
Lixin Gao

On Trading Task Reallocation for Thread Management in Partitionable

Multiprocessors

Arnold L. Rosenberg Ramesh K. Sitaraman

Department of Computer Science

IJniversity of Massachusetts

Amherst, Mass. 01003, USA

{gao, rsnbrg, raulesh}@cs .umass. edu

Abstract

Most general-purpose multiprocessors are time-shared

among multiple users. When a user arrives, s/he re-
quests a submachine of size appropriate to his/her com-
putation; the processor-allocation algorithm then as-
signs him/her a portion of the multi-processor of the re-

quested size. This study is motivated by the fact that,
as successive users arrive, use a portion of the multi-

processor, and depart, various individual processors in
the multiprocessor may find themselves managing quite
disparate numbers of threads. This load-imbalance is

clearly undesirable, and can be rectified by reallocating

(or migrating) the tasks periodically so as to balance
the processors thread-loads. However, task reallocation

is an expensive operation and must be performed in-
frequently, if ever. This paper establishes that there
is a predictable trade-off between the frequency of task
reallocation and the imbalance in the processor loads.

The processor-allocation algorithms devised in this
paper are applicable to any hierarchically -decomposable

multiprocessor, even t bough we state all our results for
a tree-based multiprocessor. We devise a deterministic

processor-allocation algorithm for an N-processor tree-
machine that achieves a maximum load of

min{(d+ 1), (~(logiV+l)l} L*,

where L* is the optimal load achievable for the task se-

quence, and d is the reallocation parameter. We prove
a lower bound by showing that no deterministic algo-

rithm with reallocation parameter d can achieve within

a factor of

rein{ [~(d+ 1)1, [~(logN+ 1)1 }

from the optimal load for all task sequences. Next, we
present a randomized processor-allocation algorithm for
an N-processor tree-machine that does not reallocate
tasks and achieves a load of at most

(

3 log N

log log N)
+1 L’,

where L* is the optimal load of the task sequence; and,

we show that no randomized processor-allocation algo-
rithm without reallocation can achieve within a factor
of

i (s)”3

from the optimal load for all task sequences.

1 Introduction

Most general-purpose multiprocessors are time-shared
among multiple users. When a user arrives, s/he re-

quests a submachine of size appropriate to his/her com-
putation; the processor-allocation algorithm then ss-

signs him/her a virtual submachine of the requested

size. This study is motivated by the fact that, as suc-
cessive users arrive and receive submachine) the various
actual processors of the multiprocessor may find them-

selves managing quite disparate numbers of threads.
The more heavily loaded processors are thus burdened

by the nontrivial—and nonproductiv~overhead of man-

aging many threads as shown in [4, 5]. One avenue

to alleviating this situation is to allow the processor-
allocation algorithm to reallocate users’ tasks so as to

balance the numbers of threads across the machine’s

processors. This solution does not come without cost:

process reallocation can require extensive communica-
tion cost (e.g., moving checkpointing states) and mem-

ory space (for the checkpointing). Therefore, before one
advocates frequent reallocation as a remedy for load im-

balances, one would do well to understand the impact of

periodic reallocation on the load-balance of the multi-
processor. This paper is devoted to studying this impact
in an environment in which users arrive and depart at

unpredictable times and request submachine of unpre-
dictable sizes. The main results of this paper establish
that there is, in fact, a predictable tradeoff between the

frequency of process reallocation and the maximum im-

balance in processor thread-load.

We consider a hierarchically decomposable multipro-

cessor that consists of processing elements (PEs) that
communicate over an interconnection network. Inde-

pendent users arrive over time and request real-time
service. Upon arriving, each user requests a submachine

of fixed size and topology; for instance, if the multipro-
cessor were a hypercube, then all user requests would be
for subcubes. Since there is no bound on the number

309

of active users, distinct users may well be assigned to

overlapping portions of the multiprocessor at the same
time. We call the number of distinct users allocated to

a PE at any moment the load of the PE at that mo-

ment, i.e., the number of t breads the PE has to manage

at that moment.

Note that PE-load often admits another in-
terpretation also. When tasks allocated to a
single PE are time-shared in a round-robin
fashion, the worst slowdown ever experienced

by a user is proportional to the maximum

load of any PE in the submachine allocated
to it.

Our focus here is on studying avenues for minimizing
the maximum loads of PEs, i.e., the maximum numbers

of threads that the PEs have to manage. Now, of course,
there is some level of PE-load that is inevitable, even if

the processor allocation algorithm were to balance the
processor loads evenly at all times. It is this inevitable

load level that we shall use as the benchmark against
which to measure our process-allot at ion algorithms.

As we remarked earlier, allowing process reallocation

is one natural avenue for keeping the load down, for it
allows one to take advantage of user departures that

have already occurred. Indeed, we show that, if one
were to allow process reallocation at every step, then

one could essily guarantee minimum load at every step.

The main focus of this paper is to quantify the benefits

in load level of periodic process reallocation in an on-

line allocation alporithm. SDeciticallv. if the multirmo-.,
cessor has N PEs, then we choose a parameter cl, and
we allow a reallocation whenever the cumulative sizes

of the tasks that have arrived since the last reallocation
reaches dN. Note that the cased = O corresponds to the

constantly reallocating algorithm, while the case d = oc
corresponds to an algorithm that never reallocates. Our

results capture the tradeoff between the two cost mea-
sures: the frequency of reallocation, as exposed by the

parameter d, and the complexity of managing threads,
as exposed by the maximum load of any PE.

Related work. There has been a significant amount

of prior work in processor allocation; all such work view
the computational load as a sequence of tasks, each re-

quiring certain computational resources. A number of
prior studies in [12, 9, 10, 11, 13, 14, 18] allocate pro-

cessors considering topology constraint of each task. In
[12, 9, 10, 11], they consider the problem of subcube
recognition for hypercube machines, but they do not for-
mally analyze their algorithms; further [12, 10] give task

reallocating strategies, but there is no formal measure
on the tradeoff between the reallocation frequency and

resulting fragmentation. The studies in [13, 14, 18] allo-
cate parallel machines under the assumption that each
task has the exclusive use of its assigned processors and
that the tasks can be delayed for arbitrarily long pe-
riods of time before they are serviced. They evaluate

the makespan for a set of tasks, instead of the response
time for each single task, thus forsaking the issue of
real-time service. There are a number of studies, e.g.,
[2, 19, 8] and references therein, on the on-line problem

of allocating tasks to a set of servers. However, in their

model, servers are independent; therefore, topology is

not considered to be an issue. Further, the algorithms
in [8] preempts tasks at any time without considering

the cost involved. In all the above mentioned work ex-

cept [2], machines are never truly shared, in the sense

that no two users are allocated to share the same pro-

cessor at the same time. Therefore, thread management

is not considered to be an issue. However, as in many
real-world parallel machines such CM-5 [17] and SP2,

multiple users could share the same processor at the

same time.

Our problem. To the best of our knowledge, our
study is the first attempt at quantifying the complexity

of thread management when multiple users requesting
real-time service share a a hierarchically decomposable

multiprocessor. Motivated by practical considerations,
we assume that our on-line allocation algorithms have

no apriori knowledge of the duration of each task, or
of any future task arrivals or departures. We do, how-

ever, allow periodic process reallocation. In fact, we
prove (in Section 3) that load achieved by a constantly

reallocating algorithm is, in fact, is exactly the opti-

mal load for any task sequence. (The optzmal load for

a task sequence refers to the inevitable load that some
processor must experience even if the load is evenly bal-
anced at all times.) We evaluate the performance of our

on-line algorithm with periodic reallocation via the ra-
tios between our algorithm’s maximum loads over time
and the optimal load for the worst task sequence. We

explore the tradeoff between the performance of the on-

line algorithm and the periodicity of reallocation used

in the algorithm. In this paper, we concentrate on mul-

tiprocessors having the topology of a complete binary
tree (cf. [3, 6]). The results also hold for any hierar-

chically decomposable machine such at CM-5 and SP2

(cf. [17]). The processor allocation algorithms devel-
oped in this paper also apply to other networks such as
the butterfly, the hypercube and the mesh.

A roadmap. In Section 2, we give a formal definition

of the problem. In Section 3, we present a constantly re-
allocating algorithm that achieves the optimal load for

any task sequence. In Section 4, we present a determin-
istic on-line algorithm for an N-PE multiprocessor with

reallocation parameter d that achieves a load of at most

min{(d + 1), ~~(log N + 1)1 }L*, where L“ is the opti-

mal 10ZWIof th~ task sequence. We close the section by
proving that no deterministic on-line algorithm with re-
allocation parameter d can achieve a load within a factor

of min { ~~(d + 1)1 , ~~(log N + 1)1 } from the optimal

load for all task sequences. Our upper and lower bounds
are tight within a factor of 2. In Section 5, we present

a randomized on-line algorithm without reallocation for
an N-PE multiprocessor that achieves a load of at most

(310gN -)—+1 L*,
log log iv

where L* is the optimal load of the

task sequence; and, we show that no randomized on-

line algorithm without reallocation can achieve within

afwtor‘f +(*)’” ‘rem‘heOptimal10ad‘or
all task sequences.

310

2 Model and Definitions

The Parallel Machine. For most of the paper, we
consider an N-PE tree machine T (see [3, 6]), which
is a parallel machine having the topology of an N-1eaf
complete binary tree whose leaf nodes hold processing
elements (PEs) and whose internal nodes hold commu-
nication switches.

Submachine An M-PE submachine is an M-PE com-
plete binary subtree of T.

Tasks. Each task t of size s(t) requires a submachine
with s(t) PEs; the size of a task is a power of 2 and is
known as soon as it arrives, but its execution time is not
known. As soon as it arrives, a task tmust be assigned
an s(t)-PE submachine of T; once assigned, the task
cannot be migrated to another submachine of T except
during reallocation.

Task Sequence. A task sequence CTis a sequence of
task-arrival or task-departure events that are ordered
by time of occurrence. A task is active from its arrival
time to its departure time. The size of sequence a at
time ~, denoted S(CT;~), is the cumulative size of tasks
active at time r. Let Ial be the time of the last arrival.
The size of sequence u, denoted s(a), is the maximum
over time ~ (~ varying from O to Ial) of the cunmlat ive
size of the tasks active at time ~:

s(a) = ~<qqx, S(IT;7)

Load. The load for a PE u of T at time T, denoted
A(u; ~), is the number of tasks that are assigned to node
u and are active at time ~.

Allocation Algorithms. An allocation algorzthm must
select an s(t)-PE submachine in T, assign task t to it at
t’s arrival time, and deallocate it at t’s departure time.
The 10SZIof an algorithm A on task sequence u at time
T-,denoted LA (u; T), is the maximum load of all the PEs
of T at time r:

The load of a deterministic allocation algorithm A on
task sequence u, denoted LA (CT), is the maximum load
of T over all times:

The load of a randomized allocation algorithm R on task
sequence a, denoted LR (o), is the maximum expected
load of T over all times:

An on-line allocation algorithm must assign an ar-
riving task t to an s(t)-PE submachine of T knowing
only the quantity s(t) and all previous task assignments;
the assignment is made without any knowledge about
future arriving or departing tasks. For example, one
plausible greedy on-line algorithm would allocate task

Figure 1: The assignments by the greedy on-line algo-
rithm

t to an s(t)-PE submachine of T that has the small-
est load, allocating to the leftmost such submachine in
case of a tie. Figure 1 shows the assignments by this
algorithm on a 4-PE tree-machine for the following se-
quence
u“: t1 arrives, t2 arrives, t3 arrives, t4 arrives, tzde-
parts, tA departs, tsarrives,
where tl,tz,ts,t4are tasks of size 1, and tsisa taskof
size 2. We use dotted boxes to enclose tasks that are
not active at time la’1. Note that this on-line algorithm
achieves a load of 2 for the given sequence.

A d-reallocation on-line algorithm is an on-line al-
location algorithm that can reallocate tasks after the
total size of tasks that have arrived since the last real-
location reaches dN. During a reallocation, every ac-
tive task can be reassigned to a new submachine. A O-
reallocation on-line algorithm is an on-line allocation al-
gorithm that can reallocate tasks at every time-step. An
co-deallocation on-line algorithm is an on-line allocation
algorithm that never reallocates tasks. For the exam-
ple of task sequence CT*,an 1-reallocation algorithm can
reallocate tasks when the total size of tasks that have
arrived since the last reallocation reaches 4. Therefore,
it can reallocate ts to the position of tzat the time ts
arrives. This results a load of 1 for task sequence a‘.

Opt imal Load. The optimal load L* for a task se-
quence a is the inevitable load that some processor must
experience even if the load is evenly balanced at all
times. The maximum cumulative size of active tasks at
any point of time for a task sequence a is s(a). There-. .

S(ls)
fore, the optimal load L* is equal to ~ . We com-

pare the load achieved by our allocation algorithms to
the benchmark of L* – a good allocation algorithm is
one that achieves a load close to L’ for every task se-
quence.

Our goal here is to devise deterministic and random-
ized on-line allocation algorithms that achieve load close
to the optimal load L“.

3 An Optimal O-Reallocation Algorithm

In this section, we present an allocation algorithm Ac
that reallocates tasks every time a task arrives, and
achieves the optimal load of L* for every task sequence.

311

Algorithm Ac:

Task Arrival When a task arrives, add it to the set
of active tasks. Use reallocation procedure AR
(described below) to reallocate all active tasks.

Task Depart ure: When a task departs, the sub-machine
allocated to it is de-allocated.

Note that algorithm AC reallocates all the tasks dur-
ing each task arrival. The procedure used for realloca-
tion, AR, takes a set of active tasks and maps them to
(possibly) new positions within T. It is convenient to
view procedure AR as allocating tasks to many identi-
cal copies of the machine T. The procedure starts with
one copy of the machine. It can create more copies if
needed. A PE in each copy can be assigned to one task
only and copies of T are ordered according to their time
of creation. Each copy of the machine is emulated as a
different thread on machine T. Thus, the load of T is
at most the total number of copies.

We call a submachine of a copy of T, a vacant subma-
chine if none of its PEs is assigned to a task. A maximal

vacant submachine is a vacant submachine that is not
properly contained in any other vacant submachine.

Reallocation Procedure AR:

Sort the tasks in order of decreasing size.
For each task of size 2’,
search for the first copy of T that contains a 2’ -PE va-
cant submachine. (If there is no such copy, create a new
copy of T.)

Assign the task to the leftmost 2’ -PE vacant subma-
chine in this copy.

Lemma 1 For any task set of the total task we S, pro-
cedure AR achieves load of [S/Nl

Proof. We prove the lemma by the following claim.

Claim 1. Reallocation procedure AR does not create a
vacant submachine except possibly in the last copy.

Assume, for contradiction, that procedure AR cre-
ates a vacant submachine in a copy K other than the
last copy. Let the size of a maximal vacant submachine
in K be 2’. From the hierarchical structure of the tree
machine T, there is a task of size at most 2X assigned to
the copy m. Since procedure AR assigns tasks in order
of decreasing size, the tasks assigned to the last copy
must have size of at most 2’. This contradicts with the
fact that procedure AR always assigns a task to the first
copy that contains a vacant submachine of the required
task size.

Therefore, the number of copies created by proce-
dure AR is [S/Pfl. We conclude that the load of proce-
dure AR is [S/iVl. •1

Theorem 3.1 For any task sequence u, Algortthm AC
achieves the optimal load L*.

Proof. Since departures decrease load, it is .mfFicient
to prove that the load is at most L* after each arrival.
At any time r that a task arrives, Algorithm AC real-
locates all active tasks using the reallocation procedure
AR. From Lemma 1, the load achieved by AC at time
~ is rS[a, ~) /N1. Therefore, the load of Ahzorithm AC,. .,,,
is L* for any task sequence n. •1

4 Deterministic On-line Allocation Al-

gorithms

In this section, we present and analyze a determinist-
ic d-reallocation on-line algorithm. We then give a
lower bound on the performance of any deterministic
d-reallocation on-line allocation algorithm.

4.1 A Deterministic On-line Allocation

Algorithm

First, we present a greedy on-line allocation algorithm
AG that does not reallocate tasks. Subsequently, we use
AG in our d-reallocation on-line algorithm AM.

Algorithm AG:

Task Arrival: When a task of size 2’ arrives, com-
pute the loads for all 2“ -PE submachine of T.
Assign the task to the leftmost submachine of size
2X that has the smallest load.

Task Departure: When a task departs, the subma-
chine allocated to it is de-allocated.

Theorem 4.1 For any task sequence g, the mammum
load acht,eved by Algortthm AG zs at most

[~ (logN + I)] L’, where L* M the optimal load for ~.

Proof. Since tasks of size IV do not create a load im-
balance, we assume that all tasks have size less than
IV. We establish the theorem via the following more
detailed claim.

Claim. Algorithm AG assigns a task of size 2’ < N
to a submachine of the left subtree of T whose load is
less than [($z + I)L’1 or to a submachine of the right

subtree of T whose load is less than 1(+z + I) L*]

We verify the claim by induction on the size of the
arriving task.

First, the base case: since the size of sequence a is
s(a), when a task of size 1 arrives, the cumulative size
of active tasks is at most s(a) – 1. By the pigeonhole
principle, therefore, at least one PE of T has load less
than L*. Algorithm AG assigns the task to such a PE,
thus honoring the claim.

Suppose now that the claim is true for any task
of size less than 2’. When a task of size 2’ arrives,
assume, for the sake of contradiction, that all 2Z-PE
submachine of the left subtree of T have load at least

312

~(~~ + I)L*l, and all 2Z-PE submachine. of the right
subtree of T have load at least 1(~~ + l)L*J. By the
induction hypothesis, the following are true:

● For any 2’ -PE submachine of the left subtree of

T, some PE has load at least ~(~z + I)L*l. Order
the active tasks that are assigned to this PE by in-
creasing size. Assume, for contradiction, that for
some i=l,2, .,., x, the [$(z + l)L* + llth task

has size less than 2;. The task that arrives last
among the first ~~(i + l)L* + II tasks is assigned

to a submachine that haa load at leaat ~(~i + l)L*l.
This contradicts the induction hypothesis. Thm
the [$ (Z+ l)L* + 11th task has size at least 2i for
aili=l,2, ..., r. Therefore, the cumulative size
of the active tasks assigned to a 2’-PE submachine
of the left subtree of T is at lesst

● Similarly, we can conclude that the cumulative size
of the active tasks assigned to a 2“-PE submachine
of the right subtree of T is at least

Combining these cases: when a task of size 2X arrives,
the cumulative size of active tasks assigned to T can
be shown to be at least L* N > s(u); specifically, the
cumulative size of active tasks G

The newly arriving task would increase this size, con-
traxlicting the fact that sequence a has size s(u).

We conclude that, when a task of size 2“ arrives,
there is a 2Z-PE submachine of the left subtree of T
whose load is less than ~(~~ + I)L*l or a 2’-PE sub-

machine of the right subtree of T whose load is less than

l(~z+ l)L*j. The claim follows.

Since a task has size at most N/2, the maximum
load achieved by the greedy algorithm is at most

f+ (logN+ 1)1 L*. The theorem follow5. ❑

Next, we present a basic algorithm AB that will be
used by the d-reallocation algorithm AM. It is con-
venient to view the basic algorithm AB as allocating
tasks to many identical copies of the machine T. The
algorithm starts with one copy of the machine, It can
create more copies if needed. The PE of each copy can
be assigned to one task only and copies of T are ordered
according to their time of creation. As before, we call a
submachine of a copy of T, a vacant submachine if none
of its PEs is assigned to a task. A mammal vacant sub-
machine is a submachine that is not properly contained
in any other vwant submachine. Each copy of the ma-
chine is emulated as a different thread on machine T.
Thus, the load of T at some point of time is at most the
number of copies in existence at that point of time.

Algorithm AB:

Task Arrival: When a task of size 2= arrives, search
for the first copy of T that contains a 2’-PE vacant
submachine. (If there is no such copy, create a new
copy of T.) Assign the arrival task to the leftmost
2“-PE vacant submachine in this copy.

Task Depart ure: When a task departs, the subma-
chine allocated to it is de-allocated.

Lemma 2 For a task sequence u m whtch the total size
of the arrivat tasks is S, Algorithm AB achieves load of

at most [S/Nl. (Note that S is not the swe of the task

sequence but the sum of the sizes of atl the arrivals m
the sequence.)

Proof, We prove the lemma by the following two claims.

Claim 1. Algorithm AB never creates two maximal
vacant submachine of the same size.

Assume, for contradiction, that Algorithm AB cre-
ates two maximal vzwant submachine of size 2“, VI and
V2. The 2’+1 -PE submachine that contains VI is as-
signed a task of size at most 2’, denoted by t1; the
2’+1-PE submachine that contains V2 is assigned a task
of size at most 2=, denoted by t2.Without loss of gen-
erality, assume VI is in front of V2 in the search order of
AB. When task t’arrives, Algorithm AB should find VI

before it finds V’. Therefore, Algorithm AB should as-
sign tz to vacant submachine V1 or a vacant submachine
in front of V1 in the search order of AB, This contra-
dicts with the fact that t’ is assigned to the 2Z+l-PE
submachine that contains V’. The claim follows.

Claim 2. When a task of size 2X arrives, there is a
2’-PE vacant submachine in first [S/Nl copies T.

Assume, for contradiction, that when a task of size
2’ arrives, there is no 2’-PE vacant submachine in the
first [S/Nl copies T. This implies that there is no max-
imal vacant submachine of size at least 2= in the first
[S/Nl copies T. By Claim 1, the cumulative size of
maximal vacant submachine in the first [S/Nl copies

313

T’ is at most ~z<z 2’< 2X. This implies that more than

S – 2X PEs are assigned tasks in the first [S/Nl copies.
Therefore, when a task of size 2’ arrives, the total size
of active tasks is more than S – 2“. This contradicts the
fact that the total size of active tasks in u is at most S.
The claim follows.

We conclude that the load of Algorithm AB is at
most ~S/Nl. ❑

Our d-reallocation on-line algorithm AM that uses
the greedy on-line algorithm AG and the basic algorithm
AB is described as foIIows:

Algorithm AM:

Task Arrival: If d > [~ (log N + 1)1, then allocate
the task using greedy algorithm AG. Otherwise,
allocate the task using Algorithm AB.

Task Reallocation: if d z [~ (log N + 1)1, perform

no reallocation. Otherwise, if d < [~ (log N + 1)1
and the total size of arriving tasks since last real-
location is at leaat WV, reallocate all active tasks
using reallocation procedure AR.

Task Departure: When a task departs, the subma-
chine allocated to it is de-allocated.

Theorem 4.2 For any task sequence u, the moxzmum
load achieved by Algorithm AM is within a factor off
from the optzmal load L“,

where f = min{d + 1, (~(log N+ 1)1}.

Proof. When d ~ [$ (log N + I)], Algorithm AM is
exactly the same ax Algorithm AG.

By Theorem 4.1, the maximum load achieved by al-
gorithm AM is at most ~~(log N + 1)1 L*.

When d < [~ (log N + 1)1, we prove that the maxi-
mum load achieved by algorithm AM is at most d+ L* g
(d+ l) L”. At any time ~, let a’ be the sequence of
events that occur before r. Let al denote the sequence
of events that occur before the last reallocation in u’,
and uz denote the sequence of events that occur after
the last reallocation in a’. Since Algorithm AM reallo-
cates all active tasks at time Ial I using Algorithm AB,

we can use Lemma 1 to bound the load created by the
active tasks in al to be at most ~S(al, Ial I)/N’l, which
is at most L*. The total size of arriving tasks in uz is
at most dN. Using Lemma 2, the load created by ac-
tive tasks in uz is at most d. Thus, the total number
of copies created by algorithm AM is at most d + L*.
Thus the load of algorithm AM is at most (d+ l) L*.

Therefore, the maximum load achieved by Algorithm
AM is at most fL*. •1

4.2 A Lower Bound for Deterministic

On-line Algorithms

In this section, we prove a lower bound on the perfor-
mance of any deterministic d-reallocation on-line algo-
rithms for an N-PE machine. The lower bound pre-
sented in this section is tight to within a factor of two.

Theorem 4.3 For any d-reallocat~on determwwstw on-

line algorithm, there exists a task sequence o for whzch
the algortthm recurs a load of at least f L*, where L’ is

the optimal load of o and f = [+ (min{d, log N}+ 1)1.

For any given deterministic d-reallocation on-line al-
gorithm, we construct a sequence u such that the algo-
rithm incurs a load of at least fL* on that sequence.

We construct a in p ‘~f min{d, log N} phases as follows:

In phase O, N tasks of size 1 arrive.

In phase Z, task departures are followed by task arrivals:

(1) For each 2i-1-PE submachine T2_l:
Compute 1(2’–1): the maximum load of all
PEs in submachine T~–1
Compute L(’T- I): the cumulative size of the
active tasks that use a PE in submachine Tt–l.

Compute Q(TZ_l) ‘~f Xl(TZ-l) – L(TZ-l)

For each 2’-PE submachine T,:

(2)

Let T: be the left subtree of T~ and T,R be the
right subtree of T,.

If Q(T$) > Q (TiR), then have all active tasks
assigned to TiR depart;
If Q (T:) s Q (T,R), then have all active tasks
assigned to T,L depart.
Letting S be the cumulative size of current

active tasks, have 1(N – S)/2’] tasks of size
2’ arrive,

We use a potential argument to prove our lower bound,
The potential of a submachine in T at the end of phase
z is defined as follows:

s The potential of each 2Z-PE submachine T= at the

end of phase z: P(T*, z) ‘~f 2’1(T,) – L(Tt)

● For j z Z, the potential of each 23-PE submachine

T, at the end of phase i: P(T3, t) ‘~f ~~zc~, P(T,, i)

The potential of a submachine is a measure of its frag-
mentation. We first bound the increase in potential at
each phase.

Lemma 3 For alli, F’(T, i)- P(T, i-1) > ~(N–2’-l).

Proof. At the beginning of phase i, the potential of a
2’-PE tree Ti is

P(T,, z – 1)

= P(T~,z– 1)+P(T,~, i– 1)

= 2Z-ll(T;) – L(T~) + 2;-ll(TZR) – L(T~)

314

Suppose that algorithm A assigns k tasks of size 2’ on
submachine T4, at phase i. Then:

If Q(Tf) < Q(’I’’R), then all active tasks assigned to T$
depart; hence,

P(T8, z) = 2’ (l(T~) + k) - (L(T~) + 2’k) = Q(T~)

Similarly, if Q(T~) > Q(T~), then P(Ti, i) = Q(’@).

In either case, therefore,
P(Tt, i) = max {Q(T~), Q(T..)} > ;(Q(T~) +Q(7jL)).

It follows that the potential of T, at phase z is increased
by

P(T,,2) - P(T,, Z – 1)

2 ~ (Q@7 + Q@)) - WC,z - I)

= ;(L(T~)+L(T~))

Summing the potential increzse for all 2i-PE subma-
chine of 2’, we thus find that the potential increase of
T is

P(z’, z) – P(T, i– 1) = ~ (P(TZ,2) – P(x, z – 1))

T,cT

> ;(N - 2’-’).

The final inequality is true because we choose the num-
ber of task arrivals at phase z – 1 so that the total size
of active tasks is at least N – 2’–1 at the beginning of
phase i. •1

Proof of Theorem 4.3. Since the total size of task
arrivals at each phase is at most N, the total size of
task arrivals in the task sequence is at most pN, which
is at most dN since p = min{d, log N}. Therefore, real-
location can not occur during this task sequence. Using
Lemma 3, the potential at the end of each task sequence
is

P(T, p– 1) ~ ;N(p– 1) – 2P-1 + 1

By definition, P(Z’, p - 1) = l(Z’)N – L(T). By the
construction of u, at the end of the sequence,

L(T) z N – 2P–1

We conclude that 1(2’) z ~~(p + 1)1 ,

where p = min{d, log N}. •1

5 Randomized On-line Allocation Algo-

rithms

its maximum expected load. When reallocation is disal-
lowed, we see that a simple application of randomization
allows one to “beat” any deterministic algorithm. We
close the section with a nontrivial lower bound on the
maximum expected load incurred by any randomized
on-line algorithm that does not reallocate tasks. Note
that the results presented in this section do not utilize
reallocation. The question of utilizing reallocation to-
gether with randomization is an area for future study.

5.1 A Randomized On-line Allocation

Algorithm

The following oblivious randomized algorithm allocates
tasks independent of the current loads of PEs in the
machine and does not use reallocation.

Algorithm AR:

Task Arrival: When a task of size 2’ arrives, assign
it to any 2“-PE submachine of T with probability
2’/N.

Task Departure: When a task departs, the subma-
chine allocated to it is de-allocated.

The following lemma due to Hoeffding [15] is needed to
analyze our algorithm.

Lemma 4 (Hoeffding) Given N independent Bernoullt
trials with respective probabilities pl,. . . . pN, with mean

P = Z Pi) if m ? F + 1 is an integer, then the proba-
bWy of at least m successes in the N tr$als M at most

(pe/m)m.

Theorem 5.1 For a task sequence v, the maximum ez-
pected load of Algorithm AR M at most f L*, where L“

(3 log N
is the optimal load of u, and f =

log log N)
+1

Proof. At any time r, there are at most s(u) active
tasks: number them tl,...,t.(a).Let pi(u) = s(ti)/N

denote the probability that task t,is assigned to a PE
u.

By Lemma 4, the probability that Algorithm AR assigns

more than kL* tasksto PE u is at most ($) ‘kL*. Thus,
3 log N

when k = —, the probability that Algorithm AR
log log N

assigns more than kL” tasks to PE u is at most N–2.
Thus, the probability that the algorithm assigns more
than kL* tasks to some PE! in T is at most N – 1.

In this section, we present a simple randomized on-line
algorithm that does not reallocate tasks, and we analyze

315

Letting L denote the load of T, the expected load of T
can be bounded as follows.

E(L)

< kL* (1 – ~rob{L > kL*}) + NL*~rob{L > kL*}

~ kL” + L*

The theorem follows. ❑

5.2 A Lower Bound for Randomized On-

line Algorithms

In this section, we provide a lower bound on the maxi-
mum expected load of any randomized on-line algorithm
that does not reallocate tasks.

Theorem 5.2 For any randomized on-line algorithm,

there extsts a task sequence for whzch the maxtmum ez-
pected load is at least EL*, where the opttmal load of the

7 (-)”3
sequence is L’, and e= ~

Our strategy for the proof is to construct a random
task sequence and show that any on-line algorithm (ran-
dom or deterministic) performs “poorly” on it. This
will imply that for every randomized on-line algorithm,
there exists a fixed task sequence such that this algo-
rithm performs “poorly” on it.

Consider the following random task sequence ar that
log N

consists of
2 log log N

phases:

At Phase i:

1. fV/(3 logi N) tasks of size log; N arrive.

2. With probability 1 – (1/ log N),
each task of size logi N departs.

Lemma 5 With high probability, s(uV) ~ N

Proof Sketch. Let x: be the indicator random variable
for the event that the kth task of size logi N does not
depart; the X$ are independent random variables.

{

1 with probability 1/ log N
x$ =

O with probability 1 – (1/ log N)

The size s(ar) can be expressed aa a weighted sum of
the variables, x$. We now use Chernoff bounds [16] in a
standard fashion to derive the high probability bound.
•1

For any j, let 1(T;, t) denote the load of a (log’ N)-
PE submachine T; of T at the beginning of phase Z.
Define the following potential functions.

● The potential of each (logi N)-PE submachine at

the beginning of phase Z: P’ (T;, t) ‘~f 1(T;, i) log’ N.

s For j > z, the potential for each (log’ N)-PE sub-

machine T; at the beginning of phase z: P’ (T;, i) ‘~f

ZT:CT; P’(T: ‘)

We bound the potential increase at each phase in the
following lemma.

Lemma 6 For any on-line task allocat~on algorzthm, zf
the load of T is less than t after the arrivals at phase i,
then P’ (T, z + 1) – P’ (T, Z) > N/(120~2) wtth probabdtty
at least 1 – N–6.

Proof. Say that no more than t tasks of size log’ N are
assigned to the same (logi N)-PE submachine at phase
Z, we have the following two claims.

Claim 1. At least N/(121 log’+l N) (log;+l N)-PE sub-
machine of T are aasigned to at lesst $ log N tasks of

size log’ N. The claim follows from the pigeon-hole prin-
ciple. •1

Claim 2. For each (log’+’ N)-PE submachine T;+, of
T that are assigned to at least ~ log N tasks of size

logi N, either (a) P’(T~+l, z+l)– P’(T~+l, i) ~ log’+l N
with probability at least 1/(91) or (b) P’ (TJ+I, z + 1) –

P’ (T(+l , i) z logz+l N/(81)

We prove Claim 2 by proving the following two cases.
Let h be the number of size- (log” N) submachine of

T:+ ~ having load strictly less than 1(T;+ ~, i) We con-
sider the following two cases:

Case A. h < (log N)/(81)

Since the load on any node is less than 1, and there
are ~ log N tasks of size log’ N in T:+ ~, there are at least

(log N)/ (4/) size- (log’ N) submachine of !i”~+l that are
assigned to at least one task of size log’ N. There are
log N – h > log N – (log N)/(8L) size-(log’ N) subma-
chine of T~+l that have load 1(T;+ ~, i). Therefore, at
least (log N/(8t)) size- (log’ N) submachine of T(+ ~ are

assigned at least one task of size logi N and have load
1(TJ+I, i) at the beginning of phase i. We conclude that,
with probability

l-(l-*)(’OgN)’s’>l-e-’’>+>+
the load of T[+l is increased by at least 1, which means

P’(T;+I, z + 1) – P’(T;+I, z) z log’+l N.

Case B. h ~ (log N)/(81?)

P’(T;+l, i+l) –P’(T;+I, z) > hlogZN > log’+l N/(81).

Using claim 1 and claim 2, and using Chernoff bounds,
we conclude the theorem. •1

Lemma 7 The sequence GT results m a load of at least
t for any on-line allocation algorithm, with probability

(

log N

)

1/3
at least 1 – N–5, where 1 =

240 log log N “

316

Proof, If the load of T never reaches t during
phase, then by Lema 6, with probability at least
1 – (log N)/Nf’,

(
P’ T,

log N

)

>N log N

2 log log N – 120122 log log N

any

By the definition of the potential functions, the load of

T is at least
log N -

= / with probability at least
24042log log N

l–~-5. ❑

Proof of Theorem 5.2. By Lemma 7, the load of
any on-line algorithm (deterministic or randomized) on
the random sequence a, is at least t with probability
at least 1 – N–5. Using Lemma 5, the optimal load
L* of sequence a. is 1 with probability at least 1 –
N– 6. We conclude that the load of any randomized
on-line algorithm on sequence ar is at least a factor
1 away from its optimal 10SJ3with probability at least
1 – N-4 Hence, the maximum expected load of any
deterministic on-line algorithm on the random sequence
O. is at least a factor 1 away from its optimal load.
Therefore, we conclude that for any randomized on-line
algorithm there exists a fixed task sequence for which
the maximum expected load incurred is at least a factor
t away from the optimal load. ❑

Acknowledgments. It is a pleasure to acknowledge
helpfuf and stimulating conversations with Vittorio Sca-
rano and Tom Leighton. The first author was supported
in part by NSF Grants CCR-92-12567 and CCR-94-
10077. The second author was supported in part by
NSF Grant CCR-94-1OO77. The third author was sup-
ported in part by NSF Grant CCR-94-12567.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

B. Awerbuch, R. Cawlick, T. Leighton, Y. Ra-
bani (1994): On-line Admission Control and Cir-
cuit Routing for High Performance Computing and
Communication. 35th IEEE ,5@p. on Foundations
of Computer Sctence, 412-423.
Y. Azar, A. Broder, A. Karlin and E. Upfal (1994):
Balanced Allocations. 26th ACM Symp. on Theory
of Computmg, 593-602.
S.N. Bhatt, F.R.K. Chung, F.T. Leighton, A.L.
Rosenberg (1995): Salvage-embeddings of complete
trees. SIAM J. Discrete Math.
R. Blumofe and C.E Leiserson (1993): Space-
efficient scheduling of multithreaded computations.
25th ACM Symp. on Theorg of Computing, 362-
371.
R. Blumofe and C.E Leiserson (1994): Scheduling
multithreaded computations by work stealing. 35th
IEEE Symp. on Foundations of Computer Science.
S.Brovming (1980): The Tree Machine: A highly
Concurrent Computing Environment. Ph.D. The-
sis, CalTech.
A. Borodin, N. Linial, and M. Saks. (1987): An
Optimal On-line Algorithm for Metrical Task Sys-
tems. 19th ACM Symp. on Theory of Computmg,
373-382.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

T. Brecht, X. Deng, N. Gu (1995): Competitive dy-
namic processor allocation for parallel applications.
7th IEEE Symp. on Parallel and Dzstr. Processing,
448-455.
M. Chen and K. Shin (1987): Processor Allocation
in an N-Cube Multiprocessor Using Gray Codes.
IEEE Tkans. Comp. C-36, 1396-1407.
M. Chen and K. Shin (1990): Subcube Allocation
and Task Migration in Hypercube Multiprocessors.
IEEE Pans. Comp. C-39, 1146-1155.
S. Dutt and J. P. Hayes (1991): Subcube Allocation
in Hypercube Computers. IEEE Trans. Comp. C-
40, 341-352.
G. Chen and T. Lai (1989): Virtual Subcubes and
Job Migration in a Hypercube. International Con-

ference on Parallel Processing, 73-76.
A. Feldmann, J. Sgall and S. Teng (1991): Dynamic
Scheduling on Parallel Machines. 32th IEEE Symp.
on Foundations of Computer Sctence, 111-120.
A. Feldmann, M. Kao, J. Sgall and S. Teng (1993):
Optimal Online Scheduling of Parallel Jobs with
Dependencies, 25th ACM Symp. on Theory of
Cornputmg, 642-651.
W. Hoeffding(1956): On the distribution of the
number of successes in independent triafs. A nruds
of Mathematical Statistics, 27:713-721.
T. Hagerup and C. Rub (1989): A Guided Tour of
Chernoff Bounds. Inf. Proc. Let., 305-308.
C.E. Leiserson, Z.S, Abuhamdeh, D,C. Douglas,
C.R. f?eynman, M.N. Ganmukhi, J.V. Hill, W.D.
Hillis, B.C. Kuszmaul, M.A. St. Pierre, D.S. Wells,
M.C. Wong, S.-W. Yang, R. Zak (1992): The net-
work architecture of the connection machine CM-5.
4th ACM Symp. on Parallel Algorithms and Archt-

tecturws, 272-285.

D. Shmoys, J. Wein and D. Williamson (1991):
Scheduling Parallel Machine On-line. 32th IEEE

Symp. on Foundations of Computer Sctence, 305-
308.
J. Turek, W. Ludwig, J.L. Wolf, L. Fleischer, P. Ti-
wari, J. Glasgow, U. Schwiegelsohn, P.S. Yu (1994):
Scheduling parallelizable tasks to minimize average
response time. 6th ACM Symp. on Parallel Algo-

rithms and Architectures.

Permissionto makedtgital/hard copiesof all or pafi of this material for
personalor classroomuseis grantedwithout fee provided that the copies
are not madeor distributed for profit or commercialadvantage,the copy-
right notice, the title of the publication and its dateappear,and notice is
given that copyright is by permissionof the ACM, Inc, To copy othemvise,
to republish, to post on aerveraor to redistributeto lists, requiresspecific
perrniasionand/or fee.
SPAA’96, Padua, Italy
@1996 ACM 0-89791-809-6196106 ..$3.50

317

