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Abstract 
In this paper we show that even if every node or 

edge in  an N-node butterfly network fails indepen- 
dently with some constant probability, p ,  it i s  still pos- 
sible to  identify a set of O ( N )  nodes between which 
packets can be routed in any permutation in 0 log N )  

complicated, the routing algorithm itself i s  relatively 
simple. 

steps, with high probability. Although the ana \ ysis i s  

1 Introduction 
This paper studies the ability of a network called a 

butterfly to route packets when many of its nodes and 
edges fail at random. A 32-node butterfly is shown in 
Figure 1. This network has been studied extensively 
and it, or one of its variants, has served as the routing 
network in several parallel computers. More informa- 
tion about the structural and algorithmic properties 
of butterflies can be found in the book by Leighton 
[13]. Some of the parallel computers that use butter- 
fly networks are described in [7, 10, 18, 21, 241. 

The algorithm described in this paper routes pack- 
ets in a store-and-forward fashion. The term store- 
and-forward means that each non-faulty node has a 
queue in which it can store packets and, at each time 
step, can transmit at most one packet across each of 
its non-faulty edges. We will be primarily interested in 
routing packets between nodes in a one-to-one fashion, 
i.e., each node will be the source of at most one packet 
and the destination of at most one packet. One-tc-one 
packet routing problems are also called permutation 
routing problems. 

Throughout this paper, we use the following ter- 
minology to describe butterfly networks. A log n- 
dimensional butterfly has N = n(1ogn + 1) nodes ar- 
ranged in log n + l  levels of n nodes each. (Throughout 
this paper we use log n to denote log, n.) Each node 
has a distinct label (w,i) where i is the level of the 
node (0 5 i 5 logn) and w is a logn-bit binary num- 
ber that denotes the column of the node. All nodes 
of the form (w,i), 0 5 i 5 logn, are said to belong to 
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level 

column 

0 0 0 0 1 1 1 1  
0 0 1 1 0 0 1 1  
0 1 0 1 0 1 0 1  

Figure 1: A 32-node butterfly network. 

column w. Two nodes (w, i) and (w', if) are linked by 
an edge if if = i + 1 and either w and w' are identical 
or w and w' differ only in the bit in position if. (The 
bit positions are numbered 1 through logn. We call 
the first type of edge a straight edge and t l! e second 
a cross edge. The nodes on level 0 are called the in- 
puts of the network, and the nodes on level logn are 
called the outputs. Level 0 is the top of the butterfly, 
and level logn is the bottom. Sometimes the level 0 
and log n nodes in each column are assumed to be the 
same node. In this case, the butterfly is said to wrap 
around. Our results hold whether or not the butterfly 
wraps around. 

Our fault model is static. We assume that all faults 
occur before the network is used for routing and that 
all faults can be detected. We will use information 
about the locations of all of the faults to configure 
the network for routing. We assume that faults do 
not occur while the network is being used for routing. 
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Finally, we assume that a faulty edge cannot transmit 
a packet, but otherwise it does not affect either of its 
endpoints, and that a faulty node cannot transmit or 
receive packets. 
1.1 Previous work 

Many algorithms have been devised for routing 
packets on butterfly networks without faults. One of 
the earliest results is due to Benes, who showed that it 
is possible to establish edge-disjoint paths between the 
nodes in the first and last levels of two back-to-back 
butterflies in any permutation [8]. Waksman [35] then 
gave an elegant algorithm for finding the paths. As 
a consequence of these two results, for an,y one-to-one 
packet routing problem on an N-node butterfly, it is 
possible to find, in O(N log N)  time, a set of paths for 
the N packets and a schedule for moving the packets 
along their paths that delivers all of the packets to 
their destinations in O(1og N) time steps. One draw- 
back of Waksman’s algorithm is that it uses global 
information about the network to find the paths for 
the packets. The next important advance was made 
by Batcher [6], who showed how to sort O(N/logN) 
packets on an N-node butterfly in O(log2 N)  steps, 
using only local information. This algorithm can also 
be used for permutation routing, and it vias the state 
of the art in permutation routing on butterfly net- 
works for a long time. Next, Nassimi and Sahni 
[19, 201 showed how to route a wide clas  of permu- 
tations called bit-permute-complement permutations 
in O(1ogN) time. Finally, Valiant I331 showed how 
to route O(N/log N)  packets in any permutation in 
O(1og N )  steps. His idea was to first route each packet 
to a random intermediate destination. Improvements 
on Valiant’s algorithm soon followed. First, Upfal [32] 
showed how to route N packets on an N-node butter- 
fly network in O(1og N)  time. At about the same time, 
Aleliunas [4] showed how to do the same thing on an 
N-node shuffle-exchange graph. Algorithms for rout- 
ing on butterflies with bounded-size ueues were then 
devised by Pippenger [25], Ranade 9281, and Maggs 
and Sitaraman [17]. Ranade also showed lbow combin- 
ing could be used to soive not only one-to-one routing 
problems, but also many-to-one routing problems in 
0 log N) steps. As a consequence of Ramade’s algo- 

each step of a CRCW PRAM in O(1og N) steps. 
There is a vast literature devoted to the subject 

of routing on butterfly networks, or related multi- 
stage networks, with faulty components. For example, 
the query “fault!! AND network! AND (banyan OR 
butterfly OR omega OR multi!stage),” imatches two 
hundred twenty-one records in the INSPEX database. 
Most of these papers can be placed into one or more 
of the following categories: 

1. papers that suggest adding edges to the network 
so that there are multiple paths between any in- 
put and any output, 

2. papers that suggest adding an extra stage to the 
network in order to tolerate a single stuck-at fault, 

3. papers that suggest that packets can avoid faults 
by making multiple passes through the network, 

rit 6 m, it is possible for a butterfly network to emulate 

4. papers that suggest using only a subset of the 
inputs and outputs for routing, and 

5. papers that explore the problem of testing a net- 
work for faults. 

Some of the earliest a ers in these five categories are 
[23], [2, 3, 22, 301, b97, [5, 91, and [22] respectively. 
This paper falls into categories three and four. For a 
survey, see [l]. More recently, Varma [34] suggested 
that packets can avoid faults and still reach their desti- 
nations by first routing to an intermediate destination. 
Leighton, Maggs, and Sitaraman [15] proved that even 
if an adversary is allowed to place O ( N /  log N) worst- 
case faults in an N-node butterfly network, it is still 
possible to identify some set of O(N) nodes between 
which packets can be routed in any permutation in 
O(1ogN) steps. They also showed that even if ev- 
ery node fails with some constant probability, the net- 
work can emulate a fault-free butterfly with 2O(log* N, 
slowdown, with high probability. One consequence of 
this result is that it is possible to identify O(N) nodes 
between which packets can be routed in any permu- 
tation in 2O(log* log N steps. At about the same 
time, Tamaki [31] devised a simpler emulation scheme 
with (log log N)k slowdown, where k is some constant. 
The result translates into an algorithm for routing in 
log N(log1og N)k steps. Karlin, Nelson, and Tamaki 
[12] then showed that there is a critical failure proba- 
bility, p* ,  such that if every edge fails with probabil- 
ity p ,  and p < p* ,  then it is very likely that in the 
subgraph of non-faulty nodes there exists a connected 
component of size O(N), but if p > p * ,  it is very 
unlikely. Another approach worth mentioning is the 
“Information Dispersal” technique due to Rabin [26] 
and Lyuu 161. They suggest using error-correcting 

proach works best when each packet is at least log2N 
bits long (and thus can be broken into logN smaller 
pieces), and the node failure probability is at most 
l / logN. 
1.2 Our results 

In this paper we show that even if every node or 
edge in an N-node butterfly network fails indepen- 
dently with some constant probability, p ,  it is still pos- 
sible to identify a set of O ( N )  nodes between which 
packets can be routed in any permutation in O(1og N) 
steps, with high probability. In the course of analyz- 
ing the algorithm we also show that, even if there are 
random faults in the network, with high probability it 
is possible to establish constant-congestion fault-free 
paths in some one-to-one pattern from O(n) inputs to 

1.3 Outline 
The remainder of this paper consists of three sec- 

tions. In Section 2, we show that, with high proba- 
bility, it is possible to identify a set of O(n) inputs 
and O(n) outputs such that it is possible to route 
constant-congestion fault-free paths from the inputs 
to the outputs in a one-to-one fashion. This is the 
most difficult technical result in the paper. In Sec- 
tion 3, we show how to use the result of Section 2 to 

codes to to I erate faults in routing networks. This ap- 

@(n) outputs. 
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find a set of O ( N )  nodes between which packets can 
be routed in any permutation in O(1ogN) steps. We 
conclude in Section 4 with some open problems. 

2 Routing paths from inputs to out- 
puts 

In this section we show that, with high probabil- 
ity, it is possible to identify a set of @(n) inputs and 
O(n) outputs and a set of constant-congestion fault- 
free paths of length logn that connect the inputs to 
the outputs in a one-to-one fashion. We prove this re- 
sult by showing that if each input is the source of at 
most one unit of flow, and each output is the sink of 
at most one unit, and each edge has constant integral 
capacity, then with high probability, it is possible to 
find a unidirectional integral flow of value O(n) from 
the inputs to the outputs. 

In the remainder of this section, we assume without 
loss of generality that only nodes fail. Because the 
butterfly network has constant degree (4), it is not 
difficult to translate our result to the case in which 
edges fail as well. 

A first attempt at finding a flow that avoids faults 
might proceed as follows. Identify inputs that can 
reach many outputs (say, at least as many as an input 
can reach on average) and outputs that can be reached 
from many inputs. Now for each input, split a unit of 
flow uniformly among all the outputs. Unfortunately, 
this does not necessarily result in a constant conges- 
tion flow. Thus, one would like to adjust the splits 
to achieve constant congestion while maintaining the 
total flow. It is far from clear that this can be done, 
or how to do it. 

We achieve this in two steps. First, by adding ad- 
ditional faults, we are able to impose a very uniform 
structure on the faults. It then becomes possible to 
systematically adjust the splits of the flows so as to 
achieve a modest constant bound on the congestion. 
In addition, we show that the flow is unidirectional: it 
proceeds from the inputs of the network to the outputs 
without any backtracking. We will use this property 
when designing our algorithm for scheduling the move- 
ments of the packets along paths determined by the 
flow. 

The fault structure has the following form: the net- 
work is edge-partitioned into strips of logd levels, i.?., 
successive strips share one level of vertices, for a suit- 
able constant d > 0. We mainly consider the case 

butterflies. Any subbutterfly with a fault is not used 
further and is declared faulty. Furthermore, if any 
d-input subbutterfly S shares two or more inputs, or 
two or more outputs, with faulty subbutterflies in the 
previous and next strips, respectively, then S is de- 
clared faulty also. This rule is repeated until no more 
subbutterflies are declared faulty. 

It is not hard to see that for d = 4, O(nl/’) faults 
suffice to cause faults to propagate to all d-input sub- 
butterflies in the network. With more effort, one can 
show that Sl(n1/2) faults are needed to cause faults 
to propa ate to the whole network. But there are 
O(n log n j  random faults. To prove that O(n log n) d- 

d = 4.) Each strip divi 6 es naturally into d-input sub- 

input subbutterflies remain fault-free, one has to ex- 
ploit the fact that the faults are random. This is a 
non-trivial construction. 

We will now impose further restrictions on the pat- 
tern of faults for the resulting fault-free d-input sub- 
butterflies. The ideal situation would be complete 
uniformity, in the following sense: each non-faulty d- 
input subbutterfly would have exactly one faulty in- 
put neighbor and one faulty output neighbor (i.e., not 
zero). We cannot achieve this much. Instead, a more 
complex, but fairly uniform, structure is created (it 
is more complex in the sense that the neighborhood 
structure of collections of d-input subbutterflies are 
fully uniform as opposed to that of single d-input sub- 
butterflies). 

We can then specify a uniform routing in the sense 
that each input divides its unit of flow uniformly 
among the outputs it can reach. This routing involves 
bounded backtracking of the following form. The rout- 
ing of the flow through one level of d-input subbutter- 
flies may require using the preceding and following two 
levels of subbutterflies. Fortunately, the portion of the 
flow using the preceding and following levels of the 
butterfly use8 only small (fractional) capacity. Conse- 
quently, it is possible to adjust the flows, by splitting 
the flow at nodes non-uniformly, in order to avoid the 
need for backtracking. 

Finally, as the flow has constant congestion, with 
a unit bound at each of the inputs and outputs, we 
conclude that there is a constant congestion integral 
flow from the inputs to the outputs. This amounts to 
a collection of fault-free paths between paired inputs 
and outputs with the same constant congestion (arbi- 
trary pairings are not possible, but there is a least one 
feasible collection of pairings). 

Theorem 2.1 For any constants k.1 > 0 ,  kz < 1, and 
7 2 1 there as a constant p > 0 such that if every 
node fails with probability p ,  then with probability at 
least 1 - l / N k l  there i s  a set of kzn inputs and kzn 
outputs and a set of fault-free paths of length log n with 
congestion 7 that connect the inputs t o  the outputs in  
a one-to-one fashion. 

Sketch of proof: 
Part 1: We show that the following fault structure 
can be created by adding faults. Edge partition the 
butterfly into d-input subbutterflies, for some constant 
d. Each non-faulty d-input subbutterfly will have at 
least d - 1 non-faulty neighboring d-input subbutter- 
flies on both the input and output sides; indeed, the 
faulty neighborhood structure is more constrained, as 
specified in part (iv). A statement of the results to be 
shown in each part follows. 

(i) Use the following rule for propagating faults. Con- 
sider an edge partition of the butterfly into 4- 
input subbutterflies. If a subbutterfly has a faulty 
node view it as faulty. Any subbutterfly with two 
faulty neighbors on the input side or on the out- 
put side is itself viewed as faulty. Then it requires 
n1/’/2 faults to make all the Cinput subbutter- 
flies in the butterfly faulty. 
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Henceforth, we consider a fault as meaning a 
faulty 4-input subbutterfly. Note that a single 
faulty node may make two 4-input subbutterflies 
faulty, in the event that they share the node. 

Lemma 2.2 c faults induce at most c4 faults at 
any given level of the butterfly. 

Lemma 2.3 Suppose the butterfly i s  edge parti- 
tioned into b-input subbutterflies, each of which 
i s  either faulty or not faulty, and that we use the 
above rule for propagating faults among b-input 
subbutterflies (2 faulty input or output neighbors 
cause propagation . Then it requires 21°gn/loga /2 
faulty b-input su 1 butterflies to  make all the b- 
input subbutterjlies in the butterfly faulty, and 
c = 2t faults cause at most b2' induced faulty b- 
input subbutterflies at any level of the butterfly. 

(ii) Consider a butterfly edge-partitioned into binput 
subbutterflies. Suppose there are at most b L / 2  
faults in each subbutterfly, for some c < 1/20. We 
show that after propagating faults among Pinput 
subbutterflies, there are at most b4'/16 faults at 
the middle two levels in each b-input subbutter- 
fly- 

(iii) We generalize the above result to hold simulta- 
neously for log log log n partitions into different- 
sized subbutterflies, where faults in one partition 
may generate faults in another. We also show 
that with high probability the number of induced 
faults at any level of the butterfly is at most kzn 
for some constant k2 < 1. Furthermore, for a 
suitable constant d,  a partition into d-input sub- 
butterflies leaves each non-faulty d-input subbut- 
terfly with at least d - 1 non-faulty input and 
output d-input subbutterfly neighbors. 

(iv) Consider a given level of d-input subbutterflies. 
Partition them into sets of d2 subbutterflies, each 
set together with its input and output neighbors 
forming a d3-input subbutterfly. Fmm a second 
partition into sets of d4 subbutterflies, where each 
set, together with its input and output neighbors 
going two levels forms a d5-input sulbbutterfly. 
We will add faults, if necessary, to impose the fol- 
lowing structure on the faults. Arrange each set of 
d2 subbutterflies in a d x d array, where each row 
comprises a set of subbutterflies with the same 
input neighbors and each column a set with the 
same output neighbors. A set of size d2 has three 
choices: no faulty subbutterflies, all faulty, or one 
or both of a row and column of faulty subbut- 
terflies. In addition, consider a collection C of d 
sets of size d2 which have their input neighbors in 
an equal-sized collection ( d  sets of size d2)  at the 
input level. Then either all of the subbutterflies 
in C are faulty, or exactly d rows among these d 
sets of size d2 are faulty. In the latter case, the 
faulty rows occur in one of three ways: 

(1) All in one set of size d2. 
(2) The same row in each set. 
(3) Different rows in each set. 

An analogous constraint holds for the columns 
with respect to output neighbors. In the par- 
tition of d4-input subbutterflies, the number of 
faulty rows is d2, which is also the number of 
faulty columns. 

Next, we fill in some of the details. 
Part 1 (i) 

Definition 2.4 A n  h-subbutterfly has 4h inputs. 

Suppose there are f faulty 1-subbutterflies in the 
butterfly. 
a. We show that the induced faults on the top level 
1-subbutterflies can all be produced by f faults on the 
top level. 
b. We show that to make every subbutterfly on the top 
level faulty, using only faults on the top level, requires 
n1I2/2 faults. The result follows. 
a. We show how to move faults up one level of sub- 
butterflies in the following sense, without increasing 
the number of faults. Let level 1 + 1 be the lowest 
level of 1-subbutterflies with faults and suppose there 
are g faults at level 1 + 1 (the top level is level 0). 
Note that an n-input butterfly has (logn)/2 levels of 
1-subbutterflies. We show that these g faults can be 
replaced by g or fewer faults at level I ,  such that every 
induced fault at level 1 (and above) remains present. 
It may be that some induced faults at lower levels are 
removed, however. 

Consider the subbutterfly networks with inputs at 
level 1 and incorporating only lower levels in the net- 
work. Consider a maximal such subbutterfly with 4h 
input nodes at level 1 in which every 1-subbutterfly 
becomes faulty through fault inducing. 

We rearrange the level 1 + 1 faults in the above 
subbutterfly without changing the induced faults at 
level 1 so that all the faults are in just two of the 
four (h - 1)-subbutterflies with inputs at level 1 + 1, 
and further these faults are arranged in pairs so that 
each pair of faults at level 1 + 1 can be replaced by a 
corresponding pair of faults at level 1 without altering 
the induced faults in any way. 

Definition 2.5 A n  i-block i s  an i-subbutterfly with 
inputs at level 1 + 1. 

Definition 2.6 The 4 aligned i-blocks are the i- 
subbutterflies obtained from an (i+l)-subbutterfly with 
inputs at level I .  

Consider the process of inducing faults. The only 
induced faults we are interested in here are faults in- 
duced on level 1 by faults on level I +  1 (pass-up faults), 
faults induced on level 1+1 by faults on level 1 or higher 
(pass-down faults), and faults induced on level I +  1 by 
faults on level 1 + 1 (fill-in faults). We view the fault 
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inducing as occurring in a series of phases. In each 
phase we have passup, then pass-down, then fill-in. 

In turn, we rearrange the faults in 1-blocks, ..., h- 
blocks, while maintaining the following property. For 
each collection of 4 aligned i-blocks: 

(i) At most 2 of the 4 aligned i-blocks have faults. 
(ii) Each pass-up fault occurs in the same or an earlier 

phase than before. 

(iii) The complete fill-in of the second aligned i-block 
to be filled in with faults occurs in the same phase 
or in an earlier phase than before. 

Base case: 1-blocks. There is no point to more than 2 
faulty aligned 1-blocks. Simply remove any additional 
faults. (i) holds and clearly the process of inducing 
faults is unchanged. 
Inductive case. Inductively, there are at most 8 out 
of 16 aligned (i - 1)-blocks with faults, and for each 
set of four aligned i - 1)-blocks, at most 2 are faulty. 

by performing swaps among aligned (i - 1 -blocks; 
clearly each pair of aligned faulty (i - 1)-b ) ocks re- 
mains aligned. In addition, consider the first 4 ( i  - 1)- 
blocks to fill in with induced faults, choosing at most 
2 from each i-block before the swapping. There must 
be 4 such i - 1 -blocks for otherwise the z + 1)-block 

swapping so that these four blocks are arranged two 
per i-block. Clearly (i) holds. (ii) holds because the 
alignments are maintained. 111) holds because the ch- 
sen (i - 1)-blocks are distri uted to ensure that the 
fill-in of the first two i-blocks completes when these 4 
(i - 1)-blocks fill-in. 

When the fault rearranging is complete, perform 
one more step of rearrangement to make all the faulted 
blocks consistent in the following sense: Consider the 
blocks with inputs on level 1 + 1 and outputs on level 

log b. These are k-blocks, where k = f log b - 1 - 
1. For each collection of 4 k-blocks with the same 
neighbors at level 1 ,  2 k-blocks are chosen to contain 
ail the faults, by moving maximal fault blocks, if need 
be, to aligned locations in the chosen k-blocks. 

Now consider a maximal faulted j-block B (in the 
sense that the ( j  + 1)-block to which it belongs is not 
faulted). Let B' be its partner j-block containing some 
faults. Suppose they have s and s' faults respectively. 

If s 2 st ,  then rearrange the faults in B to be 
s' faults aligned with the faults in 3'. Clearly, all 
the pass-up faults occur no later than before (for B 
now has exactly the same fill-in as B' and hence any 
passup fault, which always uses a fault in B' and the 
aligned fault in B, can occur no later). Further, the 
faults in B and B' are aligned and so can be moved 
from level 1 + 1 to level 1 without affecting the fill-in 
at level 1. 

If s < s', rearrange the faults in B' to be s faults 
aligned with the faults in B. The same argument ap- 
plies. 
b. Consider a butterfly with faults on the top level 
only. 

Move the faults in t 6 ese 8 (i- 1)-blocks into 2 i-blocks, 

could not 6 1  e fi led with induced faults. L erform the 

We redefine the term i-block here. 

Definition 2.7 A n  i-block as a subbutterfly with 4' 
nodes on the top level of the butterfly. 

Claim 2.8 The faults in an i-block cause either all 
the I-subbutterflies at the bottom level of the i-block to  
be faulty or none of them to  be faulty. 

Proof: The proof is by induction. The base case i = 1 
is trivial. For i > 1, consider the (i- 1 blocks. If two 

has faults at all its bottom 1-subbutterflies. If only 
one ( i  - 1)-block has faults at its bottom, then the 
i-block has no faults at its bottom. I7 

of more have faults at the bottom, t 1- en the i-block 

Claim 2.9 n1l2/2 faults suffice to  make the top level 
of an n-input but te f ly  faulty. 

Proof: By induction, to induce faults at the bottom of 
an i-block requires 2'-l faults in the i-block (straight- 
forward). 

Thus to make the whole top level faulty (and hence 
the whole butterfly faulty) requires n1l2/2 faults at 

We would like to show the same result is true for 
any intermediate level, and as far as we can tell it 
is true, but we don't have a proof, hence the weaker 
claim of Lemma 2.2, that c faulty 1-subbutterflies in 
the butterfly create at most c4 induced faults on any 
given level. 
Proof of Lemma 2.2. We show there are at most c4 
induced faults on level 1. We proceed in three steps. 
Step 1. Move the faults above level 1 down to level 
1 without increasing the number of faults or changing 
the induced faults on level 1. 
Step 2. Similarly, move the faults below level 1 to 
level 1. 
Step 3. Consider the faults now at level 1 and discard 
any other faults as they do not induce faults at level 1. 
Take the butterfly and fold it over at level 1 ,  creating 
a network with inputs at level 1 and fan-out 4, rather 
than 2, at each level. When folding the butterfly over, 
nodes are mapped staying in the same column. More 
precisely, suppose the fold is at node-level j (= 21, 
where the fold is at 1-butterfly level I). Then the node 
at level j + i is overlaid on the node at level j - i in the 
same column. Edges are added as follows. Between 
levels j - i and j - i - 1, where before we would define 
edges by possibly flipping bit j - i - 1, now we flip one 
or both of bits j - i -  1 and j+i. This creates a fan-out 
4 butterfly-like structure and as subgraphs it has the 
butterflies from above and below the j t h  level (or more 
strictly an isomorphic image of the butterfly below 
level j ) .  Edge partition the resulting butterfly into 16- 
input subbutterflies. Assume that if there are 2 faults 
at the input or output neighbors of a subbutterfly this 
makes the subbutterfly faulty also. As in the previous 
construction, we need n1/4/2 faults to cut an n-input 
subbutterfly, and generalizing slightly, c faults at the 
inputs induce at most c4 faults at any level (recall 

the top level. U 
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that a subbutterfly with inputs on level 0 is either cut 
0 

Part 1 (ii) 
In turn we show (a) and (b), below. 

a. Consider a binput butterfly. Suppose there are 
2'logb/2 = 2t faults anywhere in the butterfly, plus 
another f faults on the output (bottom) level. If 
log f +t+2 < 3 log b, then there are at most 24'10gb/16 
faults at the input (top) level of the butterfly. Really 
22c10gb/4, but only the weaker bound will apply in a 
more general setting needed later. 
b. The stated result for Part 1 (ii): Considier a butter- 
fly edge-partitioned into b-input subbutterflies. Sup- 
pose there are at  most b t / 2  faults in each subbutterfly, 
where c l /  < 20. We show that after propagating faults 
among 4-input subbutterflies, there are at most b4'/16 
faults at  the middle two levels in each subbutterfly. 

Definition 2.10 A subbutterfly is  faulted' if all i ts  1- 
subbutterflies are made faulty by the fault inducing due 
to  faults it contains. 

entirely or has no faults at its bottom level). 

a. Suppose f = 2' (add faults if need be). Consider 
the maximal subbutterflies that are faulted by these 
f faults and whose output level is part of the out- 
put level of the b-input subbutterfly. For each such 
maximal subbutterfly, suppose that the faulting set of 
faults is of minimum size. This partitions the f faults 
into sets of size 2h, 0 5 h 5 i ,  where each set of faults 
is faulting a 4h+1-input subbutterfly (by Part 1 (1 and 
Claim 2.9). Consider the 4ary tree structure in a uced 
by the subbutterflies of various sizes with output level 
on the output level of the butterfly and tree ancestry 
corresponding to subbutterfly containment. Trim the 
tree keeping only the following nodes: the leaves cor- 
respond to the maximal subbutterflies faulted by the 
f faults and the interior nodes are their ancestors. In 
addition, we keep all children of interior nodes. 

First, we show how to rearrange the f faults so they 
are all in one faulted subbutterfly with 4'+' inputs, 
without reducing the number of induced faults at the 
input level of the butterfly and in addition without re- 
moving any induced faults except possibly in the sub- 
butterflies faulted by the f faults. Consider two small- 
est subbutterflies, S and s', faulted by setls off' = 2hf 
faults on the base. (As f = 2', and the f i d t s  always 
occur in sets of size 2h, h 2 h', faulting; 4h+1-input 
subbutterflies, there must be two equal-sized smallest 
faulted subbutterflies, each containing an equal num- 
ber of faults, unless all the faults lie in one faulted 
subbutterfly.) For each subbutterfly the associated 
faults are defined as follows. Consider ilk 3 siblings 
in the tree defined above. The associated faults are 
those faults in the subbutterflies corresponding to the 
sibling nodes. Let S be the subbutterfly with a smaller 
number g of associated faults. Swap the f' faults in 
S with the associated g' faults of the other subbut- 
terfly St in the following way. Extend S' to a faulted 

4hf+2-input subbutterfly using 2 f' faults (i.e., fault St 
with f' faults, and with another f' faults fault another 
subbutterfly associated with a sibling node of the node 
associated with SI). In S, place g of the g' faults as- 
sociated with S' so that they are aligned with the g 
faults associated with S. 

Consider the pass-up faults for the level above S. 
Clearly these are unchanged (previously fill-in due to 
pass-down faults immediately matched with the in- 
duced faults in S to cause pass-up faults; now the 
same pattern of fill-in occurs in 5' as in its siblings, and 
hence the same pass-up faults occur). Thus, w.1.o.g. 
we can assume there is just one subbutterfly with 4'+l 
inputs, containing f = 2' faults at the output level of 
the butterfly. 

Consider the path in the tree from the subbutterfly 
containing f faults to the root. Consider the number 
of faults in the subbutterflies associated with siblings 
of the nodes on this path (following the rearrangement 
of the f faults at the output into one faulted subbut- 
terfly). Going up the tree, let this number of faults be 
la1, IE2, - *  * 1 n f l o g b - i - l *  

Definition 2.11 The base faults are the f faults on 
the output level. The in-block faults are the remain- 
ing faults in the butterfly. The induced top faults are 
original faults plus the induced faults at the input (top) 
level of the butterfly. 

Claim 2.12 Consider rearranging the in-block faults 
but with the proviso that all Ihe previously induced 
top fauits remain induced top faults. Suppose that f o r  
all such rearrangements, some of the base faults are 
needed in order to  induce all the induced top faults. 
Then: 
( 2 )  > Cl<h<j n h .  
(ai) nj+2 2 2 jn1+  2 j .  
(iiz) t + i + 2 2 3 log b. 

Proof of Claim, part (i). Let IC = j be the first j 
for which the claim is not true. We move the faults for 
sibling blocks below the kth node on the path so that 
all the pass-up faults at the Lth level (and higher) are 
unchanged and remove all f faults at the output level, 
thus: Take nk+l of the faults from the subbutterflies 
associated with the lower level sibling nodes and place 
them in the subbutterfly associated with the kth node 
on the path, so that these faults are aligned with faults 
in its sibling blocks. As argued previously, the pass- 
up faults are unchanged, which yields a contradiction 
since we assumed that the base faults were needed. d 
Proof of Claim, art (ii). Part (ii) follows by in- 

Proof of Claim, part (iii). Clearly nl 2 1. 
w,n2 ,..., n(+lOgb)-i-l  all exist. n(+l,gb)-i-l  2 
2(3l0gb)-'-~.  A~SO 2el0gb/2 = 2t 2 nl  + n2 + ... + 

duction from part t). U 

n($logb)-i-l > - 2(:10i3b)-'-2. T h u s t + i + 2  2 $logb. 
U 
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Corollary 2.13 If t + a' + 2 < 4 logb, there i s  a w- 
arrangement of the in-block faults, such that even if 
all f base faults are removed, the set of induced top 
faults is either unchanged or incremented (this refers 
not only to  the size of the set, but to  its membership - 
any node originally an the set remains in the set). 

Hence the faults at the input level can all be in- 
duced by 2€I0gb/2 in-block faults, and by Part l(i), 
they induce at most 24'i0gb/16 faults. 

Proof of Part 1 (ii) b. 
Consider two edge partitions of the la-input butterfly 
into binput subbutterflies. In the first partition, the 
bottom level of subbutterflies and the full butterfly 
share the same output level. The second partition 
excludes the bottom and top log b levels of the full 
butterfly. Thus two overlapping subbutterfiies from 
the two partitions share b112 nodes per level on their 
overlapping 4 log b levels. 

We verify inductively that the number of induced 
faults on the input and output levels of each of the 
subbutterflies is at most b4'/16. This implies (triv- 
ially) that the number of faults on a b1I2 portion of 
the input or output level (shared with an overlapping 
subbutterfly in the other partition) is at most b4'/16. 

The inductive claim is that when moving faults 
from bottom to top in the network, if no more than 
b4'/16 faults enter along the output (bottom) levels 
of b112-input subbutterflies at a given level, then no 
more than b4'/16 faults leave the middle level of the 
b-input subbutterflies, where the two sets of subbut- 
terflies share the same output level. An analogous 
claim is made for moving faults down. 

The base case is provided by the subbutterflies at 
the bottom and top of the butterfly. 

For the inductive step, we use the construction of 
part (a) with f = b4'/16, i = 4clog6-4, t = clogb-1, 
and "b"= b112. Consider moving faults from the bot- 
tom to the top of a b112-input subbutterfly. The faults 
at the bottom of the subbutterfly induce no faults at 
the top of the subbutterfly of height 3 log b, which is 
the lower middle level of the subbutterfly of height 
log b having the same base, if i + t + 2 < 4 log "6" , i.e., 
5c log b - 3 < 1/4 log b, and this is satisfied if E < 1/20. 

A similar argument applies when moving faults 
from the top to the middle of the binput subbutterfly. 
Thus the faults at the middle levels are all induced by 
faults within the subbutterfly, and by Part 1 (i), this 
is at most b4'/16 faults. 

We conclude that the claim regarding induced 
faults on the two boundaries of a subbutterfly do in- 
deed hold. 
Part 1 (iii) 

First it is helpful to generalize the Part 1 (ii) re- 
sults as follows. Instead of considering faulty 4-input 
subbutterflies, we consider an edge partition into c- 
input subbutterflies. Each of these subbutterflies is 

either faulty or non-faulty. Also, a c-input subbut- 
terfly is made faulty if it has 2 faulty input neigh- 
boring c-subbutterflies or 2 faulty output neighboring 
c-subbutterflies. Suppose the butterfly is edge parti- 
tioned twice into b-input subbutterflies also, b > c ,  
where the two partitions overlap as in the previous 
section. If there are at most 2'(l0gb-logc)/2 faults 
within each binput subbutterfly, then on a middle 
level of these b-input subbutterflies, there are at most 
24'(10~"10~c)/16 induced faults, for E < 1/20. (A fault 
refers to a faulty c-input subbutterfly here.) 

The claims holds, for another way of considering 
the c-input subbutterflies is that they are single su- 
pernodes and the vertex degree of the butterfly has 
been increased. A fault will still be propagated if a 
node has 2 faulty input or 2 faulty output neighbors. 
(A larger number of faulty neighbors for propagation 
will result in better probabilities in the bounds, but 
does not affect the construction otherwise.) 

We will be considering a series of partitions with 
subbutterflies of dl = d, d2, ds, . . . inputs, the di's to 
be specified later. 

Let c = di ,  b = 
We define a dl-input subbutterfly to be faulty if it 

contains one or more faults. A b-input subbutterfly 
is faulty if it contains more than f (b, c) faulty e-input 
subbutterflies, f a function to be defined. 

For the purposes of analysis we discard all faulty 
subbutterflies wholly contained in a larger faulty sub- 
butterfly. 

In turn we consider the propagating effects of the 
remaining faulty subbutterflies with dl, da, . . . inputs. 

The situation is made more complicated because in 
general there are two partitions into c-input subbut- 
terflies, each of which may contain faulty subbutter- 
flies. We name the two partitions as follows: the par- 
tition including all the levels of the butterfly is called 
the full partition and the second partition is called 
the shijYed partition. We use a very simple rule for 
propagating faults from the shifted partition: each c- 
input subbutterfly in the full butterfly overlapping a 
faulty c-input subbutterfly in the shifted subbutterfly 
is declared to be faulty. The same fault pattern is 
achieved by adding two faulty e-input subbutterflies 
(which then propagate) to the full partition, where 
these added subbutterflies overlap the top levels of the 
faulty subbutterfly in the shifted partition. 

We associate each c-input subbutterfly S in the 
shifted partition with two c-input subbutterflies in the 
full partition, arbitrarily chosen, except that we ensure 
that each full partition subbutterfly has two associated 
subbutterflies in the shifted partition, with the excep- 

have no associated subbutterflies. S's associated sub- 
butterflies are the ones declared faulty if S is faulty 
itself. 

We are now ready to define the function f (b ,c ) .  A 
binput subbutterfly is faulty if it contains more than 
2c(i0gb-i0gc)-1/2 - 1 c-input subbutterflies in the full 
partition which are either faulty subbutterflies in the 
full partition or associated with faulty subbutterflies 
in the shifted partition. 

tion of those subbutterflies at the lowest level, which 
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We show that if each non-faulty c-input subbutter- 
fly requires at least two more faulty input neighbors 
or two more faulty output neighbors in order to b e  
come faulty, when ignoring faulty e-input subbutter- 
flies, e 2 c, then so do the non-faulty binput subbut- 
terflies, when ignoring faulty f-input subbutterflies, 
f 2 b. A c or binput subbutterfly is said to become 
faulty if it propagates even one fault from either its 
top to its bottom boundary, or its bottom to its top 
boundary. 

For the base case, the non-faulty d1-input subbut- 
terflies satisfy the condition by construction. 

The inductive step proceeds as follows. First map 
each faulty c-input subbutterfly in the shifted parti- 
tion to two c-input subbutterflies in the full parti- 
tion. This creates at most 2'(log*-loge)/2 - 2 faulty 
c-input subbutterflies in the full partition. Now, view 
the c-input subbutterflies as supernodes and apply the 
claim from the start of this section (Part l(iii)). This 
asserts that for faults to propagate through a (non- 
faulty) binput subbutterfly, it must contain more than 
2'(1°9 b-109c)/2 faulty c-input subbutterflies. But by 
construction, it contains at most 2c(10gb-10gc)/2 - 2 
faulty c-input subbutterflies. Hence, to become faulty, 
it requires at least two additional faulty input neigh- 
bors or two additional faulty output neighbors. These 
faulty neighbors are created by the introdiuction of the 
faulty b-input subbutterflies. 

It remains to derive some probability bounds. Let 
b = 2'a,c = 2'. We show that given a, probability 
p ,  5 1[2"'O that a c-input subbutterfly is faulty, the 
probability pb that a binput subbutterfly is faulty is 
at most l/22r4. This is shown by an indluction on i. 
The base case, i = 1, has c = d = dl anid b = d2; it 
holds trivially by choosing p small enough. For the 
inductive step, it is helpful to consider collections of 
c-input butterflies, such that the subbutterflies in each 
collection fail independently. As we will see, for each 
b-input subbutterfly, there will be 4c collections. Then 
we sum the probabilities that one of thes8e collections 
contains at least 1/4c of the number of faulty c-input 
subbutterflies causing the b-input subbut terfly to fail. 

As a result of the remapping of faults for finer par- 
titions, we claim that a c-input subbutterfy can be af- 
fected by faults it contains or by faults in overlapping 
subbutterflies of height (E::; log dh) sharing half 
their height with the c-input subbutterfly. Another 
way of considering this is that a c-input subbutterfly's 
faultiness is determined by faults contained within a 
subbutterfly of height at most (E;:: log dh)/2 + di 5 
2(logc - l) ,  which has the same top level as the c- 
input subbutterfly. To verify the claim inductively, 
we consider a binput subbutterfly. Aside from the c- 
input subbutterflies it contains, it's faultiness may be 
affected by faulty overlapping c-input subbutterflies 
from the shifted partition. The faults making these 
overlapping subbutterflies faulty are contained in sub- 
butterflies of height (E::\ log dh)/2 + d i ,  overlapping 
the binput subbutterfly to height (logc)/2. The claim 
now follows. 

Consider two c-input subbutterflies in either the full 
or the shifted partition that are two levels apart in the 
partition. Clearly, they fail independently, for the two 
levels are height logc apart. The collections of sub- 
butterflies are formed as follows. For each partition, 
separate the subbutterflies into two groups, compris- 
ing alternating levels of subbutterflies. For each group, 
separate it into c collections, where each set of c sub- 
butterflies in a common c2-input subbutterfly is dis- 
tributed one per collection. 

There are at most br2/(cr) c-input subbuttedies in 
the full partition of a b-input subbutterfly, and at most 
twice as many associated c-input subbutterflies from 
the shifted partition. Each partition is divided into 2c 
equal sized collections. Thus each collection holds at 
most br2/ cacr) c-input subbutterflies. For the b-input 

contain (1/4~)2'(('~-')-~ faulty c-input subbutterflies. 
Thus: 

subbutter B y to fail, at least one of its collections must 

L 

if c(r2 - r )  - 4 - T 2 0 ( r  large enough) 
l/2,,a.2c(2 - p)-4- r 

if2' 2 4r ( r  2 4) 
and the claim follows if Y(ra-r)-4-r > - 2r2. But this 
holds for large enough r. 

Thus there are log log log n levels of partitions and 
the probability that the whole butterfly fails is only 

As we propagate faults whenever there are two 
neighboring input or output faults each remaining 
non-faulty d-input subbutterfly has at most one input 
and one output neighbor that are faulty. 

1/22Wn = l/n2'09". 

Part A diEcu (ivl! ty in achieving the claimed distribution of 
faults arises :If there is more than one faulty subbut- 
terfly in a d2 size set initially. To avoid this problem, 
we declare that the whole d2-size set of d-input sub- 
butterflies is faulty if it contains even a single faulty 
subbutterfly. However, sets of d2 d-input subbutter- 
flies can have one or more faulty d-input subbutterflies 
become faulty by propagation without the whole set 
of d2 subbutterflies becoming faulty. By reducing p 
appropriately, the probability bounds of Part 1 (iii) 
are maintained. 

Then the only fault patterns that can arise in a set 
of d2 subbutterflies are: all faulty, none faulty, a row 
faulty, a column faulty, a row and column faulty. 

We seek to achieve the fault pattern described be- 
low for each collection of d sets of d2 subbutterflies, 
having d3 d-input subbutterflies as their (shared) in- 
put neighbors. Either (1) or (2) are present, or a sub- 
set of (3) is present. 
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(1) All faulty rows are in one set of size d2. 

(2) The same faulty row is present in each set. 

(3) Different faulty rows are present in each set. 

That these are the only options can be Seen as follows. 
The subbutterflies (input neighbors) in a column at 
one level are all connected to the subbutterflies in a 
row at the next level. For short, say the column is 
connected to the row. Each set of d2 subbutterflies 
at one level, viewed as d columns, is connected to d 
rows at the next level. These d rows are spread over 
d collections of d2 subbutterflies. It is convenient if 
these rows all have the same index, I say. Clearly 
if two of these index 1 rows are faulty, then the set 
of d2 subbutterflies one level up is completely faulty, 
thereby making all the index 1 rows faulty also. This 
is case (2). The only other options are cases (1) and 

If case (3) applies, then case (3) also applies to the 
columns for the corresponding collection among the 
input neighbors. Thus it is safe to extend the faulty 
rows to a full permutation, in the sense that this does 
not induce any further fault propagation. 
Part 2 

Consider the rows and columns of d d-input subbut- 
terflies, as defined in Part l(iv . Either all the subbut- 
terflies in a row/column are f' aulty or at most one of 
the subbutterflies is faulty. Say that the row/column 
is good in the latter case. 

Each good row has for its input neighbors a good 
column and each good column has as its output neigh- 
bors a good row. 

The number of good columns and good rows in a set 
of d4 subbutterflies, as defined in Part 1(iv) is equal 

Next, we create a flow. The flow is straightforward: 
to go from one level of subbutterflies to the next, push 
the flow from a column to the associated row, with the 
same total flow going from and to each node. Then 
within a level, within a set of d4 subbutterflies, push 
each row's flow to a distinct column. For those size d2 
sets of subbutterflies with the same number of faulty 
rows and columns this does not require any additional 
action. For the remaining subbutterflies, the two pre- 
ceding and following levels need to be used in order to 
route this flow. This is constant congestion as d is a 
constant. Connectivity is present by inspection. 

Next we adjust the flow so that there is no backing 
up, i.e., it is unidirectional. 

Let us assume each row carries d(d - 1) units of 
flow (recall a row contains d d-input subbutterflies, of 
which at most one is faulty). 

Let's consider the adjustments that are needed for 
one collection of d4 subbutterflies to make the row to 
column transitions. The only problems arise with sets 
of d2 subbutterflies that have unequal numbers of good 
rows and columns. Consider such a subbutterfly set S 
with one faulty row (and no faulty columns). We will 
show how to push 1 unit of flow from each non-faulty 
subbutterfly in S to a companion subbutterfly in a set 

(3). 

(d4 - (a'). 

S' of d2 subbutterflies, where SI has one faulty column 
and no faulty rows. 

Consider the d x d array formed by arranging the d2 
sets of d2 subbutterflies, where a row contains those 
sets having common neighbors 2 levels up on the input 
side, and a column contains the sets with common 
neighbors on the output side. Permute the columns 
and rows so that the sets of d2 subbutterflies that all 
fail are on the leading diagonal and form a topmost 
portion of the diagonal. Suppose there are P such sets. 
Then if S has index ( i , j )  and S' has index ( k , i ) ,  we 
have j 5 r < i and k 5 r < 1. To route, we push 
the flow from S to S" and then from S" to SI, where 
S" has index (i, I )  or (k, j ) .  The pairings are chosen 
so that the S" are unique and k # 1 if S" has index 
( k , j ) .  A little thought (draw a picture) shows that 
such pairings are always possible. 

We detail the case in which SI' has index (k, j); the 
other case is similar and is left to the reader. The flow 
from S to St' uses the network for two levels below 
the current level and that from S" to St uses the two 
levels above the current level. We now show that the 
Bows from the various S to S" use independent paths. 
Consider one column of S. Every non-faulty subbut- 
terfly in the column connects to every subbutterfly in 
the row one level below. We send a proportionate flow 
to each subbutterfly in the row from each subbutterfly 
in the column, which is either 1/d or l/(d - 1) units 
of flow per edge (depending on whether the row has 
zero or one faulty subbutterflies). This flow needs to 
be switched to another row in the set of size d2 con- 
taining this row; the new row is the one adjacent to 
a column in set S". This transfer, from one row to 
the other, is accomplished by going down one more 
level in the network. Again, use each of the d or d -  1 
non-faulty intermediate butterflies. The flow is either 
(d - 1)/p2, l /d  or l/(d - 1) units of flow. 

Within a d-input subbutterfly, it is less clear what 
the flows are. But another way to consider such a 
subbutterfly is to consider the flow entering and leav- 
ing. Then it is simply a matter of pushing this flow 
from inputs to outputs. As there are no faults in the 
subbutterfly this is straightforward. 

Altogether there are 5 adjustments to the flow at 
each level, totaling at most 5/ (d  - 1). With d suffi- 
ciently large, there is no negative flow, i.e., all flow is 
one-way. 

Some care is needed in considering what happens at 
the top two levels (resp. bottom two levels) of subbut- 
terflies. The problem case arises at the second level 
when a set of d2 subbutterflies has a faulty row but 
no faulty column (the opposite arrangement does not 
occur as it is always possible to add a faulty row, as- 
suming the network does not wrap around). An easy 
solution is to have the initial faults at the first level 
propagate to the second level, making the adjacent set 
of d2 subbutterflies faulty. For then the above problem 
case does not occur. 

With wrap around, one solution is to adjust the 
flows at the input nodes to the network. Then scale 
the whole flow to bound the input at each node by one 
unit of flow. 
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Thus, for any constants y 2 1 and k2 < 1, by 
making p small enough, we can route a flow with con- 

0 gestion 7 between k2n inputs and outputs. 

3 Routing around faults 
In this section we use the result of Theorem 2.1 to 

derive an O(1og N )  time algorithm for routing packets 
between some set of O ( N )  nodes. 
3.1 Routing the identity permutation 

Let us begin by first considering the simpler prob- 
lem of routing packets in a one-to-one fashion between 
the n inputs of the network. In order to do this, pack- 
ets will have to travel back and forth through the net- 
work. Each packet will travel from an input to an 
output along a flow path, and then back from that 
output to its destination input along a (possibly dif- 
ferent) flow path. 

There is one permutation that we already know how 
to route in this manner: the identity permutation. 
According to Theorem 2.1, there is a set of E271 in- 
puts and kzn outputs between which paths of length 
logn can be routed in a one-bone fashion with con- 
stant congestion. In order to route the identity per- 
mutation, each packet first routes from its input to 
the corresponding output, and then routes back along 
the same path. Since the congestion is constant, each 
packet can be delayed for at most a constant number 
of steps at each switch, and since the pathls have length 
O(logN), the total time is O(1ogN). (Of course, for 
this permutation, the packets could have just stayed 
in place, but bear with us.) 
3.2 Routing more interesting permuta- 

What if we want to route more interesting permu- 
tations? Let T I ,  0 5 1 < n, denote the permutation 
in which the input in column i sends a packet to the 
input whose binary number is bin(i) @ bin(l), i.e., the 
column whose binary number is the exclusive-or of the 
binary representation of i and the binary representa- 
tion of 1. The identity permutation, for example, is 

Suppose that there were no faults. Tlhen we could 
route ?rl by first routing each packet from its input of 
origin straight down its column to an output. On the 
way back up from the outputs to the inputs, the packet 
would take a straight edge from level j to j - 1 if bit j 
in the binary representation of 1 is 0, andi a cross edge 
otherwise. Note that, at every level, eitlher all of the 
packets take straight edges, or all of the packets take 
cross edges. 

Another way to understand this algorithm is to 
view the network as two back-to-back butterflies shar- 
ing output nodes. In order to route TI, we first take 
the second butterfly and fold it back onto the first but- 
terfly. At this point each node of the second butterfly 
lies above the corresponding node in the first butter- 
fly, except for the output nodes, which are shared. We 
are now going to “nail down” nodes of the second but- 
terfly onto nodes of the first butterfly, starting at the 
outputs and working our way one level at a time tc- 
wards the inputs. In particular, when we reach the 
j th  level of the second butterfly, j > 0, (the outputs 

tions 

T O  * 

are on level logn, the inputs on level 0), we examine 
the j th  bit in the binary representation of 1. If this bit 
is 0, then we simply nail every node in level j - 1 of 
the second butterfly onto the node in the first butter- 
fly that lies below it. If however, the bit is 1, then we 
first exchange groups of N/2JW1 columns in the sec- 
ond butterfly. In particular, we exchange the nodes 
in levels 0 through j - 1 of the second butterfly in 
column i with the corresponding nodes in the column 
whose binary representation differs from bin(i) in bit 
j, for 0 5 i < n. We then nail down the nodes in level 
j - 1. When we reach the inputs (j  = 0) of the sec- 
ond butterfly, we stop. This folding and exchanging 
algorithm maps the nodes of the second butterfly to 
the nodes of the first butterfly in a one-to-one fashion. 
Furthermore, if two nodes in the second butterfly are 
connected by an edge, then the nodes to which they 
have been nailed in the first butterfly are also con- 
nected by an edge. To route permutation ? T I ,  we now 
route each packet down its column in the first butter- 
fly, and then back up the same column in the second 
butterfly. 

Now suppose that there are faults in the network, 
and that we want to route permutation ?rl on a large 
subset of the inputs. We begin by nailing down the 
nodes of the second butterfly onto the first butterfly as 
described above. Next, we consider a node of the first 
butterfly to be faulty if either it or the node of the 
second butterfly that has been nailed to it is faulty. 
As a consequence, the failure probability of each node 
in the first butterfly will at most double. Now we 
apply Theorem 2.1 to find a set of paths from k2n 
inputs to ban outputs in the first butterfly. (Note 
that because we have doubled the failure probability, 
we must divide the probability p given in the theorem 
by 2.) Now to route ~1 on the kzn inputs and outputs, 
we first route each packet along its flow path in the 
first butterfly, and then back along the same path in 
the second butterfly. Because the path is fault-free 
in the first butterfly, it must also be fault free in the 
second butterfly. 

Because the probability of failure given by Theo- 
rem 2.1 is at most l / N k l ,  and there are only n dif- 
ferent permutations T I ,  the probability that the above 
algorithm fails for any permutation is at most n/Nkl. 
Since n < N ,  this failure probability is at most l / N k s ,  
where k3 = k l  - 1. Hence, with high probability (at 
least 1- l/Nk3), we can route any of the permutations 
TI on a set of at least ksn inputs. 
3.3 Identifying inputs for packet routing 

If we could route each permutation TI on the same 
set of k2n inputs, then we would use those inputs for 
routing. Unfortunately, the set of inputs may differ 
for each permutation. As a consequence, will not be 
able to identify a large set of inputs for which all of 
the permutations HI can be routed using the preceding 
method. For large k2, however, we will be able to iden- 
tify a large number of inputs that succeed in routin a 
large fraction of the permutations T I .  In particular fet 
rn be the number of inputs that succeed on at least 
3/4 of the permutations. Since kzn inputs succeed on 
every permutation, rn  + (3/4) + (n - rn) 1 &n, so 
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rn  2 4(k2 - 3/4)n. Let k4 = 4(Lz - 3/4). Then with 
probability at least 1 - l/Nk3, we have identified a set 
of k4n inputs, each of which can route to its correct 
destination for 3/4 of the permutations al. 

3.4 The routing algorithm 
We are now in a position to describe the packet 

routing algorithm. We begin by assuming that each 
of the k4n inputs is the origin of (logn + 1) pack- 
ets, and each is the destination of (logn + 1) packets. 
Later we will show how to route packets in any one- 
to-one pattern between some set of 8 ( N )  nodes in 
the network. We say that an input i can reach an- 
other input j if the path for permutation al, where 
bin(l). = bin(i) @ bin(j), is fault free. A packet routes 
from its origin a to its destination b as follows. It be- 
gins by selecting at random an input c that both a 
and b can reach. Since both U and b can reach at least 
(3/4)n inputs, there are at least n/2 choices for c. In- 
put c will serve as a random intermediate destination. 
The packet routes to c using the path for permutation 
all, where bin(l1) = bin(u @ bin(c). It then routes 
from c to b using b’s path f’ or permutation ai,, where 
bin(l2) = bin(b) 63 bin(c). Since both ail and q, re- 
quire two passes through the network, the packet ends 
up making a total of four passes. 

Although we have described the algorithm for a sin- 
gle packet, in fact all of the packets proceed at once. 
Note that since each packet is selecting its own in- 
termediate destination at random, the packets will be 
using paths from many different permutations 7rI si- 
multaneously. 

3.5 Bounding the congestion 
In order to bound the time for all of the packets 

to reach their destinations, we must first bound the 
congestion of the paths selected by the packets. The 
congestion of an edge in the network is the maximum 
number of packets that traverse the edge. The conges- 
tion of the network is the maximum edge congestion. 

Lemma 3.1 For any constant k6 > 0, there is  a 
constant k7 > 0 such that with probability a t  least 
1 - l/Nk6, the congestion is a t  most k71og N. 

Proof: We analyze only the congestion of the first 
half of the path of each packet, Le., the path to its 
random intermediate destination. By symmetry the 
same bound holds on the congestion of the second half. 

Each packet independently chooses a random in- 
termediate destination, and uses its path from some 
permutation a[ to route to that destination. By The- 
orem 2.1, if every packet used the same permutation 
t i ,  the congestion would be at most 27(log n + 1) (re- 
call that there are (logn + 1) packets at each input). 
The packets all use different permutations, however, 
and the probability that any particular permutation 
is chosen is at most 2/n. Let e be an edge of the net- 
work and let ui,l,, be 1 if permutation 7rr sends the ith 
packet 0 5 i < n(1og n + 1) through edge e of the net- 
work, and 0 otherwise. The probability that packet i 

uses edge e ,  pi , , ,  can thus be bounded as 
n-1 

pi,, I 2ai,l,e/n* 
I=O 

Let c, be the congestion of edge e.  Then 

= 4y(logn+ 1) 

Thus, the expected congestion is at most O(1og 2. We 
now use a lemma due to Hoeffding and a Cherno -type 
bound to show that, with high probability, the con- 
gestion exceeds the expectation by at most a constant 
factor. 

Hoeffding’s lemma [ll], stated below, says, essen- 
tially, that if X is the sum of a collection of inde- 
pendent 0-1 random variables, then for any particular 
E [ X ] ,  X is most likely to deviate from E [ X ]  when all 
of the 0-1 variables have the same expectation. Thus, 
if we want an upper bound on the probability that 
X deviates from E [ X ]  it suffices to conside this spe- 
cial case. A Chernoff-type bound can then 6e used to 
bound the probability that too many of the 0-1 vari- 
ables have value 1. 

Lemma 3.2 Let X be the number of successes in r 
independent Bernoulli trials where the probability of 
success in the i th trial is  qi.  Let S be the number of 
successes in  r independent Bernoulli trials where each 
trial has probability of success q = q i .  Then - -  
E ( X )  = E(S)  = rq, and 

Pr[X 2 ( rE(X)]  5 Pr[S 2 aE(S)] 

for  crE(S) 2 E(S)  + 1. 

U 
In our application, X = c, , E [ X ]  5 4y(logn + l), 

r = n(1ogn + l), and qi = p i , , .  
We will use the following Chernoff-type bound [27, 

p. 561. 

Lemma 3.3 Let S be the number of successes in r in- 
dependent Bernoulli trials where each trial has proba- 
bility q of success. Then E (S )  = rq, and 

Pr[S 2 QE(S)]  5 2-eE(S) 

f o r  a > 2e. 
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0 
Thus, 

Pr[c, 2 4 a ~ ( l o g n  + I)] 5 Pr[S 2 4a~( logn  + I)] 
< 2-4ay(logflt-l) - 
< n-4w - 

for a > 2e. By choosing a to be a large enough 
constant, we can make this probability as small as 
1/4Nks, for any constant kg > 0. 

Since there are fewer than 2N different edges in the 
entire network, the probability that any edge has con- 
gestion greater than 4a7 log N is at most l/2NkSa-l. 
The same bound holds for the second half of the 
path of each packet. Hence, setting 87 = 8a7 and 
hg = k g  - 1 completes the proof. 0 
3.6 Scheduling the packets 

Every routing algorithm performs two tasks: find- 
ing paths for the packets to take through the network, 
and scheduling the movements of the packets along 
their paths. By Lemma 3.1, with high probability, 
our algorithm will find paths for the packets with con- 
gestion O(1og N ) ,  where each path makes four passes 
through the network and uses butterfly edges in one 
direction only during each pass. 

Another way of viewing the routing algorithm is 
that the butterfly simulates a network with 410g N 
levels in which the paths pass from level 0 to level 
410g N and in which every edge is direcied from one 
level to the next. A network of this form is called a 
leveled network. It is convenient to view the butterfly 
this way because it allows us to apply an off-the-shelf 
scheduling algorithm for leveled networks. In partic- 
ular, we can use the algorithm of Leighton, Maggs, 
Ranade, and Rao [14]. With high Probability, this al- 
gorithm will route N packets in O(c+ L+log N) steps, 
where c is the congestion and L is the depth (distance 
from first to last level) of the network. [n our appli- 
cation, c = O(1og N) and L = O(1og N ) ,  so the total 
time is O(1og N ) .  
3.7 One-to-one routing 

Thus far we have described an algorithm for rout- 
ing (logn + 1) packets from each input and to each 
input. If, instead, we want to route packets in a one- 
to-one fashion between some set of O(N) nodes in the 
network, then we spread out the packets starting at 
each input along a path to some output. Consider the 
paths defined by the identity permutation. Clearly, we 
can route packets along these paths to and from the 
input nodes. Thus we use as input nodes those nodes 
that can route both the identity permutation and a 
sufficient fraction of all other permutations. This may 
require changing the 3/4 fractions to 7/8. 

The performance of the algorithm described in this 
section is summarized by the following theorem. 

Theorem 3.4 For any constants ks > 0, k g  > 0, 
and klo < 1, there are constants p > 0 and k11 > 0 
such that, even if every node or edge in! the network 
fails independently with probability p ,  wath probability 

at least 1 - l/Nka, it is  possible to  identify a set of 
kloN nodes between which packets can be routed in any 
one-to-one pattern in kll log N steps (with probability 
at least 1 - l/Nk”). 

4 Open problems 
Although this paper shows that it is possible to 

route in O(1og N) time on a butterfly with constant- 
probability random faults, it is still not known whether 
such a butterfly can emulate a fault-free butterfly with 
constant slowdown. The slowdowns of the emulations 
of Leighton, Maggs, and Sitaraman [15] and Tamaki 
E311 are 2O(log* N, and loglogk N (where k is some 
fixed constant), respectively. Both functions grow 
very slowly with N ,  but are not constant. 

Another open problem concerns the ability of 
the butterfly (or Benes) network to route constant- 
congestion paths between some set of O(n) inputs 
and outputs in any permutation. The results in this 
paper imply that even if every node fails with some 
constant probability, it is possible to route paths be- 
tween inputs and outputs, but the congestion will be 
@(log N/ log log N). For worst-case faults, Leighton, 
Maggs, and Sitaraman [15] showed that a butterfly (or 
Benei) network can tolerate up to nl-€ faults, where E 
is any fixed constant greater than zero, and still route 
any permutation on some set of n( 1 - o( 1) inputs and 
outputs with constant congestion. Whet h er the net- 
work can tolerate more than nl-€ faults and still route 
constant-congestion paths remains open. 
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