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ABSTRACT
Multi-timescale electricity markets augment the traditional
electricity market by enabling consumers to procure elec-
tricity in a futures market. Heavy power consumers, such
as cloud providers and data center operators, can signifi-
cantly benefit from multi-timescale electricity markets by
purchasing some of the needed electricity ahead of time at
cheaper rates. However, the energy procurement strategy
for data centers in multi-timescale markets becomes a chal-
lenging problem when real world dynamics, such as spa-
tial diversity of data centers and uncertainties of renewable
energy, IT workload, and electricity price, are taken into
account. In this paper, we develop energy procurement al-
gorithms for geo-distributed data centers that utilize multi-
timescale markets to minimize the electricity procurement
cost. We propose two algorithms. The first algorithm pro-
vides provably optimal cost minimization while the other
achieves near-optimal cost at a much lower computational
cost. We empirically evaluate our energy procurement algo-
rithms using real-world traces of renewable energy, electric-
ity prices, and workload demand. Our empirical evaluations
show that our proposed energy procurement algorithms save
up to 44% of the total cost compared to traditional algo-
rithms that do not use multi-timescale electricity markets
or geographical load balancing.

1. INTRODUCTION
Data centers are becoming the largest and the fastest

growing consumers of electricity in the United States. It is
reported that US data centers consumed 91 billion kilowatt-
hours (kWh) in 2013, which is more than twice of the elec-
tricity consumed by households in New York City (see [40]).
In the same report, the electricity consumption of data cen-
ters is estimated to reach 140 billion kWh in 2020 due to the
explosion of demand for cloud computing and other Internet-
scale services. Global cloud providers such as Google and
Amazon, who operate multiple data centers, spend billions
of dollars annually on their electricity bills [33].

Multi-timescale electricity markets have been proposed to
improve the efficiency of electricity markets [12]. Multi-
timescale electricity markets encompass both forward (fu-
tures) and spot (real-time) markets. While energy is pro-
cured at the time of consumption in a spot market, forward
markets allow customers to buy electricity a day ahead or
even several months ahead of when it is consumed. For-
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ward electricity markets reduce the risk for both the supplier
and consumer by reducing the quantity of energy trading
in the real-time spot markets [4]. Furthermore, purchasing
electricity ahead of time can facilitate the expansion of re-
newable energy sources. For example, Google invested in
purchasing renewable energy from renewable energy project
developers for 20 years [16].

Utilizing multi-timescale markets has great potential for
electricity cost savings for cloud providers who operate one
or more data centers. There has been much recent work
that exploits the variation of real-time electricity prices in
the temporal and spatial dimensions to reduce the total elec-
tricity cost. For example, prior papers show how a cloud
provider can exploit real-time electricity prices in multi-
ple market locations and move the load to locations with
a cheaper price [33, 10, 34]. Other papers exploit temporal
variation in the real-time energy price and use energy stor-
age to reduce electricity costs [18, 19, 43], i.e., the storage
device is charged during the times when the electricity price
is low and discharged when the price is high. However, while
these works focus on traditional real-time markets, the po-
tential of using multi-timescale markets for electricity cost
reduction has not been well studied in the context of a cloud
provider; this is the focus of the present paper.

In particular, using forward markets to lower the elec-
tricity cost of a cloud provider is challenging for multiple
reasons. The optimal amount of electricity that a cloud
provider should purchase in advance for a particular location
depends on the workload, the onsite renewable generation,
and the real-time electricity price at that location at the
(future) time of delivery. But future workload, renewable
generation, and real-time electricity price are not perfectly
predictable and are subject to significant forecasting errors.
Note that if the cloud provider is too conservative and buys
too little from the forward market, any shortfall in electricity
would need to be covered by purchasing it from the more ex-
pensive1 real-time market. Likewise, if the cloud provider is
too aggressive and buys too much from the forward market,
any excess in purchased electricity will go wasted. More-
over, the ability of a cloud provider to move the load from
one data center to another, possibly incurring a performance
penalty that we characterize as the “delay cost”, adds an ad-
ditional level of complexity that needs to be optimized. In

1In some cases, the prices in the forward markets might be
(on average) higher than real-time prices. If so, instead of
saving electricity expenditure, the cloud provider can par-
ticipate in forward markets to reduce cost variations. Our
model can be extended to handle either case.



this work, we provide an optimization framework for tack-
ling the aforementioned challenges.

Our contributions are three-fold.
(1) Optimal algorithm development. We develop two

algorithms for a cloud provider with geo-distributed data
centers to buy electricity in multi-timescale markets: one
algorithm provides optimality guarantees, while the other is
simpler, uses limited predictions but achieves near-optimal
performance. To develop the energy procurement system,
we first model the problem of procuring electricity for geo-
distributed data centers in multi-timescale markets in Sec-
tion 3. The system model is general and applicable to any
global cloud provider with access to multi-timescale electric-
ity markets. We focus on two-timescale markets that consist
one long-term market and one real-time market, though our
model and algorithms can be extended to handle multiple
markets at various timescales. We present the character-
istics of the objective functions and the optimal solution
in Section 4, which forms the theoretical basis for our al-
gorithm design. The two algorithms that we design, pre-
diction based algorithm (PA) and stochastic gradient based
algorithm (SGA), are described in Section 6. Both algo-
rithms seek to minimize the total operating cost of the cloud
provider across all data centers. While PA is simple and
performs very well in practice, SGA provably achieves the
optimal solution.

(2) Predictability analysis using real-world traces.
To provide the inputs for our energy procurement algo-
rithms, we collect and analyze real world traces of PV gen-
eration, wind generation, electricity prices, and IT workload
demand. A detailed data analysis of real-world traces of PV
generation, wind generation, electricity prices, and work-
load, is presented in Section 5. The data analysis not only
enables us to evaluate our algorithms using real-world data
but also provides insights into the nature of prediction er-
rors. To procure electricity in forward markets, the energy
procurement system needs to predict the renewable genera-
tion, workload, and electricity prices in real-time. Therefore,
we focus on addressing the following questions. What do the
distributions of prediction errors look like? How correlated
are prediction errors in the spatial domain?

(3) Empirical evaluation. We carry out a detailed
empirical evaluation of our proposed energy procurement
systems using real world traces. In Section 7, we demon-
strate that SGA can converge to the optimal solution in a
small number of iterations. Moreover, we show that PA, our
heuristic algorithm, surprisingly achieves a near-optimal so-
lution. This is partially because the real-time optimization
takes into consideration the trade-off between energy cost
and delay cost, and is able to compensate for some predic-
tion errors by redirection workloads. The proposed energy
procurement systems are compared with other comparable
energy procurement strategies to highlight their benefits.
The impacts of renewable energy and prediction errors on
the proposed systems are also presented.

2. BACKGROUND AND PRIOR WORK
Internet-scale services, such as Google’s search services,

Akamai’s content delivery services, and Amazon’s cloud com-
puting services are rapidly growing, consume large amounts
of energy [21]. In fact, energy costs account for a large por-
tion of the overall operating expenditure of such services.
The two main approaches for reducing the energy cost are,

to procure energy in a more cost effective manner, and to
reduce the total energy consumption. While there has been
much work on both approaches, we provide a survey of the
energy procurement literature below.

A key technique used to reduce energy costs is to exploit
the temporal variation of energy prices and shift the delay-
tolerant workload, such as batch jobs, to off-peak time peri-
ods when the electricity prices are lower [14, 25, 29, 42]. An
alternate technique is to “move the energy” using a battery.
By charging the batteries from the grid when the electricity
prices are lower and discharging it when prices are higher,
the overall energy costs can be reduced [39, 28]. Since ser-
vice providers pay for the peak of electricity usage, batteries
can also be used to “shave” the power peaks to reduce the
energy costs [32]. The above papers all consider a single data
center. In contrast, the approach in this paper is applicable
to cloud providers with multiple, geographically distributed,
data centers.

Another complementary technique that is relevant to ser-
vice providers with multiple geo-distributed data centers is
to exploit the geographical variation in energy prices. There
has been much work in geographical load balancing (GLB)
algorithms that route the workload to the regional markets
with cheap electricity prices to reduce the total energy cost
[33, 27]. While these works rely on the spatial diversity of
electricity prices in real-time, our approach deal with the
uncertainty of electricity prices in forward markets.

In addition, data centers can reduce the energy cost by
utilizing onsite renewable generation. Although the output
of renewable energy sources is intermittent, a single data
center can schedule its delay-tolerant workloads to adapt to
the renewable generation [26]. Service providers with geo-
graphically distributed data centers can even do better by
shifting their workload to the data centers that have avail-
able renewable sources [9, 27, 20]. Thus, the amount of
energy cost reductions heavily depends on the percentage of
delay-tolerant workloads and the penetration of renewable
energy.

Participating in multiple time-scale markets, i.e., in both
forward electricity markets and spot markets, has not been
explored in-depth in prior work, and it can be a promising
approach to more effectively reduce the energy cost. The for-
ward electricity markets, such as long-term (several months)
and short-term (day-ahead), were designed to improve the
traditional electricity markets, which have only spot (real-
time) markets [4]. Forward electricity markets have already
been adopted in some parts of the US such as New Eng-
land [12]. Forward markets can benefit both customers and
utility suppliers. For example, the forward markets allow
suppliers and consumers to agree on a fixed price several
months ahead of when the electricity is produced and con-
sumed. This allows the supplier to plan ahead and ensure
the availability of energy for its customers. The forward
markets usually provide cheaper prices than the spot mar-
kets. There are a few recent papers on data centers that
consider forward markets; these papers deal with the finan-
cial risk arising from the uncertainties in electricity prices
and workload [35, 41]. Geographical load balancing systems
with both day-head market and real-time markets has been
studied in a recent publication [15]. However, the proposed
solution is somewhat restrictive to particular distributions
to facilitate stochastic optimization and does not provide
any optimality guarantee.



Figure 1: Geo-distributed data centers in long-term and
real-time markets.

3. MODEL
In this section, we present our model of the energy pro-

curement problem for geo-distributed data centers partici-
pating in multi-timescale markets. For analytical tractabil-
ity, we consider a two-timescale setting, consisting of a long-
term electricity market and a real-time electricity market.

3.1 System model
Two-timescale markets. A service provider operating

geo-distributed data centers can purchase electricity in two
markets – a long-term market and a real-time market. The
electricity consumed at time t = 0 must be procured from
the real-time market at t = 0 and/or from the long term
market ahead of time at t = −Tl.

Geo-distributed data centers. We consider a set N
of geo-distributed data centers serving workload demands
from a set J of sources as illustrated in Figure 1. The work-
load demand from each source is split between the |N | data
centers. Here, a source can represent the aggregate demand
from a group of local users, such as users of a particular
city, ISP, or geographical region. Each data center has ac-
cess to renewable energy sources. Further, each data center
participates in a (local) long-term electricity market and a
(local) real-time electricity market. In other words, each
data center i can buy electricity ahead of time in its long-
term market, and can also buy additional electricity in its
real-time market if necessary.

Energy procurement system (EPS). Our proposed
energy procurement system for geo-distributed data centers
is depicted in Figure 2. There are three main components,
namely, the long-term forecaster, the energy procurement
(EP) in long-term markets and the geographical load balanc-
ing (GLB). The long-term forecaster provides the forecasted
information for the energy procurement. The forecasted in-
formation includes the predicted values and the prediction
error distributions of IT workload, renewable energy gen-
erations, and electricity prices. We design the algorithms
for the long-term forecaster in Section 5. The EP compo-
nent procures electricity for each data center in the corre-
sponding long-term markets (at time t = −Tl) based on the
electricity prices in the long-term markets and forecasts of
real-time prices, workload, and renewable generation. The
GLB component (at time t = 0) distributes (routes) the re-
alized workload from sources to data centers, provisions the
required computing capacity at each data center, and pro-
cures additional electricity as needed in the real-time mar-
kets.

Data center. Let Mi denote the number of servers in

Figure 2: Energy Procurement System (EPS) Architecture
for geo-distributed data centers.

data center i. The number of active servers at real-time
(time t = 0) is denoted by mi, which is a control parameter.
In practice, there can be more than a hundred thousand
servers in a single data center. Thus, in our mathematical
modeling, we treat mi as a real number satisfying 0 ≤ mi ≤
Mi.

At time t = 0, the power consumption of data center i is
denoted by dri . In general, the power consumption of data
center i is dependent on the number of active servers mi

and the workload arrival λi. For simplicity, we assume that
dri = mi, which implies that the power consumption is pro-
portional to the number of active servers, and is independent
of the workload λi.

2

Workload. Workload demand from source j in real-time
(t = 0) is denoted as Lrj . We assume that the exact realiza-
tion of the random vector Lr = (Lrj , j ∈ J) is known to the
cloud provider at time t = 0, and is an input to GLB. Let
λij denote the distributed workload arrival from source j to
data center i at time t = 0 (set by GLB). Thus,

Lrj =
∑
i∈N

λij (j ∈ J),

λi =
∑
j∈J

λij (i ∈ N).

Here, λi denotes the aggregate workload routed to data cen-
ter i.

Renewable energy. Data centers can utilize their inte-
grated RESs. Let wri denote the renewable energy genera-
tion at data center i in real-time (t = 0). We assume that
the exact realization of the random vector wr = (wri , i ∈ N)
is known at time t = 0, and is an input to GLB.

Electricity price. For each data center, the cloud provider
can purchase electricity at time t = −Tl in the local long-
term market and then purchase any additional electricity
needed in the local real-time market at time t = 0. For
data center i, let pli denote the long-term price for 1 unit
of electricity, and pri denote the real-time price for 1 unit
of electricity. We assume that pl = (pli, i ∈ N) is fixed (or
equivalently, is known at the time of the long-term procure-
ment), and pr = (pri , i ∈ N) is a random vector whose exact
value is known is known at time t = 0 and is an input to
GLB.

2The proportionality constant relating the number of active
servers and the power consumption is taken to be 1 without
loss of generality.



Note that the real-time workload Lr, the real-time renew-
able generation wr, and the real-time electricity prices pr

are unknown at the time of the long-term procurement by
the EP component, but are known at the time of operation
of the GLB component. We assume that the random vector
(Lr,wr,pr) is jointly continuous. In addition, all the wri ,
Lrj , and pri are assumed to be bounded random variables.

3.2 Cost model
The total cost of operating geo-distributed data centers in

composed of a delay cost and an energy cost. The delay cost
is the monetary cost incurred due to the delay in processing
the arriving workload. The energy cost is the total electricity
bill from the long-term and real-time markets.

Delay cost. We consider both the network delay between
data centers and sources and the processing time within a
data center. The network delay πij captures the delay that
propagates the workload λij from source j to data center
i. The queuing delay gi(mi, λi) denotes the delay at data
center i to process its arrival workload λi. For stability,
we need that λi < miµi. Here, µi is the service rate of a
server in data center i. Thus, we define gi(mi, λi) = ∞ for
λi ≥ miµi.

We model the delay cost hij(mi, λi) of routing and pro-
cessing each unit of workload from source j to data center i
as follows.

hij(mi, λi) = β
(
gi(mi, λi) + πij

)
. (1)

Here, the parameter β weighs the delay relative to the en-
ergy cost. While (1) assumes a linear relationship between
incurred delay and the associated monetary cost (as is sug-
gested in [5]), our model allows for a non-linear (convex) re-
lationship between delay and its monetary cost to the cloud
provider. The delay cost of transmitting workload λij from
source j to data center i is computed as λijhij(mi, λi). We
assume that hi,j(mi, λi) is continously differentiable over
0 ≤ λi < miµi, and that λijhij(mi, λi) is jointly convex
with respect to mi and λi.

A specific instance of the delay cost function hij that sat-
isfies the above assumptions, and which we use in our ex-
perimental evaluations, is

hij(mi, λi) = β

(
1

µi − λi/mi
+ πij

)
(λi < miµi), (2)

where the first term 1
µi−λi/mi

above captures queuing delay

at delay center i, which is based on the well-known mean
delay formula for the M/GI/1 processor sharing queue.

Energy cost. Let qli and qri respectively denote the
amount of electricity purchased in the long-term market
and the real-time market by data center i. Here, we require
that sufficient electricity is procured to process the workload
routed to each data center as

qri + wri + qli ≥ dri = mi (i ∈ N).

The electricity bills of data center i in the long-term market
and the real-time market are respectively computed as

Rli(q
l
i) = pliq

l
i i ∈ N,

Rri (q
r
i ) = pri q

r
i i ∈ N.

3.3 Formulation of optimal energy procure-
ment in multi-timescale markets

In this section, we describe the optimization formulation
for optimal energy procurement. Recall that the total cost of
operating geo-distributed data centers in our two-timescale
market setting is the sum of the energy cost and the delay
cost, given by

F =
∑
i∈N

Rli(q
l
i) +

∑
i∈N

Rri (q
r
i ) +

∑
i∈N,j∈J

λijhij(mi, λi).

We seek to minimize E [F ] subject to the aforementioned
constraints. Note that this optimization is performed on
two timescales, with different sets of information available
at each. The EP component optimizes the long-term pro-
curements ql = (qli, i ∈ N) given only distributional in-
formation of the real-time workload Lr, the real-time re-
newable generation wr, and the real-time electricity prices
pr. The GLB component optimizes the workload routing
λ = (λij , i ∈ N, j ∈ J), the number of active servers m =
(mi, i ∈ N) at the data centers, and the real-time procure-
ments qr = (qri , i ∈ N) given the prior long-term procure-
ments ql, and the exact realization of (pr,Lr,wr). Below,
we first formalize the real-time optimization, followed by the
long-term optimization.

Geographical load balancing in real-time markets.
Note that in real-time, GLB optimizes the real-time pro-

curements qr, the numbers of active servers m, and the
workload routing λ, given the long-term procurements ql

and the realization of the random vector (pr,Lr,wr). The
total cost as seen by GLB is

F r(qr,m,λ,pr) :=
∑
i∈N

Rri (q
r
i ) +

∑
i∈N,j∈J

λijhij(mi, λi).

Thus, the real-time optimization is defined as follows.

GLB-RT: min
m,λ,qr

F r(qr,m,λ,pr)

s.t.

λij ≥ 0 ∀i ∈ N, j ∈ J (3a)∑
i∈N

λij = Lrj ∀j ∈ J (3b)

λi ≤ miµi, ∀i ∈ N (3c)

0 ≤ mi ≤Mi ∀i ∈ N (3d)

qri ≥ 0, ∀i ∈ N (3e)

mi − qri − wri ≤ qli ∀i ∈ N (3f)

Since pri ≥ 0, it easily follows that any solution of the
above optimization problem satisfies qri = [mi − wri − qli]+,
where [x]+ := min{0, x}. Thus, the real-time objective can
be re-written as

F̃ r(ql,m,λ,pr,wr) =
∑
i∈N p

r
i [mi − wri − qli]+

+
∑
i∈N,j∈J λijhij(mi, λi).

(4)

With this notation, GLB-RT can be equivalently expressed
as follows.

min
m,λ

F̃ r(ql,m,λ,pr,wr)

s.t.

(m,λ) ∈ C(Lr).



Here, the convex compact set C(Lr) is defined by the con-
straints (3a)–(3e).

GLB-RT problem is a convex optimization problem and
hence can be solved efficiently using standard techniques [7].
For instance, CVX (Matlab Software for Disciplined Convex
Programming) tool [17] can be used to solve GLB-RT.

Energy procurement in long-term markets. At time
t = −Tl, the cloud provider purchases electricity ql in long-
term markets that will be used at real-time. Note that opti-
mization of the long-term procurements has to be performed
based only on distributional information for the random vec-
tor (pr,Lr,wr), and subject to the real-time optimization
that will be subsequently performed based on the realization
of the random vector (pr,Lr,wr).

Let us denote the optimal value of the optimization GLB-
RT by F ∗r(ql,pr,Lr,wr). The long-term objective is thus
defined as

F l(ql) :=
∑
i∈N

Rli(q
l
i) + E

[
F ∗r(ql,pr,Lr,wr)

]
.

Note that the above expectation is with respect to the ran-
dom vector (pr,Lr,wr). The long-term optimization prob-
lem is then given by:

EP-LT: minF l(ql)

subject to

ql ∈ RN+ .

The above optimization is more challenging than GLB-
RT. In Section 4, we prove that EP-LT is a convex optimiza-
tion and characterize the gradient of the objective function.
These results are then used to arrive at a provably optimal
stochastic gradient algorithm in Section 6.

4. CHARACTERIZING THE OPTIMA
In this section, we collect useful properties of the opti-

mizations EP-LT and GLB-RT. These are important for un-
derstanding the behavior of the energy procurement system,
and also for proving convergence of the stochastic gradient
algorithm for EP-LT in Section 6.

Our first result is that EP-LT is indeed a convex optimiza-
tion, which suggests that EP-LT is a tractable optimization.

Theorem 1. F l(ql) is convex over ql ∈ RN+ .

We provide the proof of Theorem 1 in Appendix A.1. Next,
we characterize the gradient of the EP-LT objective function
as follows.

Theorem 2. The gradient of F l(·) is characterised as fol-
lows.

∂F l(ql)

∂qli
= pli + E

[
∂F ∗r(ql,pr,Lr,wr)

∂qli

]
= pli − E

[
%i(q

l,pr,Lr,wr)
]
,

where %i(q
l,pr,Lr,wr) is the unique Lagrange multiplier of

GLB-RT corresponding to the constraint (3f).

Note that the first equality in the theorem statement as-
serts that the order of an expectation and a partial derivative
can be interchanged. The second equality relates the partial
derivative of F ∗r with respect to qli to a certain Lagrange

multiplier of GLB-RT. We provide the proof of Theorem 2
in Appendix A.2.

We note that Theorem 2 does not enable us to compute
the gradient of the F l(·) exactly. Indeed, the expectation
of the Lagrange multiplier %i with respect to (pr,Lr,wr)
would in general be analytically intractable. However, The-
orem 2 does enable a noisy estimation of the gradient of
the F l(·) via Monte Carlo simulation as follows. Suppose
we simulate a finite number, say S, of samples from the dis-
tribution of (pr,Lr,wr). In practice, we can obtain these
samples by using real-world traces as is done in Section 7.
For each sample, the Lagrange multipliers (%i, i ∈ N) can be
computed efficiently by solving GLB-RT. By averaging the
S instances of (%i, i ∈ N) thus obtained, we get an unbiased
estimate of the gradient of F l(·). This, in turn, enables us
to solve EP-LT using a stochastic gradient descent method;
details follow in Section 6.

As there are two timescales in optimization, it is critical
to investigate how EP-LT affects the operation of geograph-
ical load balancing in real-time. We start by answering the
following question: how does the long-term procurement ql

impact the power consumption dri in data center i? For-
mally, we have the following intuitive result:

Lemma 3. At any data center i, an optimal solution al-
ways utilizes the long term energy procurement qli and re-
newable generation wri as much as possible. It is simply
represented by{

mi ≥ wri + qli if wri + qli < Mi

mi = Mi if wri + qli ≥Mi.
(7)

Proof. Appendix A.3.

The above lemma states that a data center i uses up the
reserved electricity, including free renewable energy and pre-
purchased electricity, because doing so reduces the queueing
delay.

5. PREDICTABILITY ANALYSIS
In this section, we study the long-term predictability of

metrics critical to our procurement systems for multi-timescale
markets; namely, workload, renewable generation, and real-
time electricity price. We design two long-term prediction
methods, and analyse the prediction errors associated with
each metric using real-world traces. Our analysis also pro-
vides several insights into the nature of the distributions of
these metrics.

For our study, we collected 3-year real-world traces of pho-
tovoltaic (PV) generation, wind generation, and electricity
prices for 20 states of the US. The 3-year PV and wind
generation data were downloaded using the System Advisor
Model (SAM) software, developed by the National Renew-
able Energy Laboratory (NREL) [1]. The 3-year electricity
price data are from different regional transmission opera-
tors (RTOs) in the US, i.e., PJM, MISO, CAISO, ISONE,
and NYSIO [33]. In addition, we collected 2-month work-
load data for the same 20 states from Akamai Technologies,
which serves 15-30% of all Web content around the world
from hundreds of data centers around the world [31].

Long-term prediction is challenging for both statistical
and physical prediction methods [23]. Statistical methods
have to deal with the weak correlation between the past and
future data. Meanwhile, physical methods require the input
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Figure 3: Comparisons of SVM, AR and L-AVG. The codes of US states are California (CA), Florida (FL), North Dakota
(ND), Nebraska (NE), New York (NY), Texas (TX), Washington (WA), Ohio (OH), Minnesota (MN), New Jersey (NJ),
Illinois (IL), Alabama (AL), Georgia (GA), Oklahoma (OK), South Carolina (SC), Virginia (VA), and Tennessee (TN).

of physical features that are often not available for long-
term predictions. For example, long-term weather forecast
requires data from many parts of the world which are only
available in some specialized centers. To improve the predic-
tion accuracy, prediction methods may exploit seasonality,
such as annual patterns. However, the effectiveness of us-
ing seasonality depends heavily on the characteristics of the
data.

We design two long-term prediction methods to produce
the inputs for our energy procurement system: An autore-
gressive (AR) model and a Support Vector Machine (SVM)
model. The motivation for using the AR method is to cap-
ture daily patterns and the correlation between past and fu-
ture data. On the other hand, we develop the SVM method
to capture the seasonality of the data.

In particular, our AR model predicts the value x(day +
d ah, hr) at hour hr for d ah day-ahead based on the past

A days as x(day + d ah, hr) =
∑A−1
a=0 ωax(day − a, hr) + c.

The AR model can obtain the coefficients ωa and constant
c by fitting the model to the historical data. We observe
that it is not necessary to pick a large value of A for long-
term prediction because A = 7 already achieves competitive
performance. Additionally, d ah is set at 30 days for PV
generation, wind generation, and electricity price, and at 1
day for workload due to the limited length of data.

Our SVM model is designed to capture the seasonality of
workload, renewable generation, and electricity price. Sim-
ilar to the work [37], we use a multi-class SVM. The first
input to the SVM model is the average of the past A days.
The rest of inputs are the seasonality data, i.e., month of
year, day of month, day of week, and hour of day [13]. For
electricity generation from PV panels and wind turbines, we
use month of year, day of month, and hour of day to cap-
ture their seasonality. Similarly, we use month of year, day
of month, hour of day, and day of week in predicting elec-
tricity prices. Due the limitation of the trace length, only
day of week and hour of day are used as the seasonality in-
puts for predicting workload. The prediction window is the
same as with the AR method, i.e., 30 days for solar gen-
eration, wind generation, and electricity prices, and 1 day
for workload. The accuracy of SVM depends on the selec-
tion of SVM kernel function and the kernel parameters. For
each set of data, we search for the best kernel function and
the best kernel parameters using LIBSVM, an SVM tool [8].
The most suitable kernel function is Radial Basis Function
(RBF) but the kernel parameters differ for each dataset.

Prediction error analysis: We now analyse the predic-
tion errors under the AR and SVM methods. We normalize
the prediction errors by the average of real values and show
the values in percentage. For instance, a prediction error
for PV generation of 20 (-20) implies that we underestimate
(overestimate) the PV generation by 20% of the average PV
generation.

We compare AR and SVM with a baseline method, long-
term average (L-AVG) [38]. L-AVG assumes that the long-
term data has a long-term cycle. For example, PV genera-
tion may have a yearly cycle. L-AVG takes the average of
30 days at the same time over the past 2 years for PV gener-
ation, wind generation, and electricity price. In particular,
the predicted value at hour hr of day day in yr is computed
as x(yr, day, hr) = 1

2

∑2
y=1

1
30

∑−14
d=15 x(yr − y, day − d, hr).

Assuming that user behavior has a weekly pattern, L-AVG
takes the averages of the workload demand at the same time
of 7 days in the past weeks. The mean absolute errors
(MAEs) of three methods are illustrated in Figure 3. In
general, SVM and AR do not perform better than L-AVG
in predicting solar and wind generation but they are better
than L-AVG in predicting electricity price, and workload. In
predicting PV generation, SVM outperforms others meth-
ods in some states like California that reveal the positive
impact of seasonality. However, some states like Washing-
ton (WA) and New York (NY) having high precipitation can
negatively affect the performance of SVM and AR. Predict-
ing wind generation is the hardest among the four types of
data as the prediction errors are very large. It is because
the wind generation often has very large variation and fluc-
tuation. On the other hand, SVM and AR are better than
L-AVG in terms of predicting electricity prices. AR is sur-
prisingly better than SVM in most states except for Texas
(TX). The seasonality in real-time electricity prices is not
strong enough to benefit SVM in long-term prediction. AR
and SVM perform very well in predicting workload com-
pared to L-AVG in short-term. Overall, the long-term pre-
diction errors are relatively large compared to the mean of
measured data. Figure 3 also highlights that long prediction
errors are dependent on locations, the types of data, and the
prediction methods.

What do the distributions of prediction errors look
like? Figure 4 shows the probability density of the pre-
diction errors at different times in a day of using the AR
method. Each line represents the probability density of pre-
diction errors during the same hour for all days. The prob-
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Figure 4: Probability density of prediction errors at different time of the day.

ability densities are obtained by averaging the probability
densities of all the collected data. Our first observation is
that prediction errors have zero-mean. However, the proba-
bility densities of PV generation, wind generation, electric-
ity price, and workload are asymmetric. In particular, our
prediction algorithms tend to over-predict wind generation
with high probability as shown by the peaks around −80 in
Figure 4(b). This is because wind generation is often low.
Meanwhile, the peaks of electricity price prediction errors
are close to zero-mean. The prediction errors of workload
are more around zero.
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Figure 5: Correlation coefficients of prediction errors in spa-
tial domain.

How correlated are the prediction errors in spa-
tial domain? The correlation of prediction errors in the
spatial domain is of great interest to cloud providers with
geo-distributed data centers. The correlation coefficients of
prediction errors using AR with respect to the distance be-
tween two locations are shown in Figure 5. We classify PV
generation, wind generation, and workload into two groups:
within the same time zone or different time zones. There are
also two groups of electricity prices: within the same RTO
or different RTOs. Figure 5 highlights that both distances
and groups can have the great impact on the correlation

of prediction errors. The prediction errors of PV and wind
generation are strongly correlated (greater than 0.5) within
500 km, weakly correlated (less than 0.5) within 1000 km,
and almost independent of each other when more than 1500
km apart. Note that electricity price is more correlated in
the spatial domain than PV generation and wind generation
due to the fact that some of the prices can be generated by
the same RTO. However, the prediction errors of workload
are uncorrelated with respect to distances and groups. This
is because the workload depends on unpredictable user be-
havior and the dynamic Internet conditions.

6. ALGORITHM DESIGN
The energy procurement system needs algorithms for both

energy procurement in long-term (EP-LT) and geographical
load balancing in real-time (GLB-RT). GLB-RT is a con-
vex optimization problem that can be solved efficiently in
real-time by standard techniques [27]. Thus, we focus on
designing algorithms for energy procurement in the long-
term markets. Note that even though EP-LT is a convex
optimization (see Theorem 1), neither the objective function
nor its gradient admit a closed-form representation, which
presents significant challenges.

In this section, we design two algorithms, namely, Pre-
diction based Algorithm (PA) and Stochastic Gradient es-
timate based Algorithm (SGA) for solving EP-LT. PA is a
heuristic algorithm that requires only the predicted values
of renewable generations, workload, and electricity prices.
On the other hand, SGA comes with a convergence guar-
antee, but requires samples from the joint distribution of
renewable generations, workload, and electricity prices. As
a result, SGA can be solved in a data-driven manner.

6.1 Prediction based Algorithm (PA)
Prediction based algorithm (PA) relies on the mean val-

ues of renewable generation, workload, and electricity price.
Fortunately, our data analysis reveals that our prediction er-
rors for these quantities are approximately zero mean. Thus,
the predicted values L̂rj , ŵ

r
i , and p̂ri are good estimates of the

mean values of renewable generation, workload, and electric-
ity price.

PA computes the long-term procurement ql by solving
EP-LT and GLB-RT at the same time, with the random
variables wri , L

r
j , and pri replaced by their predicted values.

Formally, this is done by solving the following deterministic



convex optimization problem.

LT-PA: min
m,λ,ql

N∑
i=1

pliq
l
i +

N∑
i=1

p̂ri [mi − ŵri − qli]+

+ β
∑
i

∑
j

hij(mi, λij)

subject to

Constraints (3a), (3c)–(3e)∑
i∈N

λij = L̂rj ∀j ∈ J

qli ≥ 0 ∀i ∈ N

The objective function of LT-PA is similar to that of the EP-
LT without the expectation operation. The constraints over
m, λ, and ql of LT-PA are identical to those of GLB-RT and
EP-LT. LT-PA is a convex optimization problem and can be
solved efficiently by standard techniques [7]. Even though
PA is a heuristic, our experimental evaluations reveal that
it provides a near-optimal solution in realistic scenarios; see
Section 7.

6.2 Stochastic Gradient-based Algorithm (SGA)
Although PA can offer a quick heurictic decision, it is

desirable to have an algorithm that optimally procures elec-
tricity in long-term markets. To this end, we exploit the gra-
dient characterization of the long-term objective (see The-
orem 2) to design a stochastic gradient descent algorithm.
The algorithm, namely, SGA, is summarized in Algorithm
1. The main idea of the algorithm is to compute a noisy
estimate of the gradient of the long-term objective by aver-
aging the gradient of the (random) total cost over a finite
number of sample paths. This noisy gradient is used to
perform a stochastic gradient descent. Stochastic approxi-
mation theory can then be used to prove convergence to the
set of optimal solutions, as long as the step-size sequence is
appropriately diminishing [22].

Algorithm 1 Stochastic Gradient based Algorithm (SGA).

Input: Obtain pl from the |N | long-term electricity mar-
kets.
Prepare S samples of (wr,Lr,pr) based on prediction er-
ror distributions.

Output: qli ∀i ∈ N
Initialize: qli = 0, ∀i ∈ N .
Step: τ = 1.
while true do

for all k such that 1 ≤ k ≤ S do
Solve: GLB-RT for kth sample of (wr,Lr,pr) with
long-term procurement ql

Obtain: The Lagrange multipliers %
(k)
i corresponding

to constraint (3f), ∀i ∈ N
end for
Compute: %̂i = 1

S
∑S
k=1 %

(k)
i , ∀i ∈ N

Update: qli = [qli−ητ (pli− %̂i)][0,Mi] for ∀i ∈ N . [z][0,Mi]
indicates the projection of z onto the set [0,Mi].
Increase: τ = τ + 1.

end while

We prove that SGA converges to the set of optimal solu-
tions of EP-LT under the following standard assumption on

the step-size sequence.

Assumption 1.
∑∞
τ=1(ητ ) =∞ and

∑∞
τ=1(ητ )2 <∞.

The convergence of SGA is asserted by the following theo-
rem.

Theorem 4. Under Assumption 1, almost surely, the it-
erates ql generated by SGA converge to the set of optimal
solutions of EP-LT as τ →∞.

We give the proof of Theorem 4 in Appendix B
Note that SGA requires samples from the joint distribu-

tion of (wr,Lr,pr). This means that SGA can be solved in
an entirely data-driven manner, without needing to actually
model the distributions of workload, renewable generation,
and electricity price, or the complex inter-dependencies be-
tween these quantities. This makes it particularly suitable in
today’s ‘big-data’ era. The bottleneck of SGA is the compu-
tation of the noisy gradient estimate, which involves solving
S instances of GLB-RT. Moreover, the diminishing step-size
sequence implies that SGA requires a large number of iter-
ations to compute a near-optimal solution. However, it is
important to note that since this algorithm is only used for
long-term procurement, its computation time would not be
a bottleneck in practice.

7. EMPIRICAL EVALUATION
Experimental Setup. There are 14 data centers in

our system. They are located in 10 different states known
to have Google data centers: California, Washington, Ore-
gon, Illinois, Georgia, Virginia, Texas, Florida, North Car-
olina, and South Carolina. We merged the data centers in
each state creating 10 logical data centers in our simula-
tion, i.e., |N | = 10. We assume that there are one million
servers distributed across the ten logical data centers, which
is around half of the number of servers in Amazon Web Ser-
vices (AWS) [30]. We take the power consumption of each
server to be 300W, and consider the M/G/1 delay model
(2). We consider 40 sources, corresponding to 40 states of
the US; the corresponding workload data is obtained from
Akamai Technologies. We use the model (2) for capturing
the monetary cost of delay. The average workload is 30% of
the total capacity of the data centers. The network delays
πij are estimated to be proportional to the distance between
sources and data centers [3]. The average network delay is
22 ms. The parameter β is estimated according to the fact
that 100 ms latency costs 1% of Amazon in sales [24].

To compute the energy costs of the system, we assume
that the system purchases energy in long-term markets and
real-time markets for an hour of operation, i.e., the time
horizon is one hour. The electricity prices in real-time mar-
kets are the industrial electricity prices of each state in May
2010 [2]. Specifically, the mean values of real-time electricity
prices, E[pri ], of the considered states (in cents per kWh) are
as follows: 10.41 in California, 3.73 in Washington, 5.87 in
Oregon, 7.48 in Illinois, 5.86 in Georgia, 6.67 in Virginia 6.44
in Texas, 8.60 in Florida, 6.03 in North Carolina, and 5.49 in
South Carolina. Since electricity prices in long-term markets
are usually much cheaper than that of the real-time markets,

we set the long-term prices such that the ratio
E[pri ]
pli

= 2.5

for all results, except for Figure 9, where the ratio is varied.
To simulate the uncertainties, the error distributions at

13 pm (like Figure 4) are used to generate the samples of
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Figure 6: Convergence analysis.

renewable energy generation (PV generation and/or wind
generation), workload, and electricity price. The mean ab-
solute errors (MAE) of prediction errors for PV generation,
wind generation, electricity price, and workload demand are
45%, 65%, 40%, and 35%, respectively. The MAE are varied
later to study the impacts of prediction errors. Wind gener-
ation is used as the renewable energy source by default. The
penetration of the renewable energy is fixed at 50% of the
averaged demand. We also vary the penetration of PV and
wind generation to investigate the impacts of the renewable
portfolio and penetration level.

Convergence of SGA. Although SGA is proved to even-
tually converge to the optimal value of EP-LT, the conver-
gence can be slow in practice. The convergence speed mainly
depends on how the step sizes are set. Stochastic approxi-
mation is known to have high computational complexity due
to the large numbers of iterations and samples needed for
each iteration. To reduce the number of iterations, we use
the step size update rule as ηt = s

(S+t+1)α
, where s and S

are non-negative constants and 0.5 < α ≤ 1. This form
fulfills the requirement of Assumption 1. To speed up the
convergence of algorithm, each gradient component has its
own step-size, and the step-size is updated only if the gra-
dient component switches from negative to positive or vice
versa. Figure 6 illustrates four gradient components (of to-
tal ten) and the long-term objective function updated over
iterations. As shown in the figure, gradient components, and
the long-term objective F l(ql) converge very quickly, i.e it
is very close to the optimal value after merely 20 iterations.
In general, some gradient components ∇qli may converge

to positive values. In such cases, the optimal solution has
qli = 0.

Cost savings. We highlight the benefit of our proposed
system by comparing with the following algorithms.

No long-term procurement or geographical load balancing
(nLTnGLB): nLTnGLB does not participate in long-term
markets, i.e. qli = 0, ∀i ∈ N , and the workload demand
are forwarded to the closest data centers, a.k.a., the nearest
routing method. We assume that the data centers activate
all servers to minimize the queueing delay, i.e. mi = Mi.
Though simple, this policy is still widely used in practice.

Fixed long-term procurement without geographical load bal-
ancing (fLTnGLB): Cloud providers purchase a fixed amount
of electricity ahead. We assume that the long-term procure-
ment is 50% of workload mean. Like nLTnGLB, it uses the
nearest routing method instead of GLB-RT.

No long-term procurement but with geographical load bal-
ancing (nLT): In this algorithm, cloud providers do not pur-

chase the energy in long-term markets like nLTnGLB. How-
ever, they execute GLB-RT to minimize the total cost in
real-time.

Fixed long-term procurement geographical load balancing
(fLT): fLT buys a fixed amount of electricity in long-term
markets same as fLTnGLB, i.e., 50% of workload mean. In
real-time markets, it executes GLB-RT.

In addition to the baseline algorithms, we compare our
algorithms to Oracle Algorithm (OA). OA is an unrealizable
algorithm that is given to the absolute performance limit by
assuming all realizations of renewable energy, workload, and
electricity prices are fully known apriori. Similarly to PA,
the problem of long-term procurement can then be solved
efficiently. The cost of OA is measured by averaging its
output over many realizations.

nLTnGLB fLTnGLB nLT fLT PA SGA OA
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Figure 7: Cost comparison when β = 1 and 50 % renewable
penetration. The proposed algorithms PA and SGA are very
close to the lower bound, OA and outperform the traditional
methods up to 44%.

Figure 7 compares the one-hour costs among our pro-
posed algorithms and the traditional algorithms. The figure
highlights that our proposed algorithms PA and SGA save
up to 44% compared to other simpler algorithms, and are
comparable to the oracle algorithm (OA), the impractical
lower bound. It also shows the significant benefits for cloud
providers to participate in long-term markets. Surprisingly,
the performance of PA is very close to that of the SGA.

Why do our proposed algorithms perform so well?
The intuition behind the small performance gaps between
PA, SGA and OA is the compensation of GLB-RT at real-
time markets. In particular, GLB-RT can utilize the avail-
able renewable energy and cheap electricity to partially com-
pensate for performance gap caused by the prediction errors
in long-term. More interestingly, PA and SGA are notice-
ably aggressive in long-term markets as in Figure 7. In ad-
dition, PA and SGA are even more aggressive than OA.
Note that additional energy procured in the long-term mar-
ket can be utilized to reduce queueing delay in real-time.
Thus, there is the trade-off between the energy costs and
delay costs that helps our proposed methods become close
to OA.

How does the trade-off between energy costs and delay
costs benefit our proposed algorithms? To answer this ques-
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Figure 8: The impact of delay on the proposed algorithms.

tion, we vary the constant factor β that weighs the delay
costs relative to energy costs. When β = 0, i.e., the delay
costs are ignored, the cost breakdown are shown in Figure
8a. The performance gap between PA and OA is 24% that
is much larger than the 2% gap in Figure 7 (β = 1). In this
setting, SGA outperforms PA by 4%. We observe that PA
is more aggressive compared to SGA in long-term procure-
ment. Figure 8b shows the performance gaps of PA versus
OA and PA versus SGA with varying β. In this figure, the
x-axis shows a scaled β, where a value of 1 corresponds to
the default value. We note that the performance gaps are
significant when β is small (< 0.25). However, the gaps are
very small when β is relatively large (≥ 0.5).

Sensitivity Analysis. The capability of our proposed
algorithms depends on multiple impact factors, such as the
ratio of real-time price to long-term price, renewable pene-
tration rates, and prediction errors.
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Figure 9: The impacts of long-term prices on the proposed
algorithms. The gaps between the proposed algorithms and
OA are small at various ratios of real-time prices to long-
term prices.

Impact of the ratio of real-time price to long-term price.
We carry out another study that quantifies the impact of
the ratio of real-time prices to the long-term prices on our
proposed algorithms as in Figure 9. In this experiment, the
long term prices are fixed, and we scale the real-time prices.
Figure 9a shows the performance gaps of PA versus SGA
and PA versus OA. In general, the gaps are small whatever
the ratio is. Figure 9b illustrates the behaviors of PA and
SGA in long-term markets. SGA is more conservative than
PA when the ratio is small (< 2). When the real-time prices
are as cheap as the long-term prices, being more aggressive
in long-term actually results in higher financial risk to the
cloud providers. In contrast, SGA is more aggressive in
long-term markets as the ratio becomes larger than 2.

Impact of renewable energy. Renewable energy has been

increasingly used to power data centers. Hence, we inves-
tigate the impacts of renewable energy integration on our
energy procurement system. We scale the penetration levels
of renewable energy from 5% to 95% of the total demand.
We consider PV generation and wind generation as two main
sources of renewable energy.
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Figure 10: Impacts of renewable energy penetration levels
on long-term energy procurement. SGA becomes less ag-
gressive in the PV generation case than the wind generation
case compared to PA.

The impacts of renewable energy on the behaviors of PA
and SGA are shown in Figure 10. Here, the x-axis represents
the penetration levels of renewable energy, and the y-axis
is the ratio (%) of total electricity purchased in long-term
markets. PA performs similarly in both cases because it
is only based on the predicted values. However, SGA is
closer to PA in the PV generation case as the penetration
of renewable energy increases, yet becomes more aggressive
than PA in the wind generation case. The reason lies in the
error distributions in Figure 4. While the prediction errors of
PV generation are concentrated on two peaks, the prediction
errors of wind generation are centered around only one peak
(around −80%).

Impact of prediction errors. So far, we have worked with
the empirical (or ‘real’) prediction error distributions. We
now study the dependence of the distribution of prediction
errors on the performance of our procurement system.
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Figure 11: Impacts of predictions on cost performance.

Figure 11a presents the cost of SGA under three differ-
ent error distributions, i.e. normal, ‘real’, and generalized
extreme value (GEV) type I (Gumbel) [11]. The normal
distribution is symmetric around its mean. The GEV dis-
tribution is asymmetric and widely used in risk management
and finance. We also consider the distribution of AR pre-
diction errors as the ‘real’ distribution. The MAEs of each



are set at 35% for fair comparison. Figure 11a shows that
the cost using normal distribution is the best among three
error distributions while GEV is the worst.

Figure 11b shows the cost of SGA with respect to differ-
ent MAEs of ‘real’ distribution. As the prediction errors
increase, the real-time cost (real-time energy cost and de-
lay cost) increase to compensate for the mis-provisioning in
long-term markets. Furthermore, the total cost increases by
10% as the prediction errors increase from 15% to 75%.

8. CONCLUDING REMARKS
In this paper, we present a systematic study of optimal

energy procurement systems for geo-distributed data centers
that utilize multi-timescale electricity markets. The contri-
butions of this paper are three-fold: (i) designing algorithms
for long-term electricity procurement in multi-timescale mar-
kets; (ii) analyzing long-term prediction errors using real-
world traces; and (iii) empirically evaluating the benefits of
our proposed procurement systems. In particular, we pro-
posed two algorithms, PA and SGA, both of which save up
to 44% of the energy procurement cost compared to tradi-
tional algorithms that do not use long-term markets or geo-
graphical load balancing. While SGA provably converges to
an optimal solution, PA surprisingly achieves a cost that is
nearly optimal with much less computing effort.

There are a number of interesting directions for future re-
search that can be motivated by our work. For example,
generalizing our model to include more complicated forward
contracts that procure energy that can be used over multiple
time-slots is also another challenging problem. Integrating
storage capabilities, e.g., batteries and/or thermal storage,
into the energy procurement optimization of multi-timescale
markets is another challenging direction. The further re-
search on how to optimally utilize multi-timescale markets
will have high potential to greatly impact the cost efficiency
of Internet-scale services.
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APPENDIX
A. PROOFS FOR SECTION 3

A.1 Proof of Theorem 1
To prove Theorem 1, we first show that the real-time ob-

jective is jointly convex with respect to (ql,m,λ).

Lemma 5. F̃ r as defined in (4) is jointly convex with re-
spect to (ql,m,λ) over RN+ × C(Lr).

Proof. We rewrite

F̃ r(ql,m,λ,pr,wr) =

N∑
i=1

pli[mi − wri − qli]+

+

N∑
i=1

J∑
j=1

λijhij(mi, λi). (9)

Since mi−wri − qli is an affine function, and [·]+ is convex

and non-decreasing,
∑N
i=1 p

l
i[mi−wri −qli]+ is jointly convex

with respect to (ql,m).
Since λijhij(mi, λi) is jointly convex with respect to (m,λ)

, F̃ r is jointly convex with respect to (ql,m,λ) because the
summation of convex functions are convex.

Proof of Theorem 1. From Lemma 5, we know that
the real time objective function F̃ r(ql,m,λ,pr,wr) is jointly
convex with respect to (ql,m,λ). It then follows that

F ∗r(ql,pr,Lr,wr) = min
(m,λ)∈C(Lr)

F̃ r(ql,m,λ,pr,wr)

is convex with respect to ql (see [7]). Finally, since the
expectation operation preserves convexity, we conclude that
F l(ql) is convex with respect to ql.

A.2 Proof of Theorem 2
This section is devoted to the proof of Theorem 2. To

prove Theorem 2, it suffices to show that

∂E[F∗r(ql,pr,Lr,wr)]
∂qli

= E
[
∂F∗r(ql,pr,Lr,wr)

∂qli

]
= −E

[
%i(q

l,pr,Lr,wr)
]
.

(10)

The first step is to prove that the Lagrange multiplier of
GLB-RT corresponding to the constraint (3f) is unique.

Lemma 6. With probability 1, GLB-RT has a unique La-
grange multiplier, denoted %i(q

l,pr,Lr,wr), corresponding
to the constraint (3f).
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Proof. In this proof, for notational simplicity, we sup-
press the dependence of the primal and dual solutions of
GLB-RT on (ql,pr,Lr,wr). Consider a primal solution of
GLB-RT (qr,m,λ) with m > 0. Such a solution exists with
probability 1, since wr > 0 with probability 1.

Now any dual solution must satisfy the KKT conditions.
This implies the following conditions. (Since the constraint
λi ≤ miµi is never binding, the corresponding Lagrange
multiplier σi = 0 and does not feature in the following.)

∂

∂mi

N∑
i=1

J∑
j=1

λijhij(mi, λi) + ω̄i − ωi + %i = 0 (11)

ω̄i(mi −Mi) = 0; ω̄i ≥ 0,mi ≤Mi (12)

ωimi = 0; ωi ≥ 0,mi ≥ 0 (13)

pri − κi − %i = 0 (14)

κiq
r
i = 0;κi ≥ 0, qri ≥ 0 (15)

%i(−qri +mi − wri − qli) = 0; (16)

%i ≥ 0, qri ≥ mi − wri − qli (17)

We now argue that %i is unique for all i. Consider the
following two cases.
Case 1: wri + qli > Mi. In this case, it follows that mi <
wri + qli + qri . Using (16), we conclude that %i = 0.
Case 2: wri + qli < Mi. Here we consider two sub-cases.
Case 2a: mi = Mi. In this case, it follows that qri > 0,
which implies that κi = 0 (by (15)). Thus, we have, using
(14), that %i = pri .
Case 2b: mi < Mi. In this case, since mi ∈ (0,Mi), we
have ω̄i = ωi = 0 (by (12) and (13)). Thus, from (11), we
have

%i = − ∂

∂mi

N∑
i=1

J∑
j=1

λijhij(mi, λi). (18)

Since the event wri +qli = Mi has zero probability, we may
ignore this case. This completes the proof.

Given Lemma 6, it follows from standard sensitivity anal-
ysis in convex optimization (see Section 6.5.3 and 6.5.4 in
[6]) that

∂F ∗r(ql,pr,Lr,wr)

∂qli
= −%i(ql,pr,Lr,wr). (19)

This proves the second equality in (10). Thus, to complete
the proof of Theorem 2, it only remains to justify the inter-
change of the partial derivative and the expectation in the
first equality. We justify this interchange by invoking the
dominated convergence theorem as follows.

Let ei denote a column vector in RN , with 1 in the ith
entry and 0 elsewhere.

Lemma 7. For any δ 6= 0 and i ∈ N,∣∣∣∣F ∗r(ql + δei,p
r,Lr,wr)− F ∗r(ql,pr,Lr,wr)

δ

∣∣∣∣ ≤ pri .
Proof. It is easy to see that

F ∗r(ql,pr,Lr,wr) ≤ δpri + F ∗r(ql + δei,p
r,Lr,wr).

The statement of Lemma 7 follows from the fact that the
function F ∗r(ql + δei,p

r,Lr,wr) is non-increasing with re-
spect to δ.

Since E [pri ] < ∞, it follows from the dominated conver-
gence theorem that

E
[

lim
δ→0

F ∗r(ql + δei,p
r,Lr,wr)− F ∗r(ql,pr,Lr,wr)

δ

]
= lim
δ→0

E
[
F ∗r(ql + δei,p

r,Lr,wr)
]
− E

[
F ∗r(ql,pr,Lr,wr)

]
δ

.

This proves the first equality in (10), and completes the
proof of the theorem.

A.3 Proof of Lemma 3
We assume there an optimal solution S such that λi > 0

and 0 < mi < wri + qli. λi = 0 or mi = 0 is not ignored
because it is equivalent to shutting down data center i. Here,
ωi = %i = 0.

If wri + qli < Mi and mi < wri + qli, ω̄i = 0. ω̄i = ωi =
%i = 0 results in λi/mi becomes zero as (11). λi = 0 or
mi = ∞ contradicts the assumption. So, mi ≥ wri + qli if
wri + qli < Mi.

If wri + qli ≥ Mi, we assume that mi < Mi. ω̄i = ωi =
%i = 0 again leads to the contradiction to the assumption.
So, mi = Mi if wri + qli ≥Mi.

B. CONVERGENCE OF SGA
This section is devoted to the proof of Theorem 4. In-

voking Theorem 2.1 in [22], the almost sure convergence of
the iterates of SGA to the set of optimal solutions of EP-LT
holds if the following two conditions are satisfied.

1. ∇F l : RN+ → RN is continuous.

2. supql∈RN+
E
[
(%i(q

l,pr,Lr,wr))2
]
<∞.

Condition (1) above holds since the gradient of a differen-
tiable convex function is continuous; see Theorem 25.5 in
[36]. Condition (2) holds since

%i(q
l,pr,Lr,wr) ≤ pri

(see (19) and Lemma 7). This completes the proof.
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