
Trading Timeliness and Accuracy in
Geo-Distributed Streaming Analytics

Benjamin Heintz
Department of Computer Science

University of Minnesota
heintz@cs.umn.edu

Abhishek Chandra
Department of Computer Science

University of Minnesota
chandra@cs.umn.edu

Ramesh K. Sitaraman
Department of Computer Science
UMass Amherst & Akamai Tech.

ramesh@cs.umass.edu

Abstract
Many applications must ingest rapid data streams and pro-
duce analytics results in near-real-time. It is increasingly
common for inputs to such applications to originate from ge-
ographically distributed sources. The typical infrastructure
for processing such geo-distributed streams follows a hub-
and-spoke model, where several edge servers perform partial
computation before forwarding results over a wide-area net-
work (WAN) to a central location for final processing. Due to
limited WAN bandwidth, it is not always possible to produce
exact results. In such cases, applications must either sacrifice
timeliness by allowing delayed—i.e., stale—results, or sac-
rifice accuracy by allowing some error in final results.

In this paper, we focus on windowed grouped aggrega-
tion, an important and widely used primitive in streaming
analytics, and we study the tradeoff between staleness and
error. We present optimal offline algorithms for minimiz-
ing staleness under an error constraint and for minimizing
error under a staleness constraint. Using these offline al-
gorithms as references, we present practical online algo-
rithms for effectively trading off timeliness and accuracy un-
der bandwidth limitations. Using a workload derived from
an analytics service offered by a large commercial CDN,
we demonstrate the effectiveness of our techniques through
both trace-driven simulation as well as experiments on an
Apache Storm-based implementation deployed on Planet-
Lab. Our experiments show that our proposed algorithms re-
duce staleness by 81.8% to 96.6%, and error by 83.4% to
99.1% compared to a practical random sampling/batching-
based aggregation algorithm across a diverse set of aggrega-
tion functions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’16, October 05-07, 2016, Santa Clara, CA, USA.
c© 2016 ACM. ISBN 978-1-4503-4525-5/16/10. . . $15.00.

DOI: http://dx.doi.org/10.1145/2987550.2987580

Categories and Subject Descriptors C.2.4 [Computer-
Communication Networks]: Distributed Systems—Distributed
Applications

Keywords Geo-distributed systems, stream processing, ag-
gregation, approximation

1. Introduction
Stream computing has emerged as a critically important
topic in recent years. Whether comprising sensor data from
smart homes, user interaction logs from streaming video
clients, or server logs from a content delivery network, rapid
streams of data represent rich sources of meaningful and
actionable information. The key challenge lies in extract-
ing this information quickly, while it is still relevant. Mod-
ern streaming analytics systems therefore face the daunt-
ing task of ingesting massive amounts of data and perform-
ing computation in near-real-time. Several scalable systems
have been proposed to address this challenge [2, 3, 6, 10, 12,
26, 31, 36].

Adding to the challenge is the fact that many interest-
ing data streams are geographically distributed. For exam-
ple, smart home sensor data and CDN log data originate
from sources that are physically fixed at diverse locations all
around the globe; such data are truly “born distributed” [33].
The distributed infrastructure of a typical geo-distributed an-
alytics service such as Google Analytics or Akamai Media
Analytics follows a hub-and-spoke model. In this architec-
ture, numerous distributed data sources send their streams of
data to nearby “edge” servers, which perform partial com-
putation before forwarding results to a central location re-
sponsible for performing any remaining computation, stor-
ing results, and serving responses to analytics users’ queries.
While this central location is often a well-provisioned data
center, resources are typically more limited at the edge lo-
cations. Perhaps most critically, the wide-area network con-
nection between edges and the center may have highly con-
strained bandwidth. Geo-distributed analytics systems have
received growing research attention in recent years [24, 30,
32–34]

361



A crucial question for a geo-distributed analytics system
is how best to utilize resources at both the edges and the
center in order to deliver timely results. In particular, a geo-
distributed analytics system must determine how much com-
putation to perform at the edges, and how much to leave for
the center (i.e., where to compute), as well as when to send
partial results from edges to the center.

In this paper, we examine these questions in the context of
windowed grouped aggregation, a key primitive for stream-
ing analytics, where data streams are logically subdivided
into non-overlapping time windows within which records
are grouped by common attributes, and summaries are com-
puted for each group. This pattern is ubiquitous in both
streaming and batch settings. For example, the SQL Group

By construct allows concise expression of grouped aggrega-
tion, while grouped aggregation represents the fundamental
abstraction underlying MapReduce. Although it may seem
restrictive, a surprisingly broad range of applications fit into
the grouped aggregation pattern [10].

Our prior work [22] examined questions of where to com-
pute and when to communicate in the context of exact com-
putation. It presented the design of algorithms for perform-
ing windowed grouped aggregation in order to optimize two
key metrics of any geo-distributed streaming analytics ser-
vice: WAN traffic, and staleness (the delay in getting the re-
sult for a time window), which are respectively measures of
cost [4, 21] and performance. There, we assumed that (a)
applications require exact results, and (b) resources—WAN
bandwidth in particular—were sufficient to deliver exact re-
sults. In general, however, these assumptions do not always
hold. For one, it is not always feasible to compute exact re-
sults with bounded staleness [32]. Further, many real-world
applications can tolerate some staleness or inaccuracy in
their final results, albeit with diverse preferences. For in-
stance, a network administrator may need to be alerted to
potential network overloads quickly (within a few seconds or
minutes), even if there is some degree of error in the results
describing network load. On the other hand, a Web analyst
might have only a small tolerance for error (say, <1%) in
the application statistics (e.g., number of page hits), but be
willing to wait for some time to obtain these results with the
desired accuracy.

In this paper, we study the staleness-error tradeoff, rec-
ognizing that applications have diverse requirements: some
may tolerate higher staleness in order to achieve lower error,
and vice versa. We devise both theoretically optimal as well
as practical algorithms to solve two complementary prob-
lems: minimize staleness under an error constraint, and min-
imize error under a staleness constraint. Our algorithms en-
able geo-distributed streaming analytics systems to support
a diverse range of application requirements, whether WAN
capacity is plentiful or highly constrained.

Research Contributions
• We study the tradeoff between staleness and error (mea-

sures of timeliness and accuracy, respectively) in a geo-
distributed stream analytics setting.

• We present optimal offline algorithms that allow us to op-
timize staleness (resp., error) under an error (resp., stale-
ness) constraint.

• Using these offline algorithms as references, we present
practical online algorithms to efficiently trade off stale-
ness and error. These practical algorithms are based on
the key insight of representing grouped aggregation at
the edge as a two-level cache. This formulation gener-
alizes our caching-based framework for exact windowed
grouped aggregation [22] by introducing cache partition-
ing policies to identify which partial results must be sent
and which ones can be discarded.

• We demonstrate the practicality and efficacy of these al-
gorithms through both trace-driven simulations and im-
plementation in Apache Storm [3], deployed on a Planet-
Lab [1] testbed. Using workloads derived from traces of
a popular web analytics service offered by Akamai [28],
a large commercial content delivery network, our experi-
ments show that our algorithms reduce staleness by 81.8%
to 96.6%, and error by 83.4% to 99.1% compared to
a practical random sampling/batching-based aggregation
algorithm.

• We demonstrate that our techniques apply across a di-
verse set of aggregates, from distributive and algebraic ag-
gregates [20] such as Sum and Max to holistic aggregates
such as unique count (via sketch data structures such as
HyperLogLog [18]).

2. Problem Formulation
2.1 Problem Statement
System Model
We consider the typical hub-and-spoke architecture of an
analytics system with a center and multiple edges. Data
streams are first sent from each source to a nearby edge.
The edges collect and (optionally, partially) aggregate the
data. This aggregated data can then be sent from the edges
to the center where any remaining aggregation takes place.
The final aggregated results are available at the center. Users
of the analytics service query the center to visualize their
analytics results. To perform grouped aggregation, each edge
runs a local aggregation algorithm: it acts independently to
decide when and how much to aggregate the incoming data.
(Coordination between edges is an interesting topic [13] for
future work, but is outside scope of the present paper.)

Windowed Grouped Aggregation over Data Streams
A data stream comprises records of the form (k,v) where k
is the key and v is the value. Data records of a stream arrive

362



at the edge over time. Each key k can be multi-dimensional,
with each dimension corresponding to a data attribute. A
group is a set of records sharing the same key.

Customarily, time is divided into non-overlapping inter-
vals, or windows, of user-specified length W .1 Windowed
grouped aggregation over a time window [T,T +W ) is then
defined as follows from an input/output perspective. The in-
put is the set of data records that arrive within the time
window. The output is determined by first placing the data
records into groups, where each group is a set of records
with the same key. For each group {(k,vi) : 1≤ i≤ n} corre-
sponding to the n records in the time window that have key k,
an aggregate value Vk = v1⊕v2⊕·· ·⊕vn is computed, where
⊕ is an application-defined associative binary operator; e.g.,
Sum, Max, or HyperLogLog merge.2

To compute windowed grouped aggregation, the dis-
tributed infrastructure can perform aggregation at both the
edge and the center. The records that arrive at the edge can
be partially aggregated there, and the edge can maintain a set
of partial aggregates, one for each distinct key k. The edge
may transmit, or flush these aggregates to the center; we
refer to these flushed records as updates. The center can fur-
ther apply the aggregation operator ⊕ on incoming updates
as needed in order to generate the final aggregate result. We
assume that the computational overhead of the aggregation
operator is a small constant compared to the network over-
head of transmitting an update.

Approximate Windowed Grouped Aggregation
An aggregation algorithm runs on the edge and takes as
input the sequence of arrivals of data records in a given
time window [T,T +W ). The algorithm produces as output
a sequence of updates that are sent to the center.

For each distinct key k with nk > 0 arrivals in the time
window, suppose that the ith data record (k,vi,k) arrives at
time ai,k, where T ≤ ai,k < T +W and 1 ≤ i ≤ nk. For each
such key k, the output of the aggregation algorithm is a
sequence of mk updates, where 0≤ mk ≤ nk. The jth update
(k, v̂ j,k) departs3 for the center at time d j,k where 1≤ j≤mk.
This update aggregates all values for key k that have arrived
but have not yet been included in an update.

The final, possibly approximate, aggregated value for key
k is given by V̂k = v̂1,k ⊕ v̂2,k ⊕ ·· · ⊕ v̂mk,k. Approximation
arises in two cases. The first is when, for key k with nk > 0
arrivals, no update is flushed; i.e., mk = 0. This leads to an
omission error for key k. The second is when at least one
record arrives for key k after the final update is flushed; i.e.,
when dmk,k < ank,k. This leads to a residual error for key k.

1 These are often called tumbling windows in analytics terminology.
2 More formally, ⊕ is any associative binary operator such that there exists
a semigroup (S,⊕).
3 Upon departure from the edge, an update is handed off to the network for
transmission.

Optimization Metrics
Staleness is defined as the smallest time interval s such
that the results of grouped aggregation for the time window
[T,T +W ) are available at the center at time T +W + s. In
other words, staleness quantifies the time elapsed from when
the window closes to when the last update for that window
reaches the center and is included in the final aggregate.

Over a window, we define the per-key error ek for a key
k to be the difference between the final aggregated value V̂k
and its true aggregated value Vk: ek = error(V̂k,Vk), where
error is application-defined.4 Error is then defined as the
maximum error over all keys: Error = maxk ek. Such error
arises when an algorithm flushes updates for some keys prior
to receiving all arrivals for those keys, or when it omits
flushes for some keys altogether.5

As we show in the next section, staleness and error are
fundamentally opposing requirements. The goal of an ag-
gregation algorithm is therefore either to minimize staleness
given an error constraint, or to minimize error given a stal-
eness constraint.

2.2 The Staleness-Error Tradeoff
Mechanics of the Tradeoff
To understand the mechanics behind the staleness-error
tradeoff, it is useful to consider what causes staleness and
error in the first place. Recall from Section 2.1 that staleness
for a given time window is defined as the delay between the
end of that window and the time at which the last update
for that window reaches the center.6 Error is caused by any
updates that are not delivered to the center, either because
the edge sent only partial aggregates, or because the edge
omitted some aggregates altogether.

Intuitively, the two main causes of high staleness are ei-
ther using too much network bandwidth (causing delays due
to network congestion), or delaying transmissions until the
end of the window. Thus, we can reduce staleness by avoid-
ing some updates altogether (to avoid network congestion),
and sending updates earlier during the window. Unfortu-
nately, both of these options for reducing staleness lead di-
rectly to sources of error. First, if no update is ever sent for
a given key, then the center never gets any aggregate value
for this key, leading to an omission error for the key. Sec-
ond, if the last update for a key is scheduled prior to the final
arrival for that key, then the center will see only a partial ag-
gregate, leading to a residual error for that key. Thus, we see
that there is a fundamental tradeoff between achieving low
staleness and low error.

4 Our work applies to both absolute and relative error definitions.
5 Our work also applies to approximate value types, as long as the error
function appropriately incorporates this value-level approximation.
6 Wide-area latency contributes to this delay, but this component of delay is
a function of the underlying network infrastructure and is not something
we can directly control through our algorithms. We therefore focus our
attention on network delays due to wide-area bandwidth constraints.

363



Challenges in Optimizing Along the Tradeoff Curve
To understand the challenges of optimizing for either of
these metrics while bounding the other, consider two alter-
nate approaches to grouped aggregation: streaming, which
immediately sends updates to the center without any aggre-
gation at the edge; and batching, which aggregates all data
during a time window at the edge and only flushes updates
to the center at the end of the window. When bandwidth is
sufficient, streaming can deliver extremely low staleness and
high accuracy, as arrivals are flushed to the center without
additional delay, and updates reach the center quickly. When
bandwidth is constrained, however, it can lead to high stal-
eness and error. This is because it fails to take advantage of
edge resources to reduce the volume of traffic flowing across
the wide-area network, leading to high congestion and un-
bounded network delays and in turn unbounded staleness.

Batching, on the other hand, leverages computation at
edge resources to reduce network bandwidth consumption.
When the end of the window arrives, a batching algorithm
has the final values for every key on hand, and it can prior-
itize important updates in order to reach an error constraint
quickly, or to reduce error rapidly until reaching a staleness
constraint. On the other hand, batching introduces delays by
deferring all flushes until the end of the window, leading to
high staleness for any given error.

One alternate approach is a random sampling algorithm
that prioritizes important transmissions after the end of the
window, but sends a subset of aggregate values selected
randomly during the window. This approach improves over
batching by sending updates earlier during the window, thus
reducing staleness. It also improves over streaming under
bandwidth constraints by reducing the network traffic. As we
show in Sections 3 and 4, however, this approach can still
yield high error and staleness due to lack of prioritization
among different updates during the window.

To satisfy our optimization goals, we need more princi-
pled approaches.

3. Offline Algorithms
We now consider the two complementary optimization prob-
lems of minimizing staleness (resp., error) under an error
(resp., staleness) constraint. Before we present practical on-
line algorithms to solve these problems, we consider optimal
offline algorithms. Although these offline algorithms cannot
be applied directly in practice, they serve both as baselines
for evaluating the effectiveness of our online algorithms, and
also as design inspiration, helping us to identify heuristics
that practical online algorithms might employ in order to em-
ulate optimal algorithms.

In this section, we provide proofs only for the main the-
orems and omit proofs for other lemmas due to space con-
straints. For details, see our technical report [23].

3.1 Minimizing Staleness (Error-Bound)
The first optimization problem we consider is minimizing
staleness under an error constraint (error ≤ E), where E is
an application-specified error tolerance value.

In this case, the goal is to flush only as many updates
as is strictly required, and to flush each of these updates as
early as possible such that the error constraint is satisfied. In
short, an offline optimal algorithm achieves this by flushing
an update for each key as soon as the aggregate value for that
key falls within the error constraint.

Throughout this section, consider the time window of
length W beginning at time T , let ⊕ denote our binary
aggregation function, and let n denote the number of unique
keys arriving during the current window. Define the prefix
aggregate Vk(t) for key k at time t to be the aggregate value
of all arrivals for key k during the current window prior
to time t. We define the prefix aggregate Vk(t) to have a
logical zero value prior to the first arrival for key k. Let
error(x̂,x) denote the error of the aggregate value x̂ with
respect to the true value x. Further, define prefix error ek(t)
for key k at time t to be the error of the prefix aggregate
for key k with respect to the true final aggregate: ek(t) =
error(Vk(t),Vk(T +W )), for T ≤ t < T +W . We refer to
the prefix error of key k at the beginning of the window—
ek(T )—as the initial prefix error of key k.

Definition 1 (Eager Prefix Error). Given an error constraint
E, the Eager Prefix Error (EPE) algorithm flushes each key
k at the first time t such that ek(t) ≤ E. If ek(T ) ≤ E, then
EPE avoids flushing key k altogether.

Theorem 1. The EPE algorithm is optimal.

Proof. Such an algorithm satisfies the error constraint by
construction, and because flushes are issued as early as pos-
sible for each key, and only if strictly necessary, there cannot
exist another schedule that achieves lower staleness.

3.2 Minimizing Error (Staleness-Bound)
Next, we consider the optimization problem of minimizing
error under a staleness constraint (staleness ≤ S), where S is
an application-specified staleness tolerance (or deadline).

To minimize error under a staleness constraint, we ab-
stract the wide-area network as a sequence of contiguous
slots, each representing the ability to transmit a single up-
date. The duration of a single slot in seconds is then 1

b ,
where b represents the available network bandwidth in up-
dates per second.7 If S denotes the staleness constraint in
seconds, then the final slot ends S seconds after the end of
the window. Figure 1 illustrates this model for the time win-
dow [T,T +W ).

Note that there is no reason to flush a key more than
once during any given window, as any updates prior to the
last could simply be aggregated into the final update before

7 In general, bandwidth need not be constant.

364



time

T

window
begins

T+W

window
ends

T+W+S

deadline

n slots

T+s

previous
results available

…

Figure 1. We view the network as a sequence of contiguous
slots. Shaded slots are unavailable to the current window due
to the previous window’s staleness.

it is flushed. Given this fact, we can focus on scheduling
flushes for the n unique keys that arrive during the window
by assigning each into one of n slots.

Note that flushes from the previous window occupy the
network for the first s seconds of the current window, where
s≤ S is the staleness of the previous window. These slots are
therefore unavailable to the current window, and assigning
a key to such a slot has the effect of sending no value for
that key. In general, the first slot of the current window may
begin prior to this time, or in fact prior to the beginning of
the current window.

To understand how we assign keys to slots, we must first
introduce the notion of potential error. The potential error8

Ek(t) for key k at time t is defined to be the error that
the center would see for key k if key k were assigned to
a slot beginning at time t. Recall that, for t < T + s, slots
are unavailable, as the network is still in use transmitting
updates from the previous window. Assigning a key to such
a slot therefore has the effect of sending no value for that
key. Similarly, if a key is assigned to a slot prior to that key’s
first arrival, there is no value to send, so making such an
assignment is equivalent to sending no value for that key.
We refer to either of these cases as omitting a key. Overall
then, potential error is given by

Ek(t) =

{
ek(T ) if t < T + s,
ek(t) otherwise.

We assume a monotonicity property: the potential error
Ek(t) of a key k at any time t is no larger than its potential
error Ek(t ′) at a prior time t ′ < t within the window, i.e.,
Ek(t)≤ Ek(t ′).9

Definition 2 (Smallest Potential Error First). The Smallest
Potential Error First (SPEF) algorithm iterates over the n
slots beginning with the earliest, assigning to each slot a
key with the smallest potential error that has not yet been
assigned to a slot.

8 Throughout this section, we discuss error with respect to the window
[T,T +W ).
9 Note that we can easily extend our algorithms to relax this monotonicity
property. See our technical report [23] for details.

Lemma 1. A schedule D which flushes keys i and j at times
ti and t j such that ti ≤ t j and Ei(ti) ≤ E j(ti) (i.e., in SPEF
order) cannot have higher error than a schedule D′ that
swaps these keys.

Lemma 2. A schedule D that flushes only m < n keys can
be transformed into another schedule D′ that flushes n keys
without increasing staleness or error.

Theorem 2. The SPEF algorithm is optimal.

Proof. The SPEF algorithm satisfies the staleness constraint
due to our definition of slots. To see why it minimizes error,
let DSPEF denote a sequence of flushes in smaller-potential-
error-first order. Let Dopt denote an optimal sequence of
flushes sharing the longest common prefix with DSPEF. Then
there exists an m such that DOPT and DSPEF differ for the first
time at index m. If DSPEF and Dopt are not already identical,
then m < n where n is the number of unique keys during the
window, and hence the length of DSPEF.

Assume that Dopt also has length n. (If not, then transform
according to Lemma 2.) There must then exist an index
m < p ≤ n such that Em(tm) ≥ Ep(tm). In other words, in
slot m, Dopt emits a key that does not have the smallest
potential error. By Lemma 1, we can transform Dopt into
D′opt by swapping keys m and p without increasing error or
staleness. In particular, if p = argminm<i≤n Ei(tm), then this
swap yields D′opt that is optimal and identical to DSPEF up to
index m+1. This exposes a contradiction: it could not have
been true that Dopt had the longest prefix in common with
DSPEF. Therefore m cannot be less than n: there must exist
some optimal departure sequence identical to DSPEF.

An Alternate Optimal Algorithm
Recall that assigning a key to a slot prior to the first arrival
for that key, or before the network is available, is equivalent
to sending no value for that key; i.e., omitting that key. By
studying how the SPEF algorithm schedules such omissions,
we can derive an alternative optimal algorithm that is more
amenable to emulation in an online setting.

Definition 3 (SPEF with Early Omissions). Let m be the
number of keys that the SPEF algorithm omits. Then the
SPEF with Early Omissions (SPEF-EO) algorithm first
omits the m keys with the smallest initial prefix errors, then
assigns the remaining n−m keys in SPEF order.

Lemma 3. A key omitted by the SPEF algorithm has, at the
time it is omitted, the smallest initial prefix error among all
not-yet-assigned keys.

Theorem 3. The SPEF-EO algorithm is optimal.

Proof. By Lemma 3, the final key omitted by the SPEF al-
gorithm contributes the greatest error of all prior omissions,
and this error is no less than the mth-smallest initial prefix
error. Error therefore cannot be reduced by flushing (i.e., not

365



omitting) any of the m keys with the smallest initial prefix
errors.

The remaining n−m slots occur no earlier than the n−m
slots carrying non-zero updates in the original algorithm. By
monotonicity, assigning the remaining n−m keys to these
slots therefore cannot increase error.

3.3 High-Level Lessons
These offline optimal algorithms, although not applicable
in practical online settings, leave us with several high-level
lessons. First, they flush each key at most once, thereby
avoiding wasting scarce network resources. Second, they
make the best possible use of network resources. In the error-
bound case, EPE achieves this by sending only keys that
have already satisfied the error constraint. For the staleness-
bound case, with SPEF and SPEF-EO, this means using each
unit of network capacity (i.e., each slot) to send the most up-
to-date value for the key with the minimum potential error,
and for SPEF-EO, sending only those keys with the largest
initial prefix errors.

4. Online Algorithms
We are now prepared to consider practical online algorithms
for achieving near-optimal staleness-error tradeoffs. The of-
fline optimal algorithms from Section 3 serve as useful base-
lines for comparison, and they also provide models to emu-
late. We first present our practical online algorithms and then
present a prototype implementation on Apache Storm.

4.1 The Two-Level Cache Abstraction
Exact Computation
Our online algorithms for approximate windowed grouped
aggregation generalize those for exact computation [22],
where we view the edge as a cache of aggregates and em-
ulate offline optimal algorithms through cache sizing and
eviction policies. When a record arrives at the edge, it is in-
serted into the cache, and its value is merged via aggregation
with any existing aggregate sharing the same key. The siz-
ing policy, by dictating how many aggregates may reside in
the cache, determines when aggregates are evicted. For ex-
act computation, an ideal sizing policy allows aggregates to
remain in the cache until they have reached their final value,
while avoiding holding them so long as to lead to high stale-
ness. The eviction policy determines which key to evict, and
an ideal policy for exact computation selects keys with no
future arrivals. Upon eviction, keys are enqueued to be trans-
mitted over the WAN, which we assume services this queue
in FIFO order.

Approximate Computation
For approximate windowed grouped aggregation, we con-
tinue to view the edge as a cache, but we now partition it into
primary and secondary caches. The reason for this distinc-
tion is that, when approximation is allowed, it is no longer

necessary to flush updates for all keys. An online algorithm
must determine not just when to flush each key, but also
which keys to flush. The distinction between the two caches
serves to answer the latter question: updates are flushed only
from the primary cache. It is the role of the cache partition-
ing policy to define the boundary between the primary and
secondary cache, and the main difference between our error-
bound and staleness-bound online algorithms lies in the par-
titioning policy. As we discuss throughout this section, our
error-bound algorithm defines this boundary based on the
values of items in the cache, while the staleness-bound al-
gorithm uses a dynamic sizing policy to determine the size
of the primary cache.

In addition, the primary cache logically serves as the out-
going network queue: updates are flushed from this cache
when network capacity is available. Unlike FIFO queuing,
this ensures that our online algorithms make the most effec-
tive possible use of network resources. In particular, it en-
sures that flushed updates always reflect the most up-to-date
aggregate value for each key. Additionally, it allows us to
use our eviction policies to choose the most valuable key to
occupy the network at any time.

4.2 Error-Bound Algorithms
Cache Partitioning Policy
Our online error-bound algorithm uses a value-based cache
partitioning policy, which defines the boundary between pri-
mary and secondary caches in terms of aggregate values.
It emulates the offline optimal EPE algorithm (Section 3.1)
that only flushes keys whose prefix error is within the er-
ror bound. Specifically, new arrivals are first added to the
secondary cache, and they are promoted into the primary
cache only when their aggregate grows to exceed the error
constraint. More rigorously, let Fk denote the total aggre-
gate value flushed for key k so far during the current window
(logically zero if no update has been flushed), and let Vk de-
note the aggregate value currently maintained in the cache
for key k. Then the accumulated error for key k is defined
as error(Fk,Fk⊕Vk); i.e., the error between the value that the
center currently knows and the value it would see if key k
were flushed.10 Key k is moved from the secondary cache to
primary cache when its accumulated error exceeds E. Given
this policy, and the fact that updates are only flushed from
the primary cache, we are guaranteed to flush only keys that
strictly must be flushed in order to satisfy the error con-
straint; i.e., this approach avoids false positives.

After the end of the window, our online algorithm flushes
the entire contents of the primary cache, as all of its con-
stituent keys exhibit sufficient accumulated error to violate
the error constraint if not flushed.11

10 Note we can compute this value online.
11 The order of these flushes is unimportant, as all of them are required to
bring error below E.

366



Cache Eviction Policy
Prior to the end of the window, some prediction is involved:
When the network pulls an update from the primary cache,
the eviction policy must identify a key that has reached an
aggregate value within E of its final value. We explore sev-
eral alternatives [23] and find that well known cache replace-
ment policies—in particular least-recently-used (LRU)—
work well. Intuitively, LRU assumes that the key with the
least recent arrival is also the least likely to receive future
arrivals, and hence closest to its final value. Therefore LRU
evicts the key with the least recent arrival.

4.3 Staleness-Bound Algorithms
An online algorithm that aims to minimize error under a
staleness constraint faces slightly different challenges. In
particular, we can no longer define the boundary between
primary and secondary caches by value, as we do not know
a priori what this value should be. Instead our staleness-
bound online algorithm uses a dynamic sizing-based cache
partitioning policy to emulate the offline optimal SPEF-EO
algorithm (Section 3.2). To understand this approach, recall
from Definition 3 that the SPEF-EO algorithm flushes only
the keys with the largest initial prefix errors. Given that the
role of the primary cache is to contain the keys that must be
flushed, we emulate this behavior by 1) dynamically ranking
cached keys by their (estimated) initial prefix error, and then
2) defining the primary cache at time t to comprise the
top σ(t) keys in this order. In practice, this is challenging
as we must predict both initial prefix errors as well as an
appropriate sizing function σ(t).

Initial Prefix Error Prediction
During the window, there are many ways to predict initial
prefix errors. One straightforward approach is to use accu-
mulated error (Section 4.2) as a proxy for initial prefix error.
We call this the Acc policy for short. Intuitively, this policy
assumes that the keys that have accumulated the most error
so far also have the largest initial prefix errors, and there-
fore ranking keys by accumulated error is a good approxi-
mation for ranking them by initial prefix error. We find this
policy performs better than more sophisticated policies such
as those that try to predict initial prefix error explicitly [23].

Cache Size Prediction
Predicting the appropriate primary cache size function σ(t)
raises several additional challenges. To begin, consider how
to define this function in an ideal world where we have a
perfect eviction policy and a perfect prediction of initial pre-
fix error. At time t, the primary cache size σ(t) represents
the number of keys that are present in the primary cache.
These σ(t) keys will need to be flushed prior to the staleness
bound, as will any not-yet-arrived keys with sufficiently high
initial prefix error. Let f (t) denote the number of future ar-
rivals of these large-prefix-error keys. Then, if the total num-
ber of network slots remaining until the staleness constraint

is given by B(t), an ideal primary cache size function σ(t)
satisfies B(t) = σ(t)+ f (t).

In practice, we have neither a perfect eviction policy, nor
a perfect prediction of initial prefix error, and determining
f (t) is a nontrivial prediction on its own. We have explored
a host of alternative approaches [23], and among these, we
find that a policy based on the previous window’s arrival se-
quence works well. This policy, referred to as PrevWindow,
assumes that arrivals in the current window will resemble
those in the previous window, and it therefore uses the previ-
ous window’s arrival sequence to compute f (t). Using an ex-
ponentially weighted moving average of the available WAN
bandwidth to predict B(t), this f (t) is then used to compute
the appropriate primary cache size function σ(t).

Cache Eviction Policy
During the window, we use the sizing-based cache partition-
ing policy to delineate the boundary between primary and
secondary caches. When network capacity is available, it
remains the role of the cache eviction policy to determine
which key should be evicted from the primary cache. As in
Section 4.2, we again find that simple well known policies
such as LRU perform well.

Upon reaching the end of the window, there is no need
for prediction since all final aggregate values are known. At
this point, keys are evicted from the union of the primary and
secondary caches in descending order by their accumulated
error until reaching the staleness bound.

4.4 Implementation
We implement our algorithms in Apache Storm [3], extend-
ing our prototype for exact computation [22], which uses a
distinct Storm cluster at each edge, as well as one at the cen-
ter, in order to distribute the aggregation workload. Figure 2
shows the overall architecture. Here we briefly discuss each
component in the order of data flow from edge to center.

Center

SocketReceiver Reorderer StatsCollector
EdgeSummer
EdgeSummer
EdgeSummer
Aggregator

Edge

Replayer Reorderer

Logs

EdgeSummer
EdgeSummer
EdgeSummer
Aggregator

SocketSender

Figure 2. Aggregation is distributed over Apache Storm
clusters at each edge as well as at the center.

Edge. Data enters our prototype at the edge through the
Replayer spout, which replays timestamped logs from a
file. Each line is parsed using a query-specific parsing func-
tion to produce a (timestamp, key, value) triple. Our

367



implementation leverages Twitter’s Algebird12 library to
support a broad set of value types and associated aggrega-
tions. The Replayer emits records according to their times-
tamp; i.e., event time and processing time [7] are equivalent
at the Replayer. The Replayer emits records downstream,
and also periodically emits punctuation messages to indicate
that no messages with earlier timestamps will be sent in the
future.

The next step in the dataflow is the Aggregator, for
which one or more tasks run at each cluster. The Aggregator
defines window boundaries in terms of record timestamps,
and maintains the two-level cache from Section 4, with each
task aggregating a hash-partitioned subset of the key space.
We implement the two-part cache using efficient priority
queues, allowing us to generalize over a range of cache par-
titioning and eviction policies in order to implement our
online algorithms.

The Aggregator tasks send their output to a single in-
stance of the Reorderer bolt, which is responsible for de-
laying records as necessary in order to maintain punctua-
tion semantics. Data then flows into the SocketSender bolt,
which transmits (partial) aggregates to the center using TCP
sockets.

Center. At the center, data flows in the reverse order. First,
the SocketReceiver spout receives partial aggregates and
punctuations and emits them downstream into a Reorderer,
where the streams from multiple edges are synchronized.
From there, records flow into the central Aggregator, each
task of which is responsible for performing the final ag-
gregation over a hash-partitioned subset of the key space.
Upon completing aggregation for a window, these central
Aggregator tasks emit summary metrics including error
and staleness, and these metrics are summarized by the fi-
nal StatsCollector bolt. Staleness is computed relative to
the wall-clock (i.e., processing) time at which the window
closes. Clocks are synchronized using NTP.13

Our online algorithms treat the two-part cache as the
outgoing network queue, but Storm does not implement flow
control at the bolt level, and the Storm programming model
only allows bolts to push tuples downstream. To resolve this
apparent mismatch, we track queuing delays within both the
SocketSender and the SocketReceiver. These delays are
communicated upstream, and the edge Aggregators use
them as congestion signals, applying an additive-increase
/ multiplicative-decrease (AIMD) approach to dynamically
adjust the rate at which they push records downstream.

5. Evaluation
In this section, we evaluate our online algorithms using
both a trace-driven simulation as well as experiments us-

12 https://github.com/twitter/algebird
13 Clock synchronization errors are small relative to the staleness ranges we
explore in our experiments.

ing our Storm-based implementation on PlanetLab [1] and
local testbeds.

5.1 Dataset and Queries
Our simulations and experiments are driven by an anonymized
workload trace obtained from a real-world analytics ser-
vice14 by Akamai, a large commercial content delivery net-
work. This analytics service is used by content providers to
track important metrics about who has downloaded content,
where these clients were located, what performance they
experienced, how many downloads completed successfully,
etc. The data source is a software called Download Manager,
which is installed on mobile devices, laptops, and desktops
of millions of users around the world, and used to down-
load software updates, security patches, music, games, and
other content. The Download Managers installed on users’
devices around the world send information about the down-
loads to the widely-deployed Akamai edge servers using
“beacons”.15 Each download results in one or more beacons
being sent to an edge server, and these beacons contain in-
formation about the time the download was initiated, url,
content size, number of bytes downloaded, user’s ip, user’s
network, user’s geography, server’s network and server’s
geography. We use the anonymized beacon logs from Aka-
mai’s download analytics service for the month of Decem-
ber, 2010. Note that, for confidentiality reasons, we normal-
ize derived values from the data set such as time durations
and error values.

In our evaluation, we focus on windowed grouped aggre-
gation for a query that groups its input records by content
provider id, client country code, and url. Because this last
dimension—url—can take on hundreds of thousands of dis-
tinct values, we call this a “large” query. Our previous work
on exact windowed grouped aggregation [22] also considers
“smaller” queries; we focus here on the largest queries as
they are especially challenging under bandwidth constraints.

We consider three diverse aggregations: Sum, Max, and
HyperLogLog [18]. Each of these aggregations uses the
large query key. The Sum aggregation computes the to-
tal number of bytes successfully downloaded for each key,
while the Max aggregation computes the largest successful
download size for each key. The HyperLogLog aggregation
is used to approximate the number of unique client IP ad-
dresses for each key. This demonstrates an important point:
our techniques apply to a broad range of aggregations, from
distributive and algebraic [20] aggregates such as Sum, Max,
or Average to holistic aggregates such as unique count via
HyperLogLog.16

14 http://www.akamai.com/dl/feature_sheets/Akamai_

Download_Analytics.pdf
15 A beacon is simply an http GET issued by the Download Manager for a
small GIF containing the reported values in its url query string.
16 We adopt the common approach [15] of approximating holistic aggre-
gates (e.g., unique count, Top-K, heavy hitters) using sketch data structures
(e.g., HyperLogLog, CountMinSketch [14])

368



5.2 Baseline Algorithms
We compare the following aggregation algorithms.

Streaming: A streaming algorithm performs no aggrega-
tion at the edge, and instead simply flushes each key im-
mediately upon arrival; that is, it streams arrivals directly
on to the center. An error-bound variant continues stream-
ing arrivals until the error constraint E is satisfied, while a
staleness-bound variant continues streaming until reaching
the staleness limit S.

Batching: A batching algorithm aggregates arrivals until the
end of the window without sending any updates. At the end
of the window at time T +W , an error-bound variant flushes
all keys for which omitting an update would exceed the
error bound; i.e., all keys with initial prefix error greater
than E. A staleness-bound variant begins flushing keys at
the end of the window, and does so in descending order
of initial prefix error, stopping upon reaching the staleness
limit S.

Batching with Random Early Updates (Random): The
Random algorithm effectively combines batching with
streaming using random sampling. Concretely, the Ran-
dom algorithm aggregates arrivals at the edge as batching
does, but it sends updates for random keys during the win-
dow whenever network capacity is available. When the end
of the window arrives, it flushes keys as batching does, in
decreasing order by their impact on error. This algorithm
is a useful baseline to show that the choice of which key to
flush during the window is critical.

Optimal: To provide an optimal baseline for evaluating our
online algorithms, we implement the EPE and SPEF-EO al-
gorithms from Section 3 for the error-bound and staleness-
bound optimizations, respectively.

Caching: These refer to our caching-based online algo-
rithms presented in Section 4. For the error-bound case,
we use the emulated EPE algorithm, consisting of the two-
part caching approach with an LRU primary cache eviction
policy, as discussed in Section 4.2. For the staleness-bound
case, we employ the emulated SPEF-EO algorithm dis-
cussed in Section 4.3, consisting of LRU eviction, Accu-
mulated Error-based estimation, and PrevWindow cache
sizing policies.

5.3 Simulation Results
Before presenting experimental results on our PlanetLab de-
ployment, we use simulations to compare our online algo-
rithms to a number of baseline algorithms. Simulation allows
us to more rapidly explore a large design space, to compare
against an offline optimal algorithm, and to select a practical
baseline approach to use in our experiments later.

We implement a simple discrete event simulator in Python.
Our simulation is deliberately simplified, as the focus here
is not on understanding performance in absolute terms (we

rely on the experiments in Section 5.4 for that) but rather
to compare the tradeoffs between different algorithms. Note
that error for a schedule of flushes can be computed directly
from its definition; it is only the staleness that we simulate.
To compute staleness, we model the wide-area network as a
queue with deterministic service times based on a constant
network bandwidth. Arrival times to this queue correspond
to the time at which updates are flushed. An aggregation al-
gorithm is then simulated by scheduling the updates based
on the algorithm’s schedule. All simulation results present
median values (staleness or error) over 25 consecutive time
windows from the Akamai trace, spanning multiple days
worth of workload.

5.3.1 Minimizing Staleness (Error-Bound)
We first compare our caching-based online algorithm against
the baseline algorithms for the error-bound optimization al-
gorithm which has the goal of minimizing staleness for a
given error constraint. Figure 3 shows staleness (normalized
relative to the window length) for a range of error bounds
E (normalized relative to the largest possible error for our
trace) for our online algorithm, as well as for our three base-
line algorithms and an optimal offline algorithm. It is clear
that streaming is infeasible, as staleness far exceeds the win-
dow length (shown as the dotted horizontal line). By per-
forming aggregation at the edge, batching significantly im-
proves upon streaming, but it still yields high staleness be-
cause it delays all flushes until the end of the window. Ran-
dom improves only slightly over batching, showing the limi-
tation of our random sampling approach. Our caching-based
online algorithm, on the other hand, chooses which keys to
flush during the window in a principled manner, and yields
staleness much closer to an offline optimal algorithm as a
result.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Normalized Error Limit ×10−4

10−5
10−4
10−3
10−2
10−1

100
101
102
103
104

N
or

m
al

iz
ed

St
al

en
es

s

Optimal
Batching

Random
Streaming

Caching

Figure 3. Normalized staleness for Sum aggregation with
various error bounds. Note the logarithmic y-scale.

5.3.2 Minimizing Error (Staleness-Bound)
Figure 4 demonstrates the effectiveness of our approach
compared to the other baselines for the case where we

369



10−3 10−2 10−1 100

Normalized Staleness Limit

10−5

10−4

10−3

10−2

10−1

100

101

102

103

N
or

m
al

iz
ed

E
rr

or

Optimal
Batching

Random
Streaming

Caching

Figure 4. Normalized error for Sum aggregation with vari-
ous staleness bounds. Note the logarithmic axis scales.

are minimizing the error given a staleness limit. The fig-
ure shows the normalized error values obtained for different
staleness limits. We again see that streaming is impracti-
cal, as its fails to effectively use the limited WAN capacity
to transmit the most important updates. Batching yields a
significant improvement over streaming, as long as the tol-
erance for staleness is sufficiently high. Batching with ran-
dom early updates represents a further improvement, though
again, the benefit of these early updates is not dramatic. Our
caching-based online algorithm, on the other hand, by mak-
ing principled decisions about which keys to flush during
the window, yields near-optimal error across a broad range
of staleness limits.

Note that all algorithms except streaming converge to
the same error as the staleness bound reaches one window
length. The reason is that, as the staleness bound approaches
the window length, there are fewer and fewer opportunities
to flush updates during the window, and these algorithms
converge toward pure batching.

5.4 Experimental Results
To demonstrate how our techniques perform in a real-
world setting, we now present results from an experimental
evaluation conducted on PlanetLab [1] using our Storm-
based implementation. Throughout our experiments, we use
two combinations of PlanetLab nodes at the University of
Oregon as well as local nodes at the University of Min-
nesota. The Oregon site includes three nodes, each with
4GB of physical memory and four CPU cores. The Min-
nesota site includes up to eight nodes, each with 12GB of
physical memory and eight CPU cores. WAN bandwidth
from Minnesota to Oregon averages 12.5Mbps based on
iperf3 measurements. For all of our experiments, we use
the anonymized Akamai trace as input.

Staleness and error are measured at the center, and we
treat the staleness constraint as a hard deadline: when the
deadline is reached, we compute the error based on records
that have arrived at the center up to that point. In general,
there may be arrivals after the deadline due to varying WAN

delays, but we disregard these late arrivals as they violate the
staleness constraint.

Based on our results from Section 5.3, we use Random
as a practical baseline algorithm for comparison, since it
outperforms both batching and streaming.

5.4.1 Geo-Distributed Aggregation
In order to demonstrate our techniques in a real geo-distributed
setting, we begin with experiments using Minnesota nodes
as the edge and Oregon nodes as the center. Note that we use
local Minnesota nodes rather than PlanetLab nodes as the
edge because PlanetLab imposes restrictive daily limits on
the amount of data sent from each node, rendering repeated
experiments with PlanetLab edge nodes impractical.17

Figure 5(a) and Figure 5(b) show staleness and error for
error-constrained and staleness-constrained algorithms, re-
spectively. Both staleness and error are normalized relative
to the Random baseline for ease of interpretation. We con-
sider the median staleness or error during a relatively stable
portion of the workload, and plot the mean over five runs.
Error bars show 95% confidence intervals [17].

Figure 5 demonstrates that our Caching algorithms sig-
nificantly outperform a practical random sampling/batching-
based baseline in a real-world geo-distributed deployment.
Staleness is reduced by 81.8% to 96.6% under an error con-
straint, while error is reduced by 83.4% to 99.1% under a
staleness constraint. Note that the reduction is largest for Max
aggregation, as many keys attain their final value well in ad-
vance of the end of the window, allowing greater opportunity
for early evictions.

These results demonstrate that our techniques perform
well in a real geo-distributed deployment over real data, and
they do so for a diverse set of aggregations.

5.4.2 Dynamic Workload and WAN Bandwidth
To dig deeper, we assess how our algorithms perform under
dynamic workload and WAN bandwidth using an alterna-
tive deployment with eight total Minnesota nodes: four as
the edge and four as the center. We use tc to emulate con-
strained WAN bandwidth between the edge and center clus-
ters. By changing the emulated WAN bandwidth at runtime,
we can study how our algorithms adapt to dynamic WAN
bandwidth. Further, our anonymized Akamai trace exhibits
a significant shift in workload early in the trace, providing
a natural opportunity to study performance under workload
variations.

Figure 6 shows how our staleness-bound and error-bound
algorithms behave under these workload and bandwidth
changes for the Sum aggregation. Figure 6(a) plots staleness
normalized relative to the window length, while Figure 6(b)
plots error normalized relative to the largest possible error.

17 For example, each one of the five repetitions of the HyperLogLog exper-
iments was enough to exhaust the daily bandwidth limit.

370



Sum Max HyperLogLog

Aggregation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
N

or
m

al
iz

ed
St

al
en

es
s Random Caching

(a) Staleness under an error constraint.

Sum Max HyperLogLog

Aggregation

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
or

m
al

iz
ed

E
rr

or

Random Caching

(b) Error under a staleness constraint.

Figure 5. Comparison of Random and Caching algorithms for various aggregation functions on a PlanetLab testbed.

0 5 10 15 20 25 30 35 40

Window Number

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

St
al

en
es

s Random
Caching

(a) Staleness under an error constraint.

0 5 10 15 20 25 30 35 40

Window Number

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

N
or

m
al

iz
ed

E
rr

or

×10−5

Random
Caching

(b) Error under a staleness constraint.

Figure 6. Comparison of Random and Caching algorithms for Sum aggregation under dynamic workload and WAN bandwidth
on a local testbed. Arrival rate increases during window 6 (dashed vertical line), and available bandwidth decreases during
window 20 (dotted vertical line).

For both figures, we run the experiment five times, and plot
the median staleness or error for each window.

We see that both Random and Caching algorithms require
some time to adapt to the workload change that occurs dur-
ing window 6. Once stabilized, Caching yields significantly
lower staleness and error than Random. During window 20,
we reduce WAN bandwidth by 62.5%. While staleness and
error increase for both algorithms, our Caching algorithms
continue to significantly outperform the Random baseline.

5.4.3 Various Error and Staleness Constraints
Using the eight-node Minnesota deployment, we further
study the performance of our algorithms under various error
and staleness constraints. Figure 7 shows staleness (normal-
ized relative to the window length) and error (normalized
relative to the largest possible error) for the Sum aggrega-
tion. As in Figure 5, we plot 95% confidence intervals over
five runs.

As we saw from our simulation results in Section 5.3,
we see that higher error (resp., staleness) constraints lead to
lower staleness (resp., error), demonstrating the tradeoff be-
tween staleness and error in a real deployment. Our Caching

algorithms significantly outperform Random across a range
of error and staleness constraints,

Overall, our experiments demonstrate that our Caching
algorithms apply across a diverse set of aggregations, and
that they outperform the Random baseline in real geo-
distributed deployments, under dynamic workloads and
bandwidth conditions, and across a range of error and stale-
ness constraints.

6. Related Work
Numerous streaming systems [2, 6, 11, 12, 26, 31, 36] have
been proposed in recent years. These systems provide many
useful ideas for new analytics systems to build upon, but they
do not fully explore the challenges described in this paper,
in particular how to strike a near-optimal balance between
timeliness and accuracy.

Google recently proposed the Dataflow model [7] as a
unified abstraction for computing over both bounded and
unbounded datasets. Our work fits within this model, but we
focus in particular on aggregation over tumbling windows
on unbounded data sets.

Wide-area computing has received increased research at-
tention in recent years, due in part to the widening gap be-

371



7.8e-08 1.6e-07 3.1e-07 6.2e-07

Normalized Error Limit

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

St
al

en
es

s Random Caching

(a) Staleness under various error constraints.

0.05 0.1 0.2 0.4

Normalized Staleness Limit

0
1
2
3
4
5
6

N
or

m
al

iz
ed

E
rr

or

×10−6

Random Caching

(b) Error under various staleness constraints.

Figure 7. Comparison of Random and Caching algorithms for Sum aggregation with various error and staleness constraints on
a local testbed.

tween data processing and communication costs. Much of
this attention has been paid to batch computing [30, 33, 34].
Relatively little work on streaming computation has focused
on wide-area deployments, or associated questions such as
where to place computation. Pietzuch et al. [29] optimize
operator placement in geo-distributed settings to balance be-
tween system-level bandwidth usage and latency. Hwang et
al. [25] rely on replication across the wide area in order to
achieve fault tolerance and reduce straggler effects.

JetStream [32] considers wide-area streaming computa-
tion, and like our work, addresses the tension between time-
liness and accuracy. Unlike our work, however, it focuses at
a higher level on the appropriate abstractions for navigating
this tradeoff. Meanwhile BlinkDB [5] provides mechanisms
to trade accuracy and response time, though it does not focus
on processing streaming data. Our focus, on the other hand,
is on concrete algorithms to approach an optimal tradeoff
between timeliness and accuracy in streaming settings.

Das et al. [16] consider tradeoffs between throughput and
latency in Spark Streaming, but they focus on exact compu-
tation and consider only a uniform batching interval for the
entire stream, while we consider approximate computation
and address scheduling on a per-key basis.

Aggregation is a key operator in analytics, and grouped
aggregation is supported by many data-parallel program-
ming models [10, 20, 35]. Larson et al. [27] explore the ben-
efits of performing partial aggregation prior to a join opera-
tion, much as we do prior to network transmission. While
they also recognize similarities to caching, they consider
only a simple fixed-size cache, whereas our approach uses a
novel two-part cache to determine both whether and when to
transfer partial aggregates. Amur et al. [8] study grouped ag-
gregation, focusing on the design and implementation of ef-
ficient data structures for batch and streaming computation,
though they do not consider staleness, a key performance
metric in our work.

Our work bears some resemblance to anytime algorithms
(e.g., [9, 37]), which improve their solutions over time and
can be interrupted at any point to deliver the current best

solution. While our staleness-bound algorithm is essentially
an anytime algorithm, terminating when the staleness limit
is reached, our error-bound algorithm terminates only when
the error constraint is satisfied.

Our techniques complement other approaches for approx-
imation in stream computing. For example, our work ap-
plies to approximate value types such as the Count-min
Sketch [14] or HyperLogLog [18], while recent work in dis-
tributed function monitoring [13, 19] could serve as a start-
ing point for coordination between multiple edges.

7. Conclusion
In this paper, we considered the problem of streaming ana-
lytics in a geo-distributed environment. Due to WAN band-
width constraints, applications must often sacrifice either
timeliness by allowing stale results, or accuracy by allowing
some error in final results. In this paper, we focused on win-
dowed grouped aggregation, an important and widely used
primitive in streaming analytics, and studied the tradeoff be-
tween the key metrics of staleness and error. We presented
optimal offline algorithms for minimizing staleness under an
error constraint and for minimizing error under a staleness
constraint. Using these offline algorithms as references, we
presented practical online algorithms for effectively trading
off timeliness and accuracy in the face of bandwidth limita-
tions. Using a workload derived from a web analytics service
offered by a large commercial CDN, we demonstrated the ef-
fectiveness of our techniques through both trace-driven sim-
ulation as well as experiments using an Apache Storm-based
prototype implementation deployed on PlanetLab. Our re-
sults showed that our proposed algorithms outperform prac-
tical baseline algorithms for a range of error and staleness
bounds, for a variety of aggregation functions, and under
varied network bandwidth and workload conditions.

Acknowledgments
The authors would like to acknowledge NSF Grant CNS-
1413998, and an IBM Faculty Award, which supported this
research.

372



References
[1] PlanetLab. http://planet-lab.org/, 2015.

[2] Apache Flink: Scalable Batch and Stream Data Processing.
http://flink.apache.org/, 2016.

[3] Apache Storm. http://storm.apache.org/, 2016.

[4] M. Adler, R. K. Sitaraman, and H. Venkataramani. Algorithms
for optimizing the bandwidth cost of content delivery. Com-
puter Networks, 55(18):4007–4020, Dec. 2011. ISSN 1389-
1286.

[5] S. Agarwal et al. BlinkDB: queries with bounded errors
and bounded response times on very large data. In Proc. of
EuroSys, pages 29–42, 2013.

[6] T. Akidau et al. MillWheel: Fault-tolerant stream processing
at internet scale. Proc. of VLDB Endow., 6(11):1033–1044,
Aug. 2013.

[7] T. Akidau et al. The dataflow model: A practical approach
to balancing correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing. Proc. of the VLDB
Endowment, 8:1792–1803, 2015.

[8] H. Amur, W. Richter, D. G. Andersen, M. Kaminsky,
K. Schwan, A. Balachandran, and E. Zawadzki. Memory-
efficient groupby-aggregate using compressed buffer trees. In
Proc. of SoCC, pages 18:1–18:16, 2013.

[9] M. Boddy. Anytime problem solving using dynamic program-
ming. In Proc. of AAAI, pages 738–743, 1991.

[10] O. Boykin, S. Ritchie, I. O’Connel, and J. Lin. Summing-
bird: A framework for integrating batch and online mapreduce
computations. In Proc. of VLDB, volume 7, pages 1441–1451,
2014.

[11] S. Chandrasekaran et al. TelegraphCQ: Continuous dataflow
processing for an uncertain world. In Proc. of CIDR, 2003.

[12] G. J. Chen, J. L. Wiener, S. Iyer, A. Jaiswal, R. Lei, N. Simha,
W. Wang, K. Wilfong, T. Williamson, and S. Yilmaz. Realtime
data processing at facebook. In Proc. of SIGMOD, pages
1087–1098, 2016.

[13] G. Cormode. Continuous distributed monitoring: A short
survey. In Proc. of AlMoDEP, pages 1–10, 2011.

[14] G. Cormode and S. Muthukrishnan. An improved data stream
summary: The count-min sketch and its applications. J. Algo-
rithms, 55(1):58–75, Apr. 2005. ISSN 0196-6774.

[15] G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan,
O. Spatscheck, and D. Srivastava. Holistic UDAFs at stream-
ing speeds. In Proc. of SIGMOD, pages 35–46, 2004.

[16] T. Das, Y. Zhong, I. Stoica, and S. Shenker. Adaptive stream
processing using dynamic batch sizing. In Proc. of SoCC,
pages 16:1–16:13, 2014.

[17] B. Efron. Better bootstrap confidence intervals. Journal of the
American Statistical Association, 82(397):171–185, 1987.

[18] P. Flajolet, É. Fusy, O. Gandouet, et al. HyperLogLog: The
analysis of a near-optimal cardinality estimation algorithm. In
Proc. of AOFA, 2007.

[19] N. Giatrakos, A. Deligiannakis, and M. Garofalakis. Scal-
able approximate query tracking over highly distributed data
streams. In Proc. of SIGMOD, pages 1497–1512, 2016.

[20] J. Gray et al. Data cube: A relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. Data Min.
Knowl. Discov., 1(1):29–53, Jan. 1997.

[21] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The
cost of a cloud: Research problems in data center networks.
SIGCOMM Comput. Commun. Rev., 39(1):68–73, Dec. 2008.
ISSN 0146-4833.

[22] B. Heintz, A. Chandra, and R. K. Sitaraman. Optimizing
grouped aggregation in geo-distributed streaming analytics. In
Proc. of HPDC, pages 133–144, 2015.

[23] B. Heintz, A. Chandra, and R. K. Sitaraman. Trading time-
liness and accuracy in geo-distributed streaming analytics.
Technical Report 16-003, Department of Computer Science,
University of Minnesota, 2016.

[24] C.-C. Hung, L. Golubchik, and M. Yu. Scheduling jobs across
geo-distributed datacenters. In Proc. of SoCC, pages 111–124,
2015.

[25] J.-H. Hwang, U. Cetintemel, and S. Zdonik. Fast and highly-
available stream processing over wide area networks. In Proc.
of ICDE, pages 804–813, 2008.

[26] S. Kulkarni et al. Twitter heron: Stream processing at scale.
In Proc. of SIGMOD, pages 239–250, 2015.

[27] P.-A. Larson. Data reduction by partial preaggregation. In
Proc. of ICDE, pages 706–715, 2002.

[28] E. Nygren, R. K. Sitaraman, and J. Sun. The Akamai net-
work: a platform for high-performance internet applications.
SIGOPS Oper. Syst. Rev., 44(3):2–19, Aug. 2010.

[29] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer. Network-aware operator placement
for stream-processing systems. In Proc. of ICDE, 2006.

[30] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica. Low latency geo-distributed data ana-
lytics. In Proc. of SIGCOMM, pages 421–434, 2015.

[31] Z. Qian et al. TimeStream: reliable stream computation in the
cloud. In Proc. of EuroSys, pages 1–14, 2013.

[32] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman.
Aggregation and degradation in JetStream: Streaming analyt-
ics in the wide area. In Proc. of NSDI, pages 275–288, 2014.

[33] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and
G. Varghese. WANalytics: Analytics for a geo-distributed
data-intensive world. In Proc. of CIDR, January 2015.

[34] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye,
and G. Varghese. Global analytics in the face of bandwidth
and regulatory constraints. In Proc. of NSDI, pages 323–336,
May 2015.

[35] Y. Yu, P. K. Gunda, and M. Isard. Distributed aggregation for
data-parallel computing: interfaces and implementations. In
Proc. of SOSP, pages 247–260, 2009.

[36] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica.
Discretized streams: Fault-tolerant streaming computation at
scale. In Proc. of SOSP, pages 423–438, 2013.

[37] S. Zilberstein. Operational rationality through compilation of
anytime algorithms. Technical report, 1993.

373




