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Abstract

Several modern high-speed networks implement routing al-
gorithms that resolve contention for resources such as buffer
space by dropping (i.e., deleting) packets. In this paper,
we analyze the performance of such routing algorithms for
the commonly-used butterfly network. We assume that each
switch of the butterfly has a buffer that can hold a bounded
number of packets, and any packet attempting to enter a
switch with a full buffer is simply dropped from the network.
We study three significant metrics that characterize routing
performance: expected throughput of the network, packet
loss rate, and expected delay of a packet. Our main results
are analytic expressions for these three performance metrics
in terms of the network-size, size of the buffer at each switch,
and the packet arrival rate. Our analyses for the throughput
and packet loss rate hold for any non-predictive queuing pro-
tocol, including simple, often-implemented protocols such as
i%st-in fist-out (FIFO) and fixed-priority scheduling. Our
delay expressions hold for the FIFO protocol. Several facts
of interest to a network designer fall out of our analysis.
Further, our results provide quantitative insights into how
the three performance metrics tradeoff against each other.
Also, we present simulation results to bolster the results
of our analysis. Finally, we outline preliminary results for
routing on other networks such aa the crossbar.

1 Introduction

Mauy commercial and experimental parallel computers use
regular interconnection networks such as the butterfly to
route packets between processors [Got87, PBG+87]. Sev-
eral proposed designs for the switching fabric of scalable
high-speed ATM networks also use the butterfly and other
closely-related banyan networks [RCG94]. Typically, a packet
is routed from its source to its destination along a path in
the network consisting of a sequence of switches. Further,
each switch has a buffer that can hold a bounded number
packets, and each switch uses a simple queueing protocol
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such as fist-in first-out (FIFO) to determine which packets
to transmit at each step.

An important distinguishing feature of a network routing
alzorithm is the manner in which contention for resources at
a switch is resolved. In most traditional parallel networks,
if a packet wishes to enter a switch that has no buffer space
available, or if a packet wishes to use a link that is busy, the
packet is simply blocked, until a time the requested resource
becomes available. However, several ATM implementations
[RCG94] and high-speed switches like NEC’S ATOM switch
[NMT+91] simply drop (i.e., delete) the packet that con-
tends for an unavailable resource. For instance, a packet
attempting to enter a switch with a full buffer is dropped
from the network.

There are several advantages to dropping packets to re-
solve contention. In traditional parallel networks where pack-
ets can be blocked, the delay of a packet can be large in
the worst-case. It is estimated that in the Intel Paragon
with 1024 nodes, the delay of a packet can theoretically be
as large as several days [Int91]!. However, networks that
drop packets to resolve contention never get congested due
to blocked packets, and the delay of each packet that suc-
cessfully reaches its destination is easily bounded in the
worst-case. This is an important concern in the design of
parallel networks for delay-sensitive, real-time applications
like process control and multimedia. Further, several types
of network traffic, for instance real-time audio and video,
can tolerate some amount of packet loss without a signifi-
cant degradation in quality, but they are intolerant to delay.
Dropping packets is a natural contention-resolution mecha-
nism for such traflic.

Despite the existence of several practical networks that
utilize packet dropping, much remains to be known about
the performance of these networks from a theoretical stand-
point. In this paper, we study routing on a butterfly net-
work where contention is resolved by dropping packets. We
restrict our attention to a simple, easily-implementable class
of queueing protocols that includes protocols such as First-
in First-Out (FIFO). We focus on three performance met-
rics: expected throughput, packet loss rate, and expected
delay. We derive precise quantitative expressions for these
performance metrics in terms of the network-size, the size
of the buffer at each switch, and the packet arrival rate.
While our primary results pertain to the butterfly network,
similar techniques can be applied to other networks (such as
the crossbar). Our work helps answer a number of questions
that are important to a network designer. For instance, what
is the size of the buffers required at a switch for a specific
expected throughput, packet loss rate, or expected delay?
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Figure 1: An 8-input buttertly network, and the internal structure of a switch.

Or, how does packet loss rate tradeoff with expected delay?
We also provide empirical simulation results to bolster our
analysis.

1.1 Our Model

In this section, we describe our network and traffic model,
and define our performance metrics.
Network Definition. An N-input butterfly has (log N +
l)N nodes arranged in log N + 1 levelsl (See Figure 1). We
use the term size of the butterfly network to denote the
number of inputs it has. Each edge is an uni-directional
communication link, directed from the node in the smaller
numbered level to the node in the larger numbered level.
Each node of the butterfly is a 2 x 2 switch with two incoming
and two outgoing links. We use the terms node and switch
interchangeably in the rest of the paper. Each node has a
distinct label (r-o,i), where i is the level of the node (O ~ i ~
log N) and w is a log N-bit binary number that denotes the
row of the node. Two nodes (w, i) and (w’, i’) are linked by
an edge if and only if i’ = i + 1 and either w and w’ are
identical (straight edge) or w and w’ differ in precisely bit i’
(cross edge). The switches on level O are called inputs, and
the those on level log N are called outputs. In a butterfly
network, packets are typically sent from the inputs on level
Oto the outputs on level log N. In a butterfly network there
is an unique path of length log N between any input and any
output. A packet enters the network at an input node, and
traverses the unique path from its input node to its output
node, passing through log A’ + 1 switches en route.
Switch Model. We assume that each switch of the butter-
fly network has a single buffer that can hold a fixed number
of packets denoted by q (See Figure 1). All packets have
the same size, and a packet can be transmitted across a
link in unit-time. The packets enter and leave the switches
at discrete time steps governed by a common clock. At
the beginning of each time step, each switch selects a single
packet from its buffer using a non-predictive queueing pro-
tocol [Lei92, Section 3.4.4], i.e., each switch selects a packet
from its buffer without examining the destinations of any
of the packets in its bufler Note that many easily imple-
mentable as well as conceptually simple protocols like FIFO
and tixed-priority scheduling are non-predictive. Then, each
switch forwards the selected packet to a switch in the next

level of the butterfly. Following this, each switch receives
packets sent to it in the previous time step, and places them
in its buffer. A buffer is said to be fill, if it contains q pack-
ets. A packet wishing to enter a switch with a full buffer
is simply dropped. Note that if two packets simultaneously
enter a switch with q – 1 packets in its buffer, one of the two
packets is dropped, while the other packet is placed in the
btier.
Trfic Model. We assume that packets arrive at each in-
put with a geometric interarrival distribution2 with arrival
rate & O < A < 1. In other words, the probabilityy that a
packet arrives at a specific input, at a specific time step is J.
Further, the event that a packet arrives at a specific input
at a specific time step is independent of all other packet ar-
rivals at other inputs or at other times. Each packet chooses
its output destination randomly, such that each output is
equally likely to be chosen. Further, each packet chooses its
destination independent of all other packets. (Note that we
do not model the retransmission of dropped packets. Such
retransmission may or may not be required in practice de-
pending on the type of traflic.)
Performance Metrics. We are concerned with three im-
portant performance metrics: ezpected throughput, packet
loss rate, and ezpected delay. Other metrics like jitter are
relevant for some clawes of trat?ic, but we will not consider
them in this paper. Expected throughput is the expected
number of packets that reach their destinations in a time
step at steady state. Packet loss rate is the probability that
a packet is dropped by a switch on its path, at steady state.
Expected delay is the expected value of the total number of
time steps that a packet waits in the buffers of the switches
along its path, before reaching its destination, at steady
state. Note that the expectation is taken only over packets
that successfully reach their destinations, excluding packets
that get dropped. Expected latency is the expected value
of the total time taken by a packet to go from its source to
its destination. Note that expected latency is simply the ex-
pected delay plus the time steps in which the packet moves
from one switch to the next, i.e., for an N-input butterfly
network, expected latency is expected delay plus log N.

‘Geometric distribution is a memory less distribution and is the
discrete analog of the Poisson distribution.

‘ All logarithms in this paper are base 2.
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1.2 Previous work

The study of routing on interconnection networks has a
long history dating back to Batcher [Bat68]. We refer to
Leighton’s book[Lei92] or survey [Lei92a] for a comprehen-
sive treatment. In this section, we describe only work closely-
related to this paper.

Several papers deal with static routing in butterfly net-
works, where all the packets that need to be routed are
present at time zero, and no new packets arrive when the
routing is in progress. The first results devise butterfly
routing algorithms that require buffers of unbounded size
at each switch [Va182, VB81, Ale82, Up f84]. Subsequent
papers improve on these results to obtain butterfly routing
algorithms that require only buffers of bounded size at each
switch [Pip84, LMRR94, Ran91, MS92].

The study of dynamic routing in butterfly networks, where
packets arrive at the inputs in an on-line fashion according
to a statistical distribution, has received recent attention.
Dynamic packet routing models routing on real networks
more closely than static routing. Stamoulis and Tsitsik-
Iis [ST91] study dynamic butterfly routing with unbounded
buffers at each switch. Broder, Frieze, and Upfal [BFU96]
generalize static routing results to provide dynamic butter-
fly routing algorithms that utilize buffers of bounded size at
each switch. All the papers mentioned so far deal with but-
terfly networks that block packets to resolve contention, and
there is no packet loss. Recent papers on universal store-and
forward packet routing also provide new results for butterfly
routing [MadHV95, CadHSV96, VS96].

There are several papers that study the expected through-
put of static circuit-switching on the butterfly, where a cir-
cuit attempting to use a saturated link is simply dropped
[Pat81, KS83, MS92, Lei92]. Koch [Koc88] showed that if
each input of an N-input butterfly routes to a random out-
put, the expected number of inputs that succeed in locking

down circuits to their output destinations is C)(N/ log: IV),
where q is the maximum number of circuits that any link
of the butterfly can support. Koch’s circuit-switching re-
sult can be used to derive a lower bound on the expected
throughput of static routing on butterfly networks that drop
packets [MS92]. Specifically, if one packet is routed from
each input of an N-input butterfly network to a random
output, and the buffer-size at each switch is q, the expected
number of packets that reach their destination is

Q(N/ log $ IV)[MS92]. (The throughput analysis in Section
2.5 suggests that this lower bound is not tight, and that the

expected throughput is @(N/ log ~ N). )
The first major step in the analysis of dynamic rout-

ing in butterfly networks that drop packets was taken in
[RMDL96]. Their paper shc)ws that the expected through-
put of an N-input butterfly network is @(N/-), when
a packet destined for a random output arrives at each input
at each time step (i.e., A = 1), and when each switch can
buffer at most one packet at each of its incoming links. Un-
like our switch model which utilizea a single shared buffer of
arbitrary size q, their work assumes that unit-sized buifers
are placed at the incoming links. We utilize some techniques
developed in their paper and in the earlier work of Koch
[Koc88] in our throughput analysis for arbitrary A and q.

While all of the above papers perform exact analysea,
several papers provide approximate analyses of butterfly
routing [SS89, Mer91, Jen83, TRH91, Tur93, YLL90, GP93,
GP94]. Typically, simplifying assumptions, such as smum-
ing statistical independence of dependent events, we made
to facilitate analysis. The results of the approximate analy-

sis are often validated numerically or via simulations.

1.3 Our Results

Our paper provides the first exact analysis of the expected
throughput, packet loss rate, and expected delay of dynamic
routing on an N-input butterfly network for arbitrary arrival
rate O < A ~ 1, and buffer-size q >0. Our main results are
that if packets are routed on an N-input butterfly using a
non-predictive queueing protocol, the expected throughput
of the network is

N

; + + (f2q-’;’0gN+A’q-’ +o(qlogN))+ ‘

the packet loss rate is

l–
1

( (’
~ ++;

)
‘q-l; logri + A’q-l + ~(qlogAr))* ‘

where A = (2 – A)/A. For the FIFO queueing protocol, the
expected delay of a packet is zero, when q = 1, and is

( ((e~ )(2q - l)log N +A,q-l 1-+ _ A2’-2
q–1 2

))

when q >1, where A = (2 – A)/A.
SeveraJ facts of interest to a network designer fall out

of our analysis. For instance, consider the case when the
network is heavily-loaded, say with 1 – l/2q ~ ~ ~ 1. In
this case, the expected throughput is 8(N/ logli(’q - 1)N),
packet low rate is 1 – 9(1/ logll(’q-l) N), and expected de-
lay is e(lOg 1-1/( 2’-1) N). Therefore, if we require that the
expected throughput be a constant fraction of the network-
bandwidth3, or that the packet 10SSrate be a constant frac-
tion less than 1, the buffer-size q must be f2(log log N). Fur-
ther, when the network is heavily-loaded, our analysis pre-
dicts that the ezpected delay is o(log N), for any fixed con-
stant q. Note that the maximum delay of a packet is larger
and is (q – 1) log N, since each packet can be delayed by q– 1
other packets at a switch, and each packet traverses log N
switches excluding its input switch.

Our results also provide quantitative insights on how the
expected throughput, packet loss rate, and expected delay
tradeoff against each other. For instance if we require the
packet loss rate to be small, or the expected throughput to
be large, we must increase the buffer-size q, which in turn in-
cresses the expected delay. If the network is heavily-loaded,
say with 1 – l/2q < A $ 1, our analysis shows that the
expected throughput initially increasea super-linearly with
buffer-size q, i.e., doubling q can more than double the ex-
pected throughput. This increase in expected throughput
tapers off for higher valuea of q. This suggests that it may
be cost-effective for a network designer to add extra butTers
when q is small, provided the network is heavily loaded.
However, when the network is lightly-loaded, say with A =
9(1/ log N), the expected throughput is e(N/ log N) and
both expected throughput and packet loss rate are less sen-
sitive to variations in the buffer-size q.

3We define network-bandwidth to be the maximum number of
packets the network can deliver in a single time step. By our def-
inition, the bandwidth of an N-input butterfly is N,
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1.4 Outline of the paper we must show that the state probability vector l_It converges

The paper is organized as follows, In Section 2, we derive ex-
pressions for the expected throughput (Section 2.5), packet
loss rate (Section 2.5), and expected delay (Section 2.6) for
routing on a butterfly network. In Section 3, we provide
simulation results to bolster our analytical results. Finally,
in Section 4, we present concluding remarks. The details of
several proofs appear in the appendices.

2 Performance analysis

In this section, we derive expressions for the expected through-
put, packet loss rate, and expected delay as functions of the
network-size N, arrival rate A, and the buffer-size q.

2.1 Modeling the routing network as a markov chain

Lemma 2.1.1 The process of muting packets using a non-
predictive queueing protocol on an N-input butterf7y with
buffer-size q > 0 and packet am”val rate O < A < 1 can
be modeled as a finite-state markov chain MC.

Proof: The states of the markov chain MC are defined as
follows. Let S1,S2, .,. s(lo~~+1)~ be an arbitrary ordering of
the switches in the network. We represent each state u of
MC as a (log N + l) N-tuple, (bl, bz, . ~. ,b(log N+l)N), where
bj, O < bj < q, is the number of packets in switch sj of
the network. Initially, there are no packets in the network,
i.e., the network is in the zero-state that is defined to be
the tuple (O, O,. . . , O). The set of states S of markov chain
MC is simply all the states that are reachable with non-
zero probability from the zero-state. Clearly, S is a finite
set, since ISI is at most (q + I)(log‘+l)N.

Let Xt represent the state of the network at time t.We
show that the random process {Xt } has the markovian prop-
erty, i.e., the future behavior of the random process depends
on the current state only, and not on the sequence of states
it took to reach the current state. That is,

Pr(Xt+l = at+llX~ = at, X = crf-l, . ,XO = ao)

= Pr(X~+l = ut+llXt = at). (1)

Note that any packet selected by a switch s at time t uses
one of the two outgoing links of s with probability 1/2, in-
dependent of the previous history of the packet. This fol-
lows from the fact that the switches choose packets in a
non-predictive fashion without examining their destinations,
and each chosen packet is either successfully transmitted or
dropped. Further, new pwkets amive at each input using
the memory-less geometric interarrival distribution. Thus,
Equation 1 holds. El

Caveat: Note that the markovian property fails to hold
when the selected packet can get blocked due to link con-
tention [RMDL96] or buffer contention[MS92]. In such cases,
the random process can only be approximated by a markov
chain.

2.2 Steady-state behavior of the markov chain

Letul, uz, . . . , ulsl be an arbitrary ordering of the states in
S, where S is the set of states in markov chain MC. Let
IIt denote the state probability vector of the markov chain
MC at time t, i.e., IIi = [z~, n~,. ~,T~~l], where m~is the
probabilityy that markov chain is in state uj at time t. Since
we are interested in the steady-state behavior of the network,

to a stationary steady-state vector II, i.e.,

lim Ift = II
t-+ca

Lemma 2.2.1 The state probability vector of the markov
chain MC converges to a steady state stationary vector H.

Proofi To show that the state probability vector of the
finite-state markov chain MC converges to a steady state
vector II, we must show that MC has exactly one ergodic
class C of states, i.e., MC has exactly one class C that is
recurrent and aperiodic [Ga196].

We define the state of MC in which each switch of the
network has exactly one packet to be the one-state. Let C be
the set of states that are reachable with non-zero probability
from the one-state in a finite number of steps. We show that
C is the only class of states of MC that is recurrent and
aperiodic.

We show that class C is recurrent as follows. First, note
that the one-state is reachable from any state a; in MC
in a finite number of steps with non-zero probability. Since
J >0, there is a non-zero probability that one packet arrives
at each input of the network at a particular time step, and
each such packet routes to its destination using only the
straight edges of the network. If the network is started at
any state al in MC, after at most q(log N + 1) such time
steps, the network will be in the one-state, since packets
that use only the straight edges have non-intersecting paths.
Next, note that any state uj in C is reachable with non-zero
probability from the one-state, by the definition of C. Thus,
for every pair of states ui and uj in C, there exists an integer
k such that the probability that the markov chain goes from
state a, to state uj in k time steps is non-zero, i.e., class C
is recurrent. Note that C is the onlv recurrent class because
any state u @C is transient, since ~he one-state is reachable
from u with non-zero probability but not vice-versa.

We now show that the class C is aperiodic. Suppose MC
is in a state IJ in C at time O. Let k be an integer such
that the probability that MC returns to state u at time
k after passing through the one-state is non-zero. Such a
k exists because u is in the recurrent class C. Since the
markov chain MC can remain in the one-state for any finite
number of steps with non-zero probability, for all t ~ k, the
probability that the markov chain MC returns to state u at
time tis non-zero. Thus, every state u in C is aperiodic, i.e.,
the class C is aperiodic. •1

2.3 A recurrence relation for steady-state probabilities

Now that we have determined that the state probability vec-
tor of MC converges to a steady-state vector II, we charac-
terize the steady-state probabilities via recurrence relations.
Note that any two switches within the same level of the but-
terfly are statistically identical. This follows from the sym-
metric structure of the butterfly, and the symmetric tratlic
assumptions. Let p(i, j), O < z ~ log IV and O $ j < q,
denote the probability that a switch at level i has J packets
in its buffer at the end of a time step at steady state. In
other words,

p(i, j) = ~~m~pt(i, j),

where pt (i, j) is the probability that a switch at level i has j
packets at the end of time step t,assuming that the markov
chain MC starts in the zero-state at time O.
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Let Ii,j, O < i $ log N, j = O, 1,or 2, represent the
steady-state probabdity that a switch at level i receives ex-
actly j packets from switches at level i – 1 in a specific time
step. For 3 ~ j < q,

p(i, j) = p(i, j – 1)1;,2 +p(i, j)li,l +p(i, j + l)Ii,(3.(2)

The above equation holds because, in steady state, if a
switch s at level i has j packets, 3 S j < q, in the cur-
rent time step, one of the following events happened.

●

●

●

Switch s had j – 1 packets in the previous time step,
the switch sent out one packet and received two new
packets in the current time step.

Switch s had j packets in the previous time step, and
the switch sent out one packet, and received one new
packet in the current time step.

Switch s had j + 1 packets in the previous time step,
and the switch sent out one packet, and received no
new packets in the current time step.

Using similar arguments, the following hold.

P(i, O) = p(i, O)Ii,() + P(i, l)Ii,O (3)

p(i, 1) = p(i, O)Ii,l + p(i, l)li,l + p(i, 2)1:,0 (4)

p(i, 2) = p(i, O)I~,z+p(i, l)1i,2 +p(i, 2)Ii,l

+p(i, 3)li,0 (5)

P(i, q) = p(i, q – l)~i,z + p(i, q)It,l + p(i, q)Ii,2 (6)

Lemma 2.3.1 The stead~ state probability p(i, O) can be ex-
pressed in terms Of Ii,. and 11,2 as follows.

I,,. – Ii,z
p(i, O) =

()

q
1– *t>

Proofi Using Equation 6, we obtain

()I z
p(i, q) = p(i, q – 1) *

t,
(7)

Inductively, for any 3 ~ j < q, we can use Equation 2 to
show that

p(i, j) = p(i, j – 1)* (8)
t,

Using Equations 7, 8, and 5, we can show that for any 2 S
j<ql

()

J–1

p(i, j) = (p(i, O) +p(i, 1)) ~ (9)
~,

The lemma follows by using Equations 9 and 3, and equating
the sum of the steady-state probabilities to 1. •1

Now, we express the steady state probabilities I,,o, and
Ii,z, in terms of p(i – 11O) aa follows.

Ii,o = ~(1 -p(i - 1,0))2 + (p(i - 1,0))2

+2. ~p(i – 1,0)(1 –p(i – 1,0)) (lo)

Zi,z = :(1 -p(i - 1,0))2 (11)

Equation 10 holds because, in steady state, if switch s at
level i receives no packets in a specific time step from the
two switches s’ and s“ at level i – 1 connected to s, one of
the following events happened.

● Both switches s’ and s“ send a packet in the previous
time step, but neither packet is sent to s, Note that
a switch sends a packet in a time step if its buffer
is non-empty. Further, events concerning switches s’
and s“ are independent, because s’ and s“ contain
traffic generated in non-intersecting sub-butterflies of
the network. Hence, the probabilities of these events
can be multiplied together.

● Both switches # and s“ are empty in the previous time
step. Hence, neither switch sends a packet.

. Exactly one of the two switches s’ and s“ is non-empty
in the previous time step, but no packet is sent to s.

Equation 11 can be justified in a similar fashion.

Lemma 2.3.2 The following recurrence relation holds. For
i~l,

p(i – 1,0)(1 +p(i – l,0))2q

‘(i’o) = (1 +p(i – 1,0))29 – (1 –p(i – 1,0))29

andp(O, O) = 1 – A.

Proof: The base case of the recurrence follows from the
fact that a switch at level O, i.e., an input, is empty in a
time step if and only if no packet arrives in that time step.
Ftom our tratfic assumptions, the probability that no packet
arrives at an input at a given time step is 1 – A. To obtain
the recurrence, for i ~ 1, we use Equations 10 and 11 to
substitute for li,o and 1i,2 respectively in the expression for
p(i, O) in Lemma 2.3.1. ❑

2.4 Solving the recurrence relation

To solve the non-linear recurrence in Lemma 2.3.2, we need
the following theorem due to de Bruijn [dB58, Koc88, RMDL96].

Theorem 2.4.1 Let ai be a sequence of real numbers satis-
fying

‘+1 + O(aial+l = Ui —~i q+2
)

where q > 0, c >0, and lim:+m a~ = O. Then,

We solve the non-linear recurrence in Lemma 2.3.2 aa fol-
lows.

Theorem 2.4.2 For q >0, i ~ O, and O < A <1,

(( & -11 (29 – l)i + A2q-1 + O(qi)
p(i, O) = l– :+;

2 ))

where A = (2 – A)/A.

Sketch of proof: Let ~i = w, mO = l/A. Clearly,

Writing the recurrence in Lemma 2.3.2 in terms of ma and
simplifying, we get

1 2qmi=T7Zi-1–~mi_l +O(m~~l)
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Using Theorem 2.4.1, we solve the recurrence for m, to ob-
tain the following.

(~i= (2q - l)i + *,,., +O(qi) -+

2 )

Substituting m; = M in the above equation yields the
required expression for p(i, O). See Appendix A for a detailed
proof of this theorem. ❑

2.5 Expected throughput and packet loss rate

We use the expression for p(i, O) to derive expressions for
the expected throughput and packet loss rate.

Theorem 2.5.1 The expected throughput of routing pack-
ets using a non-predictive queuing protocol on an N-input
butterf7y network, with buffer-size q >0, and packet arrival
rate A, O< A<l, is

Iv

++; ( ‘2q-l;’0gNt A2q-1 + o(qlog N)) a ‘

and the packet loss mte is

,

where A = (2 – ~)/~.

Proof: Each output node sends a packet at each time step
with probability 1 – p(log N, O), in the steady state. There-
fore, expected throughput equals N(I – p(log N, O)), which
can be evaluated using the expression for p(i, O) in Theo-
rem 2.4.2. Further, since the expected number of packets
arriving at the inputs in one time step is AN, the probabil-
ity that a packet reaches its destination is expected through-
put divided by AN. Therefore, the packet loss rate is 1 –
expected throughput

AN •1

2.6 Expected delay

We will now analyze the expected delay of a packet for the
FIFO protocol. As defined earlier, expected delay is the ex-
pected value of the total number of time steps that a packet
waits in the buffers of the switches along its path, before
reaching its output destination, at steady state. Note that
the above expectation is taken only over packets that do
not get dropped. Let the switch-delay of a packet at switch
s be the number of steps the packet waits in the butTer at
s. Since switches at the same level of the butterfly have
the same statistical properties, we define Di to be the ex-
pected switch-delay of a packet in a switch at level i, at
steady state. Further, let L, denote the expected number of
packets stored in the buffer of a switch at level i, at steady
state.

Lemma 2.6.1 The expected delay of a packet equals

Proofi The expected delay of a packet equals the sum of
the expected switch-delays at each switch in the path of
the packet. Since a packet uses exactly one switch from
each level of the butterfly, expected delay is xi D:. Using
Little’s law[BG87], we know that the expected time spent by
a packet at a switch s in level i equals the expected number
of packets buffered at s divided by the rate at which packets
enter (or exit) the buffer at s. Since packets enter the buffer
at switch s at the rate of (1 – p(i, O)), the expected time
spent by a packet at s is L~/(1 – p(i, O)). Since each packet
takes one time unit for transmission, the expected switch-
delay D, at s is Li/(l – p(i, O)) – 1. The lemma follows.
u

Lemma 2.6.2 For q > 1,
Li, in a switch at level z is

l–p(2,0)+&p(i -

Proof: See Appendix B.

the expected number of packets,

1,0))2+0((1 –p(i – 1,0))’)

Theorem 2.6.3 For the FIFO protocol, the expected delag
of a packet is zero when q = 1, and is

( ((eJ- )(2q - l)log N +A2q_1 ‘-~ _ A2q-2
q–1 2

))

when q >1, where N is the number of inputs in the butterfly,
q is the buffer-size, O < A ~ 1 is the packet arrival rate, and
A = (2 – A)/A.

Sketch of proof: It is clear that there is no delay when
q = 1. For q > 1, we express expected delay in terms of
p(i, O), O < i ~ log N, by substituting the expression for
L, in Lemma 2.6.2 in the expression for the expected delay
in Lemma 2.6.1. Now, using Theorem 2.4.2, we substitute
for p(i, O) and bound the sum using integrals to obtain an
expression for the expected delay. See Appendix C for a
detailed proof of this theorem, •1

3 Experimental Results

We simulated the butterfly routing algorithm utilizing the
FIFO queueing protocol at each switch, for different net-
work sizes (N), packet arrival rates (A), and buffer sizes (q).
We ran the simulations for sufficiently long periods of time,
until the measurements for the expected throughput, packet
loss rate, and expected delay showed only small variations.
These simulation results bolster the predictions made by
our analysis. Let the expected normalized throughput be
the expected throughput divided by AN. We plot expected
normalized throughput, packet loss rate, and expected delay
aa functions of the buffer size (q), the number of levels in
the butterfly (log N + 1), and the packet arrival rate A. Un-
less stated otherwise, the network was heavily-loaded with
A = 1. Figures 2 and 3 show the variation of expected nor-
malized throughput and expected delay with the buffer size
q. As predicted by the theory, the throughput increases very
rapidly for small values of q, and then tapers off for larger
values of q. The expected delay also tapers off for larger
values of q, though it is less pronounced.

Figures 4 and 5 show the variation of the expected nor-
malized throughput and expected delay with the number of
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(q) for different values of the network size (N). Note that
#levels in the butterfly equals log N + 1.

25 I 4

Figure5: Expected delay vsthenumber of butterfly levele
(log N + 1) for different values of the buffer size (q).

25 +
1

/,”
#levels* +— ...., ,..’
#levels=4-- ,,....’ ,,...

,,., JI
#feveis=5 o ,..,’ ,#. ,,. ,

....’ ,,,. ,,,
#Ievefs=6 -M— ,,.,.,’,,...’.,.8, ,,”-’
#levels=7 -*--- ,,.’ ,,..,
#levels* -*-- .’j:”~,’:>’~” ‘

) ,

,.,,,”’...

/: ~
#fevels=9 -+ . ,.:X,- .,....-

#levels=10 -+ ,.,.J:j’J..- .,....’

..,’:;:::p;””.m::;;””M”..””.....
,.,‘“,.

/

.,‘..,:,.>- ,..=-” ..,..*’
,,::..;;,’:;:’.”....-’”..4.--’-

,,,:...;*.,.. ,,.m../---

&/

,.:;:,;A ...... . ....””/.,.,<,., ... ....,:.;./ ...5....
“:Y..----><~.;:./-

..>.>

I !~ I
20 - ?:>:,

f’.~, #levels=3 +,~..,~,., ,.,
~L!,\:, #levels=4 +--

15 - ~‘$’~,’’i,:} #levels=5 -Q--
, .,4 #levels=8 -+--:.,1,\ , *,.

#levels=7 -----

10 -
#levels* .z--

#levels=10 .+-

5 -

0

20

15

10

5

n 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
packet loss rate1234567 8

buffersize (q)

Figure6: Tradeoff between expected delay and packet lossFigure 3: Expected delay vs buffer size (q) for different
values of the network size (N). rate for different values of the-network size (N).. .

t
,’●,,

+:,,,,
~.l,., ,

#levels=3 + ,,. , 9
#levels=4 -+---

+:s/,,, ,/
#levels=5 -E-- r,,:,*,’,$

;:*, I
#levels=6 +- 4,,’f$P
#levels=7 ----

,,
0

#levels=8 ---- ,,:/

*

,;’

.. ........ ....j-j..:. “=’:”--

0!5

0.4

0.3

0,2

0.1

q=z -.

q=4 +

q=e.*..

01
+8, -+ ~~

3456789 10
number of butterflylevels

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
expected normalizedthroughput

Figure 7: Variation of the expected delay with expected
normalized throughput for different values of the network
size (N).

Figure 4: Expected normalized throughput vs the number
of buttertly levels (log N + 1) for different values of the
buffer size (q).

165



14

12

10
>a
5

a
~

.: 6
al

4

2

0

,’
,’

,’ ‘1

4
F’ ,.’

,’
/.’,,,,

#levels =6, q.1 +
,,“ ,,,

, ,/

#levels =6, q=2 +--- ~’,.,’
#levels =6, q=3 Q ,,,/’

, ./.
#levels =6, q=4 +--
#levels =6, q=5 -A---
#levels =6, q=6 E-

A?:!;

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
packet arrivalrate

Figure 8: Variation of expected delay with the packet ar-
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levels in the butterfly (log N + 1). The throughput goes to
zero as the number of levels increase. As predicted by the-
ory, the expected delay grows sub-linearly with the number
of levels log N + 1, when q is a constant. However, due to
the range of N and q that we were able to simulate, the
deviation of the expected delay plot from a straight line is
small.

Figure 6 shows the tradeoff between expected delay and
packet loss rate. Different regions of this tradeoff are suit-
able for different types of traffic, depending on their rel-
ative sensitivity to packet loss and delay. For instance,
delay-insensitive data traffic belong in the initial portion
of the curve which corresponds to larger buffer size. Delay-
sensitive real-time multimedia traflic fall in the latter potion
of the curve which corresponds to smaller buffer sizes. Fig-
ure 7 shows a similar variation between expected delay and
expected normalized throughput.

Finally, Figures 8 and 9 show how the expected delay
increases and the expected normalized throughput decre=es
with an increase in the packet arrivaf rate A

4 Concluding Remarks

In some applications the variance of the delay, known as
jitter, is more important than the expected delay itself. It
is worthwhile studying higher-order moments, particularly
variance, of the throughput and delay. It is of interest to
extend our study to other commonly-used switching net-
works, such as the crossbar. An N x N crossbar consists
of N inputs, N outputs, and N* 2 x 2 switches (See Fig-
ure 10). Each packet takes an one-bend path from its input
to its output, i.e., each packet traverses the row of its in-
put, and turns into the column of its output. Each switch
has an unit-sized buffer for storing packets that route along
the row, and a buffer of size q for storing packets that route
along the column (see Figure 10). Analogous to our butterfly
analysis, we can define a markov chain and write recurrence
relations for the probabilities. Unfortunately, currently, we
can solve the recurrence in closed form only for the sim-
ple case when q = 1 to obtain the expected throughput to
be N(I – (1 – (A/N)) N), and the packet loss rate to be
1 – A- 1(1 – (1 – (A/N))N ). A more general solution for the

1
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Figure 9: Variation of expected normalized throughput
wi~h the packet arrival rat; (A) for different values ~f ~he
buffer-size (q).

crossb= is open for future research.
Also of interest is the study of simple routing algorithms

that are capable of routing packets belonging to more than
one class of traffic. Packets in different traflic classes could
have very different requirements on the routing performance
of the network. A number of issues, like buffer allocation
and simple queuing protocols for multiple traffic chases, are
open for future theoretical investigation.
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A Detailed proof of Theorem 2.4.2

Theorem 2.4.2 is restated below for convenience.

Theorem A.O.4 For q >0, i ~ O, and O < A ~ 1,

2

= l+m,–1 ( 1+1-~’-’ (1:$1))

2

(

2 –m~~l(l +7ni-1)——
1 +7ni_l 2(1–m~l) )

Therefore,

(l+’mi-l)(l-~~~)
l+rn; =

1 – ~771~~(l+?71i-1)

= (l+mi-i) (l-m~!l) ~

1 .2q
= 1 + ma-l – jrni_l + o(rn:y)

Therefore,

Since p(O, O) = 1 – A, mO = l/A
Clearly,

Using Theorem 2.4.1, we get

(~i = (2q - l)i +

)

-5?%

2
& + o(qi)
mo

Since p(i, O) = & -1, and m. = l/A, we get

(( & -11 (29 – l)i + A2q-1 i- O(@)
p(i, O) = 1– ;+2

2 ))

❑

B Detailed proof of Lemma 2.6.2

Lemma 2.6.2 is restated below,

Lemma B.O.5 For q >1, the ezpected number of packets,
L;, in a switch at level i is

1 –p(i, O) + :(1 –p(i– 1,0))2 + 0((1 –p(i – 1,0))3)

Proof: From Equation 10 and Equation 11 we get

((
*-l-

1 (Zq – 1)~+ A2q-1 + o(qi)
p(i, o) = l– ;+5

2 ))
Ii,2

( )

l–p(i– 1,0) 2

~= l+p(i– 1,0)

where A = (2 – A)/A.

Proofi Define ma to be w. Since ml = h-l’
— – 1. We write the recurrence in Lemma 2.3.2p(i, @ = 1+2m{

in terms of mi and simplify as follows.

2
—–1 =
l+m~ ( 2 -1)(1-:,:1)l+mi-1

– = 2 ‘(l+:l-l-l)(l%!l)

2

l+mi 1 + mi-.l

( )l–p(i– 1,0) 2
.

2–(1–p(i–1,0))

= (1 -p(i - 1,0))2

(

1

)

2

4 1 –0.5(1 –p(i - 1,0))

= (1 –p(i - 1,0))2 ,

(1+ (1 ~p(i - 1,0)) +0((1 -p(i - 1,0)) 2))

168



So we have

Ii,2

~=

+

(1 -p(i - 1,0))2 ~ (1 -p(i-l, o))’

4’ 4

0((1 –p(i – 1,0))4)

Therefore for j >2,

()Ii,2 ‘

~
= 0((1 -p(i - 1,0))4)

The expected number of packets buffered at switch
i is given by

u
L; = ~jp(i, j)

q
= p(i. 1) + ~jp(i, j)

j=2

From Equation 9, we get

Li = ‘p(i, O) + (p(i, O) + p(i, 1)) +

(P(i,o)+P(i,l))~j (*) ’-’
jc2

(( ))Ii,2 2
= –p(i, O)+l+~+O

t, ~

Using Equation 13 we have,

L~ = ‘p(i, O)+l+ ~(1 ‘p(i– 1,0))2+

(13)

at level

~(1 -p(i - 1,0))3 + 0((1 -p(i - 1,0))4)

= 1 –p(i, o) + :(1 –p(i – 1,0))2+
0((1 - p(i - 1,0))3)

C Detailed proof of Theorem 2.6.3

Theorem 2.6.3 is restated below for convenience.

•1

Theorem C.O.6 For the FIFO protocol, the ezpected dela~
of a packet is zero when g = 1, and is

( ((OJ-- )(2q -1) log N + *,q_, 1-* _ *,q_,

q–1 2
))

when q > 1, where N is the number of inputs in the butterfiy,
q is the buffer size, O < A <1 is the packet arrival rate, and
A =(2 – A)/A.

ProoE Let D denote the expected delay of a packet. From
Lemma 2.6.1, we have

~=~Di=X(l_~[2,0)-1i i )
From Lemma 2.6.2 we have

Da =
La _l

1 –p(i, O)

= ~(1 -p(i - 1,0))2 + 0((1 -p(i - 1,0))3)

1 –p(i, O)

(= 1 l–p(i– 1,0)
z 1 – p(i, O) )

(1 -p(z - 1,0))

(
+ l–p(i– 1,0)

1 – p(i, o) )
0((1 –p(i– 1,0))2)

From the expression for (1 – p(i, O)) in Theorem 2.4.2 it
follows that

~<1–p(i–1,0)<2
– l–p(i, O) –

So we have

~(1-p(i-1,0)) < Da ~ ~(l-p(i-l,O))+O ((1-p(i-1,0))2)

Therefore

D ~ :l~N(l ‘p(i – 1,0))i=l
D ~ ~l~N(l –p(i – 1,0)) +

isl

(

log N

o Z(1 –P(a – 1,0))2
)

(14)i=l
so,

(
log N

D=Q ~(l–p(i– 1,0))

i=l )

From Theorem 2.4.2

logN

x (1 -p(i - 1,0)) =
inl

‘2 (:++(’zq-~~(~-l~ + Az~-l + ~(q~))*)-1 (15)

i=l

We integrate the RHS of Equation 15 with respect to i to
derive the following bounds[CLR92].

~
q–1 ((’

2q-l)(~N-1~ + *Zq-I )1-* _A~q-2

)

< ~~lN(l -p(z - 1,0))

<~ q–1 ((’
2q-l; log N + A2q-1)1-& _ A2q-2

)

where C is a constant. This implies that D =

( ((e~ )(2q -1) log N + *2q_l 1-+ _ ~2q-2
q–1 2

))

•1
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