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ABSTRACT

The current approach to transcoding in adaptive bit rate
streaming is to transcode all videos in all possible bit rates
which wastes transcoding resources and storage space, since
a large fraction of the transcoded video segments are never
watched by users. To reduce transcoding work, we pro-
pose several online transcoding policies that transcode video
segments in a “just-in-time” fashion such that a segment is
transcoded only to those bit rates that are actually requested
by the user. However, a reduction in the transcoding work
should not come at the expense of a significant reduction
in the quality of experience of the users. To establish the
feasibility of online transcoding, we first show that the bit
rate of the next video segment requested by a user can be
predicted ahead of time with an accuracy of 99.7% using
a Markov prediction model. This allows our online algo-
rithms to complete transcoding the required segment ahead
of when it is needed by the user, thus reducing the possibil-
ity of freezes in the video playback. To derive our results,
we collect and analyze a large amount of request traces from
one of the world’s largest video CDNs consisting of over 200
thousand unique users watching 5 million videos over a pe-
riod of three days. The main conclusion of our work is that
online transcoding schemes can reduce transcoding resources
by over 95% without a major impact on the users’ quality
of experience.
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1. INTRODUCTION

Video streaming over the Internet has boomed over the
past years, with HTTP as the de-facto streaming protocol.
According to the latest Sandvine report [12], during peak
hours (8 PM to 1 AM EDT), over 50% of the downstream
US Internet traffic is video content. The diversity of client
devices capable of playing online videos has also seen a sharp
increase, including a variety of smartphones, tablets, desk-
tops, and televisions. Not surprisingly, video streaming that
once meant playing a fixed quality video on a desktop now
requires adaptive bit rate (ABR) streaming techniques.

A key goal of ABR streaming is to avoid freezes during the
play out of the video. Such freezes known as “rebuffering”
are typically caused by insufficient bandwidth between the
source and the client, causing the client’s video buffer to
drain quickly. Once the client’s video buffer reaches empty
a rebuffering event occurs. Rebuffering is known to have a
major adverse impact on a user’s video viewing experience
[22]. ABR streaming requires that each video segment be
encoded in different quality versions: lower quality versions
use a lower bit rate encoding and higher quality versions
use higher ones. The process of creating multiple bit rate
versions of a video is called transcoding. Once each video
is transcoded into multiple bit rates, ABR streaming allows
the client to choose an appropriate quality version for each
video segment based on the available bandwidth between
the source and client. Thus, the client can switch to a lower
quality video segment when the available bandwidth is low
to avoid rebuffering. If more bandwidth becomes available at
a future time, the client can switch back to a higher quality
version to provide a richer experience.

A video provider! wanting to use ABR streaming must
first complete the transcoding process before their videos
can be delivered to their users. To support ABR streaming,
a video is divided into short segments (usually of several sec-
onds duration) and each of these segments is transcoded into
different bit rates, where each bit rate represents a different
quality level. According to Netflix, the vast number of to-
day’s codec and bit rate combinations can result in up to 120
transcode operations before a video can be delivered to all
client platforms [14]. Thus, transcoding is resource intensive
requiring significant computing and storage resources.

In the traditional model, transcoding is first performed by
the video provider (say, NBC or CNN) and the transcoded

'We use the term video provider to denote any enterprise
that provides video content for their users, including movies
(e.g., NetFlix), news (e.g., CNN), entertainment (e.g., NBC)
and sports (e.g., FIFA soccer).



content is then uploaded to a content delivery network (say,
Akamai or Limelight) that actually delivers the videos to
end-users around the world. However, this model requires a
major investment of IT resources on the part of the video
provider to perform the transcoding. A common emerg-
ing alternative is for video providers to outsource both the
transcoding and delivery of videos to a content delivery net-
work (CDN). Procuring transcoding as a cloud service from
the CDN eliminates the expense of procuring and operating
transcoding equipment for the video provider. Thus, in-
creasingly CDNs such as Akamai [2] perform both transcod-
ing and delivery of the videos. The convergence of transcod-
ing and delivery enables new possibilities for reducing the re-
sources needed for transcoding and is the focus of our work.

CDN Transcoding Architecture. A typical CDN of-
fering transcoding and delivery services operates a storage
cloud for storing videos, a transcoding cloud for perform-
ing the transcoding, and an edge server network for caching
and delivering the video segment to users (cf., Figure 1).
Transcoding and delivering videos entail the following steps.
To publish a new video, the video provider uploads a sin-
gle high quality version of that video to the storage cloud
of the CDN. Then, the CDN uses its transcoding cloud to
transcode the video to all the bit rates requested by the
video provider and stores the transcoded output in the stor-
age cloud?. The video provider then makes the new video
available to users, say by publishing it on their web page. As
users start watching the new video, the requested video seg-
ments in the right quality levels are downloaded by the edge
servers from the storage cloud and delivered to the users.

The CDN often offers an SLA on how quickly a newly up-
loaded video is available for access by users. A typical SLA
guarantees that a video of duration D is available within
time D/s for users to download and is termed an 1/s SLA,
e.g., a 1/2 SLA guarantees that a 30-minute video uploaded
at the time ¢ is available for users at time ¢ 4+ 15 minutes.

Why understanding delivery helps transcoding?
The convergence of video transcoding and delivery offers
rich possibilities for optimization. Understanding the in-
terplay of video transcoding and video delivery to reduce the
transcoding work is the main focus of our work. We provide
two motivating reasons why understanding video delivery,
i.e., understanding what parts of which videos are watched
by users, can help optimize the transcoding process.

1) It is known that the popularity distribution of videos is
heavily long tailed [34, 18], i.e., a substantial fraction of the
published videos are requested only once or not requested
at all. Transcoding video segments of unpopular videos that
are never requested is a waste of computation and storage
resources that can potentially be saved by using more intel-
ligent transcoding mechanisms.

2) It is known that the video segments that correspond to
the first part of a video is watched more than the later parts
of the video, as users often abandon videos midway [23,
19]. This suggests that the early part of the videos are more
likely to be watched in more bit rates than the later parts.
Thus, understanding the characteristics of what parts of a
video are actually delivered to users can be of value to the
transcoding process.

2The formats and quality levels a video will be offered in
is usually agreed upon in a service level agreement (SLA)
between the CDN and the video provider.
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Offline versus Online Transcoding. We refer to the
traditional approach where transcoding is performed before
the delivery process begins as offline transcoding. Note that
offline transcoding is oblivious to what video segments are
delivered to (and watched by) users, as it happens before
the delivery of the video begins. In contrast, we propose
online transcoding of video segments as an alternative to
offline transcoding. In the online approach, transcoding is
performed in real-time and only performed if a video seg-
ment is requested by a client in a specific quality version
that has not already been created in the past. Note that on-
line transcoding is tightly integrated with the delivery of the
videos. Offline and online transcoding are two extremes and
a number of hybrid transcoding approaches that combine as-
pects of both are possible. Specifically, an x/y transcoding
policy transcodes the first x% of the video to all the desired
bit rates in an offline fashion before delivery begins. Fur-
ther, it transcodes the remaining y% of the video segments
to only those bit rates that are (or, likely to be) requested
by the user in an online fashion.

Our Contributions. Our key contributions follow.

e We propose new online and hybrid transcoding poli-
cies and analyze the workload generated for these ap-
proaches using trace-driven simulations. Our exten-
sive simulations use video request traces from one of
the world’s largest video CDNs. Our analysis shows
that the total and peak workload® required for on-
line and hybrid transcoding are an order of magnitude
lower than those for the traditional approach of offline
transcoding. Our 1Seg/Rest hybrid policy decreases
workload by 95% as compared to the offline policy.

e We show that the peak workload induced by transcod-
ing policies increases as the transcoding SLA becomes
more stringent. In particular, a “faster-than-real-time”
SLA has prohibitively higher peak workload than a
more lenient SLA, e.g., a 1/4 SLA has four times the
peak as the 1/1 SLA taking four times more resources.

e We present a Markov model approach to predict the
quality level (i.e., bit rate) of the next video segment
that is most likely to be requested by the client ahead
of time. We derive a prediction model that results in
an average prediction error of 0.3%. We show how
to use this predictive model to perform transcoding of
video segments before it is likely to be requested by the
client, reducing the possibility of video rebuffering.

e We derive the impact of transcoding policies on the
rebuffer ratio that equals ratio of the time spent in a
rebuffering state and the video length. We analyze sev-
eral online and hybrid approaches and show that our
1Seg/Rest hybrid policy achieves an average rebuffer
ratio of 0.09% and a maximum rebuffer ratio of about
0.2% with our prediction model. Thus, our 1Seg/Rest
policy achieves a workload reduction of 95% without a
significant impact on the viewing experience as mea-
sured by the rebuffer ratio.

Roadmap. The outline of the paper follows: Section 2
describes the transcoding architecture and the transcoding
policies that we study in our work. In Section 3, we describe

3Throughout the paper, workload refers to the amount of
bytes to transcode.



the data sets we have collected from Akamai’s CDN for our
evaluation. Section 4 analyzes the total and peak workload
induced by our transcoding policies. Section 5 proposes pre-
dictive transcoding and presents Markov prediction models
for predicting the bit rates of video segments. Section 6
presents the impact of transcoding policies on the rebuffer-
ing experienced by the clients. Section 7 presents related
work and Section 8 concludes the paper.

2. TRANSCODING ARCHITECTURE AND
POLICIES

In this section, we provide a brief overview of adaptive
bit rate (ABR) video streaming and the transcoding chal-
lenges that it creates. Further, we describe the transcoding
architecture and the policies that we investigate in our work.

2.1 Adaptive Bit Rate (ABR) Streaming

ABR streaming is realized through video streaming over
HTTP where the source content is segmented into small
multi-second (usually between 2 and 10 seconds) segments
and each segment is encoded at multiple bit rates. Before
the actual streaming process starts, the client downloads
a manifest file that describes the segments and the qual-
ity versions these segments are available in. After receiving
the manifest file, the client starts requesting the initial seg-
ment(s) using a heuristic that depends on the video player
implementation. For instance, it may start by requesting
the lowest bit rate version for the first segment. If the client
finds that the download bandwidth is greater than the bit
rate of the current segment, it may request future segments
in the next higher quality version. In the case where the
client estimates that the available bandwidth is lower than
the bit rate of the current segment, it may request the next
segment in a lower quality version. With this approach the
streaming process can be adapted to the available download
bandwidth, which minimizes the amount of rebuffering that
might have to be performed at the client.

Several different implementations of ABR streaming exist,
including Apple HTTP Live Streaming (HLS) [7], Microsoft
Live Smooth Streaming (Smooth) [13] and Adobe Adap-
tive Streaming (HDS) [1]. Each have their own proprietary
implementation and slight modifications to the basic ABR
streaming technique described above. Recently, an interna-
tional standard was accepted for HTTP-based adaptive bit
rate streaming called MPEG-DASH [31]. DASH is an open
source MPEG adaptive streaming standard developed for
the streaming of media content from web servers via HTTP.
The basic approach of DASH is similar to all other propri-
etary ABR streaming standards described above.

2.2 Transcoding Challenges

ABR streaming requires the creation of video content in
multiple bit rates, which translates to multiple video files
for the same video content. The primary transcoding chal-
lenge is that the number of formats and bit rates that need
to be supported is very large, given the wide variety of
users and devices. As a result, transcoding is very resource
intensive and any reduction in the transcoding work can
lead to significant cost savings. We take as examples three
large video providers (YouTube, Netflix, and Hulu) and the
largest video CDN (Akamai) to demonstrate the wide range
of formats and bit rates supported by these services.
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Figure 1: Online Transcoding Architecture and SLA

YouTube. YouTube, the world’s largest provider of user-
generated videos, offers a variety of qualities and encoding
formats for the same video as presented in [17]. The dif-
ferent formats for a video include Flash (flv/mp4), HTML5
(webm), Mobile (3gp), DASH (mp4) and 3D (mp4). De-
pending on the original source of the video uploaded by a
user, each of these formats may be available in 5 to 6 differ-
ent qualities. Regular Flash and DASH videos are available
in 144p, 240p, 360p, 480p, 720p, and 1080p qualities. In
rare cases, videos are even available in 4096p quality. Hence,
to serve the same video in different formats and qualities,
the original content has to be transcoded to more than 20
different versions. With over 1 billion videos in YouTube’s
library, converting all videos to multiple formats before they
are requested is not effective. Considering the extreme long-
tail popularity distribution of YouTube videos, immediately
transcoding videos in all potential format and quality ver-
sions wastes storage space and transcoding resources.

Netflix & Hulu. Netflix and Hulu are two of the largest
entertainment video sites in the world. Both of these video
providers use ABR streaming standards to serve their con-
tent. Netflix uses Smooth Streaming whereas Hulu employs
Adobe HDS. Netflix offers video qualities that require down-
load speeds ranging from 1.5 Mbps to 25 Mbps whereas Hulu
video qualities range from 640 Kbps to 1.4 Mbps. FEach
of these providers make their content available on multiple
codecs, screen resolution, devices, etc. According to Netflix,
the vast number of codec and bit rate combinations can re-
sult in up to 120 transcoding operations for the same title
before it can be delivered to all potential client platforms in
all supported quality versions [14]. Having a large number
of different quality versions for each video imposes a high
transcoding workload and requires significant storage.

Akamai. As a CDN, Akamai supports the formats and
bit rates required by hundreds of major video providers who
are their customers [3]. Video providers upload each video
in one of the supported input formats that include aac, avi,
dif, f4v, flv, m4a, m4v, mov, mp4, mpeg, mpegts, mpg,
Mxf, ogg, webm, wmv, etc. Each input video needs to be
transcoded to multiple bit rates and multiple output formats
that include fragmented MP4, HDS, HLS and Smooth.

2.3 Transcoding Architecture

We provide an overview of the transcoding architecture
that is typical in a CDN. As shown in Figure 1, the transcod-
ing architecture consists of the following components:

1. Storage Cloud. A video provider publishes a video in a
single high quality format by uploading it into the stor-



age cloud. Further, the transcoding cloud can down-
load videos from the storage cloud, transcode those
videos to multiple bit rates, and upload it back to the
storage cloud.

2. Transcoding Cloud. The transcoding cloud consist of
a set of servers that run software that can perform the
task of transcoding the video segments.

3. Edge Servers. These servers are widely deployed by
the CDN in hundreds of data centers around the world
and are used for delivering the videos to clients from
proximal locations. Each edge servers has a cache for
storing video segments.

When a video provider wants to publish a video, the provider
uploads a single high quality version of the video to the
cloud storage of the CDN. When a client plays a video, the
following occur.

1. The CDN directs the client to a nearby edge server
from which video segments can be downloaded. The
client makes a sequence of requests for video segments
at specific bit rates to that server as play progresses.

2. If the edge server has the requested segment in cache,
it is delivered to the client. Otherwise, the edge server
downloads it from the storage cloud, caches that seg-
ment, and serves it to the client.

3. When the storage cloud receives a request from an edge
server, it checks to see if it has the requested video
segment in the requested bit rate. If it does not, it
sends the uploaded version of the video segment to the
transcoding cloud. The transcoding cloud transcodes
the segment to the requested bit rate and sends it back
to the storage cloud.

2.4 Transcoding Policies

A transcoding policy is a scheduling policy that dic-
tates when video segments are transcoded by the cloud
transcoder. Note that any policy should meet the transcod-
ing SLA that is an agreement between the video provider
and the CDN that determines how quickly a newly uploaded
video is available for access by users. A typical SLA guar-
antees that a video of duration D is available within time
D/s for users to download and is termed an 1/s SLA, e.g.,
a 1/2 SLA guarantees that a 30-minute video uploaded at
the time ¢ is available for users at time ¢ + 15 minutes.

We explore three types of policies: offline, online, and
hybrid. There are two key dimensions on which a policy can
be optimized. First, a policy can minimize the amount of
transcoding work that it performs. Note that a reduction
in transcoding work directly translates to a lesser amount
of resources that need to be provisioned for transcoding and
storage. Next, the transcoding policy should maximize video
performance by reducing the likelihood of rebuffer events in
the play out. Exploring the tradeoff between the transcoding
work and video performance is the focus of this work.

1) Offline Policy. The current defacto standard for
transcoding in the industry is the offline policy. When the
video provider uploads a new video to the storage, it is
sent to the transcoding cloud where the video is transcoded
into all the bit rates specified by the video provider. The
transcoded videos are then uploaded back to cloud storage.
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The CDN delivers the video to users after the transcoding
process is complete. As seen in Section 4, offline could do
a substantial amount of extra transcoding work, but has
good video performance since the video segments requested
by clients are always immediately available in the requested
quality level.

2) Online Policy. At the other extreme, we propose the
online policy where nothing is transcoded proactively when
the video provider uploads a new video to the storage cloud.
When a client plays a video, it requests video segments
in sequence from a “proximal” edge server chosen by the
CDN. If the requested segment S(z,y) (where z is the bit
rate of the segment and y is the segment number) is not
present in the edge server or in the storage cloud, a segment
transcoding request is sent to the transcoding cloud. The
transcoding cloud, upon receiving the request for transcod-
ing segment S(z,y) downloads the original video file up-
loaded by the video provider from the storage cloud and
starts the transcoding process. Once the transcoding of
segment S(x,y) is completed, the segment is stored in the
storage cloud, which is then pulled by the edge server and
delivered to the client. The video segment S(z,y) is now
available in the storage cloud permanently.

It is clear that the online policy performs much less
transcoding work than the offline policy, as it seldom
transcodes a segment to a bit rate that is not requested
by the client. But, the challenge is the video performance
degradation it might cause. Note that the policy needs to
perform the transcoding in real time or even faster than real
time. This is required to assure that no additional rebuffer-
ing — which might eventually lead to pauses in the video
play out — occurs at the client. Earlier work [22] has shown
that rebuffering has a strong adverse effect on the viewer
experience.

3) Hybrid Policies. Offline and online transcoding are two
extremes. We propose a family of hybrid policies that com-
bine aspects of both. Specifically, an x/y transcoding policy
transcodes the first x% of the video to all the desired bit
rates in an offline fashion before delivery begins. Further,
it transcodes the remaining y% of the video segments in an
online fashion to only those bit rates that are (or, likely to
be) requested by the client. Note that 100/0 hybrid policy
is simply the offline policy and 0/100 is the online one. Be-
sides the above family of hybrid policies, we also propose
and study a specific hybrid policy called 1Seg/Rest which
transcodes only the first video segment of all videos to all
the desired bit rates in an offline fashion, and transcodes the
rest of the segments in an online fashion.

3. OUR DATA SETS

To analyze the benefits of online transcoding, we collected
extensive, anonymized logs of how users access videos from
Akamai’s video CDN. Akamai [27] is one of the largest
CDNs in the world and delivers 15-30% of global Inter-
net traffic consisting of videos, web site, software down-
loads, social networks, and applications. Akamai has a large
distributed platform of over 150,000 edge servers deployed
in 90+ countries and 1200 ISPs around the world. The
anonymized data sets that we use for our analysis were col-
lected from a large cross-section of actual users around the
world who played videos using video players that incorpo-
rate the widely-deployed Akamai’s client-side media analyt-
ics plug in.
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Figure 2: Popularity and Bit rate distribution of video requests in our trace.

Our client-side measurements were collected using the fol-
lowing process. When video providers build their video
player, they can choose to incorporate the plugin that pro-
vides an accurate means for measuring a variety of video
quality and viewer behavioral metrics. When the user plays
a video, the plugin is loaded by the user’s video player. The
plugin “listens” and records a variety of events that can then
be used to stitch together an accurate picture of the play out.
In our case, we are primarily interested in the url of the video
being played and the bit rate of each video segment fetched
by the video player. This provides us with complete infor-
mation on what video segments were accessed, when they
were accessed, and what bit rate versions of these segments
were downloaded. Once the metrics are captured by the plu-
gin, the information is “beaconed” to an analytics backend
that we can use to process the huge volumes of data.

3.1 Data Set Characteristics

We extracted a characteristic slice of user video requests
from across Akamai’s global CDN over a 3-day period in
June 2014. When collecting the traces we ensured that we
had a representative sampling of all types of videos, includ-
ing short-form (e.g, news clips, sports highlights), medium-
form (e.g, TV episodes), and long-form (e.g, movies) videos.
We also only included video providers who use ABR stream-
ing, such as HLS, HDS, Smooth, etc. Overall, we ana-
lyzed traces from 5 million video sessions originating from
200 thousand unique clients who were served by 1294 video
servers from around the world. The videos requested belong
to about 3292 unique video providers and include every ma-
jor genre of online videos.

Figure 2(a) shows the complementary cumulative distri-
bution function (CCDF) of the popularity of the requested
videos. The figure shows that there are about 45% of the
videos watched multiple times and a long tail of videos which
are watched only once. Hence, transcoding the videos in the
long tail in an offline fashion to all the bit rates wastes both
transcoding and storage resource. Based on the information
that is captured by the client plugin it is not possible for
us to identify videos that have been published but are never
requested by any user throughout the length of the trace. If
such videos exist, offline transcoding is even more wasteful
for these videos since they are never viewed even once.

Figure 2(b) shows the distribution of the video bit rates
requested by the clients in this trace. We see that the bit
rates of the videos requested range from 100 Kbps to 4000
Kbps. Also, the figure shows that most of the video segment
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requests are for medium (1500 Kbps) and high (2500 Kbps)
bit rates. In particular, about 70% of the video segment
requests are only for two bit rate ranges. This observation
provides motivation for constructing a good markovian pre-
dictor for the bit rate of the next video segment that we
discuss in detail in Section 5.

We also investigate how much of the video a user watches
by measuring the total time the user watches a video in
comparison with the total duration of the video. Figure 3
shows percent of viewers who abandoned the video at each
stage in the video. We see that 70% of the video sessions
reach the very end of the video and watch beyond the 80%
mark. However, 18% of the video sessions abandon in the
first 20% of the video. This suggests the hybrid schemes
that we study in Section 4 where the initial portion of the
video that is watched more often can be transcoded in an
offline fashion to all possible bit rates, while the rest can be
transcoded in an online fashion only as needed.

4. TRANSCODING WORKLOAD ANALY-
SIS

Using the CDN traces described in Section 3, we simu-
late several transcoding policies and evaluate the workload
induced by each policy on the transcoding cloud. For our
simulation, we use our own simulator built in python. In
our simulation, we step through each video request in our
trace in a timeseries fashion. Given that transcoding is re-
source intensive, any reduction in workload leads to a signif-
icant decrease in the transcoding cloud resources that have
to be provided, further leading to significant cost savings.
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Throughout the analyses of our online transcoding policies,
we make the following assumptions.

e When the transcoding cloud receives requests for
transcoding multiple video segments, it must schedule
these requests using a scheduling policy. We employ
the Earliest Deadline First (EDF) [29] policy for each
video transcoding request. EDF is a natural choice
since it schedules the process that is closest to its dead-
line first, where the deadline for the transcoding re-
quest is dictated by the transcoding SLA that must be
satisfied. EDF has been successfully applied for other
problems in multimedia like disk scheduling [30].

e All our analyses are performed for the whole 3-day
dataset. However, barring the plot for Figure 4 which
has the results for all 3 days (end of day 1 is represented
by a vertical line), all other plots are shown only for
the next 2 days. This is because we start the simu-
lation with no transcoded video segments in the stor-
age cloud, inducing much additional transcoding work-
load for the hybrid and online policies on the first day.
This additional workload is not typical in a real sys-
tem, since the storage cloud will always possess some
video segments that have already been transcoded in
the past. Thus, we let the cloud storage warm up in
the first day and show the results for the next two days
which is much more typical.

o We assume a segment length of 6 seconds for each video
segment request. This is because typically segment
lengths are between 2 and 10 seconds. We use the
median of the range (6 seconds) as segment length for
our analyses.

4.1 Offline Transcoding

Figure 4 shows the workload of offline transcoding for six
different SLAs as a time sequence. For notational conve-
nience, we express SLA’s as a fraction, e.g, a 1/4 SLA is
also represented as .25. An SLA of 1 is real-time transcod-
ing, whereas an SLA less than 1 is faster than real-time?.
Note that the amount of bytes to transcode follows a di-
urnal pattern, where there is a small amount of bytes to
transcode in the night and peak throughout the day. This
pattern is due to the fact that there are fewer video uploads

4By “faster than real time” we mean that the transcoding
of a video segment is performed faster than the actual play
out of that segment. E.g., in the case of a 6 second segment
the transcoding would be performed in less than 6 seconds.
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from video producers during the night and this pattern is
seen throughout all results in the paper.

The results in Figure 4 also show that a more stringent
SLA (e.g., SLA = .25) generates significantly more workload
than a more flexible one. In fact, transcoding videos faster
than real time is quite costly, since the reduction in workload
between SLA = .25 and SLA = .5 is the largest.

In addition to the workload generated over time we show
the peak workload for SLA = .25,.5,1,2,5,10 in Figure 5.
Besides the total workload, the peak workload is also impor-
tant since the transcoding cloud (like other deployed sys-
tems) is provisioned for the peak. This figure shows the
rapid decrease of the peak as the SLA becomes more flexible.
Note that faster than real time transcoding (SLA = .25, .5)
comes at a very high cost, which the CDN will most likely
have to pass on to the video provider.

4.2 Online and Hybrid Transcoding

Figure 6 shows the total amount of bytes to transcode for
0/100 and 1Seg/Rest transcoding in comparison to offline
transcoding (100/0). The difference in amount of bytes to
transcode is significantly higher in the offline case, which
shows that not all videos are requested in all the bit rates
supported by the video providers. Also, the 1Seg/Rest pol-
icy adds minimal extra load compared to the online (0/100)
approach. The peak total bytes to transcode for 100/0
transcoding is about 300 Gbps, whereas the peak for 0/100
transcoding is about 11 Gbps. This huge difference in
workload indicates the significant amount of transcoding re-
sources and storage space that can be saved by employing
pure online transcoding. Keeping in mind that the transcod-
ing cloud must be provisoned for the peak case, online or
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1Seg/Rest transcoding has the potential to lead to immense
cost reduction.

Also, as seen from Figure 6, the peak total amount of
bytes to transcode with the 1Seg/Rest policy is about 15
Gbps, which is only 4 Gbps more than the online (0/100)
transcoding policy. In Section 6.2, we look at the perfor-
mance in terms of rebuffer ratio at the client and show that
1Seg/Rest provides a much better viewing experience than
the pure online policy. Thus, it can be argued that the extra
work induced by 1Seg/Rest might be worthwhile.

Figure 7 shows the workload induced by other hybrid
transcoding (0ffline%/0Online%) strategies. As expected,
the higher the percentage of offline transcoded segments, the
higher the amount of bytes to transcode. However, since
not all videos are completely watched and not all videos are
requested in every bit rate the videos are offered in, the in-
crease in bytes to transcode for each hybrid strategy is not
linear. As we move to higher offline and lesser online hy-
brid approach, e.g., 70/30 or 90/10, the amount of savings
in bytes to transcode decreases compared to, e.g,10/90 or
30/70 hybrid transcoding. Figure 8 shows the peak bytes
transcoded by each hybrid policy. As seen in the figure, the
peak increases linearly with increase in the percentage of
video segments offline transcoded.

5. PREDICTIVE TRANSCODING

Results from the previous section showed that online and
hybrid transcoding approaches can reduce the workload sig-
nificantly. While this can result in a huge savings in the cost
of transcoding, it comes with the drawback that online or
hybrid transcoding might lead to impairments at the client.
For example, if a segment is not transcoded on time it might
not arrive at the client on time to be played out. This can
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cause the client to rebuffer, resulting in an inferior video
viewing experience for the user.

One potential approach to prevent this issue is to pre-
dict the bit rate for the next segment the client might re-
quest. The prediction of future bit rate requests allows us to
transcode the segment to that bit rate one segment ahead,
so the client does not have to wait for the next segment
to be transcoded once requested. Our proposed predictive
transcoding involves the following steps.

1) Prediction Step. When the client plays a video, the
prediction algorithm is used to predict the bit rate of the
next video segment that will be requested by the client.

2) Transcode Step. Based on this prediction, we check to
see if that video segment is already available in cloud storage
at the predicted bit rate. If not, we proactively transcode
the next video segment to the predicted bit rate.

3) Delivery Step. If the prediction was accurate and the
transcoding of the next segment completes before the client
requests that segment, the CDN can deliver that segment
to the user without triggering a rebuffering event. However,
if the prediction is incorrect and the video segment is not
available in the required bit rate, a rebuffer might occur.

The main challenge of this approach is to achieve a pre-
diction accuracy that results in high-performance online or
hybrid transcoding. To achieve this goal, we analyze two
prediction methods, a simple one and a complex one. The
simple method predicts the bit rate of the next segment to
be identical to the bit rate of the current segment requested.
The complex method is based on a Markov model which uses
a state machine that keeps state on previous video request
bit rates to determine the most likely bit rate to be requested
in the future.

In Section 5.1, we introduce the Markov model in more
detail and then provide the prediction analysis results for
online transcoding using the Akamai dataset in Section 5.2.

5.1 Markov Prediction Model

In our Markov prediction model, the states represent the
different quality versions of a video and the state change
probability is the probability with which a video switches
from one bit rate to another. We make use of the Markov
prediction model by maintaining a N x N matrix, where
N represents the maximum number of quality versions each
video is transcoded to. To populate the Markov state ma-
trix, we step through the video requests in the Akamai
dataset. For each video request, we look into the per seg-
ment quality version requested and modify the matrix prob-
ability for each current bit rate. Based on the state change
probabilities of all the bit rates for the current video, we
predict the future bit rate based on the most probable state
change based on current state (bit rate).

Figure 9 shows an example finite state machine for a video
with quality versions (100, 200, 300, 400, 500 Kbps). Each
state change has a certain probability associated with it
based on past requests. The probability matrix for the finite
state machine in Figure 9 is a 5 X 5 matrix as shown below.

0.45 03 025 O 0

0 065 035 0 0
P=1]0 0 0.8 0.15 0.05

0 0.7 0 0.3 0

0 0 0 0.15 0.85



Figure 9: Markov Finite State Machine Example.

If the current bit rate is 300 Kbps, then according to
Markov prediction model, the maximum probability of the
next bit rate state is staying at 300 Kbps, with a probability
of 0.8. Hence the prediction model predicts 300 Kbps as the
next bit rate to be requested from the client.

We use this prediction model for our online transcoding
analysis and the results from the prediction techniques are
presented in the next section.

5.2 Prediction Analysis Results

In this section, we analyze the prediction techniques men-
tioned in the previous section using our dataset described in
Section 3. We make use of a simulator built in Python to
simulate the two prediction models. The simulator takes the
video requests in our dataset in a time series manner and
maintains state of previously requested bit rates to make
the bit rate prediction for the next segment request. For
each prediction model, we analyze the prediction accuracy in
terms of the error rate and the amount of bytes to transcode
for each instance of video requests, where each instance is
a 10-minute sequence of video segment requests from the
trace®. A prediction error is said to occur when the pre-
dicted bit rate during the current video segment request is
not the same bit rate requested next by the client during the
same video session. Error rate is defined as the total number
of prediction errors over the total number of predictions.

For the prediction model analysis we investigate four dif-
ferent categories of Markov models which are based on per
video bit rate requests. We chose the categories based on
network and client parameters and they are presented in Ta-
ble 1. For each of these categories, we create a Markov model
on a per video request. For example, client category results
in a client-video tuple requests (per client per video) model
and server category results in a server-video tuple request
model. For each of these models, the states are represented
by the requested video bit rates but for each approach there
will be n Markov state machines, where n reflects the num-
ber of groups per category (e.g., network, OS, etc.) For
example, in the OS category case we have about 10 differ-
ent OS groups (OS X, Windows, Android, IOS, etc.), which
results in the same number of Markov models. E.g., if a re-
quest from a iPhone is made, the model for iOS is used. We
start the prediction from the second video requested for each
group in each category, as the first video is used to model the

5The 10-minute video sequence as an instance is only used
for data representation and does not interfere with our anal-
ysis.
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state machine. Also, we use 1Seg/Rest transcoding policy
throughout our prediction model analysis.

Figure 10(a) shows the prediction error rate for all pre-
diction models. As seen from this figure, the Markov model
based on client OS (per OS per video) yields the lowest pre-
diction error rate of 0.5% followed by the Markov model on
network type at around 4%. This is because, each client OS
and network type has the feature of supporting selective bit
rates (usually high bit rates). Hence, it is easier to predict
with high accuracy when the clients OS or network time is
known. Also, as seen from Figure 10(a), all other Markov
prediction models yield almost the same prediction error at
around 10% to 15%. The simple prediction model, the most
naive of all models, which predicts the next bit rate to be
the same as the current bit rate results in error rates around
10%, which is lower than some of the Markov-based predic-
tion models. We conjecture that this is caused by the fact
that (as shown in Figure 2(b)) 70% of the requests are made
up of just two bit rates. Hence in most cases predicting the
next requested bit rate to be the same as the current bit rate
yields a low prediction error rate assuming that the quality
switches in a streaming session are not performed as often
as one might expect in an adaptive streaming scenario.

Since, the Markov models based on OS and network type
yield the lowest prediction error rates, we combine these two
parameters and create a new Markov model based on net-
work type and OS (per network-type per OS per video). The
results for this combined model are shown in Figure 10(b).
As seen from Figure 10(b), the prediction error rate for the
combined model of network type-OS decreases slightly com-
pared to the OS only model by 0.2%.

Figure 11 shows the total bytes to transcode for each of
the prediction models we propose. As seen from these fig-
ures, the Markov model based on clients has more bytes to
transcode compared to other models because the trace con-
sists of a higher number of clients (see Section 3) compared
to servers or network or client operating systems in the trace.

The results presented in this Section show that for online
transcoding with the first segment pre-encoded (1Seg/Rest
transcoding), a combined Markov prediction model based
on network type and client OS yields the lowest average
prediction error rate of 0.3% and also reduces the amount of
bytes to transcode to less than 10 Gbps for every instance
video requests in our trace.

6. IMPACT OF TRANSCODING POLICY

ON REBUFFERS

We now show how our Markov prediction model from Sec-
tion 5 can be used to perform online and hybrid transcoding
without a significant degradation in the viewing experience
of the user. We use the two best prediction models that
had the smallest error rates: OS alone and a combination of
network type and OS.

6.1 Transcoding Time Analysis

To get an accurate picture of the time it takes to transcode
a video segment, we measure the time taken to transcode a
6 second chunk of a video into multiple bit rates. We use a
sampling of 100 HD videos and take the average transcoding
time across those videos. We use this transcode time in the
performance analysis of our online transcoding system.
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Figure 10: Prediction Error of different prediction models.

[ Category Description
Client The IP address of the client requesting the video.
Server The IP address of the edge server serving the video request.
Network Type Type of access network client is connected to.
oS Operating system used by the client making the video request.

Table 1: Network and Client Categories used in Markov model.
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For the transcoding time analysis, we use the FFmpeg
utility [11] to divide the videos into specific segment lengths
and x264 encoder [16] to transcode the video segments into
different bit rates. In our analysis, we transcode 100 sam-
ple HD videos by dividing them into segments of 6 seconds
each. We use 100 MPEG-4 videos and convert them into
YUVAMPEG2 format using FFmpeg utility, for transcod-
ing to lower bit rates. The transcoding was performed on a
ExoGENTI cloud [10] instance with 4 Cores and 12 GB RAM.
We transcode the 6 second segments of 100 HD videos into
bit rates ranging from 200 Kbps to 3000 Kbps, with dif-
ferent encoding speed (preset) options (slow, medium, fast,
ultrafast) available in the x264 encoder utility. The differ-
ent encoding speed options result in different compression
efficiencies and qualities of the videos. The default preset
option in the x264 encoder is “medium”. We also measure
the transcoding time taken to encode a video to a fixed bit
rate for different segment lengths. In this analysis, we fix the
video bit rate at 1000 Kbps and measure the time it takes to
transcode 100 HD videos to segment lengths ranging from 2
to 60 seconds.

Figure 12(a) shows the average time taken to transcode a
6 second segment of 100 HD videos into different bit rates
ranging from 200 to 3000 Kbps at different preset settings.
The results show that, with a default x264 encoder pre-
set option of “medium”, a 12 GB RAM cloud instance can
transcode a 6 second segment in less than 6 seconds. With
the increase in transcoding speed (Fast or UltraFast option),
the average time to transcode the segments is reduced con-
siderably and with the “slow” preset option, the average time
to transcode is larger than the segment length.

Figure 12(b) shows the average time taken to transcode
100 HD videos of different segment lengths into 1000 Kbps
bit rate. The segment lengths of videos range from 2 to
60 seconds. As seen from Figure 12(b), the increase in
time taken to transcode a segment is almost linear with
the increase in segment length. Yet, irrespective of seg-
ment length, the time taken to transcode the segment is
less than the segment length. E.g., with the “medium” pre-
set option (default), the average time taken to transcode a
video with segment length 20 seconds is less than 19 seconds
and it takes about 35 seconds to transcode a 40 seconds seg-
ment. Hence, irrespective of the segment length chosen by
the content provider, we conclude that online transcoding of
segments is feasible and allows the delivery of video on time
to avoid rebuffering.

6.2 Rebuffering Analysis

We measure the performance of our transcoding architec-
ture in terms of the rebuffer ratio which is simply the ratio
of the rebuffer time and the duration of the video, where
rebuffer time is the amount of time spent in the rebuffer
state. For instance, if a video that is played for 50-minutes
experiences a 30-second freeze, the rebuffer ratio is 1%. We
compute rebuffer time as follows. The number of video seg-
ments that could experience a misprediction is simply the
number of segments in the video times the prediction error
rate. For each misprediction, the video segment must be
transcoded and delivered to the client which takes time T30t
as shown in Equation 1 below.

(1)

Ttot == Ttranscode + Tcomm,
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where Tiranscode 18 the time to transcode the video segment
studied in Section 6.1 and Tcomm is the total time for all the
communication that needs to performed. Note that Teomm
includes the time for the edge server to request the segment
from cloud storage, the cloud storage to request and receive
the transcoded output from the transcoding cloud, and for
the video segment to be sent from the storage cloud to the
edge server. Since the communication time Teomm is typi-
cally in the order of hundreds of milliseconds compared to
the transcoding time that is in the order of seconds, we can
approximate Tiot by Tiranscode. 1Thus,

Rebuffer Time = #segmentsx prediction error rate X Tiranscode-

To analyze the performance of our online transcoding ar-
chitecture, we use the data set mentioned in Section 3. Fig-
ures 13(a) and 13(b) show the results of our rebuffer ratio
analysis for different transcoding policies (100% online and
hybrid transcoding) and different Markov prediction models
(OS and network type-OS). As we saw in Figure 10(b), the
network type-OS Markov model leads to a slightly lower
prediction error compared to the other models. This is
emphasized by the results shown in Figure 13. As seen
from Figure 13(a), 100% online transcoding results in the
worst performance with an average rebuffer ratio of 0.33%,
whereas with the network type-OS Markov model, it reduces
to 0.22% as seen in Figure 13(b).

However, the hybrid approach of pre-transcoding (offline)
the first segment of each video to all the bit rates and on-
line transcoding rest of the video, represented as 1Seg/Rest
transcoding in Figures 13(a) and 13(b) yields lower rebuffer
ratio of 0.16% and 0.09% respectively. Also, as seen from
both figures, other hybrid transcoding approaches with a
large offline transcoding portion yield slightly better perfor-
mance with the lowest rebuffer ratio of 0.02% with 90/10
transcoding (not shown in figures) using the Markov predic-
tion model based on network type and client OS.

Based on the results, we suggest that a hybrid transcoding
approach with pre-transcoding the very first segment to all
quality levels (as requested by the content provider) and on-
line transcoding of the remainder of the video (1Seg/Rest) is
the best hybrid transcoding strategy. This strategy reduces
the transcoding workload by an order of magnitude (see Fig-
ure 6), while degrading the performance at the client only
slightly compared to other hybrid transcoding approaches.

7. RELATED WORK

Many researchers have investigated the problem of on-
line transcoding. Most of the research has been focused on
scheduling policies for transcoding and transcoding in the
cloud environment. In this Section, we give an overview
of some of the works in the area of online transcoding and
adaptive video caching that are closest to the work presented
in this paper.

In the commercial sector several companies have recently
started to offer cloud-based video transcoding as a ser-
vice. Amazon’s Elastic Transcoder [5] executes transcod-
ing jobs using Amazon’s Elastic Compute Cloud (Amazon
EC2 [4]) and stores the video content in Amazon’s Sim-
ple Storage Service (Amazon S3 [6]). Amazon’s Elastic
Transcoder enables customers to process multiple files in
parallel and to organize their transcoding workflow using a
feature called transcoding pipelines. It manages all aspects
of the transcoding process transparently and automatically.
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Figure 13: Rebuffer Ratio analysis for different transcoding approaches and prediction models.

Zencoder [8] is another video transcoder service from Bright-
cove, a company that offers a cloud-based online video plat-
form. Along with typical video transcoding services, Zen-
coder also supports live video transcoding in the cloud. En-
coderCloud [9] provides similar web-based “pay-as-you-go”
service by using resources from other cloud service providers
(e.g., Amazon EC2 and RackSpaceCloud [15]). However,
they offer a different pricing policy than other cloud ser-
vice providers, charging by the volume of the total amount
of source video transferred in and encoded video transferred
out. These services provide the capability of video transcod-
ing in the cloud, but the transcoding scheduling mechanism
is non-transparent to end-users. While these services are
quite popular there is only little information how much re-
sources have to be provided by either Amazon or Brightcove.
In addition, it is not possible to measure the time it takes
to perform a transcoding request. This information is es-
sential for our work to determine if the approach of online
transcoding is feasible.

With transcoder services available in the cloud, re-
searchers have looked at different scheduling policies for
scheduling video transcoding in the cloud. Ma et al. [26]
have proposed a dynamic scheduling methodology for video
transcoding in a cloud environment, with the goal to improve
user experience by minimizing the delay of online transcod-
ing. Li et al. [25] developed a transcoder in the cloud which
utilizes an intermediate cloud platform to bridge the for-
mat /resolution gap by performing transcoding in the cloud.
Their cloud transcoder takes CPU utilization into account
to schedule video transcoding tasks. Ko et al. [21] looked at
the amount of resources and cache space required for online
real time transcoding. Kllapi et al. [20] presented an op-
timization framework for scheduling data flows to minimize
completion time, minimize the cost and determine the trade-
off between completion time and cost incurred. Li et al. [24]
proposed parallel video encoding strategy based on load bal-
ance factor and [33] proposed a cost optimization framework
based on parameter tuning combining bitrate and encoding
speed. However, none of these works have investigated the
combined space of online transcoding and video delivery. In
addition, none of them have analyzed how much resources
such online transcoding in a large CDN requires.

The works closest to the one presented in this paper were
presented by Zhi et al. [32] and Shin et al. [28]. The authors
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of [32] have investigated the feasibility of online transcod-
ing system in the cloud. Their approach is based on online
transcoding and geo-distributed video delivery based on user
preferences for CDN regions and regional preferences for cer-
tain quality versions of videos. However, their work does not
provide a prediction model to transcode future segments and
measure the performance of video delivery for real time sys-
tems. Our work provides a markov prediction model to pre-
dict the future segments to transcode ahead and improve
performance at the client.

The authors of [28] present a hybrid transcoding tech-
nique to provide users with different QoS VoD services.
They present a mathematical model to pre-transcode popu-
lar videos and online transcoding of less popular QoS video
requests. However, the authors perform their analysis on
the assumption that they already know the popularity of the
videos and they online transcode to only three different bit
rates. In our work, we perform hybrid transcoding without
assuming the popularity of the videos and transcode part of
the video offline. This is different to Shin et al.’s approach
of transcoding the whole video to one particular bit rate.

8. CONCLUSION

In this paper, we proposed several online and hybrid poli-
cies that transcode video segments in a timely manner such
that a segment is transcoded only to those bit rates that
are actually requested by the user. To establish the feasibil-
ity of such transcoding, we first showed that the bit rate of
the next video segment requested by a user can be predicted
ahead of time with an accuracy of 99.7% using a Markov pre-
diction model. This allows our online and hybrid transcod-
ing policies to complete transcoding the required segment
ahead of when it is needed by the user, thus reducing the
possibility of freezes in the video playback. To derive our
results, we collected and analyzed a large amount of request
traces from one of the world’s largest video CDNs consist-
ing of over 200 thousand unique users watching 5 million
videos over a period of three days. From our analysis we
conclude that an online transcoding scheme with first seg-
ment pre-encoded along with a Markov prediction model
based on network type and client OS can reduce transcod-
ing resources by over 95% without a major impact on the
users’ quality of experience.
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