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Abstract 

This paper describes a policy iteration algorithm for optimizing the 
performance of a harmonic function-based controller with respect 
to a user-defined index. Value functions are represented as poten­
tial distributions over the problem domain, being control policies 
represented as gradient fields over the same domain. All interme­
diate policies are intrinsically safe, i.e. collisions are not promoted 
during the adaptation process. The algorithm has efficient imple­
mentation in parallel SIMD architectures. One potential applica­
tion - travel distance minimization - illustrates its usefulness. 

1 INTRODUCTION 

Harmonic functions have been proposed as a uniform framework for the solu­
tion of several versions of the motion planning problem. Connolly and Gru­
pen [Connolly and Grupen, 1993] have demonstrated how harmonic functions 
can be used to construct smooth, complete artificial potentials with no lo­
cal minima. In addition, these potentials meet the criteria established in 
[Rimon and Koditschek, 1990] for navigation functions. This implies that the gra­
dient of harmonic functions yields smooth ("realizable") motion controllers. 

By construction, harmonic function-based motion controllers will always command 
the robot from any initial configuration to a goal configuration. The intermediate 
configurations adopted by the robot are determined by the boundary constraints 
and conductance properties set for the domain. Therefore, it is possible to tune 
both factors so as to extremize user-specified performance indices (e.g. travel time 
or energy) without affecting controller completeness. 

Based on this idea, Singh et al. [Singh et al., 1994] devised a policy iteration method 
for combining two harmonic function-based control policies into a controller that 
minimized travel time on a given environment. The two initial control policies were 
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derived from solutions to two distinct boundary constraints (Neumann and Dirichlet 
constraints). The policy space spawned by the two control policies was parameter­
ized by a mixing coefficient, that ultimately determined the obstacle avoidance be­
havior adopted by the robot. The resulting controller preserved obstacle avoidance, 
ensuring safety at every iteration of the learning procedure. 

This paper addresses the question of how to adjust the conductance properties as­
sociated with the problem domain 0, such as to extremize an user-specified perfor­
mance index. Initially, conductance properties are homogeneous across 0, and the 
resulting controller is optimal in the sense that it minimizes collision probabilities at 
every step [Connolly, 1994]1. The method proposed is a policy iteration algorithm, 
in which the policy space is parameterized by the set of node conductances. 

2 PROBLEM CHARACTERIZATION 

The problem consists in constructing a path controller ifo that maximizes an integral 
performance index 'P defined over the set of all possible paths on a lattice for a closed 
domain 0 C Rn, subjected to boundary constraints. The controller ifo is responsible 
for generating the sequence of configurations from an initial configuration qo on the 
lattice to the goal configuration qG, therefore determining the performance index 
'P. In formal terms, the performance index 'P can be defined as follows: 

Def. 1 Performance indez 'P : 

qa 

'P for all q E L(O), where 'Pqo.* = L f(q)· 
q=qo 

L(O) is a lattice over the domain 0, qo denotes an arbitrary configuration on L(O), 
qG is the goal configuration, and f(q) is a function of the configuration q. 

For example, one can define f(q) to be the available joint range associated with the 
configuration q of a manipulator; in this case, 'P would be measuring the available 
joint range associated with all paths generated within a given domain. 

2.1 DERIVATION OF REFERENCE CONTROLLER 

The derivation of ifo is very laborious, requiring the exploration of the set of all 
possible paths. Out of this set, one is primarily interested in the subset of smooth 
paths. We propose to solve a simpler problem, in which the derived controller 
if is a numerical approximation to the optimal controller ifo, and (1) generates 
smooth paths, (2) is admissible, and (3) locally maximizes P. To guarantee (1) and 
(2), it is assumed that the control actions of if are proportional to the gradient of a 
harmonic function f/J, represented as the voltage distribution across a resistive lattice 
that tessellates the domain O. The condition (3) is achieved through incremental 
changes in the set G of internodal conductancesj such changes maximize P locally. 

Necessary condition for optimality: Note that 'Pqo .* defines a scalar field over 
L(O). It is assumed that there exists a well-defined neighborhood .N(q) for node qj 
in fact, it is assumed that every node q has two neighbors across each dimension. 
Therefore, it is possible to compute the gradient over the scalar field Pqo.ff by locally 
approximating its rate of change across all dimensions. The gradient VP qo defines 

lThis is exactly the control policy derived by the TD(O) reinforcement learning method, 
for the particular case of an agent travelling in a grid world with absorbing obstacle and 
goal states, and being rewarded only for getting to the goal states (see [Connolly, 1994]). 
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a reference controller; in the optimal situation, the actions of the controller if will 
parallel the actions of the reference controller. One can now formulate a policy 
iteration algorithm for the synthesis of the reference controller: 

1. Compute if = -V~, given conductances G; 
2. Evaluate VP q: 

- for each cell, compute 'P ;;.. 
1'''' 

- for each cell, compute V'P q. 
3. Change G incrementally, minimizing the approz. error € = f(if, VPq); 
4. If € is below a threshold €o, stop. Otherwise, return to (1). 

On convergence, the policy iteration algorithm will have derived a control policy 
that maximizes l' globally, and is capable of generating smooth paths to the goal 
configuration. The key step on the algorithm is step (3), or how to reduce the 
current approximation error by changing the conductances G. 

3 APPROXIMATION ALGORITHM 

Given a set of internodal conductances, the approximation error € is defined as 

€ - L cos (if, VP) (1) 
qEL(n) 

or the sum over L(n) of the cosine of the angle between vectors if and VP. The 
approximation error € is therefore a function ofthe set G of internodal conductances. 

There exist 0(nd") conductances in a n-dimensional grid, where d is the discretiza­
tion adopted for each dimension. Discrete search methods for the set of conductance 
values that minimizes € are ruled out by the cardinality of the search space: 0(knd"), 

if k is the number of distinct values each conductance can assume. We will represent 
conductances as real values and use gradient descent to minimize €, according to 
the approximation algorithm below: 

1. Evaluate the apprommation error €j 

2. Compute the gradient V€ = g;; j 
3. Update conductances, making G = G - aVE; 
4. Normalize conductances, such that minimum conductance gmin = 1; 

Step (4) guarantees that every conductance g E G will be strictly positive. The 
conductances in a resistive grid can be normalized without constraining the volt­
age distribution across it, due to the linear nature of the underlying circuit. The 
complexity of the approximation algorithm is dominated by the computation of the 
gradient V€(G). Each component of the vector V€(G) can be expressed as 

8€ = _ '" 8cos(ifq, VPq). (2) 
8g · L...J 8g· 'qEL(n) , 

By assumption, if is itself the gradient of a harmonic function ¢> that describes 
the voltage distribution across a resistive lattice. Therefore, the calculation of :;. 

involves the evaluation of ~ over all domain L(n), or how the voltage ¢>q is affected 
by changes in a certain conductance gi. 

For n-dimensional grids, *£ is a matrix with d" rows and 0( nd") columns. We posit 

that the computation of every element of it is unnecessary: the effects of changing 
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g, will be more pronounced in a certain grid neighborhood of it, and essentially 
negligible for nodes beyond that neighborhood. Furthermore, this simplification 
allows for breaking up the original problem into smaller, independent sub-problems 
suitable to simultaneous solution in parallel architectures. 

3.1 THE LOCALITY ASSUMPTION 

The first simplifying assumption considered in this work establishes bounds on 
the neighborhood affected by changes on conductances at node ij specifically, 
we will assume that changes in elements of g, affect only the voltage at nodes 
in J/(i) , being J/(i) the set composed of node i and its direct neighbors. See 
[Coelho Jr. et al., 1995] for a discussion on the validity of this assumption. In 
particular, it is demonstrated that the effects of changing one conductance decay 
exponentially with grid distance, for infinite 2D grids. Local changes in resistive 
grids with higher dimensionality will be confined to even smaller neighborhoods. 

The locality assumption simplifies the calculation of :;. to 

But 

~ [ if . V!, 1 = 1.... [8if. VP _ if· VP 8if. if l. 
8g, lifllV'P1 lifllV'P1 8g, lifl2 (8g, ) 

Note that in the derivation above it is assumed that changes in G affects primarily 
the control policy if, leaving VP relatively unaffected, at least in a first order 
approximation. 

Given that if = - V~, it follows that the component 7r; at node q can be ap­
proximated by the change of potential across the dimension j, as measured by the 
potential on the corresponding neighboring nodes: 

7r"1 = ¢q- - ¢q+, and 87r; = _1_ [8¢q _ _ 8¢q+] 
, q 2b. 2 8g, 2b. 2 8gi 8gi' 

where b. is the internodal distance on the lattice L(n). 

3.2 DERIVATION OF G; 

The derivation of ~ involves computing the Thevenin equiValent circuit for the 
resistive lattice, when every conductance 9 connected to node i is removed. For 
clarity, a 2D resistive grid was chosen to illustrate the procedure. Figure 1 depicts 
the equivalence warranted by Thevenin's theorem [Chua et al., 1987] and the rel-
evant variables for the derivation of ~. As shown, the equivalent circuit for the 
resistive grid consists of a four-port resistor, driven by four independent voltage 
sources. The relation between the voltage vector i = [¢t ¢4Y and the current 
vector r = [it ... i 4 ]T is expressed as 

Rf+w, (3) 

where R is the impedance matrix for the grid equivalent circuit and w is the vector 
of open-circuit voltage sources. The grid equivalent circuit behaves exactly like the 
whole resistive gridj there is no approximation error. 
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Figure 1: Equivalence established by Thevenin's theorem. 

The derivation of the 20 parameters (the elements of Rand w) of the equivalent 
circuit is detailed in [Coelho Jr. et al., 1995]j it involves a series ofrelaxation opera­
tions that can be efficiently implemented in SIMD architectures. The total number 
of relaxations for a grid with n l nodes is exactly 6n - 12, or an average of 1/2n 
relaxations per link. In the context of this paper, it is assumed that Rand w are 
known. Our primary interest is to compute how changes in conductances g1c affect 
the voltage vector i, or the matrix 

84> = I 84>j I, for {Jk· 8g 8g1c 
1, . .. ,4 
1, ... ,4. 

The elements of ~ can be computed by derivating each of the four equality relations 
in Equation 3 with respect to g1c, resulting in a system of 16 linear equations, and 16 
variables - the elements of ~. Notice that each element of i can be expressed as a 

linear function of the potentials i, by applying Kirchhoff's laws [Chua et al., 1987]: 

4 APPLICATION EXAMPLE 

A robot moves repeatedly toward a goal configuration. Its initial configuration is 
not known in advance, and every configuration is equally likely of being the initial 
configuration. The problem is to construct a motion controller that minimizes the 
overall travel distance for the whole configuration space. If the configuration space 
o is discretized into a number of cells, define the combined travel distance D(?T) as 

D(?T) L dq,if, (4) 
qEL(O) 

where dq,if is the travel distance from cell q to the goal configuration qG, and robot 
displacements are determined by the controller?T. Figure 2 depicts an instance 
of the travel distance minimization problem, and the paths corresponding to its 
optimal solution, given the obstacle distribution and the goal configuration shown. 

A resistive grid with 17 x 17 nodes was chosen to represent the control policies 
generated by our algorithm. Initially, the resistive grid is homogeneous, with all 
internodal resistances set to 10. Figure 3 indicates the paths the robot takes when 
commanded by ifO, the initial control policy derived from an homogeneous resistive 
grid. 
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Figure 2: Paths for optimal solution of 
the travel distance minimization prob­
lem. 
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12 

Figure 3: Paths for the initial solution 
of the same problem. 

The conductances in the resistive grid were then adjusted over 400 steps of the policy 
iteration algorithm, and Figure 4 is a plot of the overall travel distance as a function 
of the number of steps. It also shows the optimal travel distance (horizontal line), 
corresponding to the optimal solution depicted in Figure 2. The plot shows that 
convergence is initially fast; in fact, the first 140 iterations are responsible for 90% 
of the overall improvement. After 400 iterations, the travel distance is within 2.8% 
of its optimal value. This residual error may be explained by the approximation 
incurred in using a discrete resistive grid to represent the potential distribution. 

Figure 5 shows the paths taken by the robot after convergence. The final paths are 
straightened versions of the paths in Figure 3. Notice also that some of the final 
paths originating on the left of the I-shaped obstacle take the robot south of the 
obstacle, resembling the optimal paths depicted in Figure 2. 

5 CONCLUSION 

This paper presented a policy iteration algorithm for the synthesis of provably cor­
rect navigation functions that also extremize user-specified performance indices. 
The algorithm proposed solves the optimal feedback control problem, in which the 
final control policy optimizes the performance index over the whole domain, assum­
ing that every state in the domain is as likely of being the initial state as any other 
state. 

The algorithm modifies an existing harmonic function-based path controller by in­
crementally changing the conductances in a resistive grid. Departing from an homo­
geneous grid, the algorithm transforms an optimal controller (i.e. a controller that 
minimizes collision probabilities) into another optimal controller, that extremizes 
locally the performance index of interest. The tradeoff may require reducing the 
safety margin between the robot and obstacles, but collision avoidance is preserved 
at each step of the algorithm. 

Other Applications: The algorithm presented can be used (1) in the synthesis 
of time-optimal velocity controllers, and (2) in the optimization of non-holonomic 
path controllers. The algorithm can also be a component technology for Intelligent 
Vehicle Highway Systems (IVHS), by combining (1) and (2). 
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Figure 4: Overall travel distance, as a 
function of iteration steps. 
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Figure 5: Final paths, after 800 policy 
iteration steps. 

Performance on Parallel Architectures: The proposed algorithm is computa­
tionally demandingj however, it is suitable for implementation on parallel architec­
tures. Its sequential implementation on a SPARC 10 workstation requires ~ 30 sec. 
per iteration, for the example presented. We estimate that a parallel implementa­
tion of the proposed example would require ~ 4.3 ms per iteration, or 1. 7 seconds 
for 400 iterations, given conservative speedups available on parallel architectures 
[Coelho Jr. et al., 1995]. 
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