
USOO701,0598B2 

(12) United States Patent (10) Patent No.: US 7,010,598 B2 
Sitaraman et al. (45) Date of Patent: Mar. 7, 2006 

(54) METHOD AND APPARATUS FOR 6,714.976 B1* 3/2004 Wilson et al. .............. 709/224 
MEASURING STREAM AVAILABILITY, 2001/OO18673 A1 8/2001 Goldband et al. ............ 705/27 
QUALITY AND PERFORMANCE OTHER PUBLICATIONS 

(75) Inventors: Ramesh K. Sitaraman, Cambridge, StreamCheck “Measurement Methodology” and "FAQ". 
MA (US); Reid W. Barton, Arlington, www.streamcheck.com. Jan. 22, 2002. Retrieved from 
MA (US) web.archive.org.* 

“Picture Quality Indicator”, IBM TDB NNRD410114, Jun. 
(73) Assignee: Akamai Technologies, Inc., Cambridge, 1998.* 

MA (US 
(US) * cited by examiner 

(*) Notice: Subject to any disclaimer, the term of this Primary Examiner-Dung C. Dinh 
past liSh used under 35 (74) Attorney, Agent, or Firm-David H. Judson 

(21) Appl. No.: 10/364,753 (57) ABSTRACT 

(22) Filed: Feb. 11, 2003 A Streaming measurement agent designed to experience, 
O O measure, and report on a media Stream as an actual end user 

(65) Prior Publication Data would experience the Stream. Preferably, agent resides trans 
US 2004/O136327 A1 Jul. 15, 2004 parently within a streaming media player itself So that it can 

monitor Stream packet flows within the player as the mea 
Related U.S. Application Data Sured Streams are being played. In an illustrative embodi 

ment, the agent comprises a performance monitoring mod 
(60) Provisional application No. 60/356,076, filed on Feb. ule (PMM), which is software that resides in an interface 

11, 2002. between an existing core module and a renderer of a media 
51) Int. Cl player. The agent PMM intercepts each useful packet as it 
(51) o i5/16 2006.O1 goes from the core to the renderer and, as a result, it is able 

G06F 17/40 s: 6. O to compute quality metricS about the playback. The agent 
52) U.S. C. ( .01) 709/224; 709/231 functions “transparently to the media player by presenting 
(52) rr irrir. s the core with an application programming interface (API) 
(58) Field of clisation starsh, 77,120 2.: that emulates the API that the renderer normally presents to 

, 4 /, s s s the core. Thus, when the core believes it is calling the 
717/131 renderer, it is actually calling the agent PMM, which can 

See application file for complete Search history. then receive all the packets from the core and process them. 
After computing relevant performance metricS using the 

(56) References Cited packets it receives, the agent PMM calls the renderer. A set 
U.S. PATENT DOCUMENTS of performance agents can be managed by a Service provider 

5,732,218 A * 3/1998 Bland et all 709/224 to enable a content provider to determine how a stream is and el al. . . . . . . . . . . . . . . . . 2 - 12 perceived by end users. 
5,958,010 A * 9/1999 Agarwal et al. ............ 709/224 
6,141,686 A * 10/2000 Jackowski et al. .......... 709/224 
6,671,724 B1* 12/2003 Pandya et al. .............. 709/226 9 Claims, 2 Drawing Sheets 

404 

CALLBACK 
FUNCTIONS 

CONTROL 
DATA R2 

PERFORMANCE 
MONITORING MODULE 

(PMM) 

402 
CONTROL 
TEST 

RESULTS 

410 

OG 

    

  

  

  



U.S. Patent Mar. 7, 2006 Sheet 1 of 2 US 7,010,598 B2 

100 FIG. I. 

110 MEDIA 
BROWSER PLAYER 

HARDWARE 

108 

106 

204 

  

  



U.S. Patent Mar. 7, 2006 Sheet 2 of 2 US 7,010,598 B2 

PROVISION 

302 

402 
CONTROL 
TEST 

PERFORMANCE 
MONITORING MODULE 

(PMM) 

CALLBACK FUNCTIONS 410 

CONTROL LOG 
DATAR2 

- 

    

    

  



US 7,010,598 B2 
1 

METHOD AND APPARATUS FOR 
MEASURING STREAM AVAILABILITY, 

QUALITY AND PERFORMANCE 

This case is related to and claims priority from Provi 
sional Application No. 60/356,076, filed Feb. 11, 2002. 

BACKGROUND OF THE INVENTION 

1. Technical Field 
The present invention relates generally to measuring the 

performance of Streaming media delivery. 
2. Description of the Related Art 
Streaming media is a type of Internet content that has the 

important characteristic of being able to be played while Still 
in the process of being downloaded. A client machine can 
play the first packet of the Stream, and decompress the 
Second, while receiving the third. Thus, an end user can Start 
enjoying the multimedia without waiting to the end of 
transmission. Streaming is very useful for delivering media 
because media files tend to be large, particularly as the 
duration of the programming increases. Indeed, for live 
events, the file size, in effect, is infinite. To view a media file 
that is not streamed, users must first download the file to a 
local hard disk-which may take minutes or even hours- and 
then open the file with player software that is compatible 
with the file format. To view streaming media, the user's 
browser opens player software, which buffers the file for a 
few Seconds and then plays the file while Simultaneously 
downloading it. Unlike Software downloads, Streaming 
media files are not stored locally on a user's hard disk. Once 
the bits representing content are used, the player typically 
discards them. 

Streaming media usually relies on proprietary Server and 
client Software. The Server, client, production and encoding 
tools developed by a streaming Software vendor are collec 
tively referred to as a format. Streaming media encoded in 
a particular format must be served by that format's media 
Server and replayed by that format's client. Streaming media 
clients are often called players, and typically they exist as 
plug-ins to Web browsers. The three major Streaming media 
formats in use today are: RealNetworks RealSystem G2, 
Microsoft Windows Media Technologies (“WMT), and 
Apple QuickTime. 
An ever-growing number of content providers, enter 

prises, and content delivery networks utilize and deliver 
Streaming media. As a consequence, it has become important 
to quantify, in a Scientific and measurable way, how well a 
given Stream was delivered, as well as to devise relevant 
metrics that capture the end-user's experience of the Stream. 
Client media playerS have the capability of generating basic 
statistics about the streams they deliver. Unfortunately, the 
correlation of Some of these Statistics with a high quality 
end-user experience is Subjective and thus extremely diffi 
cult to measure effectively. For example, frame rate, a 
commonly used metric reported by media players, may not 
be a robust indicator of Stream quality because players can 
interpolate and insert variable-quality frames into a Stream. 
AS another example, Some media playerS report a bandwidth 
metric that does not accurately indicate whether or not the 
bytes are received in a timely fashion So that they can be 
used for rendering. 

There are Several companies, Such as Keynote, Stream 
Check, and others, that provide partially or completely 
outsourced Streaming monitoring Solutions. In an illustrative 
System, streaming measurement computers (sometimes 
called "agents') connect to URLS and collect relevant sta 

15 

25 

35 

40 

45 

50 

55 

60 

65 

2 
tistics, Such as initial buffer time, packet information, and 
overall Stream quality. These measurement agents are typi 
cally positioned Strategically around the Internet So as to 
accurately represent the experience of an end user connect 
ing to a given site URL. Providers of such outsourced 
performance monitoring Solutions typically provide perfor 
mance data in the form of real-time and historical reports, 
and threshold-based alarms. 
By way of additional background, it is also known in the 

prior art that Streaming performance measurement is Sig 
nificantly harder than web download measurements for 
Several reasons. Unlike web performance, where it Suffices 
to measure object download times, Streams can show deg 
radation in Significantly complex ways that need to be 
quantified and measured. Unlike the HTTP protocol, an open 
protocol, measuring Stream performance involves taking 
into account complex proprietary Streaming protocols, Such 
as RTSP (Real) and MMS (Windows Media). 
One can distinguish three Steps in making Streaming 

media content available to the end-user: the media is cap 
tured and encoded, the media is delivered over the network 
to the client, i.e., the media player of the end-user, and the 
media is rendered by the media player to be viewed by the 
end-user. The process of delivering Streaming media over 
the network can degrade the quality perceived by the end 
user. A primary goal of a content delivery network (or 
“CDN") is to ensure that the media is delivered to a 
requesting end-user with as few distortions as possible from 
its pristine encoded form, thereby maximizing the end-user 
experience of the Stream. The root causes of degradation in 
Stream quality are problems that may occur in the underlying 
network that transports the media from the server to the 
client. For example, network connectivity may go down, 
which limits the ability of the client to talk to the server. The 
effective bandwidth available between the server and client 
may be greatly reduced. The network may lose packets Sent 
from the server to the client. More subtly, the network may 
cause packets to be re-ordered in route to the client. Or, the 
packets may be delivered by the network to the client late, 
in which case the packets will not be useful in the Stream 
playback. 

It is instructive to examine how the client and the server 
react to these network problems in a manner that degrades 
Stream quality. AS noted above, typically the client and the 
Server communicate using a proprietary protocol (Such as 
Real's RTSP or Windows Media's MMS) to control the 
manner in which data is Streamed from the Server to the 
client. The client-Server protocol is typically designed to 
overcome moderate amounts of network degradation. The 
player typically bufferS Several Seconds of data ahead of 
what is currently being rendered. This buffering helps the 
player Smooth out any variations in the rate at which packets 
are being received, including out-of-order delivery of pack 
ets. Further, buffering provides an opportunity for the player 
to tolerate a certain amount of packet loSS, because lost 
packets can be re-requested from the Server and received in 
time for playback. Consequently, a moderate degradation in 
the network is effectively shielded from the user. 
AS the network degrades further, however, one might See 

prolonged periods of reduction in the available bandwidth, 
or a significant amount of packets lost, or a significant 
number of packets arriving late. The Server typically reacts 
to Such a situation by Sending less than the full encoded 
bandwidth to the client, resulting in a thinned playback. The 
Server achieves this thinning by Sending only the “more 
important bytes and throwing away the rest. For example, 
the Server may send only key Video frames and audio and not 



US 7,010,598 B2 
3 

Send the rest of the content. In the extreme case, thinning 
results in the so-called "slide-show' effect, where isolated 
frames are displayed without interpolation. If the Stream is 
encoded at multiple bit rates, thinning is effected more 
Seamlessly, e.g., by the Server Switching to a replica of the 
stream encoded at a lower bit rate. Typically, the bandwidth 
streamed from the server to the client is controlled by a 
feedback loop, where the client continually estimates the 
available bandwidth and reports it to the server, and the 
server attempts to fit the stream to the available bandwidth. 
An even more drastic degradation in the network, e.g., a 
rapid reduction in the available bandwidth, may deplete the 
player's buffer of data. When the player cannot continue the 
playback, it freezes to refill its buffer before resuming again, 
resulting in an interrupted playback. The player is typically 
designed to rebuffer only under extreme network conditions. 

There is a need in the art to provide for improved methods 
for measuring Stream quality and performance. The present 
invention addresses this need. 

BRIEF SUMMARY OF THE INVENTION 

An object of the present invention is to provide a Stream 
ing measurement agent that is designed to experience, 
measure, and report on a media Stream as an actual end user 
would experience the Stream. Preferably, this is accom 
plished by having the agent reside transparently within a 
media player itself So that the agent can monitor Stream 
packet flows within the player as the measured Streams are 
being played. In an illustrative embodiment, the agent 
comprises a performance monitoring module (PMM), which 
is Software that preferably resides in an interface between an 
existing core module and a rendering module (a "renderer') 
of a media player. The agent PMM preferably intercepts 
each useful packet as it goes from the core to the rendering 
module and, as a result, the agent is able to compute quality 
metrics about the rendering in an highly accurate fashion. 
The agent functions “transparently to the media player by 
presenting the core with an application programming inter 
face (API) that emulates the API the renderer normally 
presents to the core. Thus, when the core believes it is calling 
the renderer, the core is actually calling the agent PMM, 
which can then receive all the packets from the core and 
process them. After computing the relevant performance 
metrics using the packets received, the agent PMM calls the 
renderer, and from the perspective of the renderer the agent 
plays the same role as the core. 

According to a feature of the invention, the agent may 
compute one or more quality or performance metricS by 
intercepting useful packets that flow inside the media player. 
Generally, a given Statistic is generated from the intercepted 
useful packet. AS used herein, a given Statistic is Some 
arbitrary function that can be computed from the Sequence 
of useful packets that are intercepted. Preferably, a useful 
packet is one that has a given Set of properties, e.g., it has not 
been thinned by a Streaming Server during delivery, it was 
not lost in an unrecoverable manner during delivery, and it 
arrived at the player in time to be useful for rendering. In one 
particular embodiment, the agent uses these packets to 
compute an actual playback bandwidth, an accurate measure 
of Stream quality as perceived by an end user. Other packet 
related metricS and bandwidth-related metrics are also 
obtained by monitoring the packet flow through the embed 
ded performance monitoring module. Additionally, the agent 
may use native media player functions (e.g., a callback 

15 

25 

35 

40 

45 

50 

55 

60 

65 

4 
function) to obtain other useful information Such as Stream 
Startup time, interruptions, components of Startup time, and 
the like. 

Monitoring the actual packet Stream within the media 
player itself according to the present invention provides a 
novel way to evaluate Stream availability, quality and per 
formance. Because all, or Substantially all, useful packets 
flow through the PMM, the present invention provides an 
enhanced view into the effectiveness of the stream delivery 
process as compared to prior art techniques. The packet flow 
through the PMM enables the generation of important 
performance metrics, Such as actual playback bandwidth, 
and these metricS can be Supplemented with metrics gener 
ated through other means, e.g., using player callback func 
tions. 

According to another aspect of the present invention, the 
above-described agent technology is deployed in a widely 
distributed manner to provide Stream quality and perfor 
mance measurements from a plurality of locations. AS 
compared to prior art techniques, data collected from these 
agents can more accurately report on how Successfully a 
Stream is being delivered from a given Server to a set of 
media players. 

According to a further aspect of the present invention, a 
managed Stream quality and performance measurement Ser 
vice is provided by a service provider on behalf of partic 
pating content providers, e.g., entities that use a content 
delivery network (CDN) to facilitate streaming media deliv 
ery. The Service utilizes a set of performance agents Such as 
described above that are deployed in a diverse set of 
networks and geographic locations to measure performance 
over a wide variety of conditions. The service provider may 
deploy the measurement agents in locations that are other 
wise free of Streaming Servers, or co-located with Such 
SCWCS. 

The foregoing has outlined Some of the more pertinent 
features of the present invention. These features should be 
construed to be merely illustrative. Many other beneficial 
results can be attained by applying the disclosed invention in 
a different manner or by modifying the invention as will be 
described. Accordingly, other features and a fuller under 
Standing of the invention may be had by referring to the 
following Detailed Description of the Preferred Embodi 
ment. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a highly simplified block diagram of a streaming 
media delivery mechanism; 

FIG. 2 is a simplified diagram of a streaming media player 
of the prior art; 

FIG. 3 is a block diagram of a stream measurement 
System that includes a set of monitoring agents that facilitate 
a managed Stream quality and performance measurement 
Service; and 

FIG. 4 is a block diagram of the inventive agent mecha 
S. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

FIG. 1 illustrates a conventional streaming delivery 
mechanism wherein a client machine 100 connects to a 
streaming media server 102 via a network 104, such as the 
Internet, an intranet, a content delivery network (CDN), or 
the like. The client machine is typically a computer having 
commodity hardware 106, operating system software 108, a 



US 7,010,598 B2 
S 

Web browser 110, and a streaming media player 112. In a 
typical operation, an end user launches his or her browser to 
a Uniform Resource Locator (URL) identifying the media 
Stream desired. Once the client is connected to the media 
server 102, the server delivers the stream over the network 
to the client browser, in which it is rendered by the media 
player. As illustrated in FIG. 2, streaming media player 200 
typically includes two (2) primary components: a core 202, 
and a renderer 204. It should be noted that FIG. 2 is meant 
to provide a simplified view to illustrate the known player 
technology. In reality, an actual media player, Such as Real 
and WMS, would contain several Sub-modules with more 
complex Structure implementing the core and renderer func 
tionalities described below. Nevertheless, it is straightfor 
ward to map the ideas outlined here to specific media players 
to build Specific agents for each of the well-known formats 
including Real, WMS and Quicktime. Of course, the inven 
tive agent technology is not limited for use with these known 
formats, as the methods and techniques described below 
may be used with any Stream packet rendering device. 

The core 202 is responsible for transporting data received 
from the media server. Typically, the core 202 establishes a 
control channel to exchange control information with the 
media Server. Such information may include requests from 
the player to describe, play, pause, Stop the Stream, feedback 
from the player on the perceived bandwidth, packet loSS and 
other metrics, information from the Server on the media that 
is being requested, and So forth. AS noted above, the control 
protocol between the core and the media Server is typically 
proprietary, for example, RTSP for Real and MMS for 
Windows Media. In addition to the control channel, the core 
202 typically establishes a data channel on which the actual 
media stream flows from the server to the client. The media 
Stream is a Series of packets containing audio, video, and text 
information. The packets must be received in a timely 
fashion for the Stream to be useful. In particular, each packet 
typically has a timestamp denoting when it must be ren 
dered, and the core 202 transfers over (to the renderer 204 
to be rendered) those packets that arrive in a timely fashion. 
The core 202 can receive packets from the server several 
Seconds ahead of the time that they must be rendered, and 
the packets arriving ahead of time are stored in a buffer (not 
shown). This provides an opportunity for the core 202 to 
re-request missing packets from the Server and to recover 
them in time for Such packets to be rendered appropriately. 
The renderer 204 receives packets from the core 202 and 
renders the data contained in the packet. The renderer 
contains Several functional units, one for each type of media, 
or there may be a separate renderer for each type. Audio 
information is rendered through the Sound device on the 
client's computer, whereas Video and text information are 
rendered on the computer display Screen. 

The agent is a piece of Software capable of playing 
Streams, measuring the availability and quality of the 
Streams, and reporting this information. In a representative 
embodiment, the agent is independent of the core or the 
renderer, although this is not a requirement of the invention. 
In an appropriate case, the functionality of the agent may be 
native to the core, or to the renderer. A given media player 
vendor thus may provide the media player with the agent 
functionality built-in. 
Agiven media player includes an agent, and a Set of media 

players with embedded agents may comprise a stream 
monitoring System as illustrated in FIG. 3. In this example, 
the stream monitoring system 300 includes, without limita 
tion, a front-end 302 where users can Setup Stream tests and 
push these tests out to a set of agents 304a–n deployed in 

5 

15 

25 

35 

40 

45 

50 

55 

60 

65 

6 
diverse network and geographic locations, and a back-end 
306 that stores the performance data reported by the agents 
and provides analysis tools 308 and a convenient user 
interface (UI) 310 for viewing the test results. The one or 
more computers that comprise front-end 302 and back-end 
306 preferably are accessed via a Secure channel, although 
this is not a limitation. A convenient way of implementing 
these Sub-Systems is via an intranet or extranet application, 
e.g., using a Web browser over a Secure (SSL) connection. 
In one particular embodiment, a Service provider uses the 
front-end 302 to provision the tests, and the service provider 
and its customers use the back-end to view or evaluate the 
test results. Preferably, the agents themselves schedule the 
tests, perform the tests, and report back on the results. 
As seen in FIG. 4, an illustrative agent 400 has two 

primary components: an agent Shell 402 and the agent 
nucleus 404, each of which is now described at a functional 
level. The agent shell 402 as illustrated is logically distinct 
from from the agent nucleuS 404. Agent nucleus includes a 
performance monitoring module (PMM) 408 which resides 
across the interface between a core 405 and a renderer 406 
and monitors the packet flow. In this embodiment, the agent 
nucleus 404 includes the core and the renderer (which, 
typically, are elements that are provided by the third party 
media player vendor), although this is not a requirement. 
Alternatively, the agent nucleus may comprise just the PMM 
and the core. Generally, the agent shell 402 provides control 
functions for the agent nucleus (and, in particular, the PMM) 
and initiates one or more tests, and the agent Shell 402 
receives the test results. In an illustrative embodiment, the 
agent shell includes code that provides Several functions, 
such as determining a configuration of tests that need to be 
carried out, Scheduling the tests, and reporting back on the 
Stream quality, e.g., to the back-end of the Stream monitoring 
System. The Step of reading the test configuration may be 
accomplished by reading a configuration file present in the 
local machine, or by querying a real-time communication 
mechanism. In a representative embodiment, the configura 
tion file is pushed from the front-end System to the agent 
shell, or it is pulled on-demand by the agent Shell. 

Typically, a configuration of tests consists of Several test 
Suites, where each test Suite can be performed independently 
and in parallel. In a representative embodiment, each test 
Suite has a start time when the agent needs to Start testing the 
test Suite, an end time when the agent needs to Stop testing 
the test Suite, a priority that provides Scheduling information 
on how important the test Suite is, and a frequency which 
determines how often the testing of the test Suite is repeated. 
Preferably, each test Suite is a Series of tests that are executed 
in a Sequence one after another. Preferably, each test is 
specified by the URL of the stream that needs to be tested, 
max Startup time, which is the maximum amount of time the 
agent will wait for the Stream to Start the playback before 
declaring failure, max Stream time, which is the amount of 
time in the Stream that the agent plays the Stream, and max 
play time, which is the maximum amount of actual clock 
time the agent will attempt to play the Stream. Note the 
Subtle distinction between stream time which is defined 
internal to the Stream that is being measured and play time, 
which is actual clock time; for example, the agent could play 
the Stream till it reaches the 3 minute point in the clip, i.e., 
elapsed Stream time is 3 minutes, but it could actually take 
4 minutes of clock time to reach that point due to rebuffering 
events when the play is frozen, i.e., elapsed play time is 4 
minutes. Preferably, the agent stops playing the clip when 
either max Stream time or max play time is reached, which 
ever is reached the earliest. 



US 7,010,598 B2 
7 

As noted above, the agent shell 402 also performs sched 
uling of the tests. The shell schedules the tests in the test 
Suites per the Specifications, and it hands tests in the appro 
priate Sequence to the agent nucleuS 404 for testing. The 
agent nucleuS 404 is responsible for conducting the tests and 
reporting back the measured Stream quality metrics back to 
the agent shell. In particular, the shell logs the Stream quality 
metrics into a log file 410 that, for example, may contain one 
log line per test. In one embodiment, the logs are transported 
to the back-end System, e.g., through log mailing. Alter 
nately, the Stream quality data can also be reported back by 
a mechanism that is more real-time than log mailing, 
namely, a distributed query mechanism. 

The agent nucleus 404 takes in the URL that needs to be 
tested, plays the stream (e.g., through at least the core), 
measures one or more performance metrics, and reports 
these metrics back to the agent shell 402. As illustrated in 
FIG. 4, the nucleus incorporates within it (or is otherwise 
associated with) a media player (e.g., a Windows Media 
player, a Real player, a QuickTime player) that is used to 
play the Streams. In particular, the media player is typically 
a black-box, as it is a proprietary piece of Software. Of 
course, it is known that "looking inside' a black-box to 
extract performance information is a challenging task. 
According to the present invention, however, the agent 
nucleuS 404 overcomes these deficiencies by implementing 
an interface-between the core and the renderer-that is 
used to monitor Stream performance. AS noted above and as 
shown in FIG. 4, the agent nucleus contains a performance 
monitoring module (PMM) 408 that resides within (or 
acroSs) this interface. AS will be seen, the quality of the 
stream that is rendered depends on the useful packets handed 
over by the core to the renderer. AS used herein, useful 
packets are considered to be those packets that are not 
thinned out by the Server, that were not lost in an unrecov 
erable fashion as they were transmitted over the network 
from the server to client, and that arrived in time to be useful 
for the rendering. Preferably, the performance monitoring 
module 408 intercepts all or substantially all the useful 
packets as the packets go from the core to the renderer, and 
it is able to compute quality metrics about the playback. 

Regardless of the media player architecture, the perfor 
mance monitoring module (PMM) should be designed to 
“behave” like a renderer to the core to effectively intercept 
the useful packets. In particular, the PMM is designed to 
provide the same or Substantially the same application 
programming interface (API) to the core as the renderer. 
Thus, when the core thinks that it is calling the renderer, it 
is really calling a wrapper-renderer 410 that is a part of the 
PMM. The wrapper-renderer 410 can then receive all the 
packets from the core. After computing the relevant perfor 
mance metrics using the packets that it receives, the PMM 
can then complete the packet transfer by calling the actual 
renderer. From the perspective of the renderer, the PMM 
plays the same role as the core. 

According to an illustrative embodiment, the PMM com 
putes a one or more performance metrics by intercepting 
useful packets that flow inside the media player. An illus 
trative metric is actual playback bandwidth, which measures 
the bits/sec that arrive without loSS and in time for rendering. 
Conventional media players do not provide this metric. AS 
shown in FIG. 4, the module preferably also uses one or 
more callback functions provided by the media player to 
compute additional metrics. 
A description of how PMM computes the various perfor 

mance metrics follows. In particular, the following is a 
generic description of the performance metric computation 

15 

25 

35 

40 

45 

50 

55 

60 

65 

8 
Strategy together with Specific details for implementing the 
invention with representative media playerS provided by 
Real and WMS. To compute the metrics, the PMM may rely 
on a media player software development kit (SDK) for the 
particular Streaming format. Thus, for example, a first 
embodiment of the agent (for use with a Real media player) 
relies on the RealSystem SDK. A second embodiment of the 
agent (for use with a WMS media player) uses the Windows 
Media Format SDK. In the following discussion, familarity 
with the Real and Windows Media player operations, as well 
as the associated SDKS, is presumed. 
A Framework for Measuring Stream Quality 
The following desribes a stream quality measurement 

methodology that may be implemented using the agent 
technology. AS noted above, the agent provides a detailed 
inside view of the stream because it preferably sits between 
the core and the renderer of the media player. With this view, 
Several first level questions may be asked about each play 
back that form the basis for the Stream quality metrics: was 
the user able to connect to the Server and play the Stream, 
how long did the user have to wait before the stream 
playback began, and what fraction of the media was deliv 
ered effectively from the server to the player so as to be 
uSable, and what fraction was thinned out at Server, lost in 
transit, or arrived late So as to be unusable, were there any 
interruptions, i.e., rebuffers, during the playback. These first 
level metrics, taken together (which is not a requirement), 
provide a clear picture of how the Stream played back. In 
addition, use of the agent facilitates measurement of Several 
second level or “auxiliary' metrics that provide additional 
information about the stream quality. These will be defined 
below. 

The First Level Metrics: 
The first level metrics may include the following: 
Failure Rate: When the user attempts to play a stream, the 

Stream may not start-up for any number of reasons. The 
player may be unable to reach the Server because a 
DNS name lookup fails, the server is down, the server 
is too overloaded to respond, or the network connec 
tivity between the client and the server is down. Even 
if the client is able to establish connectivity with the 
Server, the Stream may not startup because the Server 
cannot access the media, or the Server is unable to get 
enough data to the client in a timely fashion for the 
playback to start. Failure rate captures, preferably as a 
percentage, the fraction of times the user is unable to 
Successfully play the Stream. 

Startup Time: ASSuming the Stream playback does not 
fail, the agent measures Startup time, which is the 
amount of time the user has to wait for the Stream to 
Start the playback. 

Thinning and LOSS: After the Stream Starts to play, the 
most common performance degradation is that the 
client in unable to receive the media in a timely fashion 
from the server. Typically, there are three modes of in 
which information may be lost: (a) the Server may 
“thin' the information out and never send it to the 
client; (b) the server may send data, but the data is lost 
en-route and cannot be recovered; (c) the server may 
Send the data, but the data might arrive too late to be 
used in the playback. A metric that measures these 
forms of degradation is referred to herein as actual 
playback bandwidth, which is a rate at which useful 
data is received by the client, i.e., data that arrives in a 
timely fashion So as to be used in the playback. Ideal 
playback bandwidth is the playback bandwidth mea 



US 7,010,598 B2 

Sured at the client when the media is played under ideal 
conditions without degradation. Actual playback band 
width is typically compared with the ideal playback 
bandwidth to understand how much of the media was 
thinned, lost, late or otherwise unusable by the client. 
An actual playback bandwidth value that is signifi 
cantly Smaller than the ideal value indicates visible 
distortions in playback, including slide-shows where 
only a Subset of the frames are rendered on the Screen. 

Interruptions: A different form of degradation occurs 
when the player is unable to continue with the play 
back, e.g., because its buffer is empty. In Such case, the 
player pauses the playback and waits for more data to 
arrive. Two important metrics to measure interruptions 
are rebuffers-per-minute, which is the average number 
incidents of rebuffering in a minute of playback, and 
rebuffer-time-per-minute, which is the average time 
spent rebuffering in a minute of playback. 

The Auxiliary Metrics 
Besides the first level metrics, there are other metrics of 

interest that provide more detailed information on the qual 
ity of the stream. They include one or more of the following: 

Other Failure Metrics: Besides the overall failure rate, 
more specific failure rates that detail where and how the 
failure happened may be of interest. The Specific met 
rics of interest are: 

DNS Failure Rate: failed at the dins lookup to locate a 
SCWC. 

Connect Failure Rate: failed at the connect Stage, 
example, the requested media was not present. 

Buffer Failure Rate: failed to startup because initial buff 
ering could not be completed, for example, data not 
flowing at a Sufficient rate from Server to client. 

Stream Disconnect Rate: failed in the middle of playback, 
example, connectivity lost with the Server before play 
back could complete. 

Components of Startup Time: The three metrics below 
add up to the Startup Time metric. 

DNS Lookup Time: The time it takes for the client to 
lookup the domain name in the URL and obtain an IP 
address of the media Server Serving the Stream. 

Connect Time: The time it takes for the client to complete 
the protocol handshake with the Server and obtain a 
description of the media. 

Initial Buffering Time: The time it takes for the client to 
receive Sufficient data from the server to start the 
playback. 

Packet Metrics: While the bandwidth metrics, such as 
playback bandwidth, focus on the rate at which bytes 
are delivered to the client, the packet metricS focus on 
the rate at which packets are delivered to the client. 
Bandwidth metrics are generally more robust, because 
they reflect the information content delivered to the 
client more accurately. Moreover, packets can be of 
varying Size containing varying amounts of informa 
tion, which makes packet count less robust. Packet 
counts can also vary from playback to playback for the 
Same media for reasons other than quality, depending 
on how packetization is done at the Server. Neverthe 
less, packet metrics typically are of Some interest as a 
quality measure. 

Useful Packet Rate: This is the rate at which useful 
packets are delivered to the client. It should be noted a 
packet typically is useful only if the packet arrived at 
the client in a timely fashion, without being thinned by 

15 

25 

35 

40 

45 

50 

55 

60 

65 

10 
the Server, or lost in an unrecoverable fashion in transit 
to the client, or arriving too late to be used by the 
playback. 

Normal Packet Rate: Of the packets that are received by 
the client core, Some packets arrive without the client 
having to re-request them from the Server. These pack 
ets constitute the normal packet rate. 

Recovered Packet Rate: Of the packets that are delivered 
to the client, Some packets are lost or arrive out-of 
order and are recovered by the client. These packets 
constitute the recovered packet rate. 

Unrecoverable Packet Rate: These packets were sent by 
the server but were lost and could never be recovered 
by the client. 

A fundamental issue with the three preceding packet 
metricS is that they do not capture what was never Sent 
by the Server, or those packets that arrive too late to be 
useful. Also, these metrics are measured at the level of 
the client application. There may be bad Stream quality 
yet there are no unrecoverable (i.e., lost) packets as 
perceived by the client. This is typically the case when 
streaming data over TCP, because TCP provides an 
abstraction (of no loSS) to the streaming client that sits 
on top of it. The metrics are more meaningful when 
streaming over UDP, where the client actually sees the 
loSS happening on the network. Nevertheless, the 
notion of playback bandwidth as described above is a 
much more robust and meaningful measure of thinning 
and information loSS. 

Other Bandwidth Metrics. Besides actual and ideal play 
back bandwidths, three other bandwidths may also be 
of interest, as described below. 

Maximum and Minimum Encoded Bandwidth: For 
Single-bitrate media, there is only one encoding, and 
the maximum and minimum encoded bandwidths both 
equal the encoded bitrate of the media. In the case of 
multi-bitrate media, there are multiple interleaved 
encodings, each encoding at a different bitrate. In this 
case, when the network degrades, the Server may Step 
down from a higher-bitrate encoding to a lower-bitrate 
encoding, effectively thinning the media. This Step 
down is captured by recording both the maximum and 
minimum bandwidth of the encodings used in the 
playback. 

Network Bandwidth. This is the bandwidth of the data 
received by the player from the server. Note that while 
network bandwidth provides Some idea of Stream per 
formance, it is not an accurate measure. Network 
bandwidth counts duplicate and retransmitted packets 
multiply, though they do not contribute to greater 
Streaming performance and, in fact, are Signs of net 
work degradation. A typical Situation is when packets 
come out-of-order, the client asks for a retransmit, and 
receives two copies of the same packet, thereby 
increasing the network bandwidth with no increase in 
stream quality. Further, network bandwidth does not 
distinguish between bytes that are useful and bytes that 
are not. A typical Situation is the Server Sending bytes 
to the client too late to be useful in the playback; these 
bytes are included in the network bandwidth, but they 
do not contribute to increased Stream quality. Finally, 
the server bursts an initial portion of the data to the 
client before Sending a steady Stream at the appropriate 
bitrate for the stream. The initial burst increases the 
network bandwidth initially above the encoded rate, 
which can hide any deterioration in the bandwidth and 
drop in Stream quality later in the test. These problems 



US 7,010,598 B2 
11 

are avoided by measuring actual playback bandwidth, 
which indicates what bandwidth was used in the ren 
dering. Still, network bandwidth provides general 
information and is worth retaining as an auxiliary 

ent AdviceSink callbacks as described above. The con 
nect time is the time between calls to OnContacting() 

12 
and On Buffering(), and the initial buffering time is the 
time between calls to On Buffering() and OnPosLen 
gth(). The startup time is the time from the beginning 
of the test (including DNS lookup time) to the first call 

metric. 5 of OnPosLength() 
Details for WMS. The time spent in each of the contactin 

How to Measure the First Level Metrics and buffering phases is Rear using the WNSE 
Failure Rate: The PMM preferably uses callback func- tusCallback interface as described above. The connec 

tions to record the Stage at which the failure happened, tion time is the time between the WMT CONNECT 
i.e., during a DNS lookup, during the connect phase, ING and WMT BUFFERING START events, and the 
during the initial buffer phase, or during playback. initial buffering time is the time between the WMT 
Preferably, an error code corresponding to the different BUFFERING START and WMT STARTED events. 
failure modes is produced. In addition, any error code The startup time is the time from the be ginning of the 
produced by the media player itself is recorded. The test (including DNS lookup time) to the first call of 
CO code combinations are then analyzed to produce 15 WMT STARTED. 
the failure rate. Thinningand Loss: As noted above, the PMM preferably 

Details for Real: When an error occurs, two error codes computes actual playback bandwidth by intercepting 
are reported, "error" and "real error". The "error" field and examining the useful packets that are Sent from the 
specifies either the particular error type, in the event of core to the renderer. A total useful bytes delivered B is 
a "synchronous" error in the agent code, such as a o computed by adding the bytes of the useful packets. A 
timeout or DNS lookup failure, or that an "asynchro- Stream time T is computed using a callback function to 
nous" error occurred in the RealSystem SDK code. For determine the amount of the clip that was Successfully 
Synchronous errors, the “real error field is ignored. played back at the end of the test. Actual playback 
Failures reported by the RealSystem SDK are captured bandwidth is computed as B/T. Ideal playback band 
by implementing the ErrorOccurred() method of the as width is the actual playback bandwidth when the media 
IRMAErrorSink interface; the error code passed to this is Streamed under ideal conditions without degradation. 
method is stored in the "real error" field. The “error' This quantity can be computed in one of two ways. For 
field describes the Stage in which the failure happened. live Streams, ideal playback bandwidth can be com 
Once the Real connection has been opened, the stage is puted as a function of the encoded bandwidth of the 
determined by registering an IRMAClientAdviceSink so media with Some adjustments to the fact that the ideal 
interface and implementing the On Buffering(), OnPos- playback bandwidth of an ongoing live Stream will 
Length(), and OnStop.() callbacks. Specifically, the show some variations over time. For on-demand 
contacting phase begins as soon as the connection is Streams, ideal playback bandwidth can be computed 
opened; the buffering phase begins when the OnBuf- with 100% accuracy by calibrating the media, i.e., by 
fering() callback is invoked; and the playing phase is measuring the actual playback bandwidth when the 
begins when the OnPosLength() callback is invoked media is streamed under ideal network conditions with 
with a positive ulposition argument. out degradation. In practice, this calibration Step is not 

Details for Windows Media: When an error occurs, two fully necessary; using the largest observed value of 
error codes are reported by the agent, "error” and actual playback bandwidth over Several dozen tests 
“wms error”. The "error” field specifies either the 40 Works well. Comparing the actual playback bandwidth 
particular error type, in the event of a Synchronous error with the ideal playback bandwidth provides a good 
in the agent code Such as a timeout or DNS lookup notion of how much thinning and loSS occurred. 
failure, or that an "asynchronous error occurred in the Details for Real. The manner in which PMM intercepts 
Windows Media SDK code. For errors in the agent useful packets flowing from the core to the renderer is 
code, the “wms error field is ignored. Failures 45 as follows. For each renderer plugin included with the 
reported by the Windows Media SDK are captured by RealPlayer application, a wrapper-renderer that con 
handling the WMT ERROR status value in the OnSta- tains the name of the original plugin is provided. When 
tus() method of the IWMStatusCallback interface; the the wrapper-renderer is loaded, it opens the original 
error code passed to this method is Stored in the plugin as a dynamic library and forwards incoming 
“wms error” field. The "error” field also describes the so method calls to the original renderer. Several methods 
stage in which the failure happened. Once the WMS have additional code for computing the metrics. The 
connection has been opened, the Stage is determined by methods relevant to playback bandwidth measurement 
registering an IWMStatusCallback interface and imple- are OnPacket(), which is called when the RealPlayer 
menting the OnStatus( ) callback. Specifically, the core Sends a packet of data to the renderer, and 
contacting phase begins on a WMT CONNECTING 55 OnTimeSync(), which asks the renderer to update its 
event; the buffering phase begins on a WMT- current time. The way packets ate counted differs 
BUFFERING START event; and the playing phase slightly for live and on-demand Streams, but the basic 

begins on a WMT STARTED event. approach is preferably the Same, i.e., count packets 
Startup Time. The performance monitor Starts a clock at used by the renderer for a given Segment of playback. 

the beginning of the test and queries the State of the 60 For on-demand Streams, the playback Segment is 
media player, preferably using player callback func- known in advance (time 0 to time MAX STREAM 
tions. When the media player transitions into the play- TIME), so packets with timestamp less than MAX 
State, the time is noted as the Startup time. STREAM TIME are counted as useful. For live 

Details for Real. The time spent in each of the contacting Streams, the beginning of the playback Segment is not 
and buffering phases is measured using the IRMACli- 65 time 0, So this approach will not work. Instead, packets 

are queued as they are received, and when the OnTime 
Sync() method is called with a time t, all packets with 



US 7,010,598 B2 
13 

time less than t are counted as useful and removed from 
the queue. (The type of the stream is determined by the 
IsLive() method, a method of the IRMAStreamSource 
of the IRMAStream passed to StartStream()). 

Details for WMS. The PMM does not require wrapper 
renderers to obtain the useful packets for WMS. The 
compressed data packets are obtained by implementing 
the OnStreamSample() method of the IWMReader 
Callback Advanced interface. A packet is included if its 
timestamp is less than MAX STREAM TIME. 

Interruptions. The number of rebuffer events and the 
duration of each rebuffer event during the playback is 
recorded by the PMM by querying the state of the 
media player using callback functions. Further, the play 
time of the clip, which is the total time the playback 
took, is recorded. The play time is different from Stream 
time when there are rebuffers. The rebuffers-per-minute 
metric is simply the number of rebuffer events divided 
by the play time in minutes. The rebuffer-time-per 
minute is simply the total duration of all the rebuffer 
events divided by the play time. 

Details for Real. Rebuffering time is measured between 
calls to the On Buffering() and OnPosLength() call 
backs of the IRMAClient AdviceSink interface. The 
Stream time is measured by the last time passed to the 
OnPosLength() callback, and the play time is mea 
Sured as actual clock time since the first OnPosLength.( 
) call. 

Details for WMS. Rebuffering time is measured between 
the WMT BUFFERING START and WMT 
BUFFERING STOP events in the IWMStatusCall 

back: OnStatus() method. The stream time is obtained 
from the IWMReaderStreamClock::GetTime( ) 
method, and the play time is measured as actual clock 
time since the first WMT STARTED event. 

How to measure the Auxiliary Metrics 
Other Failure Rates: The DNS failure rate, connect failure 

rate, buffer failure rate, and the Stream disconnect rate 
can all be computed error codes output by the agent 
which determine both the cause of failure and the state 
of the playback when the failure occurred. 

Components of Startup time: To measure DNS lookup 
time, the agent performs the DNS lookup of the server 
name itself using gethostby name(), and then it passes 
the resulting IP address into the player core as part of 
the URL. This also allows the agent to report the exact 
IP address of the server from which the test stream is 
played. The other components of the Startup time are 
measured using callback functions as outlined above. 

Packet Metrics. For the most part, these metrics are 
obtained using a callback to the player Statistics. The 
useful packets metric is an exception, which is com 
puted directly by the PMM intercepting useful packets. 

Other Bandwidth Metrics. These metrics are also com 
puted using callbacks to the player Statistics. 

AS noted above, the Streaming agent may be implemented 
as a Standalone device, or a set of Such agents may be 
implemented, preferably in a distributed manner, to enable 
a content or other Service provider to determine Stream 
quality and performance from a plurality of different loca 
tions. In Such case, an agent is implemented at each Such 
location, and the distribed agents are controlled to each 
request a given Stream. AS the Streams are being delivered 
from one or more media Servers to media players that 

15 

25 

35 

40 

45 

50 

55 

60 

14 
include the embedded agent Software, data is collected. 
Periodically, that data is transferred from the agents to a 
central management location, where it is processed into 
reports or otherwise made available for viewing (e.g., via a 
Secure portal), for downloading, or for other analysis. In one 
particular embodiment, the agents comprise part of a content 
delivery network (CDN) and are used to enable a CDN 
service provider (or CDN customers) to determine stream 
quality and performance. AS is well-known, a CDN is a 
collection of content Servers and associated control mecha 
nisms that offload work from Web site origin servers by 
delivering content on their behalf to end users. A well 
managed CDN achieves this goal by Serving Streaming 
media, or Some or all of the contents of a Site’s Web pages, 
thereby reducing the customer's costs while enhancing an 
end user's browsing experience from the site. In operation, 
the CDN typically uses a request routing mechanism to 
locate a CDN content server close to the client to serve each 
request directed to the CDN, where the notion of “close” is 
based, in part, on evaluating results of network traffic tests. 
A CDN may be used to provide live or on-demand stream 
ing. 
The invention claimed is: 
1. Apparatus, comprising: 
a COre., 
a renderer, 
a first Set of code located intermediate the core and the 

renderer for generating a first metric as a stream of 
useful data packets are passed between the core and the 
renderer, wherein the first metric is a Statistic computed 
from the intercepted useful data packets, and 

wherein each useful data packet has a given set of 
properties, wherein the properties are that the packet 
has not been thinned by a Server, that the packet was not 
lost in an unrecoverable manner during transport, and 
that the packet arrived at the renderer in time to be 
useful for rendering. 

2. The apparatus as described in claim 1 wherein the first 
metric is useful packet rate. 

3. The apparatus as described in claim 1 wherein the first 
metric is actual playback bandwidth. 

4. The apparatus as described in claim 1 wherein the first 
Set of code generates a Second metric using a player callback 
function. 

5. The apparatus as described in claim 4 wherein the 
Second metric is Selected from a set of metrics that include: 
Startup time, Startup time components, and interruption and 
rebuffer statistics. 

6. The apparatus as described in claim 1 further including 
a Second Set of code for receiving a test Suite identifying at 
least one Stream quality test, for Scheduling the test Suite, 
and for Outputting the first metric captured by the first Set of 
code. 

7. The apparatus as described in claim 6 wherein the test 
Suite includes a Set of parameterS Selected from a set that 
includes: a start time, and at least one test. 

8. The apparatus as described in claim 7 wherein the test 
includes a Set of parameters Selected from a Set that includes: 
a URL, a maximum startup time, a maximum Stream time, 
and a maximum play time. 

9. The apparatus as described in claim 6 wherein the 
Second Set of code logs the first metric into a log file. 

k k k k k 


