and
the column of s can contribute at most 4/q. This is because box F intersects all these
columns and hence the size of the largest flowless box intersecting these columns is at
least q. Thus the total contribution to s from nonlive columns with smaller column
numbers than its own column is at most q · 4/q, which equals 4. Similarly the total
contribution to s from nonlive columns with greater column numbers than its own
column can also be bounded by 4. Therefore s receives at most eight credits.

We will now bound f , the number of columns that are not live. The perimeter
of the obstacles is at most some constant c (independent of α and β) times the sum
of the side lengths of the finished boxes in the intersecting region of B, i.e., at most
cβαk. Thus the total number of credits in the nodes on the perimeters of the obstacles
is at most 8cβαk, so f ≤ 8cβαk. For β < 1/80c, the majority of the αk/5 columns in
each of the outer, fitting, and patch grids are live columns.

3.4.1. Permuting grids. We define a permuting grid as follows. An l × m
rectangular grid (i.e., a grid with l rows and m columns) is said to be a permuting
grid if

(1) Each node on the left side of the grid is connected by a path to a distinct
node on the right side of the grid. The paths have constant congestion, do
not pass through any obstacles, and each path has length Θ(m). These paths
are called the horizontal paths.

(2) There are at least m/4 paths from nodes on the top side of the grid to nodes
on the bottom side of the grid such that the congestion of these paths is also
a constant. These paths do not pass through any of the obstacles and each
path has length Θ(l). These paths are called the vertical paths.

Note that the horizontal and vertical paths in a permuting grid are required to satisfy
different properties.
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1604 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

Lemma 3.10. The l nodes on the left side of an l × m permuting grid can be
connected in any permutation to the nodes on the right side of the grid using constant-
congestion paths of length Θ(m) that do not pass through any obstacles, provided that
l = O(m).

Proof. The idea is to use the horizontal and vertical paths in the grid as a crossbar.
Each node on the left side of the permuting grid is assigned a vertical path such that
no vertical path is assigned more than 4l/m nodes. Let π denote the permutation
to be routed. A path from node v in the left side to π(v) in the right side is routed
in three stages. In the first stage, a path is routed from v along the horizontal path
originating at v to the node where this horizontal path first meets the vertical path
assigned to v. In the next stage, the path goes along this vertical path to the node
where this vertical path first meets the horizontal path ending at π(v). In the last
stage, the path goes along this horizontal path to the destination node π(v). It is
easy to see that this path has length Θ(l +m) = Θ(m).

The total congestion on any node in the grid can be split into a sum of three
parts. The congestion of a node due to paths in the first (last) stage is at most the
congestion of the horizontal paths and hence is constant. The congestion due to paths
in the middle stage is constant since it is at most 4l/m times the congestion of the
vertical paths. Hence for l = O(m) the net congestion is a constant.

We choose the i- and b-columns from the live columns in the outer and patch
grids. Recall that live columns do not pass through flowless boxes. We choose β as
small as is required by Theorem 3.9 so that the majority of the columns in the outer,
fitting, and patch grids are live columns. Note that since the obstacles are symmetric
about the middle column of the outer grid, the live columns of the outer grid are
symmetric about the middle column as well. Similarly, the live columns in the patch
grid and the entire rectangular grid R are symmetric about their middle columns.
The live columns with the smallest column number in the outer grid and the patch
grid are chosen to be the i-column of the outer grid and the b-column of the patch
grid, respectively. The live columns with the largest column number in the outer grid
and the patch grid are chosen to be the b-column of the outer grid and the i-column
of the patch grid, respectively. The i- and b-rings in the finished box B are the rings
that correspond to the chosen i- and b-columns. Let the grid between the i-column
and b-column in the outer grid be O, the grid between the b-column of the outer grid
and b-column of the patch grid be F, and the grid between the b-column and i-column
of the patch be P.

Theorem 3.11. The grids O, F, and P are permuting grids.

Proof. First we show that O is a permuting grid. O is an αk/5 × m grid, for
some m ≤ αk/5. Since i- and b-rings in the outergrid are the leftmost and rightmost
live columns, respectively, O contains at least αk/10 ≥ m/2 ≥ m/4 live columns.
These live columns can serve as the vertical paths in the grid. Now we grow constant
congestion paths that do not hit obstacles from every node in the i-column that forms
the left side of O to the corresponding node in the b-column that forms the right side
of O. These will serve as the horizontal paths of the permuting grid.

The first step is to grow constant-congestion paths that do not hit obstacles from
every node in the i-column to nodes in the middle column of O. Every node in the
middle column need not have a path ending in it but every node in the i-column
must have a path originating in it. We define a series of square boxes of side length
2i, 0 ≤ i ≤ log2(αk/5). (For simplicity, we assume that αk/5 is a power of 2.) The left
side of every box consists of a set of consecutive nodes in the i-column. All the boxes
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RECONFIGURING ARRAYS WITH FAULTS PART I 1605

Path in Q

Column of VRow of L

l

v

q

A new path

Fig. 6. A new path constructed from path q, column v, and row l.

of a particular size are numbered consecutively starting from the top and ending at
the bottom of the i-column. Boxes of size 1 are the individual nodes in the i-column
itself. Given boxes of size 2i, we obtain boxes of size 2i+1 by enclosing every odd
numbered box of size 2i and the succeeding even numbered box with a box of size
2i+1. There will be exactly one box of the largest size and this box encloses O. It is
important to note that none of these boxes are flowless since the i-column is a live
column.

We grow paths iteratively from smaller sized boxes to larger sized boxes. At the
beginning of the ith iteration, we assume that each box of size 2i−1 has paths with
maximum length 4 · 2i−1 originating from every node on its left side and ending at
some node on its right side. The paths are grouped into sets of 8, such that two paths
share an edge only if they belong to the same group. Hence, the congestion of the
paths is at most 8. We show how to construct the groups of 8 paths with maximum
length 4 · 2i for every box of size 2i.

For i = 0, it suffices to observe that each box of size 1 has no obstacles in it, since
these boxes are not flowless. For i > 0, each box of size 2i encloses two smaller boxes
of size 2i−1 (see Figure 6). Let D denote the rectangular box formed by the first half
of the columns of the big box. D encloses both of the smaller boxes of size 2i−1. Since
the big box is not flowless, there are at least (3/4)2i rows that do not hit obstacles
(call this set of rows L) and at least (3/4)2i columns that do not hit obstacles. Of
these (3/4)2i columns, at least (1/4)2i columns lie within D (call this set of columns
V ). Let Q denote the set of paths that are inductively assumed to exist inside both
the smaller boxes. We use L and V to extend the paths in Q to nodes on the right
side of the big box (see Figure 6). The paths in Q can be ordered sequentially from
top to bottom. Likewise, the columns in V are ordered sequentially from left to right
and the rows in L are ordered sequentially from top to bottom.
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1606 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

First we group the nodes on the left side of the big box into consecutive groups of
size 8 each. To the nodes in the ith such group we assign the ith row in L. The paths
from the left side of the big box to the right side of the big box are grown sequentially
starting from the first group of nodes.

The first group of nodes uses paths in Q until they hit the centermost column in
V . Then each of these eight nodes uses this column in V to reach its assigned row in
L. Then it takes this assigned row to reach the right side of the big box (see Figure 6).
When routing the next group we must make sure that we do not overlap these paths
with the paths already routed since this would increase the congestion. Let w be the
column in V that was used by the previous group of nodes. Further suppose that
the last node in this group turned upward into column w to reach its row in L. In
this case, we use the column in V that succeeds w for the current group of nodes.
Similarly, if the last node of the previous group turned downward into column w, we
use the column in V that precedes w for the current group. As before, the paths in
the current group follow paths in Q until they hit the chosen column in V and then
use this column until their assigned row in L. These paths do not share edges with
any of the previous paths. We use this procedure to route paths from all the groups
of nodes. Since we have 2i/8 columns to the right and to the left of the centermost
column in V and since there are at most 2i/8 groups of nodes, we will never run out
of columns in V . Since the paths outside of a group do not overlap, the congestion is
at most 8. The maximum length of any path is at most the maximum length of any
path in Q (4 · 2i−1 by the inductive hypothesis) added to the maximum length of the
newly added portion (at most 2 · 2i) which is 4 · 2i.

After constructing paths in progressively larger boxes, we will have constructed
a path from every node of the i-column to the right side of a square box of size αk/5.
These paths can be truncated at the middle column of O. Note that the obstacles in O
are symmetric about its middle column. From this symmetry, exactly the same paths
reflected about the middle column connect every node in the b-column to the same
set of nodes in the middle column. Concatenating these two sets of paths, we obtain
paths from every node in the b-column to a corresponding node in the i-column of
congestion at most 8 and length at most 8αk/5 = Θ(m). Thus O is a permuting grid.

The proof that F and P are permuting grids is similar.

Theorem 3.12. The b- and i-columns satisfy both of the column properties.

Proof. The first property is true since the i- and b-column of the outer grid or
the patch grid are chosen so that there are Θ(k) live columns between them. The
second property follows from Lemma 3.10 and Theorem 3.11. To connect the nodes
of the i-column of the patch grid to the b-column of the outer grid in some arbitrary
permutation, we use the permuting grid P followed by the permuting grid F. One of
the grids will be used to route the required permutation and the other will route the
identity permutation. From Lemma 3.10, the paths obtained have constant congestion
and do not pass through obstacles. Furthermore, each path is Θ(k) in length. To
connect the nodes from the b-column of the patch grid to the i-column of the outer
grid in an arbitrary permutation, we use grid F followed by grid O.

4. A limit on the fault-tolerance of linear arrays. Unlike two-dimensional
arrays, one-dimensional arrays are not very fault tolerant. For example, placing f(N)
evenly spaced faults in an N -node linear array splits the array into disjoint pieces
of size N/f(N), for any function f(N). Emulating the entire linear array on one of
these pieces entails a slowdown of at least f(N). Thus if f(N) grows as a function
of N , the slowdown is not constant. However, if we assume a weaker model of faults
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RECONFIGURING ARRAYS WITH FAULTS PART I 1607

in which a faulty node cannot perform any computation but can communicate with
its neighbors, then the linear array becomes more fault tolerant. In particular, the
following theorem shows that an N -node linear array can tolerate logkN worst-case
faults, for any constant k > 0, and still emulate a fault-free N -node linear array with
constant slowdown.

Theorem 4.1. For any constant k > 0, an N -node linear array with logkN
worst-case faults can emulate T steps of any computation of a fault-free N -node lin-
ear array in O(T +N) steps, provided that faulty nodes can communicate with their
neighbors.

Proof. It is straightforward to apply the emulation scheme from section 2 to the
linear array.

In the remainder of this section we show that an N -node linear array with more
than logO(1)N worst-case faults cannot perform a static emulation of a fault-free
N -node array with constant slowdown.

4.1. Bounding the load, congestion, and dilation. For the sake of conve-
nience, we repeat the definition of a static emulation here. In a static emulation, a
redundant guest network G′ = (V ′, E′) is embedded in the host H. The redundant
network is defined as follows. For every node v in the guest network G = (V,E), there
is a set of nodes π(v) in V ′. Each set π(v) contains at least one node, and for u 6= v,
π(v) and π(u) are disjoint. We call the nodes in π(v) the instances of v in G′. The
network G′ is called redundant because it may contain several instances of each guest
node. For every node v′ ∈ π(v) and every edge (u, v) in E, the redundant network
contains a directed edge (u′, v′) for some u′ ∈ π(u). The embedding maps nodes of G′

to nonfaulty nodes in the host, and edges of G′ to paths in the host. In this section
we allow the paths to pass through faulty host nodes.

The host emulates T steps of the guest network’s computation as follows. The
embedding of G′ into H maps a set ψ(a) of nodes of G′ to each host node a. Node
a emulates each node v′ ∈ ψ(a) by creating an s-pebble 〈v′, t〉 for 1 ≤ t ≤ T . An
s-pebble 〈v′, t〉 represents the state of node v′ at time t. Initially, each node a of H
contains s-pebbles 〈v′, 0〉 for v′ ∈ ψ(a). Node a can create an s-pebble 〈v′, t〉 only if
it is not faulty, has already created an s-pebble 〈v′, t− 1〉, and has received all of the
c-pebbles of the form [e, t− 1], where e is an edge (u′, v′) into v′. A c-pebble [e, t− 1]
represents the communication that v′ receives from its neighbor u′ in step t−1. After
creating an s-pebble 〈v′, t〉, a nonfaulty node a can create all of the c-pebbles of the
form [g, t] for each edge g out of v′. At each host time step a nonfaulty host node a
can create a single s-pebble (and the corresponding c-pebbles). In this section, and
this section only, we assume that any node, faulty or nonfaulty, can send and receive
one c-pebble on each of its edges at each step. A c-pebble for an edge (u′, v′) is sent
along the path from u′ to v′ that is specified by the embedding. Note that a node u′

may send c-pebbles to a neighbor v′ but receive c-pebbles from a different instance
v′′ of guest node v.

The following three lemmas show that if a static emulation has slowdown s, then
the load and congestion of the embedding of G′ into H cannot exceed s, and the
average dilation of the edges on any cycle in G′ cannot exceed s.

Lemma 4.2. Suppose that there is a value T0 > 0 such that for all T > T0, the
host can perform a static emulation of a T -step guest computation in Ts steps. Then
the maximum load on any host node is at most s.

Proof. Let l be the load of the embedding. Then some node a in H must emulate
l nodes of G′. For each of these nodes, a must create T s-pebbles. Since a can create
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1608 R. J. COLE, B. M. MAGGS, AND R. K. SITARAMAN

at most one s-pebble at each step, the total time is at least lT . Thus, if the slowdown
is s, the load can be at most s.

Lemma 4.3. Suppose that there is a value T0 > 0 such that for all T > T0, the
host can perform a static emulation of a T -step guest computation in Ts steps. Then
the maximum congestion on any host edge is at most s.

Proof. Let c be the congestion of the embedding. Then there is some host edge e
through which c paths pass. For each of these paths, T c-pebbles must pass through
e. Since e can transmit at most one c-pebble at each step, the total time is at least
cT . Thus, if the slowdown is s, the congestion can be at most s.

Lemma 4.4. Suppose that there is a value T0 > 0 such that for all T > T0,
the host can perform a static emulation of a T -step guest computation in at most Ts
steps. Then the average dilation of the edges on any cycle in G′ is at most s.

Proof. Suppose that there is a cycle of length L in G′ with dilation D (the dilation
of a cycle is the sum of the dilations of its edges). Let v′L−1, v

′
L−2, . . . , v

′
0 denote the

nodes on the cycle. For any t, the s-pebble 〈v′0, t〉 cannot be created until a c-pebble
[(v′1, v

′
0), t−1] arrives at the host node that emulates v′0. Since a c-pebble can traverse

at most one host edge at each time step, the time for the c-pebble to travel from the
node that emulates v′1 to the node that emulates v′0 is at least the dilation of the
edge (v′1, v

′
0). The dilation is also a lower bound on the time between the creation of

s-pebbles 〈v′1, t − 1〉 and 〈v′0, t〉. Working our way around the cycle, we see that the
time between the creation of s-pebbles 〈v′0, t − L〉 and 〈v′0, t〉 is at least the dilation
of the cycle, D. Thus, for any T that is a multiple of L, the time between the start
of the emulation and the creation of s-pebble 〈v′0, T 〉 is at least TD/L. For D/L > s,
this pebble is not created until after step Ts, a contradiction.

4.2. Bounding the number of faults.
Theorem 4.5. For any s, there is a pattern of h(s)(logN)2s worst-case faults,

for any h(s) > 26s+4s6s+5, such that it is not possible for an N -node host linear array
with these faults to perform a static emulation of an N -node guest linear array with
slowdown s.

Proof. We begin by placing a layer of g(s) blocks of f(s) consecutive faults in an
N -node array so that the number of nonfaulty nodes in the gap between each pair of
blocks is at most N/g(s). Formulas for g(s) and f(s) will be determined later.

Next we find a block of faults B that some edges of the redundant network must
cross. Because the slowdown is s, and at most N/g(s) host nodes lie between any pair
of blocks for g(s) > s, it is not possible for the entire emulation to take place in one
gap. (If it did, then the load in the gap would be greater than s, which is forbidden
by Lemma 4.2.) Since the emulation uses host nodes in at least two gaps, there must
be some block B such that some, but not all, of the the guest nodes are emulated on
its left, and some, but not all, of the guest nodes are emulated on its right.

Now we find a cycle C in the redundant network G′ that crosses B. Let u be a
node in the guest network G such that every instance of u in G′ on the right side of B
receives its left input from the left of B. If there is no such u, then let u be a node in
the guest network such that every instance of u on the right side of B receives its right
input from the left of B; in the latter case interchange the role of left and right inputs
in what follows. Note that since we have chosen B so that the host does not emulate
the entire guest on the right side of B, there must be such a node u. Select one of the
instances, u′, of u and follow the left input edge into u′ (i.e., the input edge coming
from the node in G′ that corresponds to the left neighbor of u in the guest) back to
where it came from. It must lead across B to some node v′ in G′ on the left side of B.
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RECONFIGURING ARRAYS WITH FAULTS PART I 1609

Now follow the left input edge into v′ to some other node w′ in G′ (node w′ may be
on either side of B). Continue to follow left input edges until reaching a node x′ that
corresponds to the left endpoint of G. Then follow right input edges until reaching
the right endpoint of G, and reverse direction again. Repeat this process until some
edge of G′ is used twice. When this happens, a cycle C is formed. Furthermore, the
cycle C must cross B because it visits every node of G and we know that H does not
emulate all of G on one side of B.

The next thing to show is that on one side of B or the other, cycle C visits at
least l consecutive nodes of the guest network, where l > f(s)/2s, and these nodes
are emulated within distance 2sl of B in the host. If the slowdown of the emulation
is s, then by Lemma 4.4 the dilation of any cycle is at most s times the number of
redundant network nodes on the cycle. (The dilation of a cycle or path is equal to
the sum of the dilations of the edges on the cycle or path.) Let us define a segment
to be a maximal subpath of C that begins with an edge that crosses block B, but
does not cross B again. Note that every segment either consists of a sequence of right
input edges followed by a (possibly empty) sequence of left input edges, or vice versa.
Suppose that cycle C crosses block B a total of 2h times. Then there are 2h segments.
Associate with each segment the dilation of the edges on the segment. Note that the
average ratio of the dilation of a segment to the number of nodes on the segment
must be at most s (since the ratio for the entire cycle C is at most s). Now classify
segments into two types: long and short. A short segment is one containing fewer
than f(s)/s edges. Since every segment has dilation at least f(s) (due to the first
edge on the segment), the ratio of a short segment’s dilation to length (number of
nodes) is more than s. Since the average ratio over all of the segments is at most s,
there must be some long segment whose ratio of dilation to length is at most s. If
this segment has more left input edges than right input edges, then discard the right
input edges and the nodes that they visit. Otherwise, discard the left input edges.
We are left with some set of l ≥ f(s)/2s nodes emulated within distance 2sl of B.
Suppose that there are more left input edges, and let v′1, v

′
2, . . . , v

′
l denote the nodes

that were visited on (say) the right side of B, where v1 is the leftmost node in the
guest network. We will call the 2sl host nodes on the right of B the emulation region.
(Note that in the construction of the cycle, we visited v′l first and v′1 last.)

Now we show that some communication must pass over the emulation region.
Although nodes v1, v2, . . . , vl are consecutive in the guest network, their instances are
not necessarily embedded in the host in consecutive order. Suppose that v′i is the
node embedded the farthest to the right. If i > l/2, then the path in the cycle from
the left side of B to v′l to v′l−1 and on to v′i overlaps all of nodes v′1, v

′
2, . . . , v

′
l/2. On

the other hand, if i ≤ l/2, then the path from v′i to v′i−1 to v′1 and back across to the
left side of B overlaps all of nodes v′l/2+1, v

′
l/2+2, . . . , v

′
l. In either case, we have a set

of l/2 consecutive nodes in the guest network that the host emulates, and some other
edges of G′ overlap their emulation with congestion 1.

We now proceed recursively within the emulation region. One last issue that
must be dealt with is that some of the l/2 nodes that the host is emulating within the
emulation region may receive some of their right inputs from outside the emulation
region. However, since the embedding has congestion at most s (by Lemma 4.3), at
most 2s right inputs can enter the emulation region from outside. Thus, there must
be a set of at least (l/2)/2s = l/4s redundant network nodes that the host emulates
within the emulation region that are consecutive in the guest and receive all of their
inputs from within the emulation region. At this point we have placed g(s) blocks of
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f(s) faults in the network and we have proved that on one side of one of the blocks,
there is an emulation region of size 2sl in which at least l/4s consecutive nodes of
the guest are emulated, for some l ≥ f(s)/2s, and some other edges of G′ cause
congestion 1 in the emulation region. For recursion on sets of l/4s guest nodes, where
l ≥ f(s)/2s, we need f(s) > 8s2.

We are now going to place an additional layer of faults in the network. Because we
do not know where the emulation region is, we will place faults immediately adjacent
to both sides of each of the g(s) blocks of faults in the first layer. Also, because we
do not know how large the emulation region is, we will place the faults in patterns of
size 2, 4, 8, . . . , N on top of each other. (Note that N is the size of the entire array.)
In a pattern of size 2k, we will place g(s) blocks of f(s) consecutive faults at spacings
of 2k/g(s). Thus, in each pattern there are at most g(s)f(s) faults, and there are at
most logN patterns on each side of the blocks in the first layer. The total number of
faults in the second layer is 2g2(s)f(s) logN .

The entire emulation region must lie under some pattern P of faults of size 2k,
where 2k ≤ 4sl. The blocks of faults in this pattern are spaced at a distance of 2k/g(s),
which is at most 4sl/g(s). In this region, at least l/4s guest nodes are emulated. If
the slowdown is at most s, and (l/4s)/(2sl/g(s)) > s, then by Lemma 4.2 it is not
possible for the entire emulation to be performed entirely between two blocks of faults
in this pattern. (Thus, we need g(s) > 8s3.) Arguing as we did for the first layer,
we can show that, for some l′, on one side of one of the blocks of P , there is an
emulation region of size 2sl′ and a set of least l′/4s nodes that are consecutive in
the guest network that receive their inputs from within the emulation region. But
now two units of congestion pass over the new emulation region (possibly in opposite
directions).

A third layer of faults is now placed in the network. As before, a set of patterns of
faults is placed around each block in the second layer. There are 2g(s)2 logN blocks
in the second layer. Thus, there are 4g(s)3(logN)2f(s) faults in the third layer.

By applying 2s+1 layers of faults, we find an emulation region over which at least
s+1 units of congestion (in one direction) pass, which is a contradiction by Lemma 4.3.
The (2s + 1)st layer contains 22sg(s)2s+1(logN)2sf(s) faults. The total number of
faults contained in all the 2s+1 layers is at most twice the number of faults contained
in the (2s + 1)st layer alone, since the number of faults in the ith layer is at least
double the number of faults in the (i− 1)st layer. Thus the total number of faults is
at most 22s+1g(s)2s+1(logN)2sf(s) = h(s) log2sN , where h(s) = 22s+1g(s)2s+1f(s),
g(s) > 8s3, and f(s) > 8s2.

5. Remarks. The scheme described in section 2 for tolerating logkN faults in
an N ×N mesh can be easily generalized to tolerate logkN faults in a d-dimensional
array with side length N for any fixed d > 2. It seems plausible that the techniques
described in section 3 can also be generalized to arrays of higher dimension.
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tolerant graphs, perfect hash functions and disjoint paths, in Proc. 33rd Annual IEEE
Symposium on Foundations of Computer Science, Pittsburgh, PA, 1992, pp. 693–702.

[2] Y. Aumann and M. Ben-Or, Computing with faulty arrays, in Proc. 24th Annual ACM Sym-
posium on the Theory of Computing, Victoria, BC, Canada, 1992, pp. 162–169.

[3] T. Blank, The MasPar MP-1 architecture, in compcon90, IEEE Computer Society Press, Los
Alamitos, CA, 1990, pp. 20–24.

D
ow

nl
oa

de
d 

12
/2

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



RECONFIGURING ARRAYS WITH FAULTS PART I 1611

[4] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, M. Lam, B. Moore,
C. Peterson, J. Pieper, L. Rankin, P.S. Tseng, J. Sutton, J. Urbanski, and J. Webb,
iWarp, an integrated solution to high-speed parallel computing, in Proc. Supercomputing
’88, Orlando, FL, 1988, IEEE Computer Society Press, Washington, DC, pp. 330–339.

[5] J. Bruck, R. Cypher, and C.–T. Ho, Fault-tolerant meshes with small degree, in Proc. 5th
Annual ACM Symposium on Parallel Algorithms and Architectures, Velen, Germany, 1993,
pp. 1–10.

[6] M. R. Fellows, Encoding Graphs in Graphs, Ph.D. thesis, Department of Computer Science,
University of California, San Diego, CA, 1985.

[7] J. W. Greene and A. El Gamal, Configuration of VLSI arrays in the presence of defects, J.
ACM, 31 (1984), pp. 694–717.

[8] C. Kaklamanis, A. R. Karlin, F. T. Leighton, V. Milenkovic, P. Raghavan, S. Rao,
C. Thomborson, and A. Tsantilas, Asymptotically tight bounds for computing with faulty
arrays of processors, in Proc. 31st Annual Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Los Alamitos, CA, 1990, pp. 285–296.

[9] R. Koch, T. Leighton, B. Maggs, S. Rao, and A. Rosenberg, Work-preserving emula-
tions of fixed-connection networks, in Proc. 21st Annual ACM Symposium on Theory of
Computing, Seattle, WA, 1989, pp. 227–240.

[10] R. K. Koeninger, M. Furtney, and M. Walker, A shared MPP from Cray research, Digital
Tech. J., 6 (1994), pp. 8–21.

[11] F. T. Leighton, B. M. Maggs, and S. B. Rao, Packet routing and job-shop scheduling in
O(congestion + dilation) steps, Combinatorica, 14 (1994), pp. 167–180.

[12] T. Leighton and C. E. Leiserson, Wafer-scale integration of systolic arrays, IEEE Trans.
Comput., C–34 (1985), pp. 448–461.

[13] T. Leighton, B. Maggs, and R. Sitaraman, On the fault tolerance of some popular bounded-
degree networks, in Proc. 33rd Annual IEEE Symposium on Foundations of Computer
Science, Pittsburgh, PA, 1992, pp. 542–552.

[14] T. R. Mathies, Percolation theory and computing with faulty arrays of processors, in Proc.
3rd Annual ACM–SIAM Symposium on Discrete Algorithms, Orlando, FL, 1992, SIAM,
Philadelphia, pp. 100–103.

[15] F. Meyer auf der Heide, Efficiency of universal parallel computers, Acta Inform., 19 (1983),
pp. 269–296.

[16] F. Meyer auf der Heide, Efficient simulations among several models of parallel computers,
SIAM J. Comput., 15 (1986), pp. 106–119.

[17] F. Meyer auf der Heide and R. Wanka, Time-optimal simulations of networks by univer-
sal parallel computers, in Proceedings of the 6th Symposium on Theoretical Aspects of
Computer Science, Lecture Notes in Comput. Sci. 349, Springer-Verlag, Heidelberg, 1989,
pp. 120–131.

[18] M. D. Noakes, D. A. Wallach, and W. J. Dally, The J-machine multicomputer: An archi-
tectural evaluation, in Proc. 20th Annual International Symposium on Computer Archi-
tecture, San Diego, CA, 1993, ACM, New York, pp. 224–235.

[19] M. O. Rabin, Efficient dispersal of information for security, load balancing, and fault tolerance,
J. Assoc. Comput. Mach., 36 (1989), pp. 335–348.

[20] P. Raghavan, Robust algorithms for packet routing in a mesh, in Proc. 1st Annual ACM
Symposium on Parallel Algorithms and Architectures, Sante Fe, NM, 1989, pp. 344–350.

[21] E. J. Schwabe, On the computational equivalence of hypercube-derived networks, in Proc. 2nd
Annual ACM Symposium on Parallel Algorithms and Architectures, Crete, Greece, 1990,
pp. 388–397.

[22] H. Tamaki, Efficient self-embedding of butterfly networks with random faults, in Proc. 33rd
Annual IEEE Symposium on Foundations of Computer Science, Pittsburgh, PA, 1992,
pp. 533–541.

[23] H. Tamaki, Robust bounded-degree networks with small diameters, in Proc. 4th Annual ACM
Symposium on Parallel Algorithms and Architectures, San Diego, CA, 1992, pp. 247–256.

[24] H. Tamaki, Construction of the mesh and the torus tolerating a large number of faults, in
Proc. 6th Annual ACM Symposium on Parallel Algorithms and Architectures, Cape May,
NJ, 1994, pp. 268–277.

D
ow

nl
oa

de
d 

12
/2

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


