United States Patent

US007010598B2

(12) (10) Patent No.: US 7,010,598 B2
Sitaraman et al. 5) Date of Patent: Mar. 7, 2006
(54) METHOD AND APPARATUS FOR 6,714,976 B1* 3/2004 Wilson et al. 709/224
MEASURING STREAM AVAILABILITY, 2001/0018673 Al* 82001 Goldband et al. 705/27
QUALITY AND PERFORMANCE OTHER PUBLICATIONS
(75) Inventors: Ramesh K. Sitaraman, Cambridge, StreamCheck “Measurement Methodology” and “FAQ”.
MA (US); Reid W. Barton, Arlington, www.streamcheck.com. Jan. 22, 2002. Retrieved from
MA (US) web.archive.org.*
“Picture Quality Indicator”, IBM TDB NNRD410114, Jun.
(73) Assignee: Akamai Technologies, Inc., Cambridge, 1998.*
MA (US
(Us) * cited by examiner
ot s extonded of adhused under 35 L7imary Exaniner—Dusg, C. Dish
% S.C. 154(b) by 0 dast (74) Attorney, Agent, or Firm—David H. Judson
(21) Appl. No.: 10/364,753 ©7) ABSTRACT
(22) Filed: Feb. 11, 2003 A streaming measurement agent designed to experience,
. L measure, and report on a media stream as an actual end user
(65) Prior Publication Data would experience the stream. Preferably, agent resides trans-
US 2004/0136327 Al Jul. 15, 2004 parer}tly within a streaming med.ia.player itself so that it can
monitor stream packet flows within the player as the mea-
Related U.S. Application Data sured streams are being played. In an illustrative embodi-
.. L. ment, the agent comprises a performance monitoring mod-
(60) Provisional application No. 60/356,076, filed on Feb. ule (PMM), which is software that resides in an interface
11, 2002. between an existing core module and a renderer of a media
player. The agent PMM intercepts each useful packet as it
(51) Int. CL o
GO9F 15116 2006.01 goes from the core to the renderer and, as a result, it is able
GOGF 17140 (200 6. 0 1) to compute quality metrics about the playback. The agent
/ (01) functions “transparently” to the media player by presentin,
52) US. Cl 709/224; 709/231 eend baye b 5
(52) e Brle e e e > the core with an application programming interface (API)
(58) Field of Classification Search 709/224, that emulates the API that the renderer normally presents to
709/231; 714/38, 47, 717/120, 124, 127, the core. Thus, when the core believes it is calling the
o) 717/131 renderer, it is actually calling the agent PMM, which can
See application file for complete search history. then receive all the packets from the core and process them.
. After computing relevant performance metrics using the
(56) References Cited packets it receives, the agent PMM calls the renderer. A set
U.S. PATENT DOCUMENTS of performance agents can be managed t?y a service providf.:r
5732218 A ¢ 3/1998 Bland ef al 709224 to enable a content provider to determine how a stream is
ana et al. o
212 perceived by end users.
5,958,010 A * 9/1999 Agarwal et al. 709/224
6,141,686 A * 10/2000 Jackowski et al. 709/224
6,671,724 B1* 12/2003 Pandya et al. 709/226 9 Claims, 2 Drawing Sheets

CONTROL
DATA =}

-
I

)

1

1

1

1

I

I

]

I

1

1 MONITORING MODULE
1

|

|

1

!

1

1

1

1

1

|
|

_____ h
RENDERER I
1
~N 1
406 :)
DATA 40
408 ! contROL)
i TEST
4
404 PERFORMANCE ; AGENT
. SHELL
(:MM) I RESULTS
CAULBACK! [[DATA |
FUNCTIONS,| 405 1 410
¥ pud : /
CORE : LOG
_____ J

U.S. Patent Mar. 7, 2006 Sheet 1 of 2 US 7,010,598 B2

FIG.]

™~102

110~ MEDIA |~112
BROWSER | o avee
0S | ~108
HARDWARE 106
FIG. 2
204
200 RENDERER
AW
DATA
CONTROL ~———] CORE
DATAC—— > ™ 202

U.S. Patent Mar. 7, 2006 Sheet 2 of 2 US 7,010,598 B2

FIG. 3
310 | ‘
o PROVISION
o= 302
I 8 a =]
308-1H"]
| .
306 —
A A
o %D‘ %D

FIG. 4

e e e S ————— e i |
I |
: RENDERER I
1 1
I ~N I
! 406 !

DATA 402
: 40\2 | CONTROL

TEST

1404 PERFORMANCE |« AGENT
| MONITORING MODULE | 1
. (PMM) . | SHELL
! : I RESULTS
! CALLBACK! |lpaTA |
| FUNCTIONS | 405 | 410
! t . /
| CONTROL CORE || Loa
| DATAC=> !
Lo o o e e e oo e e e e e e G G S — -

US 7,010,598 B2

1

METHOD AND APPARATUS FOR
MEASURING STREAM AVAILABILITY,
QUALITY AND PERFORMANCE

This case is related to and claims priority from Provi-
sional Application No. 60/356,076, filed Feb. 11, 2002.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates generally to measuring the
performance of streaming media delivery.

2. Description of the Related Art

Streaming media is a type of Internet content that has the
important characteristic of being able to be played while still
in the process of being downloaded. A client machine can
play the first packet of the stream, and decompress the
second, while receiving the third. Thus, an end user can start
enjoying the multimedia without waiting to the end of
transmission. Streaming is very useful for delivering media
because media files tend to be large, particularly as the
duration of the programming increases. Indeed, for live
events, the file size, in effect, is infinite. To view a media file
that is not streamed, users must first download the file to a
local hard disk-which may take minutes or even hours- and
then open the file with player software that is compatible
with the file format. To view streaming media, the user’s
browser opens player software, which buffers the file for a
few seconds and then plays the file while simultaneously
downloading it. Unlike software downloads, streaming
media files are not stored locally on a user’s hard disk. Once
the bits representing content are used, the player typically
discards them.

Streaming media usually relies on proprietary server and
client software. The server, client, production and encoding
tools developed by a streaming software vendor are collec-
tively referred to as a format. Streaming media encoded in
a particular format must be served by that format’s media
server and replayed by that format’s client. Streaming media
clients are often called players, and typically they exist as
plug-ins to Web browsers. The three major streaming media
formats in use today are: RealNetworks RealSystem G2,
Microsoft Windows Media Technologies (“WMT”), and
Apple QuickTime.

An ever-growing number of content providers, enter-
prises, and content delivery networks utilize and deliver
streaming media. As a consequence, it has become important
to quantify, in a scientific and measurable way, how well a
given stream was delivered, as well as to devise relevant
metrics that capture the end-user’s experience of the stream.
Client media players have the capability of generating basic
statistics about the streams they deliver. Unfortunately, the
correlation of some of these statistics with a high quality
end-user experience is subjective and thus extremely diffi-
cult to measure effectively. For example, frame rate, a
commonly used metric reported by media players, may not
be a robust indicator of stream quality because players can
interpolate and insert variable-quality frames into a stream.
As another example, some media players report a bandwidth
metric that does not accurately indicate whether or not the
bytes are received in a timely fashion so that they can be
used for rendering.

There are several companies, such as Keynote, Stream-
Check, and others, that provide partially or completely-
outsourced streaming monitoring solutions. In an illustrative
system, streaming measurement computers (sometimes
called “agents”) connect to URLs and collect relevant sta-

10

15

20

25

30

35

40

45

50

55

60

65

2

tistics, such as initial buffer time, packet information, and
overall stream quality. These measurement agents are typi-
cally positioned strategically around the Internet so as to
accurately represent the experience of an end user connect-
ing to a given site URL. Providers of such outsourced
performance monitoring solutions typically provide perfor-
mance data in the form of real-time and historical reports,
and threshold-based alarms.

By way of additional background, it is also known in the
prior art that streaming performance measurement is sig-
nificantly harder than web download measurements for
several reasons. Unlike web performance, where it suffices
to measure object download times, streams can show deg-
radation in significantly complex ways that need to be
quantified and measured. Unlike the HT'TP protocol, an open
protocol, measuring stream performance involves taking
into account complex proprietary streaming protocols, such
as RTSP (Real) and MMS (Windows Media).

One can distinguish three steps in making streaming
media content available to the end-user: the media is cap-
tured and encoded, the media is delivered over the network
to the client, i.e., the media player of the end-user, and the
media is rendered by the media player to be viewed by the
end-user. The process of delivering streaming media over
the network can degrade the quality perceived by the end-
user. A primary goal of a content delivery network (or
“CDN”) is to ensure that the media is delivered to a
requesting end-user with as few distortions as possible from
its pristine encoded form, thereby maximizing the end-user
experience of the stream. The root causes of degradation in
stream quality are problems that may occur in the underlying
network that transports the media from the server to the
client. For example, network connectivity may go down,
which limits the ability of the client to talk to the server. The
effective bandwidth available between the server and client
may be greatly reduced. The network may lose packets sent
from the server to the client. More subtly, the network may
cause packets to be re-ordered in route to the client. Or, the
packets may be delivered by the network to the client late,
in which case the packets will not be useful in the stream
playback.

It is instructive to examine how the client and the server
react to these network problems in a manner that degrades
stream quality. As noted above, typically the client and the
server communicate using a proprietary protocol (such as
Real’s RTSP or Windows Media’s MMS) to control the
manner in which data is streamed from the server to the
client. The client-server protocol is typically designed to
overcome moderate amounts of network degradation. The
player typically buffers several seconds of data ahead of
what is currently being rendered. This buffering helps the
player smooth out any variations in the rate at which packets
are being received, including out-of-order delivery of pack-
ets. Further, buffering provides an opportunity for the player
to tolerate a certain amount of packet loss, because lost
packets can be re-requested from the server and received in
time for playback. Consequently, a moderate degradation in
the network is effectively shielded from the user.

As the network degrades further, however, one might see
prolonged periods of reduction in the available bandwidth,
or a significant amount of packets lost, or a significant
number of packets arriving late. The server typically reacts
to such a situation by sending less than the full encoded
bandwidth to the client, resulting in a thinned playback. The
server achieves this thinning by sending only the “more
important” bytes and throwing away the rest. For example,
the server may send only key video frames and audio and not

US 7,010,598 B2

3

send the rest of the content. In the extreme case, thinning
results in the so-called “slide-show” effect, where isolated
frames are displayed without interpolation. If the stream is
encoded at multiple bit rates, thinning is effected more
seamlessly, e.g., by the server switching to a replica of the
stream encoded at a lower bit rate. Typically, the bandwidth
streamed from the server to the client is controlled by a
feedback loop, where the client continually estimates the
available bandwidth and reports it to the server, and the
server attempts to fit the stream to the available bandwidth.
An even more drastic degradation in the network, e.g., a
rapid reduction in the available bandwidth, may deplete the
player’s buffer of data. When the player cannot continue the
playback, it freezes to refill its buffer before resuming again,
resulting in an interrupted playback. The player is typically
designed to rebuffer only under extreme network conditions.

There is a need in the art to provide for improved methods
for measuring stream quality and performance. The present
invention addresses this need.

BRIEF SUMMARY OF THE INVENTION

An object of the present invention is to provide a stream-
ing measurement agent that is designed to experience,
measure, and report on a media stream as an actual end user
would experience the stream. Preferably, this is accom-
plished by having the agent reside transparently within a
media player itself so that the agent can monitor stream
packet flows within the player as the measured streams are
being played. In an illustrative embodiment, the agent
comprises a performance monitoring module (PMM), which
is software that preferably resides in an interface between an
existing core module and a rendering module (a “renderer”)
of a media player. The agent PMM preferably intercepts
each useful packet as it goes from the core to the rendering
module and, as a result, the agent is able to compute quality
metrics about the rendering in an highly accurate fashion.
The agent functions “transparently” to the media player by
presenting the core with an application programming inter-
face (API) that emulates the API the renderer normally
presents to the core. Thus, when the core believes it is calling
the renderer, the core is actually calling the agent PMM,
which can then receive all the packets from the core and
process them. After computing the relevant performance
metrics using the packets received, the agent PMM calls the
renderer, and from the perspective of the renderer the agent
plays the same role as the core.

According to a feature of the invention, the agent may
compute one or more quality or performance metrics by
intercepting useful packets that flow inside the media player.
Generally, a given statistic is generated from the intercepted
useful packet. As used herein, a given statistic is some
arbitrary function that can be computed from the sequence
of useful packets that are intercepted. Preferably, a useful
packet is one that has a given set of properties, e.g., it has not
been thinned by a streaming server during delivery, it was
not lost in an unrecoverable manner during delivery, and it
arrived at the player in time to be useful for rendering. In one
particular embodiment, the agent uses these packets to
compute an actual playback bandwidth, an accurate measure
of stream quality as perceived by an end user. Other packet-
related metrics and bandwidth-related metrics are also
obtained by monitoring the packet flow through the embed-
ded performance monitoring module. Additionally, the agent
may use native media player functions (e.g., a callback

10

15

20

25

30

35

40

45

50

55

60

65

4

function) to obtain other useful information such as stream
startup time, interruptions, components of startup time, and
the like.

Monitoring the actual packet stream within the media
player itself according to the present invention provides a
novel way to evaluate stream availability, quality and per-
formance. Because all, or substantially all, useful packets
flow through the PMM, the present invention provides an
enhanced view into the effectiveness of the stream delivery
process as compared to prior art techniques. The packet flow
through the PMM enables the generation of important
performance metrics, such as actual playback bandwidth,
and these metrics can be supplemented with metrics gener-
ated through other means, e.g., using player callback func-
tions.

According to another aspect of the present invention, the
above-described agent technology is deployed in a widely
distributed manner to provide stream quality and perfor-
mance measurements from a plurality of locations. As
compared to prior art techniques, data collected from these
agents can more accurately report on how successfully a
stream is being delivered from a given server to a set of
media players.

According to a further aspect of the present invention, a
managed stream quality and performance measurement ser-
vice is provided by a service provider on behalf of partic-
pating content providers, e.g., entities that use a content
delivery network (CDN) to facilitate streaming media deliv-
ery. The service utilizes a set of performance agents such as
described above that are deployed in a diverse set of
networks and geographic locations to measure performance
over a wide variety of conditions. The service provider may
deploy the measurement agents in locations that are other-
wise free of streaming servers, or co-located with such
Servers.

The foregoing has outlined some of the more pertinent
features of the present invention. These features should be
construed to be merely illustrative. Many other beneficial
results can be attained by applying the disclosed invention in
a different manner or by modifying the invention as will be
described. Accordingly, other features and a fuller under-
standing of the invention may be had by referring to the
following Detailed Description of the Preferred Embodi-
ment.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a highly simplified block diagram of a streaming
media delivery mechanism;

FIG. 2 is a simplified diagram of a streaming media player
of the prior art;

FIG. 3 is a block diagram of a stream measurement
system that includes a set of monitoring agents that facilitate
a managed stream quality and performance measurement
service; and

FIG. 4 is a block diagram of the inventive agent mecha-
nism.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

FIG. 1 illustrates a conventional streaming delivery
mechanism wherein a client machine 100 connects to a
streaming media server 102 via a network 104, such as the
Internet, an intranet, a content delivery network (CDN), or
the like. The client machine is typically a computer having
commodity hardware 106, operating system software 108, a

US 7,010,598 B2

5

Web browser 110, and a streaming media player 112. In a
typical operation, an end user launches his or her browser to
a Uniform Resource Locator (URL) identifying the media
stream desired. Once the client is connected to the media
server 102, the server delivers the stream over the network
to the client browser, in which it is rendered by the media
player. As illustrated in FIG. 2, streaming media player 200
typically includes two (2) primary components: a core 202,
and a renderer 204. It should be noted that FIG. 2 is meant
to provide a simplified view to illustrate the known player
technology. In reality, an actual media player, such as Real
and WMS, would contain several sub-modules with more
complex structure implementing the core and renderer func-
tionalities described below. Nevertheless, it is straightfor-
ward to map the ideas outlined here to specific media players
to build specific agents for each of the well-known formats
including Real, WMS and Quicktime. Of course, the inven-
tive agent technology is not limited for use with these known
formats, as the methods and techniques described below
may be used with any stream packet rendering device.

The core 202 is responsible for transporting data received
from the media server. Typically, the core 202 establishes a
control channel to exchange control information with the
media server. Such information may include requests from
the player to describe, play, pause, stop the stream, feedback
from the player on the perceived bandwidth, packet loss and
other metrics, information from the server on the media that
is being requested, and so forth. As noted above, the control
protocol between the core and the media server is typically
proprietary, for example, RTSP for Real and MMS for
Windows Media. In addition to the control channel, the core
202 typically establishes a data channel on which the actual
media stream flows from the server to the client. The media
stream 1is a series of packets containing audio, video, and text
information. The packets must be received in a timely
fashion for the stream to be useful. In particular, each packet
typically has a timestamp denoting when it must be ren-
dered, and the core 202 transfers over (to the renderer 204
to be rendered) those packets that arrive in a timely fashion.
The core 202 can receive packets from the server several
seconds ahead of the time that they must be rendered, and
the packets arriving ahead of time are stored in a buffer (not
shown). This provides an opportunity for the core 202 to
re-request missing packets from the server and to recover
them in time for such packets to be rendered appropriately.
The renderer 204 receives packets from the core 202 and
renders the data contained in the packet. The renderer
contains several functional units, one for each type of media,
or there may be a separate renderer for each type. Audio
information is rendered through the sound device on the
client’s computer, whereas video and text information are
rendered on the computer display screen.

The agent is a piece of software capable of playing
streams, measuring the availability and quality of the
streams, and reporting this information. In a representative
embodiment, the agent is independent of the core or the
renderer, although this is not a requirement of the invention.
In an appropriate case, the functionality of the agent may be
native to the core, or to the renderer. A given media player
vendor thus may provide the media player with the agent
functionality built-in.

Agiven media player includes an agent, and a set of media
players with embedded agents may comprise a stream
monitoring system as illustrated in FIG. 3. In this example,
the stream monitoring system 300 includes, without limita-
tion, a front-end 302 where users can setup stream tests and
push these tests out to a set of agents 304a—n deployed in

10

15

20

25

30

35

40

45

50

55

60

65

6

diverse network and geographic locations; and a back-end
306 that stores the performance data reported by the agents
and provides analysis tools 308 and a convenient user
interface (UI) 310 for viewing the test results. The one or
more computers that comprise front-end 302 and back-end
306 preferably are accessed via a secure channel, although
this is not a limitation. A convenient way of implementing
these sub-systems is via an intranet or extranet application,
e.g., using a Web browser over a secure (SSL) connection.
In one particular embodiment, a service provider uses the
front-end 302 to provision the tests, and the service provider
and its customers use the back-end to view or evaluate the
test results. Preferably, the agents themselves schedule the
tests, perform the tests, and report back on the results.

As seen in FIG. 4, an illustrative agent 400 has two
primary components: an agent shell 402 and the agent
nucleus 404, each of which is now described at a functional
level. The agent shell 402 as illustrated is logically distinct
from from the agent nucleus 404. Agent nucleus includes a
performance monitoring module (PMM) 408 which resides
across the interface between a core 405 and a renderer 406
and monitors the packet flow. In this embodiment, the agent
nucleus 404 includes the core and the renderer (which,
typically, are elements that are provided by the third party
media player vendor), although this is not a requirement.
Alternatively, the agent nucleus may comprise just the PMM
and the core. Generally, the agent shell 402 provides control
functions for the agent nucleus (and, in particular, the PMM)
and initiates one or more tests, and the agent shell 402
receives the test results. In an illustrative embodiment, the
agent shell includes code that provides several functions,
such as determining a configuration of tests that need to be
carried out, scheduling the tests, and reporting back on the
stream quality, e.g., to the back-end of the stream monitoring
system. The step of reading the test configuration may be
accomplished by reading a configuration file present in the
local machine, or by querying a real-time communication
mechanism. In a representative embodiment, the configura-
tion file is pushed from the front-end system to the agent
shell, or it is pulled on-demand by the agent shell.

Typically, a configuration of tests consists of several test
suites, where each test suite can be performed independently
and in parallel. In a representative embodiment, each test
suite has a start time when the agent needs to start testing the
test suite, an end time when the agent needs to stop testing
the test suite, a priority that provides scheduling information
on how important the test suite is, and a frequency which
determines how often the testing of the test suite is repeated.
Preferably, each test suite is a series of tests that are executed
in a sequence one after another. Preferably, each test is
specified by the URL of the stream that needs to be tested,
max startup time, which is the maximum amount of time the
agent will wait for the stream to start the playback before
declaring failure, max stream time, which is the amount of
time in the stream that the agent plays the stream, and max
play time, which is the maximum amount of actual clock
time the agent will attempt to play the stream. Note the
subtle distinction between stream time which is defined
internal to the stream that is being measured and play time,
which is actual clock time; for example, the agent could play
the stream till it reaches the 3 minute point in the clip, i.e.,
elapsed stream time is 3 minutes, but it could actually take
4 minutes of clock time to reach that point due to rebuffering
events when the play is frozen, i.e., elapsed play time is 4
minutes. Preferably, the agent stops playing the clip when
either max stream time or max play time is reached, which-
ever is reached the earliest.

US 7,010,598 B2

7

As noted above, the agent shell 402 also performs sched-
uling of the tests. The shell schedules the tests in the test
suites per the specifications, and it hands tests in the appro-
priate sequence to the agent nucleus 404 for testing. The
agent nucleus 404 is responsible for conducting the tests and
reporting back the measured stream quality metrics back to
the agent shell. In particular, the shell logs the stream quality
metrics into a log file 410 that, for example, may contain one
log line per test. In one embodiment, the logs are transported
to the back-end system, e.g., through log mailing. Alter-
nately, the stream quality data can also be reported back by
a mechanism that is more real-time than log mailing,
namely, a distributed query mechanism.

The agent nucleus 404 takes in the URL that needs to be
tested, plays the stream (e.g., through at least the core),
measures one or more performance metrics, and reports
these metrics back to the agent shell 402. As illustrated in
FIG. 4, the nucleus incorporates within it (or is otherwise
associated with) a media player (e.g., a Windows Media
player, a Real player, a QuickTime player) that is used to
play the streams. In particular, the media player is typically
a black-box, as it is a proprietary piece of software. Of
course, it is known that “looking inside” a black-box to
extract performance information is a challenging task.
According to the present invention, however, the agent
nucleus 404 overcomes these deficiencies by implementing
an interface—between the core and the renderer—that is
used to monitor stream performance. As noted above and as
shown in FIG. 4, the agent nucleus contains a performance
monitoring module (PMM) 408 that resides within (or
across) this interface. As will be seen, the quality of the
stream that is rendered depends on the useful packets handed
over by the core to the renderer. As used herein, useful
packets are considered to be those packets that are not
thinned out by the server, that were not lost in an unrecov-
erable fashion as they were transmitted over the network
from the server to client, and that arrived in time to be useful
for the rendering. Preferably, the performance monitoring
module 408 intercepts all or substantially all the useful
packets as the packets go from the core to the renderer, and
it is able to compute quality metrics about the playback.

Regardless of the media player architecture, the perfor-
mance monitoring module (PMM) should be designed to
“behave” like a renderer to the core to effectively intercept
the useful packets. In particular, the PMM is designed to
provide the same or substantially the same application
programming interface (API) to the core as the renderer.
Thus, when the core thinks that it is calling the renderer, it
is really calling a wrapper-renderer 410 that is a part of the
PMM. The wrapper-renderer 410 can then receive all the
packets from the core. After computing the relevant perfor-
mance metrics using the packets that it receives, the PMM
can then complete the packet transfer by calling the actual
renderer. From the perspective of the renderer, the PMM
plays the same role as the core.

According to an illustrative embodiment, the PMM com-
putes a one or more performance metrics by intercepting
useful packets that flow inside the media player. An illus-
trative metric is actual playback bandwidth, which measures
the bits/sec that arrive without loss and in time for rendering.
Conventional media players do not provide this metric. As
shown in FIG. 4, the module preferably also uses one or
more callback functions provided by the media player to
compute additional metrics.

A description of how PMM computes the various perfor-
mance metrics follows. In particular, the following is a
generic description of the performance metric computation

10

15

20

25

30

35

40

45

50

55

60

65

8

strategy together with specific details for implementing the
invention with representative media players provided by
Real and WMS. To compute the metrics, the PMM may rely
on a media player software development kit (SDK) for the
particular streaming format. Thus, for example, a first
embodiment of the agent (for use with a Real media player)
relies on the RealSystem SDK. A second embodiment of the
agent (for use with a WMS media player) uses the Windows
Media Format SDK. In the following discussion, familarity
with the Real and Windows Media player operations, as well
as the associated SDKs, is presumed.

A Framework for Measuring Stream Quality

The following desribes a stream quality measurement
methodology that may be implemented using the agent
technology. As noted above, the agent provides a detailed
inside view of the stream because it preferably sits between
the core and the renderer of the media player. With this view,
several first level questions may be asked about each play-
back that form the basis for the stream quality metrics: was
the user able to connect to the server and play the stream,
how long did the user have to wait before the stream
playback began, and what fraction of the media was deliv-
ered effectively from the server to the player so as to be
usable, and what fraction was thinned out at server, lost in
transit, or arrived late so as to be unusable, were there any
interruptions, i.e., rebuffers, during the playback. These first
level metrics, taken together (which is not a requirement),
provide a clear picture of how the stream played back. In
addition, use of the agent facilitates measurement of several
second level or “auxiliary” metrics that provide additional
information about the stream quality. These will be defined
below.

The First Level Metrics:

The first level metrics may include the following:

Failure Rate: When the user attempts to play a stream, the
stream may not start-up for any number of reasons. The
player may be unable to reach the server because a
DNS name lookup fails, the server is down, the server
is too overloaded to respond, or the network connec-
tivity between the client and the server is down. Even
if the client is able to establish connectivity with the
server, the stream may not startup because the server
cannot access the media, or the server is unable to get
enough data to the client in a timely fashion for the
playback to start. Failure rate captures, preferably as a
percentage, the fraction of times the user is unable to
successfully play the stream.

Startup Time: Assuming the stream playback does not
fail, the agent measures startup time, which is the
amount of time the user has to wait for the stream to
start the playback.

Thinning and Loss: After the stream starts to play, the
most common performance degradation is that the
client in unable to receive the media in a timely fashion
from the server. Typically, there are three modes of in
which information may be lost: (a) the server may
“thin” the information out and never send it to the
client; (b) the server may send data, but the data is lost
en-route and cannot be recovered; (c) the server may
send the data, but the data might arrive too late to be
used in the playback. A metric that measures these
forms of degradation is referred to herein as actual
playback bandwidth, which is a rate at which useful
data is received by the client, i.e., data that arrives in a
timely fashion so as to be used in the playback. Ideal
playback bandwidth is the playback bandwidth mea-

US 7,010,598 B2

9

sured at the client when the media is played under ideal
conditions without degradation. Actual playback band-
width is typically compared with the ideal playback
bandwidth to understand how much of the media was
thinned, lost, late or otherwise unusable by the client.
An actual playback bandwidth value that is signifi-
cantly smaller than the ideal value indicates visible
distortions in playback, including slide-shows where
only a subset of the frames are rendered on the screen.

Interruptions: A different form of degradation occurs
when the player is unable to continue with the play-
back, e.g., because its buffer is empty. In such case, the
player pauses the playback and waits for more data to
arrive. Two important metrics to measure interruptions
are rebuffers-per-minute, which is the average number
incidents of rebuffering in a minute of playback, and
rebuffer-time-per-minute, which is the average time
spent rebuffering in a minute of playback.

The Auxiliary Metrics

Besides the first level metrics, there are other metrics of
interest that provide more detailed information on the qual-
ity of the stream. They include one or more of the following:

Other Failure Metrics: Besides the overall failure rate,
more specific failure rates that detail where and how the
failure happened may be of interest. The specific met-
rics of interest are:

DNS Failure Rate: failed at the dns lookup to locate a
server.

Connect Failure Rate: failed at the connect stage,
example, the requested media was not present.

Buffer Failure Rate: failed to startup because initial buff-
ering could not be completed, for example, data not
flowing at a sufficient rate from server to client.

Stream Disconnect Rate: failed in the middle of playback,
example, connectivity lost with the server before play-
back could complete.

Components of Startup Time: The three metrics below
add up to the Startup Time metric.

DNS Lookup Time: The time it takes for the client to
lookup the domain name in the URL and obtain an IP
address of the media server serving the stream.

Connect Time: The time it takes for the client to complete
the protocol handshake with the server and obtain a
description of the media.

Initial Buffering Time: The time it takes for the client to
receive sufficient data from the server to start the
playback.

Packet Metrics: While the bandwidth metrics, such as
playback bandwidth, focus on the rate at which bytes
are delivered to the client, the packet metrics focus on
the rate at which packets are delivered to the client.
Bandwidth metrics are generally more robust, because
they reflect the information content delivered to the
client more accurately. Moreover, packets can be of
varying size containing varying amounts of informa-
tion, which makes packet count less robust. Packet
counts can also vary from playback to playback for the
same media for reasons other than quality, depending
on how packetization is done at the server. Neverthe-
less, packet metrics typically are of some interest as a
quality measure.

Useful Packet Rate: This is the rate at which useful
packets are delivered to the client. It should be noted a
packet typically is useful only if the packet arrived at
the client in a timely fashion, without being thinned by

10

15

20

25

30

35

40

45

50

55

60

65

10

the server, or lost in an unrecoverable fashion in transit
to the client, or arriving too late to be used by the
playback.

Normal Packet Rate: Of the packets that are received by
the client core, some packets arrive without the client
having to re-request them from the server. These pack-
ets constitute the normal packet rate.

Recovered Packet Rate: Of the packets that are delivered
to the client, some packets are lost or arrive out-of-
order and are recovered by the client. These packets
constitute the recovered packet rate.

Unrecoverable Packet Rate: These packets were sent by
the server but were lost and could never be recovered
by the client.

A fundamental issue with the three preceding packet
metrics is that they do not capture what was never sent
by the server, or those packets that arrive too late to be
useful. Also, these metrics are measured at the level of
the client application. There may be bad stream quality
yet there are no unrecoverable (i.e., lost) packets as
perceived by the client. This is typically the case when
streaming data over TCP, because TCP provides an
abstraction (of no loss) to the streaming client that sits
on top of it. The metrics are more meaningful when
streaming over UDP, where the client actually sees the
loss happening on the network. Nevertheless, the
notion of playback bandwidth as described above is a
much more robust and meaningful measure of thinning
and information loss.

Other Bandwidth Metrics. Besides actual and ideal play-
back bandwidths, three other bandwidths may also be
of interest, as described below.

Maximum and Minimum Encoded Bandwidth: For
single-bitrate media, there is only one encoding, and
the maximum and minimum encoded bandwidths both
equal the encoded bitrate of the media. In the case of
multi-bitrate media, there are multiple interleaved
encodings, each encoding at a different bitrate. In this
case, when the network degrades, the server may step
down from a higher-bitrate encoding to a lower-bitrate
encoding, effectively thinning the media. This step-
down is captured by recording both the maximum and
minimum bandwidth of the encodings used in the
playback.

Network Bandwidth. This is the bandwidth of the data
received by the player from the server. Note that while
network bandwidth provides some idea of stream per-
formance, it is not an accurate measure. Network
bandwidth counts duplicate and retransmitted packets
multiply, though they do not contribute to greater
streaming performance and, in fact, are signs of net-
work degradation. A typical situation is when packets
come out-of-order, the client asks for a retransmit, and
receives two copies of the same packet, thereby
increasing the network bandwidth with no increase in
stream quality. Further, network bandwidth does not
distinguish between bytes that are useful and bytes that
are not. A typical situation is the server sending bytes
to the client too late to be useful in the playback; these
bytes are included in the network bandwidth, but they
do not contribute to increased stream quality. Finally,
the server bursts an initial portion of the data to the
client before sending a steady stream at the appropriate
bitrate for the stream. The initial burst increases the
network bandwidth initially above the encoded rate,
which can hide any deterioration in the bandwidth and
drop in stream quality later in the test. These problems

US 7,010,598 B2

11

are avoided by measuring actual playback bandwidth,
which indicates what bandwidth was used in the ren-
dering. Still, network bandwidth provides general
information and is worth retaining as an auxiliary

entAdviceSink callbacks as described above. The con-
nect time is the time between calls to OnContacting()

12

and OnBuffering(), and the initial buffering time is the
time between calls to OnBuffering() and OnPosLen-
gth(). The startup time is the time from the beginning
of the test (including DNS lookup time) to the first call

metric. 5 of OnPosLength()
. . Details for WMS. The time spent in each of the contactin;
How.to Measure the First Level Metrics and buffering phases is rr?easured using the IWMStag-
Fal@“re Rate: The PMM prefera.bly uses.callback func- tusCallback interface as described above. The connec-
tions to record the stage at which the failure happened, tion time is the time between the WMT CONNECT-
Le., during a DNS lookup, during the connect phase, ING and WMT BUFFERING START events. and the
during the initial buffer phase, or during playback. initial buffering_ time is the time between thé WMT-
Preferably, an error code corresponding to the different BUFFERING START and WMT STARTED events.
failure modes is produced. In addition, any error code The startu p ti me is the time from the be ginning of the
produced by the media player itself is recorded. The test (including DNS lookup time) to the first call of
error (.:ode combinations are then analyzed to produce 15 WMT STARTED.
th? failure rate. Thinning_ and Loss: As noted above, the PMM preferably
Details for Real: When an error occurs, two error codes computes actual playback bandwidth by intercepting
are reported, “error” and “real_error”. The “error” field and examining the useful packets that are sent from the
specifies either the particular error type, in the event of core to the renderer. A total useful bytes delivered B is
a “synchronous” error in the agent code, such as a 5, computed by adding the bytes of the useful packets. A
timeout or DNS lookup failure, or that an “asynchro- stream time T is computed using a callback function to
nous” error occurred in the RealSystem SDK code. For determine the amount of the clip that was successfully
synchronous errors, the “real_error” field is ignored. played back at the end of the test. Actual playback
Fail.ures report.ed by the RealSystem SDK are captured bandwidth is computed as B/T. Ideal playback band-
by implementing the ErrorOccurred() method of the 5 width is the actual playback bandwidth when the media
IRMAErrorSink interface; the error code passed to this is streamed under ideal conditions without degradation.
method is .stored in the ‘.‘real_.error” ﬁe.ld. The “error” This quantity can be computed in one of two ways. For
field describes the stage in which the failure happened. live streams, ideal playback bandwidth can be com-
Once the Real connection has been opened, the stage is puted as a function of the encoded bandwidth of the
determined by registering an IRMAClientAdviceSink 5, media with some adjustments to the fact that the ideal
interface and implementing the OnBuffering(), OnPos- playback bandwidth of an ongoing live stream will
Length(), and OnStop() callbacks. Specifically, the show some variations over time. For on-demand
contacting phase begins as soon as the connection is streams, ideal playback bandwidth can be computed
opened; the buffering phase begins when the OnBuf- with 100% accuracy by calibrating the media, i.e., by
fering() callback is invoked; and the playing phase ;s measuring the actual playback bandwidth when the
begins when the OnPosLength() callback is invoked media is streamed under ideal network conditions with-
with a positive ulposition argument. out degradation. In practice, this calibration step is not
Details for Windows Media: When an error occurs, two fully necessary; using the largest observed value of
crror codes are reported by the agent, “error” and actual playback bandwidth over several dozen tests
“wms_error”. The “error” field specifies either the 49 works well. Comparing the actual playback bandwidth
particular error type, in the event of a synchronous error with the ideal playback bandwidth provides a good
n the agent code such as a timeout or DNS lookup notion of how much thinning and loss occurred.
failure, or that an “asynchronous” error occurred in the Details for Real. The manner in which PMM intercepts
Windows Media SDK code. For errors in the agent useful packets flowing from the core to the renderer is
code, the “wms_error” field is ignored. Failures 45 as follows. For each renderer plugin included with the
reported by the Windows Media SDK are captured by RealPlayer application, a wrapper-renderer that con-
handling the WMT_ERROR status value in the OnSta- tains the name of the original plugin is provided. When
tus() method of the IWMStatusCallback interface; the the wrapper-renderer is loaded, it opens the original
error code passed to this method is stored in the plugin as a dynamic library and forwards incoming
“wms_error” field. The “error” field also describes the 5o method calls to the original renderer. Several methods
stage in which the failure happened. Once the WMS have additional code for computing the metrics. The
connection has been opened, the stage is determined by methods relevant to playback bandwidth measurement
registering an IWMStatusCallback interface and imple- are OnPacket(), which is called when the RealPlayer
menting the OnStatus() callback. Specifically, the core sends a packet of data to the renderer, and
contacting phase begins on a WMT_CONNECTING 55 OnTimeSync(), which asks the renderer to update its
event; the buffering phase begins on a WMT- current time. The way packets ate counted differs
_BUFFERING_START event; and the playing phase slightly for live and on-demand streams, but the basic
begins on a WMT_STARTED event. approach is preferably the same, i.e., count packets
Startup Time. The performance monitor starts a clock at used by the renderer for a given segment of playback.
the beginning of the test and queries the state of the gp For on-demand streams, the playback segment is
media player, preferably using player callback func- known in advance (time O to time MAX_STREAM-
tions. When the media player transitions into the play- _TIME), so packets with timestamp less than MAX-
state, the time is noted as the startup time. _STREAM_TIME are counted as useful. For live
Details for Real. The time spent in each of the contacting streams, the beginning of the playback segment is not
and buffering phases is measured using the IRMACIi- 65 time 0, so this approach will not work. Instead, packets

are queued as they are received, and when the OnTime-
Sync() method is called with a time t, all packets with

US 7,010,598 B2

13

time less than t are counted as useful and removed from
the queue. (The type of the stream is determined by the
IsLive() method, a method of the IRMAStreamSource
of the IRMAStream passed to StartStream()).

Details for WMS. The PMM does not require wrapper-
renderers to obtain the useful packets for WMS. The
compressed data packets are obtained by implementing
the OnStreamSample() method of the IWMReader-
CallbackAdvanced interface. A packet is included if its
timestamp is less than MAX_STREAM_TIME.

Interruptions. The number of rebuffer events and the
duration of each rebuffer event during the playback is
recorded by the PMM by querying the state of the
media player using callback functions. Further, the play
time of the clip, which is the total time the playback
took, is recorded. The play time is different from stream
time when there are rebuffers. The rebuffers-per-minute
metric is simply the number of rebuffer events divided
by the play time in minutes. The rebuffer-time-per-
minute is simply the total duration of all the rebuffer
events divided by the play time.

Details for Real. Rebuffering time is measured between
calls to the OnBuffering() and OnPosLength() call-
backs of the IRMAClientAdviceSink interface. The
stream time is measured by the last time passed to the
OnPosLength() callback, and the play time is mea-
sured as actual clock time since the first OnPosLength(
) call.

Details for WMS. Rebuffering time is measured between
the ~WMT_BUFFERING_START and WMT-
_BUFFERING_STOP events in the IWMStatusCall-
back::OnStatus() method. The stream time is obtained
from the IWMReaderStreamClock::GetTime()
method, and the play time is measured as actual clock
time since the first WMT_STARTED event.

How to measure the Auxiliary Metrics
Other Failure Rates: The DNS failure rate, connect failure
rate, buffer failure rate, and the stream disconnect rate
can all be computed error codes output by the agent
which determine both the cause of failure and the state
of the playback when the failure occurred.
Components of Startup time: To measure DNS lookup
time, the agent performs the DNS lookup of the server
name itself using gethostbyname(), and then it passes
the resulting IP address into the player core as part of
the URL. This also allows the agent to report the exact
IP address of the server from which the test stream is
played. The other components of the startup time are
measured using callback functions as outlined above.
Packet Metrics. For the most part, these metrics are
obtained using a callback to the player statistics. The
useful packets metric is an exception, which is com-
puted directly by the PMM intercepting useful packets.

Other Bandwidth Metrics. These metrics are also com-

puted using callbacks to the player statistics.

As noted above, the streaming agent may be implemented
as a standalone device, or a set of such agents may be
implemented, preferably in a distributed manner, to enable
a content or other service provider to determine stream
quality and performance from a plurality of different loca-
tions. In such case, an agent is implemented at each such
location, and the distribed agents are controlled to each
request a given stream. As the streams are being delivered
from one or more media servers to media players that

10

15

20

25

30

35

45

50

55

60

14

include the embedded agent software, data is collected.
Periodically, that data is transferred from the agents to a
central management location, where it is processed into
reports or otherwise made available for viewing (e.g., via a
secure portal), for downloading, or for other analysis. In one
particular embodiment, the agents comprise part of a content
delivery network (CDN) and are used to enable a CDN
service provider (or CDN customers) to determine stream
quality and performance. As is well-known, a CDN is a
collection of content servers and associated control mecha-
nisms that offload work from Web site origin servers by
delivering content on their behalf to end users. A well-
managed CDN achieves this goal by serving streaming
media, or some or all of the contents of a site’s Web pages,
thereby reducing the customer’s costs while enhancing an
end user’s browsing experience from the site. In operation,
the CDN typically uses a request routing mechanism to
locate a CDN content server close to the client to serve each
request directed to the CDN, where the notion of “close” is
based, in part, on evaluating results of network traffic tests.
A CDN may be used to provide live or on-demand stream-
ing.

The invention claimed is:

1. Apparatus, comprising:

a core;

a renderer;

a first set of code located intermediate the core and the
renderer for generating a first metric as a stream of
useful data packets are passed between the core and the
renderer, wherein the first metric is a statistic computed
from the intercepted useful data packets; and

wherein each useful data packet has a given set of
properties, wherein the properties are that the packet
has not been thinned by a server, that the packet was not
lost in an unrecoverable manner during transport, and
that the packet arrived at the renderer in time to be
useful for rendering.

2. The apparatus as described in claim 1 wherein the first

metric is useful packet rate.

3. The apparatus as described in claim 1 wherein the first
metric is actual playback bandwidth.

4. The apparatus as described in claim 1 wherein the first
set of code generates a second metric using a player callback
function.

5. The apparatus as described in claim 4 wherein the
second metric is selected from a set of metrics that include:
startup time, startup time components, and interruption and
rebuffer statistics.

6. The apparatus as described in claim 1 further including
a second set of code for receiving a test suite identifying at
least one stream quality test, for scheduling the test suite,
and for outputting the first metric captured by the first set of
code.

7. The apparatus as described in claim 6 wherein the test
suite includes a set of parameters selected from a set that
includes: a start time, and at least one test.

8. The apparatus as described in claim 7 wherein the test
includes a set of parameters selected from a set that includes:
a URL, a maximum startup time, a maximum stream time,
and a maximum play time.

9. The apparatus as described in claim 6 wherein the
second set of code logs the first metric into a log file.

#* #* #* #* #*

