
2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2750678, IEEE
Transactions on Cloud Computing

1

Optimizing Timeliness and Cost in
Geo-Distributed Streaming Analytics

Benjamin Heintz, Member, IEEE, Abhishek Chandra, Member, IEEE, Ramesh K. Sitaraman, Senior
Member, IEEE

Abstract—Rapid data streams are generated continuously from diverse sources including users, devices, and sensors located around
the globe. This results in the need for efficient geo-distributed streaming analytics to extract timely information. A typical geo-distributed
analytics service uses a hub-and-spoke model, comprising multiple edges connected by a wide-area-network (WAN) to a central data
warehouse. In this paper, we focus on the widely used primitive of windowed grouped aggregation, and examine the question of how
much computation should be performed at the edges versus the center. We develop algorithms to optimize two key metrics: WAN
traffic and staleness (delay in getting results). We present a family of optimal offline algorithms that jointly minimize these metrics, and
we use these to guide our design of practical online algorithms based on the insight that windowed grouped aggregation can be
modeled as a caching problem where the cache size varies over time. We evaluate our algorithms through an implementation in
Apache Storm deployed on PlanetLab. Using workloads derived from anonymized traces of a popular analytics service from a large
commercial CDN, our experiments show that our online algorithms achieve near-optimal traffic and staleness for a variety of system
configurations, stream arrival rates, and queries.

Index Terms—Geo-distributed data analytics, Stream computing, Scheduling, Resource management, Windowed aggregation.

F

1 INTRODUCTION

DATA analytics is undergoing a revolution: the volume
and velocity of data sources are increasing rapidly.

Across a number of application domains from web, social,
and energy analytics to scientific computing, large quanti-
ties of data are generated continuously in the form of posts,
tweets, logs, sensor readings, and more. A modern analytics
service must provide real-time analysis of these data streams
to extract meaningful and timely information. As a result,
there has been a growing interest in streaming analytics
with recent development of several distributed analytics
platforms [1], [2], [3].

In many streaming analytics domains, inputs originate
from diverse sources including users, devices, and sensors
located around the globe. As a result, the distributed infras-
tructure of a typical analytics service (e.g., Google Analytics,
Akamai Media Analytics, etc.) has a hub-and-spoke model.
Data sources send streams of data to nearby “edge” servers.
These geographically distributed edge servers process in-
coming data and send summaries to a central location that
can process the data further, store summaries, and present
those summaries in visual form to users of the analytics
service. While the central hub is typically located in a well-
provisioned data center, resources may be limited at the

• B. Heintz was with the Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MN 55455. He is now with
Facebook, Menlo Park, CA 94025.
E-mail: heintz@cs.umn.edu

• A. Chandra is with the Department of Computer Science and Engineering,
University of Minnesota, Minneapolis, MN 55455.
E-mail: chandra@cs.umn.edu

• R. K. Sitaraman is with the Department of Computer Science, University
of Massachusetts, Amherst, MA 01003, and Akamai Technologies. E-mail:
ramesh@cs.umass.edu

edge locations. In particular, the available WAN bandwidth
between the edge and the center is limited.

A traditional approach to analytics processing is the
centralized model where no processing is performed at the
edges and all the data is sent to a dedicated centralized
location. This approach is generally suboptimal, because it
strains the scarce WAN bandwidth available between the
edge and the center, leading to delayed results. Further,
it fails to make use of the available compute and storage
resources at the edge. An alternative is a decentralized ap-
proach [4] that utilizes the edge for much of the processing
in order to minimize WAN traffic. In this paper, we argue
that analytics processing must utilize both edge and central
resources in a carefully coordinated manner in order to
achieve the stringent requirements of an analytics service
in terms of both network traffic and user-perceived delay.

An important primitive in any analytics system is
grouped aggregation. Abstractions for grouped aggregation
are provided in most data analytics frameworks, for exam-
ple as the Reduce operation in MapReduce, or Group By
in SQL and LINQ. A useful variant in stream computing
is windowed grouped aggregation, where each group is fur-
ther broken down into finite time windows before being
summarized. Windowed grouped aggregation is one of the
most frequently used primitives in an analytics service and
underlies queries that aggregate a metric of interest over a
time window. For instance, a web analytics user may wish
to compute the total visits to her web site broken down
by country and aggregated on an hourly basis to gauge the
current content popularity. A network operator may need to
compute the average load in different parts of the network
every 5 minutes to identify hotspots. In these cases, users
define a standing windowed grouped aggregation query
that generates results periodically for each time window

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2750678, IEEE
Transactions on Cloud Computing

2

(every hour, 5 minutes, etc.).
Our work focuses on designing algorithms for perform-

ing windowed grouped aggregation in order to optimize the
two key metrics of any geo-distributed streaming analytics
service: WAN traffic and staleness (the delay in getting the
result for a time window). A service provider typically pays
for the WAN bandwidth used by its deployed servers [5],
[6]. In fact, bandwidth cost incurred due to WAN traffic is
a significant component of the operating expense (OPEX)
of the service provider infrastructure, the other key compo-
nents being colocation and power costs. Therefore reducing
WAN traffic represents an important cost-saving opportu-
nity. In addition, reducing staleness is critical in order to
deliver timely results to applications and is often a part of
the SLA for analytics services. While much of the existing
work on decentralized analytics [4], [7] has focused primar-
ily on optimizing a single metric (e.g., network traffic), it is
important to examine both traffic and staleness together to
achieve both cost savings and improved timeliness. The key
decision that our algorithms make is how much of the data
aggregation should be performed at the edge versus the center.

1.1 Challenges in optimizing grouped aggregation

Consider two alternate approaches to grouped aggregation:
pure streaming, where all data is immediately sent from edge
to center without any edge processing; and pure batching,
where all data during a time window is aggregated at the
edge, with only the aggregated results being sent to the
center at the end of the window. Let us consider simplified
examples of two queries from our web analytics application
exemplar to illustrate the complexities. For each example
below, let us assume that the edge can communicate at the
rate of 1,000 records per second to the center.
Example 1: Consider a query that uses grouped aggregation
with key-value pairs (key = country, value = visits) for
a time window of one hour. We say this query is “small”
since the number of possible distinct keys is small as there
are no more than 200 countries in the world. For this query,
the right approach might be a pure batching approach. This
approach will minimize the WAN traffic, since at most one
record is sent per distinct key. Further, the staleness of the
final result might also be small; there are at most 200 records
to send so the aggregate values can be sent to the center
within 200/1,000 = 0.2 seconds of the end of the window.1

Example 2: Consider a second query that uses grouped ag-
gregation with key-value pairs (key = 〈userid,url〉, value =
visits) for a time window of one hour. We say that this
query is “large” since the product of the unique users and
urls for a large website, and hence, the number of possible
distinct keys received within a time window, could be large.
Let us assume this number to be 100,000 distinct keys per
window. The above batching solution may not work well for
the larger query, since sending 100,000 records at the end of
the time window can incur a delay of 100 seconds, resulting
in higher staleness. A more appropriate approach might be
pure streaming. Since each unique user/url combination is

1WAN latency also contributes to delay, but because it is a function
of the underlying network infrastructure, it is not something we can di-
rectly control through our algorithms. We therefore focus our attention
on network delays due to wide-area bandwidth constraints.

less likely to repeat within a time window, the extra traffic
sent by streaming is relatively small. Further, there is no
backlog of keys that must be updated at the end of the time
window, resulting in smaller staleness.

These examples illustrate that the right strategy for
optimizing grouped aggregation depends on the data and
query characteristics, including rate of key arrivals at the
edge, the number of unique keys seen in a time window,
the available edge-to-center bandwidth, etc. To show that
the intuition gained from these examples is true in practice,
we ran experiments on a 5-node PlanetLab [8] setup using
the traces of a popular web analytics service offered by a
large CDN (see Section 3 for details on the dataset and
queries used in our experiments). Figure 1 shows the traffic
and staleness obtained for different queries (small, medium
and large) obtained for the pure streaming and pure batch-
ing algorithms. The figure shows that, depending on the
query, pure batching could reduce traffic by 70-90% while
increasing staleness by 37-300% relative to pure streaming.
This illustrates that simple aggregation algorithms cannot
optimize both traffic and staleness at the same time. Instead
they optimize one key metric at the cost of the other. Further,
the factors influencing the performance of such algorithms
are often hard to predict and can vary significantly over
time—see Figure 2(b)—requiring the design of algorithms
that can adapt to changing factors in a dynamic fashion.

1.2 Research contributions
• To our knowledge, we provide the first algorithms and
analysis for optimizing geo-distributed windowed grouped
aggregation. In particular, we show that simple approaches
such as pure streaming or batching do not jointly optimize
traffic and staleness, and are hence suboptimal.
• We present a family of optimal offline algorithms that
jointly minimize both staleness and traffic. Using this as a foun-
dation, we develop practical online aggregation algorithms
that emulate the offline optimal algorithms.
• We observe that windowed grouped aggregation can be
modeled as a caching problem where the cache size varies
over time. This allows us to exploit well-known caching
algorithms in our design of online aggregation algorithms.
• We demonstrate the practicality of these algorithms
through an implementation in Apache Storm [1], deployed
on the PlanetLab [8] testbed. Our experiments are driven
by workloads derived from anonymized traces of a popular
web analytics service offered by Akamai [9], a large content
delivery network. The results of our experiments show that
our online aggregation algorithms simultaneously achieve
traffic less than 2% higher than optimal while reducing
staleness by 65% relative to batching. We also show that our
algorithms are robust to a variety of system configurations
(number of edges), stream arrival rates, and query types.
•We show how our algorithms can be extended to a hopping
window-based grouped aggregation problem, and explore
the tradeoffs w.r.t. the relative size of the window and
hopping duration.

2 PROBLEM FORMULATION

System model: We consider the typical hub-and-spoke ar-
chitecture of an analytics system with a center and multiple

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2750678, IEEE
Transactions on Cloud Computing

3

small medium large

Query

10−3

10−2

10−1

100

101

N
or

m
al

iz
ed

Tr
af

fic

Pure Streaming Pure Batching

(a) Traffic (Note logarithmic y-axis)

small medium large

Query

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
or

m
al

iz
ed

St
al

en
es

s

Pure Streaming Pure Batching

(b) Staleness

Fig. 1. Simple aggregation algorithms such as streaming and batching trade off one metric for the other, and their performance depends on data
and query characteristics.

edges. Data streams are first sent from each source to a
nearby edge. The edges collect and (potentially, partially)
aggregate the data. The aggregated data can then be sent
from the edges to the center for final aggregation. The final
aggregated results are available at the center. Users of the
analytics service query the center to visualize the data.
To perform grouped aggregation, each edge runs a local
aggregation algorithm: it acts independently to decide when
and how much to aggregate the incoming data.
Data streams and grouped aggregation: A data stream com-
prises records of the form (k, v) where k is the key and v is
the value of the record. Data records of a stream arrive at the
edge over time. Each key k can be multi-dimensional, with
each dimension corresponding to a data attribute. A group
is a set of records that have the same key.

Windowed grouped aggregation over a time window [T, T +
W), where W is the window size, is defined as follows from
an input/output perspective. The input is the set of data
records that arrive within the time window. The output is
determined by first placing the data records into groups
where each group is a set of records with the same key.
For each group {(k, vi)}, 1 ≤ i ≤ n, that correspond to
the n records in the time window with key k, an aggregate
value v̂ = v1 ⊕ v2 · · · ⊕ vn is computed, where ⊕ is an
application-defined associative binary operator; e.g., Sum,
Max, or HyperLogLog merge.2 Customarily, the timeline is
subdivided into non-overlapping intervals of size W and
grouped aggregation is computed on each such interval.
We consider such non-overlapping time windows (often
called tumbling windows in analytics terminology) for much
of the paper, but consider a generalization to overlapping
windows called hopping windows in Section 8.

To compute windowed grouped aggregation, we con-
sider aggregation at the edge as well as the center. The data
records that arrive at the edge can be partially aggregated
locally at the edge, so that the edge can maintain a set of
partial aggregates, one for each distinct key k. The edge may
transmit, or flush these aggregates to the center; we refer
to these flushed records as updates. The center can further
apply the aggregation operator ⊕ on incoming updates as
needed in order to generate the final aggregate result. We
assume that the computational overhead of the aggregation
operator ⊕ is a small constant compared to the network
overhead of transmitting an update.
Optimization metrics: Our goal is to simultaneously min-
imize two metrics: staleness, a measure of timeliness; and

2More formally, ⊕ is any associative binary operator such that there
exists a semigroup (S,⊕).

network traffic, a measure of cost. Staleness is defined as the
smallest time s such that the results of grouped aggregation
for time window [T, T + W) are available at the center at
time T +W + s. WAN traffic is measured by the number of
updates sent over the network from the edge to the center.
Algorithms for grouped aggregation: An aggregation algo-
rithm runs on the edge and takes as input the sequence of
arrivals for data records in a given time window [T, T+W).
The algorithm produces as output a sequence of updates
that are sent to the center. For each distinct key k with nk
arrivals in the time window, suppose that the ith data record
(k, vi,k) arrives at time ai,k, where T ≤ ai,k < T + W and
1 ≤ i ≤ nk. For each key k, the output of the aggregation
algorithm is a sequence of mk updates where the ith update
(k, v̂i,k) departs3 for the center at time di,k, 1 ≤ i ≤ mk. The
updates must have the following properties:
• Each update for each key k aggregates all values for
that key in the current time window that have not been
previously aggregated.
• Each key k that has nk > 0 arrivals must have mk > 0
updates such that dmk,k ≥ ank,k. That is, each key with an
arrival must have at least one update and the last update
must depart after the final arrival so that all the values
received for the key have been aggregated.

The goal of the aggregation algorithm is to minimize
traffic which is the total number of updates, i.e.,

∑
kmk.

The other simultaneous goal is to minimize staleness which
is the time for the final update to reach the center, i.e., the
update with the largest value for dmk,k, to reach the center.4

3 DATASET AND WORKLOAD

To derive a realistic workload for evaluating our aggre-
gation algorithms, we have used anonymized workload
traces obtained from a real-life analytics service5 offered by
Akamai which operates a large content delivery network.
The download analytics service is used by content providers
to track important metrics about who is downloading their
content, from where is it being downloaded, what per-
formance the users are experiencing, how many down-
loads complete successfully, and so on. The data source
is a software called Download Manager that is installed
on mobile devices, laptops, and desktops of millions of

3Upon departure from the edge, an update is handed off to the
network for transmission.

4We implicitly assume a FIFO ordering of data records over the
network, as is typically the case with protocols like TCP.

5https://goo.gl/QuKRkD

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2750678, IEEE
Transactions on Cloud Computing

4

TABLE 1
Queries used throughout the paper.

Name Key Value (aggregate type) Description Query Size
Small (cpid, bw) bytes downloaded (integer

sum)
Total bytes downloaded by content provider by
last-mile bandwidth.

O(102) keys

Medium (cpid, bw, country_code) bytes downloaded (first 5 mo-
ments)

Mean and standard deviation of total bytes per
download by content provider by bandwidth by
country.

O(104) keys

Large (cpid, bw, url) client ip (HyperLogLog) Approximate number of unique clients by content
provider by bw by url.

O(106) keys

100 101 102 103 104 105 106

Key Frequency

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

large
medium
small

(a) CDF of the frequency per key at a single
edge for the three queries.

0 1 2 3 4 5
Time (day)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

U
ni

qu
e

K
ey

s
/h

r large medium small

(b) The unique key arrival rate for three dif-
ferent queries in a real-world web analytics
service, normalized to the maximum rate for
the large query.

0 1 2 3 4 5 6 7
Per-key Interarrival Time Coefficient of Variation

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

large
medium
small

(c) CDF of the coefficient of variation of per-
key interarrival times, for keys with at least
25 arrivals.

Fig. 2. Akamai Web download service data set characteristics.

users around the world and is used to download software
updates, security patches, music, games, and other content.
Each Download Manager instance logs information about
its downloads to the widely-deployed edge servers using
“beacons”. These beacons contain anonymized informa-
tion about the download start time, the url, content size,
number of bytes downloaded, user’s ip, user’s network,
user’s geography, server’s network and server’s geography.
Throughout this paper, we use the anonymized beacon logs
from Akamai’s download analytics service for the month
of December, 2010. Note that we normalize derived values
from the data set such as data sizes, traffic sizes, and time
durations, for confidentiality reasons.

Throughout our evaluation, we compute grouped aggre-
gation for three common queries in the download analytics
service. These queries can be roughly classified according
to query size, defined as the number of distinct keys that
are possible for that query. We choose three representative
queries for different size categories (see Table 1). The small
query groups by a key comprising the content provider
id and the user’s last mile bandwidth classified into four
buckets. The medium query groups by content provider
id, user’s last mile bandwidth, and the user’s country
code. The large query groups by content provider id, the
user’s country code, and the url accessed. Note that the
last dimension—url—can assume hundreds of thousands of
distinct values, resulting in a very large query size.

The total arrival rate of data records across all keys for
all three queries is the same, since each arriving beacon
contributes a data record for each query. However, the three
queries have a different distribution of arrivals across keys
as shown in Figure 2(a). Recall that the large query has a
large number of possible keys. About 56% of the keys for
the large query arrived only once in the trace whereas the
corresponding percentage of keys for the medium and small
query is 29% and 15% respectively. The median arrival rate
per key was four (resp., nine) times larger for the medium

(resp., small) query than for the large query. Figure 2(b)
shows the number of unique keys arriving per hour at
an edge server for the three queries. The figure shows the
hourly and daily variations and also the variation across the
three queries. Figure 2(c) shows the distribution of variation
in interarrival times. Many keys have a coefficient of varia-
tion greater than 1, indicating relatively bursty arrivals.

4 MINIMIZING WAN TRAFFIC AND STALENESS

We now explore how to simultaneously minimize both traffic
and staleness. We show that if the entire sequence of arrivals
is known beforehand, then it is indeed possible to simulta-
neously achieve both optimal traffic and optimal staleness.
While this offline solution is not implementable, it serves as
a baseline to which any online algorithm can be compared.
Further, it characterizes the optimal solution that helps us
develop the online algorithms that we present in Section 5.

Lemma 1 (Traffic optimality). In each time window, an algo-
rithm is traffic-optimal iff it flushes exactly one update to the
center for each distinct key that arrived in the window.

Proof. Any algorithm must flush at least one update for
each distinct key that had arrivals in the time window.
Suppose for contradiction that the algorithm flushes more
than one update for a key. All flushes except the final one
can be omitted, thereby decreasing the traffic, which is a
contradiction.

Note that a pure batching algorithm satisfies the above
lemma, and hence is traffic-optimal, but may not be
staleness-optimal.

Lemma 2 (Staleness optimality). Let the optimal staleness for
a time window [T, T + W) be S. For any T ≤ t < T + W , let
N(t) be the union of the set of keys that have outstanding updates
(those not sent to the center yet) at time t and the set of keys

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2750678, IEEE
Transactions on Cloud Computing

5

that arrive in [t, T +W). For a staleness-optimal algorithm the
following holds:

|N(t)| ≤
∫ T+S

t

b(τ)dτ,∀T ≤ t < T +W, (1)

where b(τ) is the instantaneous bandwidth at time τ . Further,
if S > 0 there exists a critical time t∗ such that the above
Inequality 1 is satisfied with an equality.

Proof. Inequality 1 holds since N(t) records need to
be flushed in interval [t, T + W) and the maximum
number of updates that can be sent before T + W +

S is
∫ T+W+S

t
b(τ)dτ . If S > 0, then let t∗ be the

time of arrival of the last key in the time window. If
|N(t∗)| <

∫ T+W+S

t∗
b(τ)dτ , for some S′ < S, |N(t∗)| =∫ T+W+S′

t∗
b(τ)dτ , since there are no new arrivals after t∗.

Thus, all updates for keys in N(t∗) can be transmitted by
time T +W + S′, decreasing the staleness to S′, which is a
contradiction. Hence, at time t∗ Inequality 1 is satisfied with
an equality.

Intuitively, this lemma specifies that for a given ar-
rival sequence, a staleness-optimal algorithm must send out
pending updates to the center at a sufficient rate (dependent
on the network bandwidth) to have them reach the center
within the minimum feasible staleness bound.

Note that a pure streaming algorithm satisfies Lemma 2
if the network has sufficient capacity to stream all arrivals
without causing network queues to grow. It need not, how-
ever, satisfy Lemma 1 if some groups have multiple arrivals
within the window, and hence may not be traffic-optimal.

We now present optimal offline algorithms that minimize
both traffic and staleness, provided the entire sequence of
arrivals is known beforehand.

Theorem 3 (Eager Optimal Algorithm). There exists an op-
timal offline algorithm that schedules its flushes eagerly; i.e., it
flushes exactly one update for each distinct key immediately after
the last arrival for that key within the time window.

Proof. Since the proposed algorithm flushes only a single
update for each distinct key that arrived within the window,
it is traffic-optimal (Lemma 1). Clearly, any aggregation
algorithm must flush an update for a key after the last
arrival for that key, since the update must include the data
contained in that last arrival. Suppose there exists a key
where the last arrival was at time t but the update to the
center was sent at t + δ, for some δ > 0. Modifying that
schedule such that the update is flushed at time t instead of
t + δ cannot increase staleness. Thus, there exists an eager
schedule that achieves the same staleness.

We call the optimal offline algorithm described above the
eager optimal algorithm due to the fact that it eagerly flushes
updates for each distinct key immediately after the final
arrival to that key. This eager algorithm is just one possible
algorithm to achieve both minimum traffic and staleness. It
is possible to delay flushes for some groups and still achieve
optimal traffic and staleness. An extreme version of such an
algorithm is a lazy optimal algorithm described below.

1) Let keys ki, 1 ≤ i ≤ n have their last arrival at times
li, 1 ≤ i ≤ n respectively. Order the n keys in increasing

order of their last arrival, i.e., the keys are ordered such
that l1 ≤ l2 ≤ · · · ln.

2) Compute the minimum possible staleness S using the
eager optimal algorithm.

3) As the base case, schedule the flush for key kn at time S−
δn, where δn is the time required to transmit the update
for kn. That is, the last update is scheduled such that it
arrives at the center with staleness exactly equal to S.

4) Now, iteratively schedule ki, assuming all keys kj , j > i
have already been scheduled. The update for ki is sched-
uled at time ti+1 − δi, where δi is the time required
to transmit the update for ki. That is, the update for
ki is scheduled such that update for ki+1 is scheduled
immediately after the update of ki completes.
Intuitively, this algorithm uses the eager offline optimal

algorithm to determine the optimal value of staleness S for
a window, and schedules its updates to start at the last
possible time that would still enable it to flush all its updates
with a staleness of S. It is traffic-optimal because it flushes
an update for a key only after the last arrival for that key.

Theorem 4 (Lazy Optimal Algorithm). The lazy algorithm
above is both traffic- and staleness-optimal.

Proof. By construction.

Further, consider a family of offline algorithms A, where
an algorithm A ∈ A schedules its update for key ki at time
ti such that ei ≤ ti ≤ li, where ei and li are the update times
for key ki in the eager and lazy schedules respectively. The
following clearly holds, because A never sends more traffic
than the eager optimal algorithm, and its staleness cannot
be worse than that of the lazy optimal algorithm.

Theorem 5 (Family of Offline Optimal Algorithms). Any
algorithm A ∈ A is both traffic- and staleness-optimal.

Proof. By construction.

5 PRACTICAL ONLINE ALGORITHMS

In this section, we explore practical online algorithms for
grouped aggregation, that strive to minimize both traffic
and staleness. To ease the design of such online algorithms,
we first frame the edge aggregation problem as an equiva-
lent caching problem. This formulation has two advantages.
First, it allows us to decompose the problem into two
subproblems: determining the cache size, and defining a
cache eviction policy. Second, as we will show, while the first
subproblem can be solved by using insights gained from
the optimal offline algorithms, the second subproblem lends
itself to using the vast prior work on cache replacement
policies [10].

Concretely, we frame the grouped aggregation problem
as a caching problem by treating the set of aggregates
{(ki, v̂i)} maintained at the edge as a cache. A novel aspect
of our formulation is that the size of this cache changes
dynamically. Concretely, the cache works as follows:
• Cache insertion occurs upon the arrival of a record (k, v).
If an aggregate with key k and value ve exists in the cache
(a “cache hit”), the cached value for key k is updated as
v⊕ve where⊕ is the binary aggregation operator defined in

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2750678, IEEE
Transactions on Cloud Computing

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (number of windows)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

C
ac

he
Si

ze

Opt.
Unif.

Nonunif.
Eager Emp.

(a) Cache sizes for emulations of
the eager offline optimal algorithm.

Uniform Nonunif. Empirical

Cache Size Policy

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

A
ve

ra
ge

Tr
af

fic LRU eviction
LFU eviction

(b) Traffic (normalized relative to
an optimal algorithm)

Uniform Nonunif. Empirical

Cache Size Policy

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

95
th

-P
er

ce
nt

ile
St

al
en

es
s

×10−5

LRU eviction
LFU eviction

(c) Staleness (normalized by win-
dow length)

Fig. 3. Eager online algorithms.

Section 2. If no aggregate exists with key k (a “cache miss”),
then (k, v) is added to the cache.
• Cache eviction occurs as the result of a cache miss when the
cache is already full, or due to a decrease in the cache size.
When an aggregate is evicted, it is flushed downstream and
cleared from the cache.

Given the above definition of cache mechanics, we can
express any grouped aggregation algorithm as an equivalent
caching algorithm where the keys flushed by the aggrega-
tion algorithm correspond to keys evicted by the caching
algorithm. More formally:

Theorem 6. An aggregation algorithm A corresponds to a
caching algorithm C such that:

1) At any time step, C maintains a cache size that equals the
number of pending aggregates (those not sent to the center yet)
for A, and

2) if A flushes an update for a key in a time step, C evicts the
same key from its cache in that time step.

Proof. By construction.

Thus, any aggregation algorithm can be viewed as a
caching algorithm with two policies: one for cache sizing
and the other for cache eviction. While the cache size policy
determines when to send out updates, the cache eviction
policy identifies which updates to send out at these times.
Here we develop policies by attempting to emulate the
behavior of the offline optimal algorithms using online
information. We explore such online algorithms and the
resulting tradeoffs in the rest of this section.

To evaluate the relative merits of these algorithms, we
implement a simple simulator in Python. Our simulator
models each algorithm as a function mapping from arrival
sequences to update sequences. Traffic is simply the length
of the update sequence, while staleness is evaluated by
modeling the network as a queueing system with deter-
ministic service times, and arrival times determined by the
update sequence. Note that we have deliberately employed
a simplified simulation, as the focus here is not on un-
derstanding performance in absolute terms, but rather to
compare the tradeoffs between different algorithms. We use
these insights to develop practical algorithms that we imple-
ment in Apache Storm and deploy on PlanetLab (Section 6).

Note that throughout this section, we present results for
the large query due to space constraints, but similar trends
also apply to the small and medium queries.

5.1 Emulating the eager optimal algorithm
5.1.1 Cache size
To emulate the cache size of an eager offline optimal algo-
rithm, we observe that, at any given time, an aggregate for
key ki is cached only if: in the window, (i) there has already
been an arrival for ki, and (ii) another arrival for ki is yet
to occur. We attempt to compute the number of such keys
using two broad approaches: analytical and empirical.

In our analytical approach, the eager optimal cache
size at a time instant can be estimated by computing the
expected number of keys at that instant for which the above
conditions hold. To compute this value, we model the arrival
process of records for each key ki as a Poisson process with
mean arrival rate λi. Then the probability pi(t) that the key
ki should be cached at a time instant t within a window
[T, T + W) is given by pi (t) = 1 − t̂Wλi −

(
1− t̂

)Wλi
,

where t̂ = (t− T)/W .6

We consider two different models to estimate the arrival
processes for different keys. The first model is a Uniform
analytical model, which assumes that key popularities are
uniformly distributed, and each key has the same mean
arrival rate λ. Then, if the total number of keys arriving
during the window is k, the expected number of cached
keys at time t is simply k ·

(
1− t̂Wλ −

(
1− t̂

)Wλ
)

.
However, as Figure 2(a) demonstrated, key popularities

in reality may be far from uniform. A more accurate model
is the Nonuniform analytical model, which assumes each key
ki has its own mean arrival rate λi, so that the expected
number of cached keys at time t is given by

∑k
i=1 pi

(
t̂
)
.

An online algorithm built around these models requires
predicting the number of unique keys k arriving during a
window as well as their arrival rates λi. In our evaluation,
we use a simple prediction: assume that the current window
resembles the prior window, and derive these parameters
from the arrival history in the prior window.

Our empirical approach, referred to as Eager Empirical,
also uses the history from the prior window as follows:
apply the eager offline optimal algorithm to the arrival
sequence from the previous window, and use the resulting
cache size at time t−W as the cache size at time t.

Figure 3(a) plots the cache size using these policies, along
with the eager optimal size as a baseline. We observe that
the Uniform model, unsurprisingly, is less accurate than the

6Note that Wλi > 0 since we are considering only keys with more
than 0 arrivals, and that t̂ < 1 since T ≤ t < T +W .

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2750678, IEEE
Transactions on Cloud Computing

7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (number of windows)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

C
ac

he
Si

ze

Optimal
Pessim.

Optimistic
Lazy Emp.

(a) Cache sizes for emulations of
the lazy offline optimal algorithm.

PessimisticOptimistic Empirical

Cache Size Policy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

A
ve

ra
ge

Tr
af

fic LRU eviction
LFU eviction

(b) Traffic (normalized relative to
an optimal algorithm)

Pessimistic Optimistic Empirical

Cache Size Policy

0

1

2

3

4

5

6

N
or

m
al

iz
ed

95
th

-P
er

ce
nt

ile
St

al
en

es
s

×10−3

LRU eviction
LFU eviction

(c) Staleness (normalized by win-
dow length)

Fig. 4. Lazy online algorithms.

Nonuniform model. Specifically, it overestimates the cache
size, as it incorrectly assumes that arrivals are uniformly
distributed across many keys, rather than focused on a
relatively small subset of popular keys. Further, we see that
the Eager Empirical model and the Nonuniform model both
provide reasonably accurate predictions, but are prone to
errors as the arrival rate changes from window to window.

5.1.2 Cache eviction

We know that an optimal algorithm will only evict keys
without future arrivals. However, determining such keys
accurately requires knowledge of the future. Instead, to im-
plement a practical online policy, we consider two popular
practical eviction algorithms—namely least-recently used
(LRU), and least-frequently used (LFU)—and examine their
interaction with the above cache size policies.

Figures 3(b) and 3(c) show the traffic and staleness,
respectively, for different combinations of these cache size
and cache eviction policies. Here, we simulate the case
where network capacity is roughly five times that needed
to support the full range of algorithms from pure batching
to pure streaming. In these figures, traffic is normalized
relative to the traffic generated by an optimal algorithm,
while staleness is normalized by the window length.

From these figures, we see that the Eager Empirical and
Nonuniform models yield similar traffic, though their stale-
ness varies. It is worth noting that although the difference in
staleness appears large in relative terms, the absolute values
are still extremely low relative to the window length (less
than 0.0015%), and are very close to optimal. We also see
that LFU is the more effective eviction policy for this trace.

The more interesting result, however, is that the Uniform
model, which produces the worst estimate of cache size,
actually yields the best traffic: only about 9.6% higher than
optimal, while achieving the same staleness as optimal. The
reason is that, the more aggressive the cache size policy is
in evicting keys prior to the end of the window, the more
pressure it places on an imperfect cache eviction algorithm
to predict which key is least likely to arrive again.

On the other hand, when combined with the most accu-
rate model of eager optimal cache size (Nonuniform), even
the best practical eviction policy (LFU) generates 28% more
traffic than optimal. This result indicates that leaving more
headroom in the cache size (as done by Uniform) provides
more robustness to errors by an online cache eviction policy.

5.2 Emulating the lazy optimal algorithm
5.2.1 Cache size
To emulate the lazy optimal offline algorithm (Section 4),
we estimate the cache size by working backwards from the
end of the window, determining how large the cache should
be such that it can be drained by the end of the window
(or as soon as possible thereafter) by fully utilizing the
network capacity. This estimation must account for the fact
that new arrivals will still occur during the remainder of the
window, and each of those that is a cache miss will lead to
an additional update in the future. This leads to a cache size
c(t) at time t defined as: c(t) = max

(
b̄ · (T − t)−M(t), 0

)
,

where b̄ denotes the average available network bandwidth
for the remainder of the window, T the end of the time
window, and M(t) the total number of cache misses that
will occur during the remainder of the window.

Based on the above cache size function, an online al-
gorithm needs to estimate the average bandwidth b̄ and
the number of cache misses M(t) for the remainder of
the window. We begin by focusing on the estimation of
M(t). We consider the bandwidth estimation problem in
more detail in Section 5.3, and assume a perfect knowledge
of b̄ here. To estimate M(t), we consider the following
approaches. First, we can use a Pessimistic policy, where we
assume that all remaining arrivals in the window will be
cache misses. Concretely, we estimate M(t) =

∫ T
t
a(τ) dτ

where a(t) is the arrival rate at time t. In practice, this
requires the prediction of the future arrival rate a(t). In our
evaluation, we simply assume that the future arrival rate is
equal to the average arrival rate so far in the window.

Another alternative is to use an Optimistic policy, which
assumes that the current cache miss rate will continue for
the remainder of the window. In other words, M(t) =

m(t)
∫ T
t
a(τ) dτ where m(t) is the miss rate at time t. In our

evaluation, we predict the arrival rate in the same manner
as for the Pessimistic policy, and we use an exponentially
weighted moving average to track the cache miss rate.

A third approach is the Lazy Empirical policy, which is
analogous to the Eager Empirical approach. It estimates the
cache size by emulating the lazy offline optimal algorithm
on the arrivals for the prior window.

Figure 4(a) shows the cache size produced by each of
these policies. We see that both the Lazy Empirical and Op-
timistic models closely capture the behavior of the optimal
algorithm in dynamically decreasing the cache size near the
end of the window. The Pessimistic algorithm, by assuming

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2750678, IEEE
Transactions on Cloud Computing

8

0 10 20 30 40 50

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

C
ac

he
Si

ze

Lazy Eager

Fig. 5. Cache size over time for eager and lazy offline optimal algorithms.
Sizes are normalized relative to the largest size.

that all future arrivals will be cache misses, decays the cache
size more rapidly than the other algorithms.

5.2.2 Cache eviction

We explore the same eviction algorithms here, namely LRU
and LFU, as we did in Section 5.1. Figures 4(b) and 4(c) show
the traffic and staleness, respectively, generated by different
combinations of these cache size and cache eviction policies.
We see that LFU again slightly outperforms LRU. More
importantly, we see that, regardless of cache size policy,
these lazy approaches outperform the best online eager
algorithm in terms of traffic. Even the worst lazy online
algorithm produces traffic less than 4% above optimal.

The results for staleness, however, show a significant
difference between the different policies. We see that by
assuming that all future arrivals will be cache misses, the
Pessimistic policy achieves enough tolerance in the cache
size estimation, avoiding overloading the network towards
the end of the window, and leading to low staleness.

Based on the results so far, we see that accurately mod-
eling the optimal cache size does not yield the best results
in practice. Instead, our algorithms should be lazy, deferring
updates until later in the window, and in choosing how long
to defer, they should be pessimistic in their assumptions
about future arrivals.

5.3 The hybrid algorithm

In the discussion of the lazy online algorithm above, we as-
sumed perfect knowledge of the future network bandwidth
b̄. In practice, however, if the actual network capacity is
lower than predicted, then network queueing delays may
grow, leading to high staleness. For example, a lazy online
algorithm (Pessimistic + LFU) can lead to a staleness of up
to 9.9% of the window length for 100% overprediction.

To avoid this problem, recall Theorem 5, which states
that the eager and lazy optimal algorithms are merely two
extremes in a family of algorithms. Figure 5 shows, for three
windows, the size of the cache for both eager and lazy
optimal algorithms. We observe that the eager algorithm
maintains a smaller cache size than the lazy algorithm, as
lazy retains some keys long after their last arrival. Further,
our results from Sections 5.1 and 5.2 showed that it is
useful to add headroom to the accurate cache size estimates:
towards a larger (resp., smaller) cache size in case of the
eager (resp., lazy) algorithm. These insights indicate that
a more effective cache size estimate should lie somewhere
between the estimates for the eager and lazy algorithms.

Hence, we propose a Hybrid algorithm that computes
cache size as a linear combination of eager and lazy cache

sizes. Concretely, a Hybrid algorithm with a laziness pa-
rameter α—denoted by Hybrid(α)—estimates the cache size
c(t) at time t as: c(t) = α · cl(t) + (1 − α) · ce(t), where
cl(t) and ce(t) are the lazy and eager cache size estimates,
respectively. In our evaluation, we use the Nonuniform
model for the eager and the Optimistic model for the lazy
cache size estimation respectively, as these most accurately
capture the cache sizes of their respective optimal baselines.

Our simulation results (omitted here due to space con-
straints) show that, as we decrease the laziness parameter
(α) below about 0.5 and use a more eager approach, the risk
of bandwidth misprediction is largely mitigated, and the
staleness even under significant bandwidth overprediction
remains small.

There is, however, a tradeoff: as we use a more eager
hybrid algorithm, traffic increases. A low α value, say 0.25,
provides a reasonable compromise. Using this algorithm,
traffic is less than 6.0% above optimal, and even when net-
work capacity is overpredicted by 100%, staleness remains
below 0.19% of the window length.

Overall, we find that a purely eager online algorithm
is susceptible to errors by practical eviction policies, while
a purely lazy online algorithm is susceptible to errors in
bandwidth prediction. A hybrid of these two algorithms
provides a good compromise by being more robust to errors
in both arrival process and bandwidth estimation.

6 IMPLEMENTATION

We demonstrate the practicality of our algorithms by im-
plementing them in Apache Storm [1]. Our prototype uses a
distinct Storm cluster at each edge, as well as at the center, in
order to distribute the work of aggregation, and to emulate
a geo-distributed hub-and-spoke infrastructure.
Edge: Data enters our prototype at the edge through the
Replayer spout, which replays timestamped logs from a
file, and can speed up or slow down log replay to explore
different stream arrival rates. Each line is parsed using a
query-specific parsing function to produce a (timestamp,
key, value) triple. Our implementation supports a broad
set of value types and associated aggregations by leveraging
Twitter’s Algebird7 library. The Replayer emits records
according to their timestamp (i.e., event time and processing
time [11] are equivalent at the Replayer) and also pe-
riodically emits punctuation messages to indicate that no
messages with earlier timestamps will be sent in the future.

The next step in the dataflow is the Aggregator,
for which one or more tasks run at each cluster. The
Aggregator defines window boundaries in terms of
record timestamps, and maintains the dynamically sized
cache from Section 5, with each task aggregating a hash-
partitioned subset of the key space. We generalize over a
broad range of eviction policies by ordering keys using a
priority queue with an efficient changePriority imple-
mentation. By defining priority as a function of key, value,
existing priority (if any) and the time that the key was
last updated in the map, we can capture a broad range of
algorithms including LRU and LFU.

The Aggregator also maintains a cache size function,
which maps from time within the window to a cache size.

7https://github.com/twitter/algebird

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2750678, IEEE
Transactions on Cloud Computing

9

This function can be changed at runtime in order to support
arbitrary dynamic sizing policies, such as those described in
Sections 5.1.1 and 5.2.1.8

The Aggregator tasks send their output to a single
instance of the Reorderer bolt, which is responsible for
delaying records as necessary in order to maintain punctu-
ation semantics. Data then flows into the SocketSender
bolt, which transmits partial aggregates to the center using
TCP sockets. This SocketSender also maintains an esti-
mate of network bandwidth to the center, and periodically
emits these estimates upstream to Aggregator instances
for use in defining their cache size functions. Our bandwidth
estimation is based on simple measurements of the rate at
which messages can be sent over the network, though more
sophisticated techniques [12] could be employed.
Center: At the center, data follows largely in the reverse or-
der. First, the SocketReceiver spout is responsible for de-
serializing partial aggregates and punctuations and emitting
them downstream into a Reorderer, where the streams
from multiple edges are synchronized. From there, records
flow into the central Aggregator, each task of which is re-
sponsible for performing the final aggregation over a hash-
partitioned subset of the key space. Upon completing aggre-
gation for a window, these central Aggregator tasks emit
summary metrics including traffic and staleness, and these
metrics are summarized by the final StatsCollector
bolt. Staleness is computed relative to the wall-clock (i.e.,
processing) time at which the window closes. Clocks are
synchronized using NTP.

7 EXPERIMENTAL EVALUATION

To evaluate the performance of our algorithms in a real
geo-distributed setting, we deploy our Apache Storm ar-
chitecture on the PlanetLab testbed. Our PlanetLab deploy-
ment uses a total of eleven nodes (64 total cores) spanning
seven sites. Central aggregation is performed using a Storm
cluster at a single node at princeton.edu9. Edge loca-
tions include csuohio.edu, uwaterloo.ca, yale.edu,
washington.edu, ucla.edu, and wisc.edu. Bandwidth
from edge to center varies from as low as 4.5Mbps
(csuohio.edu) to as high as 150Mbps (yale.edu), based
on iperf. To simulate streaming data, each edge replays
a geographic partition of the CDN log data described in
Section 3. To explore the performance of our algorithms un-
der a range of workloads, we use the three diverse queries
described in Table 1, and we replay the logs at both low and
high (8x faster than low) rates. Note that for confidentiality
purposes, we do not disclose the actual replay rates, and we
present staleness and traffic results normalized relative to
the window length and optimal traffic, respectively.

7.1 Aggregation using a single edge
Our work is motivated by the general case of multiple
edges, though our algorithms were developed based on

8For our experiments, we use this mechanism to implement a
cache size policy that learns the eager optimal eviction schedule after
processing the log trace once.

9We were forced to confine central aggregation to a single node due
to PlanetLab’s restrictive daily network bandwidth limit, which was
quickly exhausted by communication between Storm workers when
using multiple center nodes.

an in-depth study of the interaction between a single edge
and center. We therefore begin by studying the real-world
performance of our hybrid algorithm when applied at a
single edge. Following the rationale from Section 5.3, we
begin with a laziness parameter of α = 0.25, though we will
study the tradeoffs of different parameter values shortly.

Compared to the extremes of pure batching and pure
streaming, as well as an optimal algorithm based on a priori
knowledge of the data stream, our algorithm performs quite
well. Figures 6(a) and 6(b) show that our hybrid algorithm
very effectively exploits the opportunity to reduce band-
width relative to streaming, yielding traffic less than 2%
higher than the optimal algorithm. At the same time, our
hybrid algorithm is able to reduce staleness by 65% relative
to a pure batching algorithm.10

7.2 Scaling to multiple edges

Now, in order to understand how well our algorithm scales
beyond a single edge, we partition the log data over three
geo-distributed edges. We replay the logs at both low and
high rates, and for each of the large, medium, and small
queries11. As Figures 7(a) and 7(b) demonstrate, our hybrid
algorithm performs well throughout. It is worth noting that
the edges apply their cache size and cache eviction policies
based purely on local information, without knowledge of
the decisions made by the other edges, except indirectly via
the effect that those decisions have on the available network
bandwidth to the edge.

Performance is generally more favorable for our algo-
rithm for the large and medium queries than for the small
query. The reason is that, for these larger queries, while edge
aggregation reduces communication volume, there is still a
great deal of data to transfer from the edges to the center.
Staleness is quite sensitive to precisely when these partial
aggregates are transferred, and our algorithms work well
in scheduling this communication. For the small query, on
the other hand, edge aggregation is extremely effective in
reducing data volumes, so much so that there is little risk
in delaying communication until the end of the window.
For queries that aggregate extremely well, batching is a
promising algorithm, and we do not necessarily outperform
batching. The advantage of our algorithm over batching
is therefore its broader applicability: the Hybrid algorithm
performs roughly as well as batching for small queries, and
significantly outperforms it for large queries.

We continue by further partitioning the log data across
six geo-distributed edges. Given the higher aggregate com-
pute and network capacity of this deployment, we focus on
the large query at both low and high arrival rates. From
Figure 8(a), we again see that our hybrid algorithm yields
near-optimal traffic. We also observe an important effect of
stream arrival rate: all else equal, a high stream arrival rate
lends itself to more thorough aggregation at the edge. This is
evident in the higher normalized traffic for streaming with
the high arrival rate than with the low arrival rate.

10Experimental artifacts introduce variation, but staleness for
streaming and optimal are comparable.

11We do not present the results for large-high because the amount
of traffic generated in these experiments could not be sustained within
the PlanetLab bandwidth limits.

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2750678, IEEE
Transactions on Cloud Computing

10

Batching Hybrid(0.25) Streaming Optimal

Algorithm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
al

iz
ed

M
ea

n
Tr

af
fic

(a) Mean traffic (normalized relative to an opti-
mal algorithm).

Batching Hybrid(0.25) Streaming Optimal

Algorithm

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

M
ed

ia
n

St
al

en
es

s

(b) Median staleness (normalized by window
length).

Fig. 6. Performance for batching, streaming, optimal, and our hybrid algorithm for the large query with a low stream arrival rate using a one-edge
Apache Storm deployment on PlanetLab.

Lg/Low Md/Low Md/High Sm/Low Sm/High

Query/Arrival Rate

0

1

2

3

4

5

N
or

m
al

iz
ed

M
ea

n
Tr

af
fic

Batching
Hybrid(0.25)
Streaming
Optimal

(a) Mean traffic (normalized relative to an op-
timal algorithm). Normalized traffic values for
streaming are truncated, as they range as high
as 164.

Lg/Low Md/Low Md/High Sm/Low Sm/High

Query/Arrival Rate

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

N
or

m
al

iz
ed

M
ed

ia
n

St
al

en
es

s Batching
Hybrid(0.25)
Streaming
Optimal

(b) Median staleness (normalized by window
length).

Fig. 7. Performance for batching, streaming, optimal, and our hybrid algorithm for a range of queries and stream arrival rates using a three-edge
Apache Storm deployment on PlanetLab.

Lg/Low Lg/High

Query/Arrival Rate

0

1

2

3

4

5

N
or

m
al

iz
ed

M
ea

n
Tr

af
fic

Batching
Hybrid(0.25)
Streaming
Optimal

(a) Mean traffic (normalized relative to an opti-
mal algorithm).

Lg/Low Lg/High

Query/Arrival Rate

0.00

0.05

0.10

0.15

0.20

N
or

m
al

iz
ed

M
ed

ia
n

St
al

en
es

s Batching
Hybrid(0.25)
Streaming
Optimal

(b) Median staleness (normalized by window
length).

Fig. 8. Performance for batching, streaming, optimal, and our hybrid algorithm for the large query with low and high stream arrival rates using a
six-edge Apache Storm deployment on PlanetLab.

In terms of staleness, Figure 8(b) shows that our al-
gorithm performs well when the arrival rate is high and
the network capacity is relatively constrained. In this case,
staleness is more sensitive to the particular scheduling
algorithm. When the arrival rate is low, we see that our
hybrid algorithm performs slightly worse than batching,
though in absolute terms the difference is quite small. Our
hybrid algorithm generates higher staleness than streaming,
but does so at a much lower traffic cost. Just as with the
three-edge case, we again see that, where a large oppor-
tunity exists, our algorithm exploits it. Where an extreme
algorithm such as batching already suffices, our algorithm
remains competitive.

7.3 Effect of laziness parameter
In Section 5.3, we observed that a purely eager algorithm
is vulnerable to mispredicting which keys will receive fur-
ther arrivals, while a purely lazy algorithm is vulnerable

to overpredicting network bandwidth. This motivated our
hybrid algorithm, which uses a linear combination of eager
and lazy cache size functions. We explore the real-world
tradeoffs of using a more or less lazy algorithm by running
experiments with the large query at a low replay rate
over three edges with laziness parameter α ranging from
0 through 1.0 by steps of 0.25. Figure 9(a) shows that α
has little effect on traffic when it exceeds about 0.25. Some-
where below this value, the imperfections of practical cache
eviction algorithms (LRU in our implementation) begin to
manifest: at α = 0, the hybrid algorithm reduces to a purely
eager algorithm, which makes eviction decisions well ahead
of the end of the window, and often chooses the wrong
victim. By introducing even a small amount of laziness, say
with α = 0.25, this effect is largely mitigated.

Figure 9(b) shows the opposite side of this tradeoff: a
lazier algorithm runs a higher risk of deferring communica-
tion too long, in turn leading to higher staleness. Based on

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2750678, IEEE
Transactions on Cloud Computing

11

staleness alone, a more eager algorithm is better. Based on
the shape of these trends, α = 0.25 appears to be a good
compromise value for our experiments.

Selecting the best value of α is an important problem
for future work. One promising approach is to use a hill-
climbing algorithm that tries different values of α in order
to find the best for the given input stream and query. The
best value of α also depends on the relative importance of
traffic and staleness. For example, a small value for α can
provide lower staleness, while a larger value for α can yield
lower traffic.

7.4 Impact of network capacity

For our final set of results, we use simulations to fully un-
derstand the impact of network capacity on our algorithms.
We use a simulation methodology for these results since
PlanetLab gives us limited control over varying bandwidth
capacities, and also has a maximum daily bandwidth cap.
Here, we simulate these algorithms across a wide range of
network capacities, ranging from highly constrained (less
than 20% greater than optimal traffic) to highly uncon-
strained (about 5x more than that needed to support pure
streaming). Figures 10(a) and 10(b) show traffic and stale-
ness, respectively, for the four algorithms over this range of
network capacities for the large query.

In terms of traffic, we see that our Hybrid(0.25) algo-
rithm comes close to the optimal traffic, especially at higher
network capacities. Traffic in the highly constrained regime
is slightly worse than optimal, but still provides a significant
improvement over that from pure streaming. The reason for
this trend is that, as the network becomes more constrained,
the envelope between lazy and eager algorithms shrinks, so
that the hybrid algorithm has lower room for error. Note
that batching is traffic-optimal, as discussed in Section 4.

In terms of staleness, we see that streaming is nearly
staleness-optimal at high network capacity, yet performs
worse than all other alternatives under low network ca-
pacity. This is because under a highly constrained net-
work, excessive traffic from streaming leads to large—even
unbounded—network queuing delays. Batching, on the
other hand, is the worst alternative at high network capacity,
yet yields near-optimal staleness at low network capacity.
This is because it always defers communication until the
end of the window, which can lead to high delay when
network is not a bottleneck but prevents queue buildups
under severe bandwidth constraints. Our Hybrid algorithm
follows the same trend as the optimal, performing close to
optimal irrespective of the network capacity.

8 EXTENSION TO HOPPING WINDOWS

While we have focused so far on grouped aggregation for
tumbling windows, i.e., non-overlapping windows of length
W , a different type of window that is also commonly used
is the hopping window. A (W,H) hopping window is a time
interval of length W that advances every H time steps,
where W is a multiple of H . As an example, we might use
a (W,H) hopping window to compute an aggregate over 1-
hour windows, beginning a new window every 10 minutes
(i.e., W=1 hour and H=10 mins).

In a (W,H) hopping window, each window [T, T + W)
can be partitioned into W/H subwindows of length H , with
each subwindow starting at time T + iH , 0 ≤ i < W/H .
Performing grouped aggregation for a (W,H) hopping win-
dow is equivalent to that of computing aggregates over
these length-H subwindows at the edge and relying on the
center to logically combine the results from these subwin-
dows to form the results for the full length-W windows.
Concretely, we define an aggregation algorithm HA for
hopping windows as follows.HA runs a tumbling window-
based aggregation algorithm A at the edge for each tum-
bling subwindow sw of length H , sending updates to the
center based on the arrivals within that subwindow. The
center then applies each incoming update to all length-W
windows containing sw. It can be seen that HA generates
the aggregates for each length-W window w correctly. In-
tuitively, this is because (i) no update combines arrivals
spanning multiple subwindows (so there are no duplicates),
and (ii) the center aggregates over all updates received for
the subwindows that constitute w (so it accounts for all
arrivals within w).

Given that aggregates have to be generated for all win-
dows, we can show that a hopping window algorithm HA
that uses one of our optimal algorithms (Section 4) as the
aggregation algorithm A for each length-H subwindow can
achieve optimal total traffic (across all windows) as well
as optimal staleness (for each window). Intuitively, this is
because of the following reasons. First, each subwindow
sw is the last subwindow of some window w. Therefore,
any updates for sw must be sent to the center to correctly
compute the aggregates for w. In other words, updates have
to be sent from every subwindow to the center. Since our
optimal algorithms minimize the traffic for any sw, they
also minimize the total traffic sent over all subwindows (and
hence across all windows). Second, the staleness for window
w is the same as the staleness for its last subwindow sw′.
Thus, our optimal algorithms achieve the optimal staleness
for window w given that they optimize the staleness for
each subwindow sw′.

Figure 11 shows traffic and staleness for a hopping win-
dow aggregation algorithm HA using streaming, batching,
and our optimal algorithms as W remains fixed and H
decreases, yielding a higher W/H ratio. In this figure, we
use the large query and simulate a medium-bandwidth
WAN (corresponding to a normalized network capacity
of roughly 2.1). These results illustrate several key points.
First, the optimal algorithm achieves the lowest staleness
and traffic in all cases. Further, as W/H increases, optimal
traffic increases. The reason is that, as H decreases, ag-
gregation has to be performed over shorter subwindows,
and is therefore less effective in reducing the number of
flushed updates relative to the number of arrivals. Optimal
staleness also increases with W/H due to the increasing
traffic. When W/H is sufficiently high, traffic exceeds the
network capacity, leading to very high staleness due to
network congestion. Overall, we see that as W/H increases,
the effects of a constrained WAN become more pronounced,
and jointly minimizing traffic and staleness becomes in-
creasingly challenging. In the limit, the windows become
continuously sliding windows, where no aggregation is feasi-
ble and streaming is the only feasible algorithm.

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2750678, IEEE
Transactions on Cloud Computing

12

0 0.25 0.5 0.75 1

α

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

M
ea

n
Tr

af
fic

(a) Mean traffic (normalized relative to an opti-
mal algorithm).

0 0.25 0.5 0.75 1

α

0.000

0.005

0.010

0.015

0.020

0.025

N
or

m
al

iz
ed

M
ed

ia
n

St
al

en
es

s

(b) Median staleness (normalized by window
length).

Fig. 9. Effect of laziness parameter α using a three-edge Apache Storm deployment on PlanetLab with query large.

0 2 4 6 8 10 12 14 16 18
Normalized Network Capacity

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
or

m
al

iz
ed

A
ve

ra
ge

Tr
af

fic

Optimal
Streaming
Batching
Hyb. (0.25)

(a) Traffic (normalized relative to an optimal
algorithm)

0 2 4 6 8 10 12 14 16 18
Normalized Network Capacity

10−6
10−5
10−4
10−3
10−2
10−1

100
101
102
103
104
105

N
or

m
al

iz
ed

95
th

-P
er

ce
nt

ile
St

al
en

es
s

Optimal
Streaming
Batching
Hyb. (0.25)

(b) Staleness (normalized by window length).
Y-axis is log-scale.

Fig. 10. Traffic and staleness for different algorithms over a range of network capacities.

1 2 4 8 16 32 64

W / H

10−1

100

101

N
or

m
al

iz
ed

M
ea

n
Tr

af
fic

Batching
Streaming

Offline Opt.

(a) Traffic normalized relative to Streaming.

1 2 4 8 16 32 64

W / H

10−2
10−1

100
101
102
103
104

N
or

m
al

iz
ed

M
ed

ia
n

St
al

en
es

s Batching
Streaming

Offline Opt.

(b) Staleness normalized by the window length.

Fig. 11. Traffic and staleness for a hopping window-based grouped aggregation.

9 DISCUSSION

Compression: Compression could be applied to batches
of key-value pairs to reduce WAN traffic. The benefit of
compression depends on the speed of compression and
decompression relative to the WAN bandwidth, as well
as the extent to which compression, transmission, and
decompression can be pipelined. Further, as we increase
the size of the batches to which we apply compression,
the compression ratio increases, but so does the additional
batching delay, which may lead to higher rather than lower
staleness. We apply Google’s Snappy compression [13] to
our anonymized Akamai trace at several granularities, and
show the results in Figure 12. We run each experiment five
times and show the mean, with error bars indicating 95%
confidence intervals for latency (compression ratio does not
vary from run to run). We see that it is possible to achieve
a high compression ratio over batches small enough to
be compressed with sub-millisecond latency. Incorporating
compression into our techniques is therefore quite promis-
ing, though it is complementary to our algorithms, and
implementing it in our experimental prototype remains an
item for future work.

103 104 105 106

Chunk Size (bytes)

0.0

0.5

1.0

1.5

2.0

2.5

C
om

pr
es

si
on

R
at

io

Compression Ratio Latency

0

5

10

15

20

25

30

35

L
at

en
cy

(m
s)

Fig. 12. Compression ratio and latency for Google Snappy compression
applied at several granularities to our anonymized Akamai trace.

100 101 102 103 104 105 106

Cardinality

100

101

102

103

104

105

106

107

108

Si
ze

(b
yt

es
)

Exact
Exact (compressed)

Approx.
Approx. (compressed)

Fig. 13. Size of exact and approximate set aggregations with and without
compression.

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2750678, IEEE
Transactions on Cloud Computing

13

Variable-size aggregates: We have assumed that aggregate
values have constant size. In practice, this is true for many
aggregates such as Sum, and is reasonable even for many
sophisticated aggregates, though there are opportunities
for optimization. For example, consider an approximate
set cardinality counter implemented using a HyperLogLog
sketch [14]. The size of a HyperLogLog instance is dictated
not by the set that it approximates, but by the error-tolerance
parameter specified at its construction. Figure 13 shows the
space required to represent a set of random ip addresses
using both exact and approximate representations with and
without (Google Snappy) compression. Across a range of
cardinalities, the approximate representation requires nearly
constant space. For large sets, the approximate representa-
tion is much smaller than an exact representation, but for
small sets, the exact representation may be more concise,
even smaller than a compressed approximate representa-
tion. In practice, choosing the best representation based on
the given value is a powerful optimization.

This optimization is fundamentally compatible with our
algorithms. We expect practical implementations to choose
the most concise representation for a given aggregation (e.g.,
an exact set at low cardinalities, and a HyperLogLog at
high cardinalities). We then view our dynamic cache sizing
policy as reflecting not the number, but rather the total size,
of aggregates to allow in the cache. The eviction policy
remains responsible for identifying which key is most likely
to have attained its final aggregate value, a decision that is
independent of the representation of the value for that key.
This optimization allows more keys to remain cached at the
edge at any given time, reducing the pressure to evict early,
thus leading to lower traffic and staleness.
Applicability to other environments: While our focus is on
geo-distributed stream analytics, our algorithms are applica-
ble to other environments such as single data center or clus-
ter environments. Extending our techniques to deployments
with multiple central sites, or in hierarchical topologies,
is an interesting area of future work. For a setting with
multiple central sites, our algorithms may be applicable if
the output is sharded across multiple centers, though one
must consider the bandwidth constraints for transmitting
data to multiple centers. Similarly, these algorithms could
be applied to heirarchical topologies, though one must
consider more bursty arrivals and need for coordination at
intermediate levels of the hierarchy.

10 RELATED WORK

Aggregation: Aggregation is a key operator in analytics, and
grouped aggregation is supported by many data-parallel
programming models [2], [15], [16]. Larson et al. [17] explore
the benefits of performing partial aggregation prior to a
join operation, much as we do prior to network trans-
mission. While they also recognize similarities to caching,
they consider only a fixed-size cache, whereas our approach
uses a dynamically varying cache size. In sensor networks,
aggregation is often performed over a hierarchical topology
to improve energy efficiency and network longevity [18],
[19], whereas we focus on cost and timeliness. Amur et
al. [20] study grouped aggregation, discussing tradeoffs
between eager and lazy aggregation, but do not consider the

effect on staleness, a key performance metric in our work.
A preliminary version of this paper [21] presented the main
algorithms in this work, which we have extended here with
additional results, insights, and discussion.
Streaming systems: Numerous streaming systems [3], [11],
[22], [23], [24] have been proposed in recent years. These sys-
tems provide many useful ideas for new analytics systems to
build upon, but they do not fully explore the challenges that
we’ve described here, in particular how to achieve timely
results at low cost.
Wide-area and Edge computing: Recent research on wide-
area computing has primarily focused on batch comput-
ing [7], [25], [26], [27]. Relatively little work on streaming
computation [28] has focused on wide-area deployments or
scheduling. Pietzuch et al. [29] optimize operator placement
in geo-distributed settings to balance between system-level
bandwidth usage and latency. Hwang et al. [30] rely on
replication across the wide area to achieve fault tolerance
and reduce straggler effects. JetStream [4] considers wide-
area streaming computation, but unlike our work, assumes
it is always better to push more computation to the edge.
Edge computing has been used in other contexts with a
different focus. Examples include Cloud4Home [31] for
edge storage, Nebula [32] for volunteer-based computing,
and Cloudlets [33] for latency-sensitive mobile offloading.
Optimization tradeoffs: LazyBase [34] provides a mecha-
nism to trade off increased staleness for faster query re-
sponse in the case of ad-hoc queries. BlinkDB [35] and
JetStream [4] provide mechanisms to trade off accuracy
with response time and bandwidth utilization, respectively.
We focus on jointly optimizing both network traffic and
staleness. Das et al. [36] consider tradeoffs between through-
put and latency in Spark Streaming, but do not consider
scheduling on a per-key basis, like we do.

Our algorithms can be extended to approximate compu-
tation, where the tradeoff is between accuracy and staleness
(or traffic). We explore this tradeoff fully in other recent
work [37].

11 CONCLUSION

In this paper, we focused on optimizing the important
primitive of windowed grouped aggregation in a wide-
area streaming analytics setting on two key metrics: WAN
traffic and staleness. We presented a family of optimal
offline algorithms that jointly minimize both staleness and
traffic. Using this as a foundation, we developed practical
online aggregation algorithms based on the observation that
grouped aggregation can be modeled as a caching problem
where the cache size varies over time. We explored a range
of online algorithms ranging from eager to lazy in terms of
how soon they send out updates. We found that a hybrid
online algorithm works best in practice, as it is robust to
a wide range of network constraints and estimation errors.
We demonstrated the practicality of our algorithms through
an implementation in Apache Storm deployed on Planet-
Lab. The results of our experiments, driven by workloads
derived from anonymized traces of Akamai’s web analytics
service, showed that our online aggregation algorithms per-
form close to the optimal algorithms for a variety of system
configurations, stream arrival rates, and queries.

2168-7161 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2750678, IEEE
Transactions on Cloud Computing

14

ACKNOWLEDGMENTS

We would like to thank Ravali Kandur for her help de-
ploying Apache Storm on PlanetLab, and NSF grants CNS-
1413998 and CNS-1619254, as well as an IBM Faculty Award,
which partially supported this research.

REFERENCES

[1] “Storm, distributed and fault-tolerant realtime computation,” http:
//storm.apache.org/, 2015.

[2] O. Boykin, S. Ritchie, I. O’Connel, and J. Lin, “Summingbird: A
framework for integrating batch and online mapreduce computa-
tions,” in Proc. of VLDB, vol. 7, no. 13, 2014, pp. 1441–1451.

[3] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Dis-
cretized streams: Fault-tolerant streaming computation at scale,”
in Proc. of SOSP, 2013, pp. 423–438.

[4] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman,
“Aggregation and degradation in JetStream: Streaming analytics
in the wide area,” in Proc. of NSDI, 2014, pp. 275–288.

[5] M. Adler, R. K. Sitaraman, and H. Venkataramani, “Algorithms
for optimizing the bandwidth cost of content delivery,” Computer
Networks, vol. 55, no. 18, pp. 4007–4020, Dec. 2011.

[6] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of
a cloud: Research problems in data center networks,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 1, pp. 68–73, Dec. 2008.

[7] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and G. Vargh-
ese, “WANalytics: Analytics for a geo-distributed data-intensive
world,” in Proc. of CIDR, 2015.

[8] “PlanetLab,” http://planet-lab.org/, 2015.
[9] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network:

a platform for high-performance internet applications,” SIGOPS
Oper. Syst. Rev., vol. 44, no. 3, pp. 2–19, Aug. 2010.

[10] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replace-
ment strategies,” ACM Comput. Surv., vol. 35, no. 4, pp. 374–398,
Dec. 2003.

[11] T. Akidau et al., “The dataflow model: A practical approach to bal-
ancing correctness, latency, and cost in massive-scale, unbounded,
out-of-order data processing,” Proc. of the VLDB Endowment, vol. 8,
pp. 1792–1803, 2015.

[12] J. Bolliger and T. Gross, “Bandwidth monitoring for network-
aware applications,” in Proc. of HPDC, 2001, pp. 241–251.

[13] “Google/snappy: A fast compressor/decompressor,” https://
github.com/google/snappy/, 2016.

[14] P. Flajolet, É. Fusy, O. Gandouet et al., “HyperLogLog: The analysis
of a near-optimal cardinality estimation algorithm,” in Proc. of
AOFA, 2007.

[15] J. Gray et al., “Data cube: A relational aggregation operator gen-
eralizing group-by, cross-tab, and sub-totals,” Data Min. Knowl.
Discov., vol. 1, no. 1, pp. 29–53, Jan. 1997.

[16] Y. Yu, P. K. Gunda, and M. Isard, “Distributed aggregation for
data-parallel computing: interfaces and implementations,” in Proc.
of SOSP, 2009, pp. 247–260.

[17] P.-A. Larson, “Data reduction by partial preaggregation,” in Proc.
of ICDE, 2002, pp. 706–715.

[18] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG:
A Tiny AGgregation service for ad-hoc sensor networks,” in Proc.
of OSDI, 2002, pp. 131–146.

[19] R. Rajagopalan and P. Varshney, “Data-aggregation techniques in
sensor networks: A survey,” IEEE Communications Surveys Tutori-
als, vol. 8, no. 4, pp. 48–63, 2006.

[20] H. Amur et al., “Memory-efficient groupby-aggregate using com-
pressed buffer trees,” in Proc. of SoCC, 2013.

[21] B. Heintz, A. Chandra, and R. K. Sitaraman, “Optimizing grouped
aggregation in geo-distributed streaming analytics,” in Proc. of
HPDC, 2015, pp. 133–144.

[22] T. Akidau et al., “MillWheel: Fault-tolerant stream processing at
internet scale,” Proc. of VLDB Endow., vol. 6, no. 11, pp. 1033–1044,
Aug. 2013.

[23] “Apache Flink: Scalable Batch and Stream Data Processing,” http:
//flink.apache.org/, 2016.

[24] S. Kulkarni et al., “Twitter heron: Stream processing at scale,” in
Proc. of SIGMOD, 2015, pp. 239–250.

[25] B. Heintz, A. Chandra, R. K. Sitaraman, and J. Weissman, “End-
to-end optimization for geo-distributed mapreduce,” IEEE TCC,
2015.

[26] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
P. Bahl, and I. Stoica, “Low latency geo-distributed data analytics,”
in Proc. of SIGCOMM, 2015, pp. 421–434.

[27] A. C. Zhou, S. Ibrahim, and B. He, “On achieving efficient data
transfer for graph processing in geo-distributed datacenters,” in
Proc. of ICDCS, June 2017, pp. 1397–1407.

[28] D. J. Abadi et al., “The design of the borealis stream processing
engine,” in Proc. of CIDR, 2005, pp. 277–289.

[29] P. Pietzuch et al., “Network-aware operator placement for stream-
processing systems,” in Proc. of ICDE, 2006.

[30] J.-H. Hwang, U. Cetintemel, and S. Zdonik, “Fast and highly-
available stream processing over wide area networks,” in Proc.
of ICDE, 2008, pp. 804–813.

[31] S. Kannan, A. Gavrilovska, and K. Schwan, “Cloud4home–
enhancing data services with@ home clouds,” in Proc. of ICDCS.
IEEE, 2011, pp. 539–548.

[32] M. Ryden, K. Oh, A. Chandra, and J. Weissman, “Nebula: Dis-
tributed edge cloud for data intensive computing,” in Proc. of IC2E.
IEEE, 2014, pp. 57–66.

[33] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case
for VM-Based Cloudlets in Mobile Computing,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14–23, October 2009.

[34] J. Cipar et al., “LazyBase: trading freshness for performance in a
scalable database,” in Proc. of EuroSys, 2012, pp. 169–182.

[35] S. Agarwal et al., “BlinkDB: queries with bounded errors and
bounded response times on very large data,” in Proc. of EuroSys,
2013, pp. 29–42.

[36] T. Das, Y. Zhong, I. Stoica, and S. Shenker, “Adaptive stream
processing using dynamic batch sizing,” in Proc. of SoCC, 2014,
pp. 16:1–16:13.

[37] B. Heintz, A. Chandra, and R. K. Sitaraman, “Trading timeliness
and accuracy in geo-distributed streaming analytics,” in Proc. of
ACM SOCC, Oct. 2016.

Benjamin Heintz is currently a Software Engi-
neer at Facebook, where he works on stream
processing systems. Heintz holds M.S. and
Ph.D. degrees in Computer Science from the
University of Minnesota, and a B.S. in Mechani-
cal Engineering and Economics from Northwest-
ern University.

Abhishek Chandra is an Associate Professor
in the Department of Computer Science and
Engineering at the University of Minnesota. His
research interests are in the areas of Operat-
ing Systems and Distributed Systems. He re-
ceived his B.Tech. degree in Computer Science
and Engineering from Indian Institute of Technol-
ogy Kanpur, and his M.S. and Ph.D. degrees in
Computer Science from the University of Mas-
sachusetts Amherst.

Ramesh K. Sitaraman is a professor of com-
puter science at University of Massachusetts
Amherst and chief consulting scientist at Akamai
Technologies. His research spans all aspects
of Internet-scale distributed systems, including
algorithms, architectures, security, performance,
energy efficiency, user behavior, and economics.
Sitaraman received a PhD in computer science
from Princeton University and a B.Tech in Elec-
trical Engineering from the Indian Institute of
Technology Madras.

