
Routing on Butterfly Networks with Random Faults

Richard Cole' Bruce Maggs2 Ramesh Sitaraman3
Courant Institute School of Computer Science Dept. of Computer Science

New York University Carnegie Mellon University University of Massachusetts
New York, NY 10012 Pittsburgh, PA 15213 Amherst, MA 01003

coleOcs.nyu.edu bmm@cs .cmu.edu ramesh@cs.umass.edu

Abstract
In this paper we show that even if every node or

edge in an N-node butterfly network fails indepen-
dently with some constant probability, p , it i s still pos-
sible to identify a set of O (N) nodes between which
packets can be routed in any permutation in 0 log N)

complicated, the routing algorithm itself i s relatively
simple.

steps, with high probability. Although the ana \ ysis i s

1 Introduction
This paper studies the ability of a network called a

butterfly to route packets when many of its nodes and
edges fail at random. A 32-node butterfly is shown in
Figure 1. This network has been studied extensively
and it, or one of its variants, has served as the routing
network in several parallel computers. More informa-
tion about the structural and algorithmic properties
of butterflies can be found in the book by Leighton
[13]. Some of the parallel computers that use butter-
fly networks are described in [7, 10, 18, 21, 241.

The algorithm described in this paper routes pack-
ets in a store-and-forward fashion. The term store-
and-forward means that each non-faulty node has a
queue in which it can store packets and, at each time
step, can transmit at most one packet across each of
its non-faulty edges. We will be primarily interested in
routing packets between nodes in a one-to-one fashion,
i.e., each node will be the source of at most one packet
and the destination of at most one packet. One-tc-one
packet routing problems are also called permutation
routing problems.

Throughout this paper, we use the following ter-
minology to describe butterfly networks. A log n-
dimensional butterfly has N = n(1ogn + 1) nodes ar-
ranged in log n + l levels of n nodes each. (Throughout
this paper we use log n to denote log, n.) Each node
has a distinct label (w,i) where i is the level of the
node (0 5 i 5 logn) and w is a logn-bit binary num-
ber that denotes the column of the node. All nodes
of the form (w,i), 0 5 i 5 logn, are said to belong to

lRichard Cole is supported in part by NSF Grants No.
CCR-92-02900 and CCR-95-03309. 'Bruce Maggs is supported
in part by an NSF National Young Investigator Award, No.
CCR-94-57766, with matchingfunds providedby NEC Research
Institute, and by ARPA Contract F33615-93-1-1330. 3Ramesh
Sitaraman is supported in part by NSF Grant No. CCR-94-
10077.

level

column

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

Figure 1: A 32-node butterfly network.

column w. Two nodes (w, i) and (w', if) are linked by
an edge if if = i + 1 and either w and w' are identical
or w and w' differ only in the bit in position if. (The
bit positions are numbered 1 through logn. We call
the first type of edge a straight edge and t l! e second
a cross edge. The nodes on level 0 are called the in-
puts of the network, and the nodes on level logn are
called the outputs. Level 0 is the top of the butterfly,
and level logn is the bottom. Sometimes the level 0
and log n nodes in each column are assumed to be the
same node. In this case, the butterfly is said to wrap
around. Our results hold whether or not the butterfly
wraps around.

Our fault model is static. We assume that all faults
occur before the network is used for routing and that
all faults can be detected. We will use information
about the locations of all of the faults to configure
the network for routing. We assume that faults do
not occur while the network is being used for routing.

0272-5428195 $04.00 0 1995 IEEE
558

http://coleOcs.nyu.edu
http://cmu.edu
mailto:ramesh@cs.umass.edu

Finally, we assume that a faulty edge cannot transmit
a packet, but otherwise it does not affect either of its
endpoints, and that a faulty node cannot transmit or
receive packets.
1.1 Previous work

Many algorithms have been devised for routing
packets on butterfly networks without faults. One of
the earliest results is due to Benes, who showed that it
is possible to establish edge-disjoint paths between the
nodes in the first and last levels of two back-to-back
butterflies in any permutation [8]. Waksman [35] then
gave an elegant algorithm for finding the paths. As
a consequence of these two results, for an,y one-to-one
packet routing problem on an N-node butterfly, it is
possible to find, in O(N log N) time, a set of paths for
the N packets and a schedule for moving the packets
along their paths that delivers all of the packets to
their destinations in O(1og N) time steps. One draw-
back of Waksman’s algorithm is that it uses global
information about the network to find the paths for
the packets. The next important advance was made
by Batcher [6], who showed how to sort O(N/logN)
packets on an N-node butterfly in O(log2 N) steps,
using only local information. This algorithm can also
be used for permutation routing, and it vias the state
of the art in permutation routing on butterfly net-
works for a long time. Next, Nassimi and Sahni
[19, 201 showed how to route a wide clas of permu-
tations called bit-permute-complement permutations
in O(1ogN) time. Finally, Valiant I331 showed how
to route O(N/log N) packets in any permutation in
O(1og N) steps. His idea was to first route each packet
to a random intermediate destination. Improvements
on Valiant’s algorithm soon followed. First, Upfal [32]
showed how to route N packets on an N-node butter-
fly network in O(1og N) time. At about the same time,
Aleliunas [4] showed how to do the same thing on an
N-node shuffle-exchange graph. Algorithms for rout-
ing on butterflies with bounded-size ueues were then
devised by Pippenger [25], Ranade 9281, and Maggs
and Sitaraman [17]. Ranade also showed lbow combin-
ing could be used to soive not only one-to-one routing
problems, but also many-to-one routing problems in
0 log N) steps. As a consequence of Ramade’s algo-

each step of a CRCW PRAM in O(1og N) steps.
There is a vast literature devoted to the subject

of routing on butterfly networks, or related multi-
stage networks, with faulty components. For example,
the query “fault!! AND network! AND (banyan OR
butterfly OR omega OR multi!stage),” imatches two
hundred twenty-one records in the INSPEX database.
Most of these papers can be placed into one or more
of the following categories:

1. papers that suggest adding edges to the network
so that there are multiple paths between any in-
put and any output,

2. papers that suggest adding an extra stage to the
network in order to tolerate a single stuck-at fault,

3. papers that suggest that packets can avoid faults
by making multiple passes through the network,

rit 6 m, it is possible for a butterfly network to emulate

4. papers that suggest using only a subset of the
inputs and outputs for routing, and

5. papers that explore the problem of testing a net-
work for faults.

Some of the earliest a ers in these five categories are
[23], [2, 3, 22, 301, b97, [5, 91, and [22] respectively.
This paper falls into categories three and four. For a
survey, see [l]. More recently, Varma [34] suggested
that packets can avoid faults and still reach their desti-
nations by first routing to an intermediate destination.
Leighton, Maggs, and Sitaraman [15] proved that even
if an adversary is allowed to place O (N / log N) worst-
case faults in an N-node butterfly network, it is still
possible to identify some set of O(N) nodes between
which packets can be routed in any permutation in
O(1ogN) steps. They also showed that even if ev-
ery node fails with some constant probability, the net-
work can emulate a fault-free butterfly with 2O(log* N,
slowdown, with high probability. One consequence of
this result is that it is possible to identify O(N) nodes
between which packets can be routed in any permu-
tation in 2O(log* log N steps. At about the same
time, Tamaki [31] devised a simpler emulation scheme
with (log log N)k slowdown, where k is some constant.
The result translates into an algorithm for routing in
log N(log1og N)k steps. Karlin, Nelson, and Tamaki
[12] then showed that there is a critical failure proba-
bility, p* , such that if every edge fails with probabil-
ity p , and p < p* , then it is very likely that in the
subgraph of non-faulty nodes there exists a connected
component of size O(N), but if p > p * , it is very
unlikely. Another approach worth mentioning is the
“Information Dispersal” technique due to Rabin [26]
and Lyuu 161. They suggest using error-correcting

proach works best when each packet is at least log2N
bits long (and thus can be broken into logN smaller
pieces), and the node failure probability is at most
l / logN.
1.2 Our results

In this paper we show that even if every node or
edge in an N-node butterfly network fails indepen-
dently with some constant probability, p , it is still pos-
sible to identify a set of O (N) nodes between which
packets can be routed in any permutation in O(1og N)
steps, with high probability. In the course of analyz-
ing the algorithm we also show that, even if there are
random faults in the network, with high probability it
is possible to establish constant-congestion fault-free
paths in some one-to-one pattern from O(n) inputs to

1.3 Outline
The remainder of this paper consists of three sec-

tions. In Section 2, we show that, with high proba-
bility, it is possible to identify a set of O(n) inputs
and O(n) outputs such that it is possible to route
constant-congestion fault-free paths from the inputs
to the outputs in a one-to-one fashion. This is the
most difficult technical result in the paper. In Sec-
tion 3, we show how to use the result of Section 2 to

codes to to I erate faults in routing networks. This ap-

@(n) outputs.

559

find a set of O (N) nodes between which packets can
be routed in any permutation in O(1ogN) steps. We
conclude in Section 4 with some open problems.

2 Routing paths from inputs to out-
puts

In this section we show that, with high probabil-
ity, it is possible to identify a set of @(n) inputs and
O(n) outputs and a set of constant-congestion fault-
free paths of length logn that connect the inputs to
the outputs in a one-to-one fashion. We prove this re-
sult by showing that if each input is the source of at
most one unit of flow, and each output is the sink of
at most one unit, and each edge has constant integral
capacity, then with high probability, it is possible to
find a unidirectional integral flow of value O(n) from
the inputs to the outputs.

In the remainder of this section, we assume without
loss of generality that only nodes fail. Because the
butterfly network has constant degree (4), it is not
difficult to translate our result to the case in which
edges fail as well.

A first attempt at finding a flow that avoids faults
might proceed as follows. Identify inputs that can
reach many outputs (say, at least as many as an input
can reach on average) and outputs that can be reached
from many inputs. Now for each input, split a unit of
flow uniformly among all the outputs. Unfortunately,
this does not necessarily result in a constant conges-
tion flow. Thus, one would like to adjust the splits
to achieve constant congestion while maintaining the
total flow. It is far from clear that this can be done,
or how to do it.

We achieve this in two steps. First, by adding ad-
ditional faults, we are able to impose a very uniform
structure on the faults. It then becomes possible to
systematically adjust the splits of the flows so as to
achieve a modest constant bound on the congestion.
In addition, we show that the flow is unidirectional: it
proceeds from the inputs of the network to the outputs
without any backtracking. We will use this property
when designing our algorithm for scheduling the move-
ments of the packets along paths determined by the
flow.

The fault structure has the following form: the net-
work is edge-partitioned into strips of logd levels, i.?.,
successive strips share one level of vertices, for a suit-
able constant d > 0. We mainly consider the case

butterflies. Any subbutterfly with a fault is not used
further and is declared faulty. Furthermore, if any
d-input subbutterfly S shares two or more inputs, or
two or more outputs, with faulty subbutterflies in the
previous and next strips, respectively, then S is de-
clared faulty also. This rule is repeated until no more
subbutterflies are declared faulty.

It is not hard to see that for d = 4, O(nl/’) faults
suffice to cause faults to propagate to all d-input sub-
butterflies in the network. With more effort, one can
show that Sl(n1/2) faults are needed to cause faults
to propa ate to the whole network. But there are
O(n log n j random faults. To prove that O(n log n) d-

d = 4.) Each strip divi 6 es naturally into d-input sub-

input subbutterflies remain fault-free, one has to ex-
ploit the fact that the faults are random. This is a
non-trivial construction.

We will now impose further restrictions on the pat-
tern of faults for the resulting fault-free d-input sub-
butterflies. The ideal situation would be complete
uniformity, in the following sense: each non-faulty d-
input subbutterfly would have exactly one faulty in-
put neighbor and one faulty output neighbor (i.e., not
zero). We cannot achieve this much. Instead, a more
complex, but fairly uniform, structure is created (it
is more complex in the sense that the neighborhood
structure of collections of d-input subbutterflies are
fully uniform as opposed to that of single d-input sub-
butterflies).

We can then specify a uniform routing in the sense
that each input divides its unit of flow uniformly
among the outputs it can reach. This routing involves
bounded backtracking of the following form. The rout-
ing of the flow through one level of d-input subbutter-
flies may require using the preceding and following two
levels of subbutterflies. Fortunately, the portion of the
flow using the preceding and following levels of the
butterfly use8 only small (fractional) capacity. Conse-
quently, it is possible to adjust the flows, by splitting
the flow at nodes non-uniformly, in order to avoid the
need for backtracking.

Finally, as the flow has constant congestion, with
a unit bound at each of the inputs and outputs, we
conclude that there is a constant congestion integral
flow from the inputs to the outputs. This amounts to
a collection of fault-free paths between paired inputs
and outputs with the same constant congestion (arbi-
trary pairings are not possible, but there is a least one
feasible collection of pairings).

Theorem 2.1 For any constants k.1 > 0 , kz < 1, and
7 2 1 there as a constant p > 0 such that if every
node fails with probability p , then with probability at
least 1 - l / N k l there i s a set of kzn inputs and kzn
outputs and a set of fault-free paths of length log n with
congestion 7 that connect the inputs t o the outputs in
a one-to-one fashion.

Sketch of proof:
Part 1: We show that the following fault structure
can be created by adding faults. Edge partition the
butterfly into d-input subbutterflies, for some constant
d. Each non-faulty d-input subbutterfly will have at
least d - 1 non-faulty neighboring d-input subbutter-
flies on both the input and output sides; indeed, the
faulty neighborhood structure is more constrained, as
specified in part (iv). A statement of the results to be
shown in each part follows.

(i) Use the following rule for propagating faults. Con-
sider an edge partition of the butterfly into 4-
input subbutterflies. If a subbutterfly has a faulty
node view it as faulty. Any subbutterfly with two
faulty neighbors on the input side or on the out-
put side is itself viewed as faulty. Then it requires
n1/’/2 faults to make all the Cinput subbutter-
flies in the butterfly faulty.

560

Henceforth, we consider a fault as meaning a
faulty 4-input subbutterfly. Note that a single
faulty node may make two 4-input subbutterflies
faulty, in the event that they share the node.

Lemma 2.2 c faults induce at most c4 faults at
any given level of the butterfly.

Lemma 2.3 Suppose the butterfly i s edge parti-
tioned into b-input subbutterflies, each of which
i s either faulty or not faulty, and that we use the
above rule for propagating faults among b-input
subbutterflies (2 faulty input or output neighbors
cause propagation . Then it requires 21°gn/loga /2
faulty b-input su 1 butterflies to make all the b-
input subbutterjlies in the butterfly faulty, and
c = 2t faults cause at most b2' induced faulty b-
input subbutterflies at any level of the butterfly.

(ii) Consider a butterfly edge-partitioned into binput
subbutterflies. Suppose there are at most b L / 2
faults in each subbutterfly, for some c < 1/20. We
show that after propagating faults among Pinput
subbutterflies, there are at most b4'/16 faults at
the middle two levels in each b-input subbutter-
fly-

(iii) We generalize the above result to hold simulta-
neously for log log log n partitions into different-
sized subbutterflies, where faults in one partition
may generate faults in another. We also show
that with high probability the number of induced
faults at any level of the butterfly is at most kzn
for some constant k2 < 1. Furthermore, for a
suitable constant d, a partition into d-input sub-
butterflies leaves each non-faulty d-input subbut-
terfly with at least d - 1 non-faulty input and
output d-input subbutterfly neighbors.

(iv) Consider a given level of d-input subbutterflies.
Partition them into sets of d2 subbutterflies, each
set together with its input and output neighbors
forming a d3-input subbutterfly. Fmm a second
partition into sets of d4 subbutterflies, where each
set, together with its input and output neighbors
going two levels forms a d5-input sulbbutterfly.
We will add faults, if necessary, to impose the fol-
lowing structure on the faults. Arrange each set of
d2 subbutterflies in a d x d array, where each row
comprises a set of subbutterflies with the same
input neighbors and each column a set with the
same output neighbors. A set of size d2 has three
choices: no faulty subbutterflies, all faulty, or one
or both of a row and column of faulty subbut-
terflies. In addition, consider a collection C of d
sets of size d2 which have their input neighbors in
an equal-sized collection (d sets of size d2) at the
input level. Then either all of the subbutterflies
in C are faulty, or exactly d rows among these d
sets of size d2 are faulty. In the latter case, the
faulty rows occur in one of three ways:

(1) All in one set of size d2.
(2) The same row in each set.
(3) Different rows in each set.

An analogous constraint holds for the columns
with respect to output neighbors. In the par-
tition of d4-input subbutterflies, the number of
faulty rows is d2, which is also the number of
faulty columns.

Next, we fill in some of the details.
Part 1 (i)

Definition 2.4 A n h-subbutterfly has 4h inputs.

Suppose there are f faulty 1-subbutterflies in the
butterfly.
a. We show that the induced faults on the top level
1-subbutterflies can all be produced by f faults on the
top level.
b. We show that to make every subbutterfly on the top
level faulty, using only faults on the top level, requires
n1I2/2 faults. The result follows.
a. We show how to move faults up one level of sub-
butterflies in the following sense, without increasing
the number of faults. Let level 1 + 1 be the lowest
level of 1-subbutterflies with faults and suppose there
are g faults at level 1 + 1 (the top level is level 0).
Note that an n-input butterfly has (logn)/2 levels of
1-subbutterflies. We show that these g faults can be
replaced by g or fewer faults at level I , such that every
induced fault at level 1 (and above) remains present.
It may be that some induced faults at lower levels are
removed, however.

Consider the subbutterfly networks with inputs at
level 1 and incorporating only lower levels in the net-
work. Consider a maximal such subbutterfly with 4h
input nodes at level 1 in which every 1-subbutterfly
becomes faulty through fault inducing.

We rearrange the level 1 + 1 faults in the above
subbutterfly without changing the induced faults at
level 1 so that all the faults are in just two of the
four (h - 1)-subbutterflies with inputs at level 1 + 1,
and further these faults are arranged in pairs so that
each pair of faults at level 1 + 1 can be replaced by a
corresponding pair of faults at level 1 without altering
the induced faults in any way.

Definition 2.5 A n i-block i s an i-subbutterfly with
inputs at level 1 + 1.

Definition 2.6 The 4 aligned i-blocks are the i-
subbutterflies obtained from an (i+l)-subbutterfly with
inputs at level I .

Consider the process of inducing faults. The only
induced faults we are interested in here are faults in-
duced on level 1 by faults on level I + 1 (pass-up faults),
faults induced on level 1+1 by faults on level 1 or higher
(pass-down faults), and faults induced on level I + 1 by
faults on level 1 + 1 (fill-in faults). We view the fault

561

inducing as occurring in a series of phases. In each
phase we have passup, then pass-down, then fill-in.

In turn, we rearrange the faults in 1-blocks, ..., h-
blocks, while maintaining the following property. For
each collection of 4 aligned i-blocks:

(i) At most 2 of the 4 aligned i-blocks have faults.
(ii) Each pass-up fault occurs in the same or an earlier

phase than before.

(iii) The complete fill-in of the second aligned i-block
to be filled in with faults occurs in the same phase
or in an earlier phase than before.

Base case: 1-blocks. There is no point to more than 2
faulty aligned 1-blocks. Simply remove any additional
faults. (i) holds and clearly the process of inducing
faults is unchanged.
Inductive case. Inductively, there are at most 8 out
of 16 aligned (i - 1)-blocks with faults, and for each
set of four aligned i - 1)-blocks, at most 2 are faulty.

by performing swaps among aligned (i - 1 -blocks;
clearly each pair of aligned faulty (i - 1)-b) ocks re-
mains aligned. In addition, consider the first 4 (i - 1)-
blocks to fill in with induced faults, choosing at most
2 from each i-block before the swapping. There must
be 4 such i - 1 -blocks for otherwise the z + 1)-block

swapping so that these four blocks are arranged two
per i-block. Clearly (i) holds. (ii) holds because the
alignments are maintained. 111) holds because the ch-
sen (i - 1)-blocks are distri uted to ensure that the
fill-in of the first two i-blocks completes when these 4
(i - 1)-blocks fill-in.

When the fault rearranging is complete, perform
one more step of rearrangement to make all the faulted
blocks consistent in the following sense: Consider the
blocks with inputs on level 1 + 1 and outputs on level

log b. These are k-blocks, where k = f log b - 1 -
1. For each collection of 4 k-blocks with the same
neighbors at level 1 , 2 k-blocks are chosen to contain
ail the faults, by moving maximal fault blocks, if need
be, to aligned locations in the chosen k-blocks.

Now consider a maximal faulted j-block B (in the
sense that the (j + 1)-block to which it belongs is not
faulted). Let B' be its partner j-block containing some
faults. Suppose they have s and s' faults respectively.

If s 2 st , then rearrange the faults in B to be
s' faults aligned with the faults in 3'. Clearly, all
the pass-up faults occur no later than before (for B
now has exactly the same fill-in as B' and hence any
passup fault, which always uses a fault in B' and the
aligned fault in B, can occur no later). Further, the
faults in B and B' are aligned and so can be moved
from level 1 + 1 to level 1 without affecting the fill-in
at level 1.

If s < s', rearrange the faults in B' to be s faults
aligned with the faults in B. The same argument ap-
plies.
b. Consider a butterfly with faults on the top level
only.

Move the faults in t 6 ese 8 (i- 1)-blocks into 2 i-blocks,

could not 6 1 e fi led with induced faults. L erform the

We redefine the term i-block here.

Definition 2.7 A n i-block as a subbutterfly with 4'
nodes on the top level of the butterfly.

Claim 2.8 The faults in an i-block cause either all
the I-subbutterflies at the bottom level of the i-block to
be faulty or none of them to be faulty.

Proof: The proof is by induction. The base case i = 1
is trivial. For i > 1, consider the (i- 1 blocks. If two

has faults at all its bottom 1-subbutterflies. If only
one (i - 1)-block has faults at its bottom, then the
i-block has no faults at its bottom. I7

of more have faults at the bottom, t 1- en the i-block

Claim 2.9 n1l2/2 faults suffice to make the top level
of an n-input but te f ly faulty.

Proof: By induction, to induce faults at the bottom of
an i-block requires 2'-l faults in the i-block (straight-
forward).

Thus to make the whole top level faulty (and hence
the whole butterfly faulty) requires n1l2/2 faults at

We would like to show the same result is true for
any intermediate level, and as far as we can tell it
is true, but we don't have a proof, hence the weaker
claim of Lemma 2.2, that c faulty 1-subbutterflies in
the butterfly create at most c4 induced faults on any
given level.
Proof of Lemma 2.2. We show there are at most c4
induced faults on level 1. We proceed in three steps.
Step 1. Move the faults above level 1 down to level
1 without increasing the number of faults or changing
the induced faults on level 1.
Step 2. Similarly, move the faults below level 1 to
level 1.
Step 3. Consider the faults now at level 1 and discard
any other faults as they do not induce faults at level 1.
Take the butterfly and fold it over at level 1 , creating
a network with inputs at level 1 and fan-out 4, rather
than 2, at each level. When folding the butterfly over,
nodes are mapped staying in the same column. More
precisely, suppose the fold is at node-level j (= 21,
where the fold is at 1-butterfly level I). Then the node
at level j + i is overlaid on the node at level j - i in the
same column. Edges are added as follows. Between
levels j - i and j - i - 1, where before we would define
edges by possibly flipping bit j - i - 1, now we flip one
or both of bits j - i - 1 and j+i. This creates a fan-out
4 butterfly-like structure and as subgraphs it has the
butterflies from above and below the j t h level (or more
strictly an isomorphic image of the butterfly below
level j) . Edge partition the resulting butterfly into 16-
input subbutterflies. Assume that if there are 2 faults
at the input or output neighbors of a subbutterfly this
makes the subbutterfly faulty also. As in the previous
construction, we need n1/4/2 faults to cut an n-input
subbutterfly, and generalizing slightly, c faults at the
inputs induce at most c4 faults at any level (recall

the top level. U

562

that a subbutterfly with inputs on level 0 is either cut
0

Part 1 (ii)
In turn we show (a) and (b), below.

a. Consider a binput butterfly. Suppose there are
2'logb/2 = 2t faults anywhere in the butterfly, plus
another f faults on the output (bottom) level. If
log f +t+2 < 3 log b, then there are at most 24'10gb/16
faults at the input (top) level of the butterfly. Really
22c10gb/4, but only the weaker bound will apply in a
more general setting needed later.
b. The stated result for Part 1 (ii): Considier a butter-
fly edge-partitioned into b-input subbutterflies. Sup-
pose there are at most b t / 2 faults in each subbutterfly,
where c l / < 20. We show that after propagating faults
among 4-input subbutterflies, there are at most b4'/16
faults at the middle two levels in each subbutterfly.

Definition 2.10 A subbutterfly is faulted' if all i ts 1-
subbutterflies are made faulty by the fault inducing due
to faults it contains.

entirely or has no faults at its bottom level).

a. Suppose f = 2' (add faults if need be). Consider
the maximal subbutterflies that are faulted by these
f faults and whose output level is part of the out-
put level of the b-input subbutterfly. For each such
maximal subbutterfly, suppose that the faulting set of
faults is of minimum size. This partitions the f faults
into sets of size 2h, 0 5 h 5 i , where each set of faults
is faulting a 4h+1-input subbutterfly (by Part 1 (1 and
Claim 2.9). Consider the 4ary tree structure in a uced
by the subbutterflies of various sizes with output level
on the output level of the butterfly and tree ancestry
corresponding to subbutterfly containment. Trim the
tree keeping only the following nodes: the leaves cor-
respond to the maximal subbutterflies faulted by the
f faults and the interior nodes are their ancestors. In
addition, we keep all children of interior nodes.

First, we show how to rearrange the f faults so they
are all in one faulted subbutterfly with 4'+' inputs,
without reducing the number of induced faults at the
input level of the butterfly and in addition without re-
moving any induced faults except possibly in the sub-
butterflies faulted by the f faults. Consider two small-
est subbutterflies, S and s', faulted by setls off' = 2hf
faults on the base. (As f = 2', and the f i d t s always
occur in sets of size 2h, h 2 h', faulting; 4h+1-input
subbutterflies, there must be two equal-sized smallest
faulted subbutterflies, each containing an equal num-
ber of faults, unless all the faults lie in one faulted
subbutterfly.) For each subbutterfly the associated
faults are defined as follows. Consider ilk 3 siblings
in the tree defined above. The associated faults are
those faults in the subbutterflies corresponding to the
sibling nodes. Let S be the subbutterfly with a smaller
number g of associated faults. Swap the f' faults in
S with the associated g' faults of the other subbut-
terfly St in the following way. Extend S' to a faulted

4hf+2-input subbutterfly using 2 f' faults (i.e., fault St
with f' faults, and with another f' faults fault another
subbutterfly associated with a sibling node of the node
associated with SI). In S, place g of the g' faults as-
sociated with S' so that they are aligned with the g
faults associated with S.

Consider the pass-up faults for the level above S.
Clearly these are unchanged (previously fill-in due to
pass-down faults immediately matched with the in-
duced faults in S to cause pass-up faults; now the
same pattern of fill-in occurs in 5' as in its siblings, and
hence the same pass-up faults occur). Thus, w.1.o.g.
we can assume there is just one subbutterfly with 4'+l
inputs, containing f = 2' faults at the output level of
the butterfly.

Consider the path in the tree from the subbutterfly
containing f faults to the root. Consider the number
of faults in the subbutterflies associated with siblings
of the nodes on this path (following the rearrangement
of the f faults at the output into one faulted subbut-
terfly). Going up the tree, let this number of faults be
la1, IE2, - * * 1 n f l o g b - i - l *

Definition 2.11 The base faults are the f faults on
the output level. The in-block faults are the remain-
ing faults in the butterfly. The induced top faults are
original faults plus the induced faults at the input (top)
level of the butterfly.

Claim 2.12 Consider rearranging the in-block faults
but with the proviso that all Ihe previously induced
top fauits remain induced top faults. Suppose that f o r
all such rearrangements, some of the base faults are
needed in order to induce all the induced top faults.
Then:
(2) > Cl<h<j n h .
(ai) nj+2 2 2 jn1+ 2 j .
(iiz) t + i + 2 2 3 log b.

Proof of Claim, part (i). Let IC = j be the first j
for which the claim is not true. We move the faults for
sibling blocks below the kth node on the path so that
all the pass-up faults at the Lth level (and higher) are
unchanged and remove all f faults at the output level,
thus: Take nk+l of the faults from the subbutterflies
associated with the lower level sibling nodes and place
them in the subbutterfly associated with the kth node
on the path, so that these faults are aligned with faults
in its sibling blocks. As argued previously, the pass-
up faults are unchanged, which yields a contradiction
since we assumed that the base faults were needed. d
Proof of Claim, art (ii). Part (ii) follows by in-

Proof of Claim, part (iii). Clearly nl 2 1.
w,n2 ,..., n(+lOgb)-i-l all exist. n(+l,gb)-i-l 2
2(3l0gb)-'-~. A~SO 2el0gb/2 = 2t 2 nl + n2 + ... +

duction from part t). U

n($logb)-i-l > - 2(:10i3b)-'-2. T h u s t + i + 2 2 $logb.
U

563

Corollary 2.13 If t + a' + 2 < 4 logb, there i s a w-
arrangement of the in-block faults, such that even if
all f base faults are removed, the set of induced top
faults is either unchanged or incremented (this refers
not only to the size of the set, but to its membership -
any node originally an the set remains in the set).

Hence the faults at the input level can all be in-
duced by 2€I0gb/2 in-block faults, and by Part l(i),
they induce at most 24'i0gb/16 faults.

Proof of Part 1 (ii) b.
Consider two edge partitions of the la-input butterfly
into binput subbutterflies. In the first partition, the
bottom level of subbutterflies and the full butterfly
share the same output level. The second partition
excludes the bottom and top log b levels of the full
butterfly. Thus two overlapping subbutterfiies from
the two partitions share b112 nodes per level on their
overlapping 4 log b levels.

We verify inductively that the number of induced
faults on the input and output levels of each of the
subbutterflies is at most b4'/16. This implies (triv-
ially) that the number of faults on a b1I2 portion of
the input or output level (shared with an overlapping
subbutterfly in the other partition) is at most b4'/16.

The inductive claim is that when moving faults
from bottom to top in the network, if no more than
b4'/16 faults enter along the output (bottom) levels
of b112-input subbutterflies at a given level, then no
more than b4'/16 faults leave the middle level of the
b-input subbutterflies, where the two sets of subbut-
terflies share the same output level. An analogous
claim is made for moving faults down.

The base case is provided by the subbutterflies at
the bottom and top of the butterfly.

For the inductive step, we use the construction of
part (a) with f = b4'/16, i = 4clog6-4, t = clogb-1,
and "b"= b112. Consider moving faults from the bot-
tom to the top of a b112-input subbutterfly. The faults
at the bottom of the subbutterfly induce no faults at
the top of the subbutterfly of height 3 log b, which is
the lower middle level of the subbutterfly of height
log b having the same base, if i + t + 2 < 4 log "6" , i.e.,
5c log b - 3 < 1/4 log b, and this is satisfied if E < 1/20.

A similar argument applies when moving faults
from the top to the middle of the binput subbutterfly.
Thus the faults at the middle levels are all induced by
faults within the subbutterfly, and by Part 1 (i), this
is at most b4'/16 faults.

We conclude that the claim regarding induced
faults on the two boundaries of a subbutterfly do in-
deed hold.
Part 1 (iii)

First it is helpful to generalize the Part 1 (ii) re-
sults as follows. Instead of considering faulty 4-input
subbutterflies, we consider an edge partition into c-
input subbutterflies. Each of these subbutterflies is

either faulty or non-faulty. Also, a c-input subbut-
terfly is made faulty if it has 2 faulty input neigh-
boring c-subbutterflies or 2 faulty output neighboring
c-subbutterflies. Suppose the butterfly is edge parti-
tioned twice into b-input subbutterflies also, b > c ,
where the two partitions overlap as in the previous
section. If there are at most 2'(l0gb-logc)/2 faults
within each binput subbutterfly, then on a middle
level of these b-input subbutterflies, there are at most
24'(10~"10~c)/16 induced faults, for E < 1/20. (A fault
refers to a faulty c-input subbutterfly here.)

The claims holds, for another way of considering
the c-input subbutterflies is that they are single su-
pernodes and the vertex degree of the butterfly has
been increased. A fault will still be propagated if a
node has 2 faulty input or 2 faulty output neighbors.
(A larger number of faulty neighbors for propagation
will result in better probabilities in the bounds, but
does not affect the construction otherwise.)

We will be considering a series of partitions with
subbutterflies of dl = d, d2, ds, . . . inputs, the di's to
be specified later.

Let c = di , b =
We define a dl-input subbutterfly to be faulty if it

contains one or more faults. A b-input subbutterfly
is faulty if it contains more than f (b, c) faulty e-input
subbutterflies, f a function to be defined.

For the purposes of analysis we discard all faulty
subbutterflies wholly contained in a larger faulty sub-
butterfly.

In turn we consider the propagating effects of the
remaining faulty subbutterflies with dl, da, . . . inputs.

The situation is made more complicated because in
general there are two partitions into c-input subbut-
terflies, each of which may contain faulty subbutter-
flies. We name the two partitions as follows: the par-
tition including all the levels of the butterfly is called
the full partition and the second partition is called
the shijYed partition. We use a very simple rule for
propagating faults from the shifted partition: each c-
input subbutterfly in the full butterfly overlapping a
faulty c-input subbutterfly in the shifted subbutterfly
is declared to be faulty. The same fault pattern is
achieved by adding two faulty e-input subbutterflies
(which then propagate) to the full partition, where
these added subbutterflies overlap the top levels of the
faulty subbutterfly in the shifted partition.

We associate each c-input subbutterfly S in the
shifted partition with two c-input subbutterflies in the
full partition, arbitrarily chosen, except that we ensure
that each full partition subbutterfly has two associated
subbutterflies in the shifted partition, with the excep-

have no associated subbutterflies. S's associated sub-
butterflies are the ones declared faulty if S is faulty
itself.

We are now ready to define the function f (b ,c) . A
binput subbutterfly is faulty if it contains more than
2c(i0gb-i0gc)-1/2 - 1 c-input subbutterflies in the full
partition which are either faulty subbutterflies in the
full partition or associated with faulty subbutterflies
in the shifted partition.

tion of those subbutterflies at the lowest level, which

564

We show that if each non-faulty c-input subbutter-
fly requires at least two more faulty input neighbors
or two more faulty output neighbors in order to b e
come faulty, when ignoring faulty e-input subbutter-
flies, e 2 c, then so do the non-faulty binput subbut-
terflies, when ignoring faulty f-input subbutterflies,
f 2 b. A c or binput subbutterfly is said to become
faulty if it propagates even one fault from either its
top to its bottom boundary, or its bottom to its top
boundary.

For the base case, the non-faulty d1-input subbut-
terflies satisfy the condition by construction.

The inductive step proceeds as follows. First map
each faulty c-input subbutterfly in the shifted parti-
tion to two c-input subbutterflies in the full parti-
tion. This creates at most 2'(log*-loge)/2 - 2 faulty
c-input subbutterflies in the full partition. Now, view
the c-input subbutterflies as supernodes and apply the
claim from the start of this section (Part l(iii)). This
asserts that for faults to propagate through a (non-
faulty) binput subbutterfly, it must contain more than
2'(1°9 b-109c)/2 faulty c-input subbutterflies. But by
construction, it contains at most 2c(10gb-10gc)/2 - 2
faulty c-input subbutterflies. Hence, to become faulty,
it requires at least two additional faulty input neigh-
bors or two additional faulty output neighbors. These
faulty neighbors are created by the introdiuction of the
faulty b-input subbutterflies.

It remains to derive some probability bounds. Let
b = 2'a,c = 2'. We show that given a, probability
p , 5 1[2"'O that a c-input subbutterfly is faulty, the
probability pb that a binput subbutterfly is faulty is
at most l/22r4. This is shown by an indluction on i.
The base case, i = 1, has c = d = dl anid b = d2; it
holds trivially by choosing p small enough. For the
inductive step, it is helpful to consider collections of
c-input butterflies, such that the subbutterflies in each
collection fail independently. As we will see, for each
b-input subbutterfly, there will be 4c collections. Then
we sum the probabilities that one of thes8e collections
contains at least 1/4c of the number of faulty c-input
subbutterflies causing the b-input subbut terfly to fail.

As a result of the remapping of faults for finer par-
titions, we claim that a c-input subbutterfy can be af-
fected by faults it contains or by faults in overlapping
subbutterflies of height (E::; log dh) sharing half
their height with the c-input subbutterfly. Another
way of considering this is that a c-input subbutterfly's
faultiness is determined by faults contained within a
subbutterfly of height at most (E;:: log dh)/2 + di 5
2(logc - l) , which has the same top level as the c-
input subbutterfly. To verify the claim inductively,
we consider a binput subbutterfly. Aside from the c-
input subbutterflies it contains, it's faultiness may be
affected by faulty overlapping c-input subbutterflies
from the shifted partition. The faults making these
overlapping subbutterflies faulty are contained in sub-
butterflies of height (E::\ log dh)/2 + d i , overlapping
the binput subbutterfly to height (logc)/2. The claim
now follows.

Consider two c-input subbutterflies in either the full
or the shifted partition that are two levels apart in the
partition. Clearly, they fail independently, for the two
levels are height logc apart. The collections of sub-
butterflies are formed as follows. For each partition,
separate the subbutterflies into two groups, compris-
ing alternating levels of subbutterflies. For each group,
separate it into c collections, where each set of c sub-
butterflies in a common c2-input subbutterfly is dis-
tributed one per collection.

There are at most br2/(cr) c-input subbuttedies in
the full partition of a b-input subbutterfly, and at most
twice as many associated c-input subbutterflies from
the shifted partition. Each partition is divided into 2c
equal sized collections. Thus each collection holds at
most br2/ cacr) c-input subbutterflies. For the b-input

contain (1/4~)2'(('~-')-~ faulty c-input subbutterflies.
Thus:

subbutter B y to fail, at least one of its collections must

L

if c(r2 - r) - 4 - T 2 0 (r large enough)
l/2,,a.2c(2 - p)-4- r

if2' 2 4r (r 2 4)
and the claim follows if Y(ra-r)-4-r > - 2r2. But this
holds for large enough r.

Thus there are log log log n levels of partitions and
the probability that the whole butterfly fails is only

As we propagate faults whenever there are two
neighboring input or output faults each remaining
non-faulty d-input subbutterfly has at most one input
and one output neighbor that are faulty.

1/22Wn = l/n2'09".

Part A diEcu (ivl! ty in achieving the claimed distribution of
faults arises :If there is more than one faulty subbut-
terfly in a d2 size set initially. To avoid this problem,
we declare that the whole d2-size set of d-input sub-
butterflies is faulty if it contains even a single faulty
subbutterfly. However, sets of d2 d-input subbutter-
flies can have one or more faulty d-input subbutterflies
become faulty by propagation without the whole set
of d2 subbutterflies becoming faulty. By reducing p
appropriately, the probability bounds of Part 1 (iii)
are maintained.

Then the only fault patterns that can arise in a set
of d2 subbutterflies are: all faulty, none faulty, a row
faulty, a column faulty, a row and column faulty.

We seek to achieve the fault pattern described be-
low for each collection of d sets of d2 subbutterflies,
having d3 d-input subbutterflies as their (shared) in-
put neighbors. Either (1) or (2) are present, or a sub-
set of (3) is present.

565

(1) All faulty rows are in one set of size d2.

(2) The same faulty row is present in each set.

(3) Different faulty rows are present in each set.

That these are the only options can be Seen as follows.
The subbutterflies (input neighbors) in a column at
one level are all connected to the subbutterflies in a
row at the next level. For short, say the column is
connected to the row. Each set of d2 subbutterflies
at one level, viewed as d columns, is connected to d
rows at the next level. These d rows are spread over
d collections of d2 subbutterflies. It is convenient if
these rows all have the same index, I say. Clearly
if two of these index 1 rows are faulty, then the set
of d2 subbutterflies one level up is completely faulty,
thereby making all the index 1 rows faulty also. This
is case (2). The only other options are cases (1) and

If case (3) applies, then case (3) also applies to the
columns for the corresponding collection among the
input neighbors. Thus it is safe to extend the faulty
rows to a full permutation, in the sense that this does
not induce any further fault propagation.
Part 2

Consider the rows and columns of d d-input subbut-
terflies, as defined in Part l(iv . Either all the subbut-
terflies in a row/column are f' aulty or at most one of
the subbutterflies is faulty. Say that the row/column
is good in the latter case.

Each good row has for its input neighbors a good
column and each good column has as its output neigh-
bors a good row.

The number of good columns and good rows in a set
of d4 subbutterflies, as defined in Part 1(iv) is equal

Next, we create a flow. The flow is straightforward:
to go from one level of subbutterflies to the next, push
the flow from a column to the associated row, with the
same total flow going from and to each node. Then
within a level, within a set of d4 subbutterflies, push
each row's flow to a distinct column. For those size d2
sets of subbutterflies with the same number of faulty
rows and columns this does not require any additional
action. For the remaining subbutterflies, the two pre-
ceding and following levels need to be used in order to
route this flow. This is constant congestion as d is a
constant. Connectivity is present by inspection.

Next we adjust the flow so that there is no backing
up, i.e., it is unidirectional.

Let us assume each row carries d(d - 1) units of
flow (recall a row contains d d-input subbutterflies, of
which at most one is faulty).

Let's consider the adjustments that are needed for
one collection of d4 subbutterflies to make the row to
column transitions. The only problems arise with sets
of d2 subbutterflies that have unequal numbers of good
rows and columns. Consider such a subbutterfly set S
with one faulty row (and no faulty columns). We will
show how to push 1 unit of flow from each non-faulty
subbutterfly in S to a companion subbutterfly in a set

(3).

(d4 - (a').

S' of d2 subbutterflies, where SI has one faulty column
and no faulty rows.

Consider the d x d array formed by arranging the d2
sets of d2 subbutterflies, where a row contains those
sets having common neighbors 2 levels up on the input
side, and a column contains the sets with common
neighbors on the output side. Permute the columns
and rows so that the sets of d2 subbutterflies that all
fail are on the leading diagonal and form a topmost
portion of the diagonal. Suppose there are P such sets.
Then if S has index (i , j) and S' has index (k , i) , we
have j 5 r < i and k 5 r < 1. To route, we push
the flow from S to S" and then from S" to SI, where
S" has index (i, I) or (k, j) . The pairings are chosen
so that the S" are unique and k # 1 if S" has index
(k , j) . A little thought (draw a picture) shows that
such pairings are always possible.

We detail the case in which SI' has index (k, j); the
other case is similar and is left to the reader. The flow
from S to St' uses the network for two levels below
the current level and that from S" to St uses the two
levels above the current level. We now show that the
Bows from the various S to S" use independent paths.
Consider one column of S. Every non-faulty subbut-
terfly in the column connects to every subbutterfly in
the row one level below. We send a proportionate flow
to each subbutterfly in the row from each subbutterfly
in the column, which is either 1/d or l/(d - 1) units
of flow per edge (depending on whether the row has
zero or one faulty subbutterflies). This flow needs to
be switched to another row in the set of size d2 con-
taining this row; the new row is the one adjacent to
a column in set S". This transfer, from one row to
the other, is accomplished by going down one more
level in the network. Again, use each of the d or d - 1
non-faulty intermediate butterflies. The flow is either
(d - 1)/p2, l /d or l/(d - 1) units of flow.

Within a d-input subbutterfly, it is less clear what
the flows are. But another way to consider such a
subbutterfly is to consider the flow entering and leav-
ing. Then it is simply a matter of pushing this flow
from inputs to outputs. As there are no faults in the
subbutterfly this is straightforward.

Altogether there are 5 adjustments to the flow at
each level, totaling at most 5/ (d - 1). With d suffi-
ciently large, there is no negative flow, i.e., all flow is
one-way.

Some care is needed in considering what happens at
the top two levels (resp. bottom two levels) of subbut-
terflies. The problem case arises at the second level
when a set of d2 subbutterflies has a faulty row but
no faulty column (the opposite arrangement does not
occur as it is always possible to add a faulty row, as-
suming the network does not wrap around). An easy
solution is to have the initial faults at the first level
propagate to the second level, making the adjacent set
of d2 subbutterflies faulty. For then the above problem
case does not occur.

With wrap around, one solution is to adjust the
flows at the input nodes to the network. Then scale
the whole flow to bound the input at each node by one
unit of flow.

566

Thus, for any constants y 2 1 and k2 < 1, by
making p small enough, we can route a flow with con-

0 gestion 7 between k2n inputs and outputs.

3 Routing around faults
In this section we use the result of Theorem 2.1 to

derive an O(1og N) time algorithm for routing packets
between some set of O (N) nodes.
3.1 Routing the identity permutation

Let us begin by first considering the simpler prob-
lem of routing packets in a one-to-one fashion between
the n inputs of the network. In order to do this, pack-
ets will have to travel back and forth through the net-
work. Each packet will travel from an input to an
output along a flow path, and then back from that
output to its destination input along a (possibly dif-
ferent) flow path.

There is one permutation that we already know how
to route in this manner: the identity permutation.
According to Theorem 2.1, there is a set of E271 in-
puts and kzn outputs between which paths of length
logn can be routed in a one-bone fashion with con-
stant congestion. In order to route the identity per-
mutation, each packet first routes from its input to
the corresponding output, and then routes back along
the same path. Since the congestion is constant, each
packet can be delayed for at most a constant number
of steps at each switch, and since the pathls have length
O(logN), the total time is O(1ogN). (Of course, for
this permutation, the packets could have just stayed
in place, but bear with us.)
3.2 Routing more interesting permuta-

What if we want to route more interesting permu-
tations? Let T I , 0 5 1 < n, denote the permutation
in which the input in column i sends a packet to the
input whose binary number is bin(i) @ bin(l), i.e., the
column whose binary number is the exclusive-or of the
binary representation of i and the binary representa-
tion of 1. The identity permutation, for example, is

Suppose that there were no faults. Tlhen we could
route ?rl by first routing each packet from its input of
origin straight down its column to an output. On the
way back up from the outputs to the inputs, the packet
would take a straight edge from level j to j - 1 if bit j
in the binary representation of 1 is 0, andi a cross edge
otherwise. Note that, at every level, eitlher all of the
packets take straight edges, or all of the packets take
cross edges.

Another way to understand this algorithm is to
view the network as two back-to-back butterflies shar-
ing output nodes. In order to route TI, we first take
the second butterfly and fold it back onto the first but-
terfly. At this point each node of the second butterfly
lies above the corresponding node in the first butter-
fly, except for the output nodes, which are shared. We
are now going to “nail down” nodes of the second but-
terfly onto nodes of the first butterfly, starting at the
outputs and working our way one level at a time tc-
wards the inputs. In particular, when we reach the
j th level of the second butterfly, j > 0, (the outputs

tions

T O *

are on level logn, the inputs on level 0), we examine
the j th bit in the binary representation of 1. If this bit
is 0, then we simply nail every node in level j - 1 of
the second butterfly onto the node in the first butter-
fly that lies below it. If however, the bit is 1, then we
first exchange groups of N/2JW1 columns in the sec-
ond butterfly. In particular, we exchange the nodes
in levels 0 through j - 1 of the second butterfly in
column i with the corresponding nodes in the column
whose binary representation differs from bin(i) in bit
j, for 0 5 i < n. We then nail down the nodes in level
j - 1. When we reach the inputs (j = 0) of the sec-
ond butterfly, we stop. This folding and exchanging
algorithm maps the nodes of the second butterfly to
the nodes of the first butterfly in a one-to-one fashion.
Furthermore, if two nodes in the second butterfly are
connected by an edge, then the nodes to which they
have been nailed in the first butterfly are also con-
nected by an edge. To route permutation ? T I , we now
route each packet down its column in the first butter-
fly, and then back up the same column in the second
butterfly.

Now suppose that there are faults in the network,
and that we want to route permutation ?rl on a large
subset of the inputs. We begin by nailing down the
nodes of the second butterfly onto the first butterfly as
described above. Next, we consider a node of the first
butterfly to be faulty if either it or the node of the
second butterfly that has been nailed to it is faulty.
As a consequence, the failure probability of each node
in the first butterfly will at most double. Now we
apply Theorem 2.1 to find a set of paths from k2n
inputs to ban outputs in the first butterfly. (Note
that because we have doubled the failure probability,
we must divide the probability p given in the theorem
by 2.) Now to route ~1 on the kzn inputs and outputs,
we first route each packet along its flow path in the
first butterfly, and then back along the same path in
the second butterfly. Because the path is fault-free
in the first butterfly, it must also be fault free in the
second butterfly.

Because the probability of failure given by Theo-
rem 2.1 is at most l / N k l , and there are only n dif-
ferent permutations T I , the probability that the above
algorithm fails for any permutation is at most n/Nkl.
Since n < N , this failure probability is at most l / N k s ,
where k3 = k l - 1. Hence, with high probability (at
least 1- l/Nk3), we can route any of the permutations
TI on a set of at least ksn inputs.
3.3 Identifying inputs for packet routing

If we could route each permutation TI on the same
set of k2n inputs, then we would use those inputs for
routing. Unfortunately, the set of inputs may differ
for each permutation. As a consequence, will not be
able to identify a large set of inputs for which all of
the permutations HI can be routed using the preceding
method. For large k2, however, we will be able to iden-
tify a large number of inputs that succeed in routin a
large fraction of the permutations T I . In particular fet
rn be the number of inputs that succeed on at least
3/4 of the permutations. Since kzn inputs succeed on
every permutation, rn + (3/4) + (n - rn) 1 &n, so

567

rn 2 4(k2 - 3/4)n. Let k4 = 4(Lz - 3/4). Then with
probability at least 1 - l/Nk3, we have identified a set
of k4n inputs, each of which can route to its correct
destination for 3/4 of the permutations al.

3.4 The routing algorithm
We are now in a position to describe the packet

routing algorithm. We begin by assuming that each
of the k4n inputs is the origin of (logn + 1) pack-
ets, and each is the destination of (logn + 1) packets.
Later we will show how to route packets in any one-
to-one pattern between some set of 8 (N) nodes in
the network. We say that an input i can reach an-
other input j if the path for permutation al, where
bin(l). = bin(i) @ bin(j), is fault free. A packet routes
from its origin a to its destination b as follows. It be-
gins by selecting at random an input c that both a
and b can reach. Since both U and b can reach at least
(3/4)n inputs, there are at least n/2 choices for c. In-
put c will serve as a random intermediate destination.
The packet routes to c using the path for permutation
all, where bin(l1) = bin(u @ bin(c). It then routes
from c to b using b’s path f’ or permutation ai,, where
bin(l2) = bin(b) 63 bin(c). Since both ail and q, re-
quire two passes through the network, the packet ends
up making a total of four passes.

Although we have described the algorithm for a sin-
gle packet, in fact all of the packets proceed at once.
Note that since each packet is selecting its own in-
termediate destination at random, the packets will be
using paths from many different permutations 7rI si-
multaneously.

3.5 Bounding the congestion
In order to bound the time for all of the packets

to reach their destinations, we must first bound the
congestion of the paths selected by the packets. The
congestion of an edge in the network is the maximum
number of packets that traverse the edge. The conges-
tion of the network is the maximum edge congestion.

Lemma 3.1 For any constant k6 > 0, there is a
constant k7 > 0 such that with probability a t least
1 - l/Nk6, the congestion is a t most k71og N.

Proof: We analyze only the congestion of the first
half of the path of each packet, Le., the path to its
random intermediate destination. By symmetry the
same bound holds on the congestion of the second half.

Each packet independently chooses a random in-
termediate destination, and uses its path from some
permutation a[to route to that destination. By The-
orem 2.1, if every packet used the same permutation
t i , the congestion would be at most 27(log n + 1) (re-
call that there are (logn + 1) packets at each input).
The packets all use different permutations, however,
and the probability that any particular permutation
is chosen is at most 2/n. Let e be an edge of the net-
work and let ui,l,, be 1 if permutation 7rr sends the ith
packet 0 5 i < n(1og n + 1) through edge e of the net-
work, and 0 otherwise. The probability that packet i

uses edge e , pi , , , can thus be bounded as
n-1

pi,, I 2ai,l,e/n*
I=O

Let c, be the congestion of edge e. Then

= 4y(logn+ 1)

Thus, the expected congestion is at most O(1og 2. We
now use a lemma due to Hoeffding and a Cherno -type
bound to show that, with high probability, the con-
gestion exceeds the expectation by at most a constant
factor.

Hoeffding’s lemma [ll], stated below, says, essen-
tially, that if X is the sum of a collection of inde-
pendent 0-1 random variables, then for any particular
E [X] , X is most likely to deviate from E [X] when all
of the 0-1 variables have the same expectation. Thus,
if we want an upper bound on the probability that
X deviates from E [X] it suffices to conside this spe-
cial case. A Chernoff-type bound can then 6e used to
bound the probability that too many of the 0-1 vari-
ables have value 1.

Lemma 3.2 Let X be the number of successes in r
independent Bernoulli trials where the probability of
success in the i th trial is qi. Let S be the number of
successes in r independent Bernoulli trials where each
trial has probability of success q = q i . Then - -
E (X) = E(S) = rq, and

Pr[X 2 (rE(X)] 5 Pr[S 2 aE(S)]

for crE(S) 2 E(S) + 1.

U
In our application, X = c, , E [X] 5 4y(logn + l),

r = n(1ogn + l), and qi = p i , , .
We will use the following Chernoff-type bound [27,

p. 561.

Lemma 3.3 Let S be the number of successes in r in-
dependent Bernoulli trials where each trial has proba-
bility q of success. Then E (S) = rq, and

Pr[S 2 QE(S)] 5 2-eE(S)

f o r a > 2e.

568

0
Thus,

Pr[c, 2 4 a ~ (l o g n + I)] 5 Pr[S 2 4a~(logn + I)]
< 2-4ay(logflt-l) -
< n-4w -

for a > 2e. By choosing a to be a large enough
constant, we can make this probability as small as
1/4Nks, for any constant kg > 0.

Since there are fewer than 2N different edges in the
entire network, the probability that any edge has con-
gestion greater than 4a7 log N is at most l/2NkSa-l.
The same bound holds for the second half of the
path of each packet. Hence, setting 87 = 8a7 and
hg = k g - 1 completes the proof. 0
3.6 Scheduling the packets

Every routing algorithm performs two tasks: find-
ing paths for the packets to take through the network,
and scheduling the movements of the packets along
their paths. By Lemma 3.1, with high probability,
our algorithm will find paths for the packets with con-
gestion O(1og N) , where each path makes four passes
through the network and uses butterfly edges in one
direction only during each pass.

Another way of viewing the routing algorithm is
that the butterfly simulates a network with 410g N
levels in which the paths pass from level 0 to level
410g N and in which every edge is direcied from one
level to the next. A network of this form is called a
leveled network. It is convenient to view the butterfly
this way because it allows us to apply an off-the-shelf
scheduling algorithm for leveled networks. In partic-
ular, we can use the algorithm of Leighton, Maggs,
Ranade, and Rao [14]. With high Probability, this al-
gorithm will route N packets in O(c+ L+log N) steps,
where c is the congestion and L is the depth (distance
from first to last level) of the network. [n our appli-
cation, c = O(1og N) and L = O(1og N) , so the total
time is O(1og N) .
3.7 One-to-one routing

Thus far we have described an algorithm for rout-
ing (logn + 1) packets from each input and to each
input. If, instead, we want to route packets in a one-
to-one fashion between some set of O(N) nodes in the
network, then we spread out the packets starting at
each input along a path to some output. Consider the
paths defined by the identity permutation. Clearly, we
can route packets along these paths to and from the
input nodes. Thus we use as input nodes those nodes
that can route both the identity permutation and a
sufficient fraction of all other permutations. This may
require changing the 3/4 fractions to 7/8.

The performance of the algorithm described in this
section is summarized by the following theorem.

Theorem 3.4 For any constants ks > 0, k g > 0,
and klo < 1, there are constants p > 0 and k11 > 0
such that, even if every node or edge in! the network
fails independently with probability p , wath probability

at least 1 - l/Nka, it is possible to identify a set of
kloN nodes between which packets can be routed in any
one-to-one pattern in kll log N steps (with probability
at least 1 - l/Nk”).

4 Open problems
Although this paper shows that it is possible to

route in O(1og N) time on a butterfly with constant-
probability random faults, it is still not known whether
such a butterfly can emulate a fault-free butterfly with
constant slowdown. The slowdowns of the emulations
of Leighton, Maggs, and Sitaraman [15] and Tamaki
E311 are 2O(log* N, and loglogk N (where k is some
fixed constant), respectively. Both functions grow
very slowly with N , but are not constant.

Another open problem concerns the ability of
the butterfly (or Benes) network to route constant-
congestion paths between some set of O(n) inputs
and outputs in any permutation. The results in this
paper imply that even if every node fails with some
constant probability, it is possible to route paths be-
tween inputs and outputs, but the congestion will be
@(log N/ log log N). For worst-case faults, Leighton,
Maggs, and Sitaraman [15] showed that a butterfly (or
Benei) network can tolerate up to nl-€ faults, where E
is any fixed constant greater than zero, and still route
any permutation on some set of n(1 - o(1) inputs and
outputs with constant congestion. Whet h er the net-
work can tolerate more than nl-€ faults and still route
constant-congestion paths remains open.

References
[l] G. B. Adams, 111, D. P. Agrawal, and H. J .

Sie el. A survey and comparison of fault-tolerant
muft ist age interconnect ion networks. Computer,
20:14-27, June 1987.

[2] G. B. Adams, I11 and H. J. Siegel. The extra
stage cube: A fault-tolerant interconnection net-
work for supersystems. IEEE Transactions on
Computers, C-31(5):443-454, May 1982.

[3] Dharma P. Agrawal. Testing and fault tolerance
of multistage interconnection networks. Com-
puter, pages 41-53, April 1982.

Randomized parallel communi-
cation. In Proceedings of the A C M SIGACT-
SIGOPS Symposium on Principles of Distributed
Computing, pages 60-72, August 1982.

[5] J. Arlat and J. C. Laprie. Performance-related de-
pendability evaluation of supercomputer systems.
In Proceedings of the 13th Annual International
Symposium on Fault-Tolerant Computing, pages
276-283, June 1983.

[6] K. Batcher. Sorting networks and their applica-
tions. In Proceedings of the AFIPS Spring Joint
Computing Conference, volume 32, pages 307-
314, 1968.

[7] ButterflyTM Parallel Processor Overview. BBN
Report No. 6148, Version 1, BBN Advanced Com-
puters, Inc., Cambridge, MA, March 1986.

[4] R. Aleliunas.

569

[8] V. E. Bene& Optimal rearrangeable multistage
connecting networks. Bell System Technical Jour-
nal, 43:1641-1656, July 1964.

[9] C. R. Das and L. N. Bhuyan. Reliability simu-
lation of multiprocessor systems. In Proceedings
of the 1985 International Conference on Parallel
Processing, pages 591-598, August 1985.

[lo] A. Gottlieb. An overview of the NYU Ultracom-
puter Project. In J. J . Dongarra, editor, Exper-
imental Parallel Computing Architectures, pages
25-95. Elsevier Science Publishers, B. V., Ams-
terdam, The Netherlands, 1987.

[ll] W. Hoeffding. On the distribution of the num-
ber of successes in independent trials. Annals of
Mathematical Statistics, 27:713-721, 1956.

[12] A. R. Karlin, G. Nelson, and H. Tamaki. On the
fault tolerance of the butterfly. In Proceedings of
the 26th Annual ACM Symposium on the The0 y
of Computing, pages 125-133, May 1994.

Introduction to Parallel Algo-
rithms and Architectures: Arrays 0 Trees 0 Hy-
percubes. Morgan Kaufmann, San Mateo, CA,
1992.

[14] F. T. Leighton, B. M. Maggs, A. G. Ranade,
and S. B. Rao. Randomized routing and sorting
on fixed-connection networks. Journal of Algo-
rithms, 17(1):157-205, July 1994.

[15] T. Leighton, B. Maggs, and R. Sitaraman. On the
fault tolerance of some popular bounded-degree
networks. In Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science,
pages 542-552, October 1992.

[16] Y.-D. Lyuu. Information Dispersal and Parallel
Computation. Cambridge University Press, Cam-
bridge, England , 1992.

[17] B. M. Maggs and R. K. Sitaraman. Simple al-
gorithms for routing on butterfly networks with
bounded queues. In Proceedings of the 24th An-
nual ACM Symposium on the The0 y of Comput-
ing, pages 150-161, May 1992.

[18] T. Nakata, S. Matsushita, N. Tanabe, N. Kaji-
hara, H. Onozuka, Y. Asano, and N. Koike. Par-
allel programming on Cenju: A multiprocessor
system for modular circuit simulation. NEC Re-
search & Development, 32(3):421429, July 1991.

[19] D. Nassimi and S. Sahni. A self-routing benes net-
work and parallel permutation algorithms. IEEE
Transactions on Computers, C-30(5):332-340,
May 1981.

[20] D. Nassimi and S. Sahni. Optimal BPC permu-
tations on a cube connected computer. IEEE
lfvrnsactions on Computers, C-31(4):338-341,
April 1982.

[21] W. Oed. Cray Y-MP C90: system features and
early benchmark results. Parallel Computing,

[22] D. C. Opferman and N. T. Tsao-Wu. On a class
of rearrangeable switching networks-part 11: Enu-

[13] F. T. Leighton.

18(8):947-954, August 1992.

meration studies and fault diagnosis. Bell Sys-
tem Technical Journal, 50(5):1601-1618, May-
June 1971.

[23] K. Padmanabhan and D. H. Lawrie. A class of
redundant path multistage interconnection net-
works. IEEE Dunsuctions on Computers, pages
1099-1108, December 1983.

[24] G. F. Pfister, W. C. Brantley, D. A. George, S. L.
Harvey, W. J. Kleinfelder, K. P. McAuliffe, E. A.
Melton, V. A. Norton, and J. Weiss. An introduc-
tion to the IBM Research Parallel Processor Pro-
totype (RP3). In J. J. Dongarra, editor, Exper-
imental Parallel Computing Architectures, pages
123-140. Elsevier Science Publishers, B. V., Am-
sterdam, The Netherlands, 1987.

[25] N. Pippenger. Parallel communication with lim-
ited buffers. In Proceedings of the 25th Annual
Symposium on Foundations of Computer Science,
pages 127-136. IEEE Computer Society Press,
October 1984.

[26] M. 0. Rabin. Efficient dispersal of information
for security, load balancing, and fault tolerance.
Journal of the ACM, 36(2), April 1989.

[27] P. Fbghavan. Lecture notes on randomized al-
gorithms. Research Report RC 15340 (#68237
IBM Research Division, T.J. Watson Researc
Center, Yorktown Heights, NY, January 1990.

How to emulate shared mem-
ory. In Proceedings of the 28th Annual Sympo-
sium on Foundations of Computer Science, pages
185-194. IEEE Computer Society Press, October
1987.

Fault-tolerance
of dynamic-full-access interconnection networks.
IEEE Transactions on Computers, C-33(3):241-
248, March 1984.

[30] S. Sowrirajan and S. M. Reddy. A design for fault-
tolerant full connection networks. In Proceedings
of the International Conference on Science and
Systems, pages 536-540, March 1980.

[31] H. Tamaki. Efficient self-embedding of butterfly
networks with random faults. In Proceedings of
the 33rd Annual Symposium on Foundations of
Computer Science, October 1992. 533-541.

[32] E. Upfal. Efficient schemes for parallel communi-
cation. Journal of the ACM, 31(3):507-517, July
1984.

[33] L. G. Valiant. A scheme for fast parallel
communication. SIAM Journal on Computing,
11(2):350-361, May 1982.

[34] A. Varma. Fault-tolerant routing in unique-path
multistage interconnection networks. In formation
Processing Letters, 31(4):197-201, May 1989.

[35] A. Waksman. A permutation network. Journal
of the ACM, 15(1):159-163, January 1968.

1:
[28] A. G. Ranade.

1291 J. P. Shen and J. P. Hayes.

570

