
ON THE FAULT TOLERANCE OF SOME POPULAR
BOUNDED-DEGREE NETWORKS∗

F. THOMSON LEIGHTON† , BRUCE M. MAGGS‡ , AND RAMESH K. SITARAMAN§

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 5, pp. 1303–1333, October 1998 007

Abstract. In this paper, we analyze the fault tolerance of several bounded-degree networks
that are commonly used for parallel computation. Among other things, we show that an N -node
butterfly network containing N1−ε worst-case faults (for any constant ε > 0) can emulate a fault-free
butterfly of the same size with only constant slowdown. The same result is proved for the shuffle-
exchange network. Hence, these networks become the first connected bounded-degree networks
known to be able to sustain more than a constant number of worst-case faults without suffering more
than a constant-factor slowdown in performance. We also show that an N -node butterfly whose
nodes fail with some constant probability p can emulate a fault-free network of the same type and
size with a slowdown of 2O(log∗ N). These emulation schemes combine the technique of redundant
computation with new algorithms for routing packets around faults in hypercubic networks. We also
present techniques for tolerating faults that do not rely on redundant computation. These techniques
tolerate fewer faults but are more widely applicable because they can be used with other networks
such as binary trees and meshes of trees.

Key words. fault tolerance, network emulation, butterfly network

AMS subject classifications. 68M07, 68M10, 68M15, 68Q68

PII. S0097539793255163

1. Introduction. In this paper, we analyze the effect of faults on the computa-
tional power of bounded-degree networks such as the butterfly network, the shuffle-
exchange network, and the mesh of trees. The main objective of our work is to devise
methods for circumventing faults in these networks using as little overhead as possible
and to prove lower bounds on the effectiveness of optimal methods. We consider both
worst-case and random fault patterns, and we always assume that faulty components
are totally disabled (e.g., a faulty node cannot be used to transport a packet of data
through the network). We also assume that the faults in a network are static and
detectable and that information concerning the location of faults can be used when
reconfiguring the network to circumvent the faults. For simplicity, we restrict our
attention to node faults since an edge fault can always be simulated by disabling the
node at each end of the edge.

There are several ways to measure the effect of faults on a network. In this
paper, we are primarily concerned with the amount by which a collection of faults
can slow down some computation on the network. For example, if a butterfly network

∗ Received by the editors September 9, 1993; accepted for publication (in revised form) July 20,
1996; published electronically May 19, 1998.

http://www.siam.org/journals/sicomp/27-5/25516.html
† Mathematics Department and Laboratory for Computer Science, Massachusetts Institute of

Technology, Cambridge, MA 02139 (ftl@math.mit.edu). This author was supported in part by Army
contract DAAH04-95-0607 and by ARPA contract N00014-95-1-1246.

‡ School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213 (bmm@cs.
cmu.edu). This author was supported in part by the Air Force Material Command (AFMC) and
ARPA under contract F196828-93-C-0193, by ARPA contracts F33615-93-1-1330 and N00014-95-
1-1246, and by an NSF National Young Investigator Award, CCR-94-57766, with matching funds
provided by NEC Research Institute. This research of this author was conducted while the author
was employed at NEC Research Institute.

§ Department of Computer Science, University of Massachusetts, Amherst, MA 01003 (ramesh@
cs.umass.edu). This author was supported in part by NSF grant CCR–94–10077. The research of
this author was conducted while the author was a student at Princeton University.

1303

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1304 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

containing some faults is to be used for packet routing, we are concerned with how
many nodes can send and receive packets, and how much longer it takes the faulty
butterfly to deliver all of the packets than it takes a fault-free butterfly to perform the
same task. More generally, we are interested in the length of time it takes an impaired
network to emulate a single step of a fault-free network of the same type and size. In
particular, we define the slowdown caused by a set of faults in a network G to be the
minimum value of S such that any computation that takes T steps on G when there
are no faults can be performed in at most S · T steps on G when faults are present.
One of our main goals is to understand the relationship between slowdown and the
number of faults for commonly used networks. In particular, we prove bounds on the
number of faults that can be tolerated without losing more than a constant factor in
speed.

We have two approaches for emulating a fault-free network G on an isomorphic
faulty network H. The first approach is to find an embedding of G into H that avoids
the faults in H. The second approach uses redundant computation; i.e., we allow
H to emulate some of the nodes of G in more than one place. At first glance this
approach seems disadvantageous, since H ends up performing more work. As we shall
see, however, the freedom to emulate a node of G in more than once place allows H
to have results ready where and when they are needed and can greatly reduce the
slowdown of the emulation.

1.1. Emulations based on embeddings. An embedding maps the nodes of
G to nonfaulty nodes of H and the edges of G to nonfaulty paths in H. A good
embedding is one with minimum load, congestion, and dilation, where the load of
an embedding is the maximum number of nodes of G that are mapped to any single
node of H, the congestion of an embedding is the maximum number of paths that
pass through any edge e of H, and the dilation of an embedding is the length of the
longest path. The load, congestion, and dilation of the embedding determine the time
required to emulate each step of G on H. In particular, Leighton, Maggs, and Rao
have shown [30] that if there is an embedding of G in H with load l, congestion c, and
dilation d, then H can emulate any computation on G with slowdown O(l + c+ d).

In this paper, we are most interested in embeddings for which the load, congestion,
and dilation are all constant (independent of the size of the network). In particular,
we show in section 2 how to embed a fault-free N -input butterfly into an N -input
butterfly containing logO(1) N worst-case faults using constant load, congestion, and
dilation. A similar result is also proved for the N -node mesh of trees. Hence, these
networks can tolerate logO(1) N worst-case faults with constant slowdown.

Previously, no connected bounded-degree networks were known to be able to
tolerate more than a constant number of worst-case faults without suffering more
than a constant-factor loss in performance. Indeed, it was only known that

1. any embedding of an N -node (two- or three-dimensional) array into an array
of the same size containing more than a constant number of worst-case faults
must have more than constant load, congestion, or dilation [22, 25, 31], and

2. the N -node hypercube can be reconfigured around logO(1) N worst-case faults
with constant load, congestion, and dilation [2, 12].

The embeddings that we use in section 2 are level preserving; i.e., nodes in a
particular level of the fault-free network are mapped to nodes on the same level of the
faulty network. We take a significant step toward proving the limitation of embedding
techniques for the emulation of these networks by showing that no level-preserving
embedding strategy with constant load, congestion, and dilation can tolerate more

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1305

than logO(1) N worst-case faults. Whether or not there is a natural low-degree N -
node network (the hypercube included) that can be reconfigured around more than

logO(1) N faults with constant load, congestion, and dilation using (not necessarily
level-preserving) embedding techniques remains an interesting open question.

1.2. Fault-tolerant routing algorithms. In section 3, we shift our attention
to the routing capabilities of hypercubic networks containing faults. The algorithms
developed in this section are later used by the emulation schemes based on redundant
computation. First we prove in section 3.1 that an N -input butterfly with f worst-
case faults can support an O(logN)-step randomized packet routing algorithm for the
nodes in N − 6f rows of the butterfly. The ability of the butterfly to withstand faults
in this context is important because butterflies are often used solely for their routing
abilities. Previously, it was known that expander-based multibutterfly networks can
tolerate large numbers of worst-case faults without losing their routing powers [6,
28], but no such results were known for butterflies or other hypercubic networks.
A corollary of this result is that an N -input butterfly with N/12 worst-case faults
can support an O(logN)-step randomized routing algorithm for a majority of its
nodes. Note that the number of faults is optimal to within a constant factor, since
it is possible to partition an N -input butterfly into connected components of size
O(
√
N logN) with N faults. In section 3.2 we show that butterflies with faults can

also be used for circuit switching. In particular, we show that even if a 2N -input
O(1)-dilated Beneš network contains N1−ε worst-case faults (for any ε > 0), there is
still a set of 2N − o(N) inputs I and a set of 2N − o(N) outputs O such that for
any one-to-one mapping φ : I 7→ O it is possible to route edge-disjoint paths from i
to φ(i) for all i ∈ I. This result substantially improves upon previous algorithms for
fault-tolerant circuit switching in Beneš networks [41, 49], which dealt with a constant
number of faults by adding an extra stage to the network.

1.3. Emulations using redundant computation. In section 4, we use the
fault-tolerant routing algorithm from section 3.2 to show that an N -input butterfly
with N1−ε worst-case faults (for any constant ε > 0) can emulate a fault-free butterfly
of the same size with only constant slowdown. A similar result is proved for the shuffle-
exchange network. These results are stronger than the reconfiguration results proved
in section 2 because the number of faults tolerated is much larger. The approach
used in section 4 differs from the embedding-based approaches in section 2 in that a
single node of the fault-free butterfly is emulated by (possibly) several nodes in the
faulty butterfly. Allowing redundant computation provides greater flexibility when
embedding one network in another (thereby attaining greater fault tolerance) but also
adds the complication of ensuring that replicated computations stay consistent (and
accurate) over time. This technique was previously used in the context of (fault-free)
work-preserving emulations of one network by another [19, 26, 38, 39, 40, 47].

The techniques developed in section 4 also have applications for hypercubes. For
example, in section 4.4, we use them to show than an N -node hypercube with N1−ε

worst-case faults can emulate T steps of any normal algorithm [27] in O(T + logN)
time. (The set of normal algorithms include FFT, bitonic sort, and other important
ascend–descend algorithms.) Previously, such results were known only for hypercubes

containing logO(1) N faults [2, 12, 13]. Whether or not an N -node hypercube can

tolerate more than logO(1) N faults with constant slowdown for general computations
remains an important unresolved question.

In section 5, we show that even if each node in an N -input butterfly fails indepen-

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1306 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

dently with probability p = 1/ log(k) N , where log(k) denotes the logarithm function
iterated k times, the faulty butterfly can still emulate a fault-free N -input butter-
fly with slowdown 2O(k), with high probability. For k = O(log∗N) the node failure
probability is constant, and the slowdown is 2O(log∗N), which grows very slowly with
N . Whether or not this result can be improved remains an interesting open question.
Until recently, no results along these lines were known for the butterfly, unless routing
is allowed through faulty nodes [5], which simplifies matters substantially. Tamaki
[51] has recently discovered an emulation scheme with slowdown O((log logN)8.2). He
also introduced a class of bounded-degree networks called cube-connected arrays [52]
and showed that an N -node network in this class with constant-probability random
faults can emulate itself with expected slowdown approximately log logN . These net-
works can also tolerate up to logO(1) N worst-case faults with approximately log logN
slowdown.

1.4. Additional previous work. There is a substantial body of literature con-
cerning the fault tolerance of communication networks. We do not have the space to
review all of this literature here, but we would like to cite the papers that are most
relevant. In particular, [2, 5, 9, 14, 23, 24, 25, 35, 44, 52] show how to reconfigure
a network with faults so that it can emulate a fault-free network of the same type
and size. A fault-tolerant area-universal network is presented in [53]. References
[4, 10, 11, 16, 17] show how to design a network H that contains G as a subnetwork
even if H contains some faults. Algorithms for routing messages around faults appear
in [1, 6, 8, 15, 24, 25, 28, 34, 36, 41, 43, 44, 49]. The fault-tolerance of sorting networks
is studied in [7, 32]. Finally, [12, 56, 57] show how to perform certain computations
in hypercubes containing faults.

1.5. Network definitions. In this section, we review the structure of some of
the networks that we study in this paper. In all of these networks, the edges are
assumed to be undirected (or bidirectional).

An N -input (logN)-dimensional butterfly network has N(logN + 1) nodes ar-
ranged in (logN) + 1 levels.1 An 8-input butterfly is shown in Figure 1.1. Each
node in the butterfly has a distinct label (w, i), where i is the level of the node
(0 ≤ i ≤ logN) and w is a (logN)-bit binary number that denotes the row of the
node. All edges connect pairs of nodes on adjacent levels. Each node (w, i) is con-
nected by a straight edge to node (w, i + 1), provided that i < logN . In the figure,
straight edges are drawn horizontally. Each node (w, i) is also connected by a cross
edge to node (w′, i+ 1), where w and w′ differ only in the bit in position i, provided
that i < logN . (The most significant bit is in position 0, and the least significant is
in position (logN) − 1.) In the figure, cross edges are drawn diagonally. The nodes
in level 0 are called the inputs of the butterfly, and those in level logN are called
the outputs. Sometimes the input and output nodes in each row are assumed to be
the same node. In this case, the butterfly has only N logN nodes. Our results hold
whether or not the butterfly wraps around in this way.

In an N -node hypercube, each node is labeled with a distinct (logN)-bit binary
number. Two nodes in the hypercube are connected by an edge if and only if their
labels differ in exactly one bit. The hypercube is the only network considered in this
paper in which the degree of each node is not constant.

As in the N -node hypercube, each node in an N -node shuffle-exchange network
is labeled with a distinct (logN)-bit binary number. An 8-node shuffle-exchange

1 Throughout this paper, log denotes the base-2 logarithm function, log2.

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1307

000

001

010

011

100

101

110

111

0 1 2 3

row

level

Fig. 1.1. An 8-input butterfly network.

000 111

100

010

101

110

011

001

Fig. 1.2. An 8-node shuffle-exchange network.

network is shown in Figure 1.2. In the shuffle-exchange network, a node labeled u is
connected by an exchange edge to the node labeled u′, where u and u′ differ only in
the bit in the least significant position (position (logN)−1). Node u is also connected
by shuffle edges to the nodes labeled ul and ur, where ul and ur are the one-bit left
and right cyclic shifts of u. (If ul = ur then there is only one shuffle edge.) In the
figure exchange edges are dotted and shuffle edges are solid.

An N ×N mesh of trees network [27] is formed by first arranging N2 nodes (but
no edges) in a grid of N rows and N columns. Then for each row, an N -leaf complete
binary tree, called a row tree, is added. The leaves of the row tree are the nodes of the
corresponding row. Similarly, for each column an N -leaf column tree is added. The
leaves of the column tree are the nodes of the column. Hence, the node at position
(i, j) in the grid is a leaf of the ith row tree and jth column tree for 0 ≤ i, j ≤ N − 1.

A circuit-switching network is used to establish edge-disjoint paths (called cir-
cuits) between its inputs and outputs. We call the nodes in a circuit-switching net-
work switches to signify that they are used only for routing and not for performing
computation. Each switch in a circuit-switching network has a set of incoming edges
and a set of outgoing edges. Inside the switch, the incoming edges can be connected
to the outgoing edges in any one-to-one fashion. The switches at the first level of the
network are called the input switches. The switches at the last level are called the

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1308 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

0

OUTPUT NODESINPUT NODES

OUTPUTSINPUTS

7

6
5

4

3

2

1

0

7

6

5

4

3

2

1

Fig. 1.3. An 8-input (two-dimensional) Beneš network.

output switches. The edges into each input switch are called input edges, or inputs.
The edges out of each output switch are called output edges, or outputs. (Note, how-
ever, that in a butterfly network, we use the terms “inputs” and “outputs” to refer
to nodes, not edges.) By setting the connections inside the switches, each input edge
can be connected to an output edge via a path through the network.

A circuit-switching network with N inputs and N outputs is said to be rearrange-
able if for any one-to-one mapping φ from the inputs to the outputs it is possible to
construct edge-disjoint paths in the network connecting the ith input to the φ(i)th
output for 0 ≤ i ≤ N − 1.

The Beneš network is a classic example of a rearrangeable network. A (logN)-
dimensional Beneš network has 2N inputs and 2N outputs. Its switches are arranged
in 2 logN + 1 levels of N switches each. The first and last logN + 1 levels each form
a (logN)-dimensional butterfly. Hence a Beneš network consists of two back-to-back
butterflies sharing level logN . We refer to the switches in levels 0, logN , and, 2 logN
as the input switches, middle switches, and output switches, respectively. Figure 1.3
shows an 8-input Beneš network in which the inputs are connected to the outputs
according to the following mapping φ: φ(0) = 3, φ(1) = 1, φ(2) = 2, φ(3) = 6,
φ(4) = 0, φ(5) = 5, φ(6) = 4, φ(7) = 7.

2. Emulation by embedding. In this section, we show how to embed a fault-
free binary tree, butterfly, or mesh of trees into a faulty network of the same type
and size with constant load, congestion, and dilation. As noted in the introduction,
finding a constant load, congestion, and dilation embedding is the simplest way of
emulating arbitrary computations of a fault-free network on a faulty network of the
same type and size with only constant slowdown. We first consider embedding a
complete binary tree in a complete binary tree with faults only at its leaves. This
result also holds for fat-trees [21, 33] with faults at the leaves. We use this result to

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1309

find reconfigurations of butterflies and meshes of trees in which faults may occur at
any node. The main result of this section is a proof that an N -node butterfly or mesh
of trees network can tolerate logO(1) N worst-case faults and still emulate a fault-free
network of the same type and size with only constant slowdown.

2.1. The binary tree. In Theorem 2.1.2, we show that a fault-free 2n-leaf com-
plete binary tree can be embedded in another 2n-leaf complete binary tree containing
S(n, b) or fewer faults at its leaves with load and congestion at most 2b and dilation
1, where S(n, b) is defined for n ≥ b ≥ 0 by the recurrence

S(n, b) = S(n− 1, b) + S(n− 1, b− 1) + 1

for n > b > 0, with boundary conditions S(n, 0) = 0 and S(n, n) = 2n − 1 for n ≥ 0.
The following lemma provides a useful bound on the growth of S(n, b).

Lemma 2.1.1. For all n ≥ b ≥ 1,
(
n
b

) ≤ S(n, b) ≤ (n+b
b

)
.

Proof. The proof is by induction on n. For n = 1, the only possible value of b
is 1. In this case, S(1, 1) = 1 and

(
1
1

)
= 1 <

(
2
1

)
. For n > 1, there are three cases

to consider. First, for b = 1, S(n, 1) = n, and
(
n
1

)
= n <

(
n+1

1

)
. Second, for n = b,

S(n, n) = 2n − 1 and
(
n
n

) ≤ 2n − 1 <
(
2n
n

)
. Finally, for n > b > 1, the inequalities

are proved inductively using the fact that
(
x
y

)
=
(
x−1
y

)
+
(
x−1
y−1

)
, for all x > y > 0, and(

x
y

)
+ 1 ≤ (x+1

y

)
for x ≥ y > 0.

Using the inequalities (x/y)y ≤ (xy) ≤ (xe/y)y for x ≥ y > 0, we see that for any

constant b > 0, S(n, b) = Θ(nb).

Theorem 2.1.2. Given a 2n-leaf complete binary tree T with a set of at most
S(n, b) worst-case faults at the leaves, where n ≥ b ≥ 0, it is possible to embed a
fault-free 2n-leaf complete binary tree T ′ in T so that

1. nodes on level i of T ′ are mapped to nonfaulty nodes on level i of T , for
0 ≤ i ≤ n;

2. the congestion and the load of the embedding are at most 2b; and
3. the dilation of the embedding is 1.

Proof. The proof is by induction on n. For n = 0, the only possible value of b is 0
and S(0, 0) = 0. In this case T is a single fault-free node and T ′ can be embedded in T
with load 1, congestion 0, and dilation 0. For n > 0, there are three cases to consider.
First, for b = 0, S(n, 0) = 0, so T has no faults. In this case, T ′ can be embedded
in T with load 1, congestion 1, and dilation 1. Second, for b = n, S(n, n) = 2n − 1,
so there is a single nonfaulty leaf l in T . In this case, all of the 2n leaves of T ′ are
mapped to l, and the rest of the tree is mapped to the path from the root of T to
l. The embedding has load 2n, congestion 2n, and dilation 1. Finally, suppose that
n > b > 0. If both 2n−1-leaf subtrees of T have at most S(n− 1, b) faulty leaves, then
we use the result inductively in both subtrees. Otherwise, if one 2n−1-leaf subtree
(say the left subtree) has S(n − 1, b) + 1 or more faults, then by the definition of
S(n, b) the other subtree (the right subtree) has at most S(n− 1, b− 1) faulty leaves.
Hence we can use induction to embed a 2n−1-leaf complete binary tree on the right
subtree with dilation 1 and load and congestion 2b−1. By doubling the congestion
and the load, we can embed two 2n−1-leaf complete binary trees in the right subtree.
This means that we can embed T ′ in T with dilation 1 and load and congestion 2b

using only the root and the right subtree of T .

Rewriting the number of leaves as N = 2n, we see that for any constant b >
0, it is possible to embed a fault-free N -leaf complete binary tree T ′ in an N -leaf

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1310 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

m = 2

channel

Fig. 2.1. A 4-ary fat-tree network with depth m = 2 in which r0 = 4, r1 = 2, and r2 = 1.

complete binary tree T containing S(logN, b) = Θ(logbN) faults with constant load,
congestion, and dilation.

This result can be extended to a class of networks called fat-trees. A fat-tree of
depth m is specified by a sequence of numbers r0, r1, . . . , rm, where rm = 1. (Typically
r0 ≥ r1 ≥ · · · ≥ rm.) A fat-tree of depth 0 is a single node, which is both the root
node and the leaf node of the tree. A fat-tree of depth m is constructed as follows.
At the root of the fat-tree there is a set of r0 nodes. The subtrees of the root are
identical and are constructed recursively. Each is a fat-tree of depth m − 1 with
number sequence r1, . . . , rm. The r0 root nodes of the fat-tree are connected to the
r1 root nodes of each subtree by a channel of edges. There may be any number of
edges in the channel, and they may form any pattern of connections, but the channels
to each subtree must be isomorphic. Figure 2.1 shows a fat-tree in which r0 = 4,
r1 = 2, and r2 = 1. In this figure, the root has four subtrees, as do the roots of these
subtrees. Hence the figure shows a 4-ary fat-tree. This fat-tree was chosen for the
figure because a fat-tree of this form has been shown to be area universal [33, 21, 30].
Corollary 2.1.3 is stated for binary fat-trees (i.e., fat-trees in which the root has two
subtrees), but similar results can be proven for 4-ary fat-trees.

Corollary 2.1.3. A (logN)-depth binary fat-tree can be embedded in a level-
preserving fashion in an isomorphic fat-tree with S(logN, b) worst-case faults at its
leaves with load and congestion 2b and dilation 1.

Proof. Associate the nodes of the fat-tree with the nodes of an N -node complete
binary tree as follows. Associate all root nodes of the fat-tree with the root of the
complete binary tree. Recursively associate the nodes of the left (right) subtree of the
fat-tree with the nodes of the left (right) subtree of the complete binary tree. Note
that every leaf of the fat-tree is associated with a distinct leaf of the complete binary
tree. Given a fat-tree F with some faulty leaves, let T be a complete binary tree whose
leaf is faulty if and only if the corresponding leaf in F is faulty. A fault-free complete
binary tree T ′ can be embedded in T by embedding subtrees of T ′ into subtrees of
T using the procedure given in Theorem 2.1.2. The same embedding can be used to
embed a fault-free fat-tree F ′ in F by embedding the corresponding subtrees of F ′

into the corresponding subtrees of F . The dilation and load are the same as that of
the complete binary tree embedding.

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1311

Corollary 2.1.4. A (logN)-dimensional butterfly can be embedded in a level-
preserving fashion in an isomorphic butterfly with S(logN, b) worst-case faults at level
logN with load and congestion 2b and dilation 1.

Proof. A (logN)-dimensional butterfly is a binary fat-tree of depth logN
with ri = 2logN−i. The leaves of the fat-tree are the nodes in level logN of the
butterfly.

2.2. The mesh of trees and the butterfly. We can use Theorem 2.1.2 to
show that the mesh of trees and the butterfly network can tolerate logO(1) N worst-
case faults with constant slowdown, even when a fault can occur at any node of the
network. The proof uses the fact that both the mesh of trees and the butterfly can be
viewed as a special kind of product graph, which we call an external product graph.

As external product graph is defined as follows. Let G be a graph in which some
set of N nodes have been labeled as external nodes. For example, if G is a tree, the
leaves could be the external nodes, or, if G is a butterfly, the nodes on level logN (the
outputs) could be the external nodes. Given a graph G with N external nodes, the
external product graph of G (denoted PG) is constructed as follows. Make 2N copies
of G, Gi,j for i = 1, 2 and 0 ≤ j ≤ N − 1. Number the external nodes of each copy
from 0 to N − 1. Now identify the kth external node in G1,j with the jth external
node in G2,k for all 0 ≤ j, k ≤ N − 1. (By “identify” we mean make them the same
node of the graph PG.) The resulting graph is the external product graph of G. As
an example, when the graph G is a tree and its leaves are the external nodes, the
graph PG is a mesh of trees network. As another example, when G is a butterfly and
its outputs are external nodes, PG is a butterfly with twice the dimension.

We now show that if G can tolerate faults in its external nodes, then PG can
tolerate faults at any of its nodes.

Theorem 2.2.1. If a graph G′ can be embedded in a level-preserving fashion with
load l, congestion c, and dilation d in an isomorphic graph G with f worst-case faults
located in its external nodes, then it is possible to embed the product graph PG′ in a
level-preserving fashion with load l2, congestion lc, and dilation d in an isomorphic
graph PG with f/2 worst-case faults located in any of its nodes.

Proof. Let PG and PG′ be made up of graphs isomorphic to G called Gi,j and
G′i,j , respectively, for i = 1, 2 and 1 ≤ j ≤ N . Let CG and CG′ also be graphs
isomorphic to G. The jth external node of CG is declared to be faulty if and only
if either G1,j or G2,j contains a fault. If PG has f/2 faults, then CG has at most f
faults (since an external node of PG can appear both as the kth leaf of G1,j and as
the jth leaf of G2,k). Let Φ be a level-preserving embedding of the fault-free graph
CG′ into CG with load l, congestion c, and dilation d and define φ so that Φ maps
the jth external node of CG′ to the φ(j)th external node of CG. We embed PG′ into
PG by mapping G′i,j to Gi,φ(j) using Φ to map the individual nodes of G′i,j to Gi,φ(j)

for i = 1, 2 and 0 ≤ j ≤ N − 1. (Hence, the mapping Φ is used twice.) It follows
from the definition of faults in CG that Gi,φ(j) is fault-free. Therefore, no nodes of
PG′ are mapped to faulty nodes of PG. We need to verify that our mapping is well
defined, i.e., that it doesn’t map an external node of PG′ to more than one node of
PG. The kth external node of G′1,j is the same as the jth external node of G′2,k. The
former is mapped to the φ(k)th external node of G1,φ(j) and the latter to the φ(j)th
external node of G2,φ(k). These nodes are the same node of PG. Hence, the mapping
is well defined. The dilation of the mapping is d. The number of copies G′i,j of PG′

mapped to any particular Gi,φ(j) is at most l. Each copy can map l nodes onto any
particular node of Gi,φ(j). Therefore, the load is at most l2, and the congestion is at
most lc.

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1312 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

Theorem 2.2.1 is readily applied to the butterfly and mesh of trees networks.
For simplicity, we state the result for a two-dimensional mesh of trees. The same
techniques, however, can be used to show that any constant-dimension mesh of trees
can tolerate logΘ(1) N worst-case faults with only constant slowdown.

Theorem 2.2.2. A 2 logN -dimensional butterfly can be embedded in a level-
preserving fashion in a 2 logN -dimensional butterfly containing S(logN, b) = Θ(logbN)
worst-case faults with load and congestion 22b and dilation 1.

Proof. The proof follows from Corollary 2.1.4 and Theorem 2.2.1.
Theorem 2.2.3. An N ×N mesh of trees can be embedded in a level-preserving

fashion in an N × N mesh of trees containing S(logN, b) = Θ(logbN) worst-case
faults with load and congestion 22b and dilation 1.

Proof. The proof follows from Theorems 2.1.2 and 2.2.1.
The results of this subsection can also be shown by using the fact that the butterfly

and the mesh of trees can be expressed as the layered cross product [18] of two
complete binary trees (or variations thereof) [3] and proving a theorem analogous to
Theorem 2.2.1 for layered cross product graphs.

2.3. Limitations of level-preserving embeddings. We do not know whether
Theorems 2.1.2, 2.2.2, and 2.2.3 can be improved if the level-preserving constraint
is removed. However, we can show that the bounds in Theorems 2.1.2, 2.2.2, and
2.2.3 are tight if the embedding is forced to be level preserving. The proof uses a
construction called an arrow diagram.

Given an N -leaf binary tree T with faults at its leaves, an arrow diagram has
arrows drawn from some nodes of T to their siblings, with no pairs of antiparallel
arrows allowed. We define a b-legal arrow diagram as follows.

1. On any path from the root to a faulty leaf, there is an arrow from a node on
the path to a node not on the path (called an outgoing arrow).

2. On any path with no outgoing arrow, there can be at most b incoming arrows.
An arrow diagram is called legal if it is b-legal for any 0 ≤ b ≤ n.

Suppose that an adversary is allowed to place faults at the leaves of a 2n-leaf
complete binary tree. Let T (n, b) + 1 be the minimum number of faults needed by
the adversary to make it impossible to construct a b-legal arrow diagram for the tree.
Note that if a diagram is illegal for some set of faults then it cannot be made legal
by adding another fault. Hence allowing more faults only makes the adversary more
powerful. We bound the value of T (n, b) as follows.

Lemma 2.3.1. For n ≥ b ≥ 0,

T (n, b) ≤

0 for b = 0,
T (n− 1, b) + T (n− 1, b− 1) + 1 for 0 < b < n,
2n − 1 for b = n.

Proof. First, suppose that b = 0. If the tree has one or more faults, then any
legal arrow diagram must have at least one arrow. If the diagram has at least one
arrow, then there must be a path from the root of the tree to a leaf having at least one
incoming arrow and no outgoing arrow. Such a path can be recursively constructed
as follows. Choose the arrow that is closest to the root of the tree, and let this arrow
be directed from a node m′ to its sibling m. The constructed path is the path from
the root of the tree to m concatenated with the path constructed recursively in the
subtree rooted at m. (If there is no arrow in the subtree rooted at m a path from m
to any leaf of the subtree suffices.) Thus, a tree with a fault cannot have a 0-legal
arrow diagram. Thus T (n, 0) ≤ 0.

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1313

Next, let n = b. If there are 2n faults, then every leaf is faulty, and it is not
possible to draw an arrow diagram with an outgoing arrow on the path from the root
to every faulty leaf. Thus, T (n, n) ≤ 2n − 1.

Finally, suppose that 0 < b < n. We show that there is a way of placing T (n −
1, b) + T (n − 1, b − 1) + 2 faults at the leaves such that in any legal arrow diagram
either there must be at least b+1 incoming arrows on some path without any outgoing
arrow or there must be a faulty leaf with no outgoing arrow in its path. We place
T (n− 1, b) + 1 worst-case faults in the left subtree and T (n− 1, b− 1) + 1 worst-case
faults in the right subtree. Assume that it is possible to place arrows in the tree such
that every path to a faulty leaf has an outgoing arrow and every path from the root
to a leaf that has no outgoing arrows has at most b incoming arrows. We look at
the placement of arrows in the left subtree. Since there are more than T (n − 1, b)
faults, there must be a path from the root of this subtree to a leaf that has b + 1
incoming arrows and no outgoing arrows or there must be path from the root of this
subtree to a fault with no outgoing arrow. Either of these cases imply that the root
of the left subtree must have an arrow from itself to its sibling. Now look at the right
subtree. It cannot be the case that there is a path from the root of the right subtree
to a faulty leaf with no outgoing arrow, since then there would be no outgoing arrow
for the path from the root of T to this fault. Further, no path from the root of the
right subtree to a leaf of the right subtree can have more than b− 1 incoming arrows
without having an outgoing arrow, since otherwise there would be a path from the
root of the tree to that leaf with more than b incoming arrows without an outgoing
arrow. Thus the right subtree must be (b − 1)-legal. However, the right subtree has
more than T (n− 1, b− 1) worst-case faults. This is a contradiction.

Corollary 2.3.2. For all n ≥ b ≥ 1, T (n, b) = O(nb).

Proof. The recurrence for T (n, b) is bounded from above by the recurrence that
we had for S(n, b) in section 2.1 and hence T (n, b) = O(S(n, b)). Using Lemma 2.1.1,
T (n, b) is O(nb).

Theorem 2.3.3. For any constants l and d, there is a constant k = d+(l− 1)2d

such that there is a way of placing O(logkN) faults in the leaves of an N -leaf complete
binary tree T such that there is no level-preserving embedding of an N -leaf fault-free
complete binary tree T ′ in T with load l and dilation d.

Proof. We begin by placing a set of faults of cardinality O(logkN) at the leaves
of T such that this fault pattern has no k-legal arrow diagram, where k = d+(l−1)2d

and N = 2n. This is possible because T (n, k) + 1 is O(logkN). Now suppose for the
sake of contradiction that there is an embedding of T ′ into T with load l and dilation
d with the property that nodes on level i of T ′ are mapped to nodes on level i of T
and no nodes of T ′ are mapped to faulty nodes of T . Annotate the tree T with arrows
as follows. For any two siblings in the tree, draw an arrow from the sibling whose
subtree has a smaller number of leaves of T ′ mapped to it to the sibling that has a
larger number of leaves mapped to it. If the number of leaves mapped to each of the
two subtrees is equal then no arrow is drawn.

We now show that the annotated tree is b-legal for some b ≤ k, which is a
contradiction. The path from the root of a tree to any faulty leaf must have an
outgoing arrow, since no node of T ′ is mapped to a faulty leaf. Hence, the first
criterion in the definition of a b-legal tree is satisfied. Let b be the maximum number
of incoming arrows on a path without an outgoing arrow. We ignore the last d levels
of the tree. Therefore, there is a path in T , m0,m1, . . . ,mn−d, where m0 is the root
and mi is a node in level i of the tree, that has at least b−d incoming arrows without

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1314 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

any outgoing arrows. Let li, 0 ≤ i ≤ n− d, denote the average number of leaves of T ′

that are embedded into each leaf of the subtree of T rooted at node mi. Clearly, l0
is 1. If there is no incoming arrow into node mi, then the split of leaves of T ′ is even
and hence li = li−1. Suppose there is an incoming arrow into node mi from its sibling
m′
i. Then li > li−1. Further, li ≥ li−1 + 2−d. To see why, consider the subtrees of

T ′ rooted at level i+ d. The nodes in each of these subtrees can be mapped entirely
within either the subtree rooted at mi or entirely within the subtree rooted at m′

i but
never to the nodes in both. To see why, note that if a node in one of these subtrees
that was mapped to the subtree rooted at mi and a neighbor at an adjacent level
was mapped to the subtree rooted at m′

i, then the dilation of the edge between them
would be more than d. (In fact, the dilation would have to be at least 2d + 3, since
the subtrees are separated by a distance of 2d + 2, and any two nodes connected by
an edge in T ′ must be mapped to different levels in T .) Thus, the subtree rooted at
mi must have at least 2n−i−d more leaves of T ′ mapped to it than the subtree rooted
at m′

i. Hence, li ≥ li−1 + (2n−i−d/2n−i) = li−1 + 2−d. Since there are at least b − d
incoming arrows on the path, ln−d ≥ 1 + (b − d)2−d. Note that there is at least one
leaf in the subtree rooted at mn−d that has load at least ln−d. Therefore, l ≥ ln−d.
This implies that b ≤ d+ (l− 1)2d = k. But there can be no k-legal arrow placement
for the fault pattern chosen for T . This is a contradiction.

Theorem 2.3.4. For any constants l and d, there is a constant k = d+(l− 1)2d

such that there is a way of choosing Θ(logkN) faults in an N -input butterfly B such
that there is no level-preserving embedding of an N -input butterfly B′ in B with load
l and dilation d.

Proof. The proof is similar to that of Theorem 2.3.3. Let B be a butterfly with
faults and let B′ be the fault-free version of B. We can associate a tree T with B
as follows: the root of T represents the entire butterfly B. Its children represent the
two subbutterflies of dimension logN − 1 (between levels 1 and logN). Each child is
subdivided recursively until each leaf of the tree T represents a distinct node in level
logN of the butterfly B. We choose the same set of worst-case faults in the leaves
of T as in Theorem 2.3.3. The faulty nodes of B are the nodes in level logN of B
that correspond to the faulty leaves of T . Given a level-preserving embedding of B′

into B with load l and dilation d, we can produce a b-legal placement of arrows in
T in a manner similar to the previous proof. Given two siblings m and m′, draw an
arrow from m′ to m if the there are more nodes in level logN of B′ mapped to the
subbutterfly of B represented by tree node m than the subbutterfly represented by tree
node m′. Let m and m′ be on level j of T . As before, due to dilation considerations,
the smaller subbutterflies of B′ spanning levels j + d to n must be mapped entirely
within the subbutterfly of B represented by m or within the subbutterfly represented
by m′ but never to both. The rest of the proof is similar to Theorem 2.3.3.

The following theorem is stated for two-dimensional meshes of trees. An analogous
theorem can be proved for any constant-dimension mesh of trees.

Theorem 2.3.5. For any constants l and d, there is a constant k = d+(l− 1)2d

such that there is a way of choosing Θ(logkN) faults in a
√
N × √

N mesh of trees
M such that there is no level-preserving embedding of a

√
N ×√

N mesh of trees M ′

in M with load l and dilation d.

Proof. The proof is similar to that of Theorem 2.3.4. Let M be a mesh of trees
with faults and let M ′ be the fault-free version of M . The nodes in level logN of M
and M ′ are arranged in the form of a two-dimensional

√
N ×√

N mesh. We refer to
these nodes as the mesh nodes. We can associate a tree T with the mesh nodes of M

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1315

as follows: the root of T represents the entire mesh. Divide the mesh vertically into
two equal parts and let each child represent one of the halves. At the next level of the
tree divide each of the halves horizontally into two equal parts. Divide alternately,
either vertically or horizontally, until reaching individual mesh nodes, which are each
represented by a distinct leaf of the tree. We choose the same set of worst-case faults
in the leaves of T as in Theorem 2.3.3. The faulty nodes of M are the mesh nodes of
M that correspond to the faulty leaves of T . Given a level-preserving embedding of
M ′ into M with load l and dilation d, we can produce a b-legal placement of arrows
in T in a manner similar to the previous proofs. Given two siblings m and m′, draw
an arrow from m′ to m if there are more mesh nodes of M ′ mapped to the submesh
of M represented by tree node m than the submesh represented by tree node m′. As
before, due to dilation considerations, the smaller submeshes of M ′ must be mapped
entirely within the submesh of B represented by m or within the submesh represented
by m′ but never to both. The rest of the proof is similar to Theorem 2.3.3.

3. Fault-tolerant routing. In this section, we present algorithms for routing
around faults in hypercubic networks. Section 3.1 presents algorithms for routing
packets in a butterfly network with faulty nodes, while section 3.2 presents algorithms
for establishing edge-disjoint paths between the inputs and outputs of an O(1)-dilated
Beneš network with faulty switches.

3.1. Fault-tolerant packet routing. In this section we show how to route
packets in an N -input butterfly network with f worst-case faults. In particular, we
focus on the problem of routing packets between the nodes of the network in a one-
to-one fashion. This type of routing is also called permutation routing. (See [37] for
references to permutation routing algorithms.) In a permutation routing problem,
every node is the origin of at most one packet and the destination of at most one
packet. We show that there is some set of N − 6f rows (where 0 ≤ f ≤ N/6)
such that it is possible to route any permutation between the nodes in these rows
in O(logN) steps using constant-size queues, with high probability. The same result
(without the high probability caveat) was previously shown for the expander-based
multibutterfly network [28]. A special case of this result is that when f ≤ N/12
we can route arbitrary permutations between a majority of nodes in the butterfly.
Note that this is optimal to within constant factors since N faults on level (logN)/2
partitions the butterfly into many disjoint small connected components.

It will be convenient for us to view the packets as being routed on a larger network
with 4 logN+1 levels andN rows. The network consists of four stages. Stage i consists
of those nodes in levels i logN through (i + 1) logN for 0 ≤ i ≤ 3. Note that each
pair of consecutive stages shares a level of nodes. The nodes in stages 0 and 3 are
connected by straight edges only. Stages 1 and 2 consist of a pair of back-to-back
butterflies isomorphic to the Beneš network. In analogy with the Beneš network,
the nodes in levels logN , 2 logN , and 3 logN are called input nodes, middle nodes,
and output nodes, respectively. Note that this larger network can be embedded in
a butterfly network so that the jth row of the larger network is mapped to the jth
row of the butterfly, and at most one node from each stage of the larger network is
mapped to each node of the butterfly. The embedding has load 4, congestion 4, and
dilation 1.

We start by describing Valiant’s algorithm [54] for permutation routing on a
butterfly without faults. Each node in stage 0 is the source of at most one packet, and
each node in stage 3 is the destination of at most one packet. (Thus in the underlying
butterfly, each node is both the source and destination of at most one packet.) In

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1316 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

stage 0, a packet travels along its row to the input node in that row (say, m). In
stage 1, the packet goes from m to a random middle node (say, m′′). In stage 2, the
packet goes from m′′ to the output node m′ in the row of its destination. In stage 3,
the packet travels along the row of m′ until it reaches its destination. Valiant showed
that these paths, which have length at most 4 logN , also have congestion O(logN)
with high probability. In networks such as the butterfly with O(logN) levels, as long
as the (leveled) paths of the packets have congestion O(logN), a Ranade-type queuing
protocol can be used to route the packets in O(logN) steps using constant-size queues,
with high probability [29]. Therefore, it is sufficient to derive high-probability bounds
on the congestion of the paths in a routing scheme.

Our goal is to identify a large set of “good” nodes in a faulty butterfly between
which we can route permutations using an algorithm like Valiant’s. A node in the
four-stage network is faulty if the corresponding node in the underlying butterfly is
faulty. Since stages 0 and 3 require a fault-free row, any node in a row with a fault is
declared to be bad . Furthermore, in stage 1, every packet needs a sufficient number of
random choices of middle nodes. For every input node m, let REACH(m) be defined
to be the set of middle nodes reachable from m using fault-free paths of length logN
from level logN to level 2 logN . Also, for every output node m′, let REACH(m′) be
the set of middle nodes reachable using fault-free paths from level 3 logN back to level
2 logN . Note that ifm andm′ lie in the same row, thenREACH(m) = REACH(m′),
because the fault pattern in stage 2 is the mirror image of the fault pattern in stage 1.
If |REACH(m)| < 4N/5 for any input node m, then we declare m and all other nodes
in its row to be bad. Any node not declared bad is considered good. Note that there
are no faults in rows containing good nodes, and every good input or output node
can reach at least 4N/5 middle nodes via fault-free paths. A row in the underlying
butterfly is good if the corresponding row in the four-stage network is good.

We now show that only 6f rows contain bad nodes. This follows from the fact
that only f rows can contain faults and from the fact that |REACH(m)| ≥ 4N/5
for all but 5f input nodes m. The latter fact is proved by setting t = N/5 in the
following lemma, which will also be used in section 3.2.

Lemma 3.1.1. In an N -input butterfly with f worst-case faults, at least N−fN/t
input nodes (nodes in level 0) can each reach at least N − t output nodes (nodes in
level logN) via fault-free paths of length logN for any t ≤ N .

Proof. For each input node i, let ni represent the number of output nodes in level
logN that i cannot reach. If the lemma were false, then we would have

N−1∑
i=0

ni ≥
(
fN

t
+ 1

)
(t+ 1).

A fault at any level of the butterfly lies on precisely N paths from input nodes to
output nodes. Hence

∑N−1
0=1 ni = fN. Combining the equation with the inequality

yields fN ≥ (fN/t + 1)(t + 1), which is a contradiction. Hence the lemma must be
true.

In order to route any permutation between the good nodes, we use Valiant’s
algorithm except that in stage 1, in order to route a packet from input m to output
m′, we randomly select a middle node m′′ from REACH(m) ∩ REACH(m′). (One
way to do this is to store at each input m a table containing information about
REACH(m) ∩ REACH(m′) for each output m′.) Since m and m′ are good input
and output nodes |REACH(m)∩REACH(m′)| is at least 3N/5. We now prove that
the paths selected in this manner have congestion O(logN) with high probability.

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1317

Lemma 3.1.2. For any constant k > 0, the randomly selected paths have conges-
tion O(logN) with probability at least 1− 1/Nk. Furthermore, these paths are leveled
and have length at most 4 logN .

Proof. The lengths of the paths are clearly at most 4 logN since the paths traverse
the butterfly four times, once in each stage. We bound the congestion as follows. Every
good node sends and receives one packet. Thus, the congestion of any node in stages
0 and 3 is trivially at most (logN + 1). Consider a node s in level l of the butterfly
in stage 1. There are 2l(logN + 1) packets that could pass through this node. A
packet passes through this node if and only if it selects as a random middle node one
of the 2logN−l middle nodes reachable from this node. Note that the set of possible
choices of middle nodes for any input node m and output node m′ is REACH(m) ∩
REACH(m′). Since both m and m′ are good nodes, |REACH(m)| ≥ 4N/5 and
|REACH(m′)| ≥ 4N/5. This implies that |REACH(m) ∩ REACH(m′)| ≥ 3N/5.
Thus the probability that the packet chooses a middle node that is reachable from s
is at most 2logN−l/(3N/5). Therefore, the expected number of packets that passes
through a node in stage 1 is at most (2l(logN+1))(2logN−l)/(3N/5) = 5(logN+1)/3.
We can use Chernoff-type bounds [46] to show that the number of packets that pass
through s in stage 1 is O(logN) with probability at least 1− 1/2Nk for any constant
k. The calculation for a node in stage 2 is exactly analogous. Thus the congestion is
O(logN) with probability at least 1− 1/Nk.

The following theorem summarizes the result presented in this section.
Theorem 3.1.3. In an N -input butterfly network with f worst-case faults, where

0 ≤ f ≤ N/6, there is some set of N − 6f “good” rows whose nodes can serve as the
origins and destinations of any permutation routing problem. Furthermore, there is a
routing algorithm such that, for any constant k > 0, there is a constant C > 0 such
that the algorithm routes all the packets in any permutation (using routing tables) in
at most in C logN steps using constant-size queues, with probability at least 1−1/Nk.

Proof. Lemma 3.1.1 shows how to identify the N − 6f rows that are to serve
as the sources and destinations of the packets. The lemma is applied for the case
t = N/5. To route from an input node m to an output node m′, a packet must select
a random intermediate destination m′′ that can be reached from both m and m′. The
choice is made by consulting a table of all such m′′. Lemma 3.1.2 shows that, with
high probability, these paths have congestion O(logN). Finally, once the paths are
selected, the algorithm for routing on leveled networks [29] can be applied to deliver
the packets in O(logN) steps, with high probability using constant-size queues.

3.1.1. Packet routing without routing tables. In the previous algorithm,
every good input node m was required to store a table containing information about
REACH(m) ∩ REACH(m′) for every good output node m′. In this section, we
show that is possible to route packets in a faulty butterfly without using such routing
tables. The information about the placement of the faults is used only during the
reconfiguration when the good and bad nodes are identified. This information is not
needed for the routing itself. We assume that any packet that attempts to go through
a fault is simply lost. We further assume that a node that receives a packet sends
back an acknowledgement message (ACK) to the sender. Each ACK message follows
the path of the corresponding packet in reverse. An ACK is generally smaller than
a message and requires at most O(logN) bits to specify its path and the identity of
the message that it is acknowledging. The algorithm for routing proceeds in rounds.
There are a total of (A log logN) + 1 rounds (for some constant A). Each round
consists of the following steps (R takes values from 0 to A log logN and denotes the
round number).

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1318 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

SEND-PACKET: In stage 0, if packet p has not yet been delivered to its
destination, send 2R identical copies of p to the input node m in its row. In
stage 1, send each copy of the packet independently to a random middle node.
In stage 2, send each copy to the appropriate output node m′. In stage 3,
send each copy to the appropriate destination node in that row.

RECEIVE-PACKET: If a packet is received send an ACK along the same
path that the packet came through but in reverse.

WAIT: Wait B logN steps before starting the next round.

Theorem 3.1.4. For any constant k > 0, there are constants A and B such that
the algorithm routes any permutation on the nodes of the N − 6f good rows of an
N -input butterfly with f faults in O(logN log logN) steps using constant-size queues,
with probability at least 1− 1

Nk , without using routing tables.

Proof. First we show that there is very little probability that a packet survives
A log logN rounds without reaching its destination, where A is an appropriately cho-
sen constant. A packet can never encounter a fault in stages 0 and 3 since its source
and destination rows are fault-free. Let m and m′ denote the input and output nodes
that the packet passes through, respectively. In stage 1, if the packet chooses any
middle node in REACH(m)∩REACH(m′) then it succeeds in reaching its destina-
tion. Since |REACH(m)∩REACH(m′)| ≥ 3N/5 the probability of this happening is
at least 3/5. Suppose the packet did not get through after A log logN rounds. Then
2A log logN = logAN copies of the packet are transmitted in the last round. Note
that the probability of each copy surviving is independent of the others. Hence the

probability that none of these copies reach their destination is at most (1−3/5)log
AN ,

which is at most 1/Nk+3, for any constant k > 0 and for an appropriate choice of the
constant A. Thus, the probability that some packet does not reach its destination is
at most N logN/Nk+3, which is less than 1/Nk+1.

Next we show that each round takes O(logN) time with high probability. We
assume inductively that at the beginning of round i the total number of packets
(counting each copy once) to be transmitted from any row in stage 0 of the algorithm
or received by any row in stage 3 of the algorithm is at most q logN for some constant
q > 1. Clearly the basis of the induction is true at the beginning of the first round
since there are exactly logN packets sent by each row in stage 0 and received by each
row in stage 3. The expected number of copies that are sent from a row in stage 0 or
that are destined for a row in stage 4 that do not get through is at most 2q logN/5.
The value of q is chosen such that the probability that more than q logN/2 copies
do not get through in any row can be shown to be small, i.e., at most 1/ANk+2, for
any constants A and k, using Chernoff-type bounds. At the beginning of the next
stage, each unsent copy is duplicated and hence, with high probability, the number of
packets in any row in the next round is at most q logN . Since there are (A log logN)+1
rounds, the probability that the inductive hypothesis does not hold in the beginning
of any one round is at most ((A log logN) + 1)/ANk+2, which is less than 1/Nk+1.

Now we assume that the inductive hypothesis is true and show that each round
takes only B logN steps, for some constant B, with high probability. Consider any
round i. From the inductive hypothesis, the congestion of any node in stage 0 or
3 is at most q logN which is O(logN). In stage 1, a node at level l can receive
packets from any one of 2l input nodes, each packet with probability 2−l. The total
number of packets that pass through an input node is at most q logN by our inductive
hypothesis. Therefore, the expected number of packets that pass through a node at
level l is q logN2l2−l = q logN . The value of q is chosen so that the probability that

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1319

any node gets more than 2q logN packets can be shown to be at most 1/ANk+2, using
Chernoff-type bounds. The analysis for stage 2 is similar. Thus we have shown that
if the inductive hypothesis is true, the congestion of any node is O(logN) with high
probability. Therefore, using the algorithm for routing on leveled networks [29] to
schedule the packets, the routing completes in C logN steps with probability at least
1−2/ANk+2 for an appropriate constant C. The ACKs follow the paths of the packets
in the reverse direction. Therefore, the congestion in any node due to ACKs can be
no larger than the congestion due to packets and is also therefore O(logN). Since we
are using the algorithm for routing on leveled networks to schedule the packets, the
probability that some ACK does not reach its destination in D logN time is also at
most 2/ANk+2 for some suitably large constant D. We choose the constant B in the
algorithm to be at least C +D so that the algorithm waits long enough for both the
packet routing and the routing of ACKs to finish before starting the next round of
routing. The probability that either the packet routing or the ACK routing fails to
complete in some round is at most 4A log logN/ANk+2, which is less than 1/Nk+1.

The probability that either some packet remains untransmitted after the last
round or that the inductive hypothesis does not hold for some round or that some
round fails to complete in B logN steps is at most 3/Nk+1, which is less than
1/Nk. Thus, the algorithm successfully routes every packet to its destination in
O(logN log logN) steps with probability at least 1− 1/Nk.

If the number of worst-case faults is smaller then there is a simpler way of routing
in O(logN) steps without using routing tables or creating duplicate packets.

Theorem 3.1.5. Given an N -input butterfly with N1−ε worst-case faults (for
any constant ε > 0), it is possible to identify N −o(N) good rows in the butterfly such
that any permutation routing problem on the good nodes can be routed in O(logN)
steps using constant-size queues with probability greater than 1− 1/Nk, for any fixed
constant k, without using routing tables.

Proof. We define the “good” nodes in the butterfly as follows. A row is good
if it contains no faults and the input in that row can reach all but N1−ε/2 middle
nodes. (Previously a good input was required to reach all but N/5 middle nodes.)
Using Lemma 3.1.1 with f = N1−ε and t = N1−ε/2, we see that the number of good
rows is least N −N1−ε/2. The algorithm is the same as the previous algorithm except
that we don’t create any duplicate packets and we now need only a constant number
of routing rounds with high probability. This is because each unsent packet at each
round has probability at most Θ(1/N ε/2) of hitting a fault. Therefore, it is sufficient
to have Θ(k/ε) rounds (a constant) before every packet is delivered, with probability
at least 1− 1/Nk.

3.2. Fault-tolerant circuit switching. In this section, we examine the ability
of the Beneš network to establish disjoint paths between its inputs and outputs when
some of its switches fail. We assume that no path can pass through a faulty switch.
The main result of this section is a proof that for arbitrarily small positive constants
ε and δ, there is a constant b such that given a b-dilated (logN)-dimensional Beneš
network with f = N1−ε worst-case switch failures, we can identify a set of N−4N1−δ

input and output switches such that it is possible to route edge-disjoint paths in any
permutation between the corresponding input and output edges. (A b-dilated Beneš
network is one in which each edge is replaced by b parallel edges, and each 2×2 switch
is replaced by a 2b × 2b switch.) At each input switch, two of the b incoming edges
are used as inputs, and at each output switch, two of the b outgoing edges are used
as outputs.

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1320 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

In a (logN)-dimensional Beneš network, levels 1 through 2 logN−1 can be decom-
posed into two disjoint sub-Beneš networks of dimension logN − 1, a top sub-Beneš
network, and a bottom sub-Beneš network. Note that the two paths that originate
from input edges that share an input switch cannot use the same sub-Beneš network.
The same is true for paths that end on output edges that share the same output
switch. A full permutation consists of a set of 2N input–output pairs to be connected
by edge-disjoint paths. The standard algorithm for setting the switches in a Beneš
network, due to Waksman [55], uses bipartite graph matching to split the set of 2N
pairs into two sets of N pairs which are then each routed recursively in one of the
smaller sub-Beneš networks.

We now present Waksman’s algorithm with a twist. We call this algorithm RAND-
SET (for RANDom switch SETting). The way RANDSET differs from Waksman’s
algorithm is that it randomly chooses which of the two sets of N pairs to route through
the top (and bottom) sub-Beneš network. The input to RANDSET is a permutation
φ represented as a 2N × 2N bipartite graph. The nodes of the graph represent the
2N input edges and the 2N output edges of the network. An edge in the bipartite
graph from input i to output φ(i) indicates that a path must be routed from i to
φ(i) in the network. The first step is to merge pairs of nodes in the bipartite graph
that correspond to input edges (or output edges) that share the same input switch
(or output switch). The result is a 2-regular N ×N bipartite graph. The second step
is to split the edges of this graph into two perfect matchings, M0 and M1. (See [42]
for a nice proof that such a split is possible.) Next, we pick a binary value for random
variable X at random. If X = 0 then we recursively route the paths in matching M0

through the top sub-Beneš network and those in M1 through the bottom sub-Beneš
network. If X = 1 we do the opposite. The following lemma shows that RANDSET
chooses the path from i to φ(i) uniformly from among all possible paths.

Lemma 3.2.1. For any i, the path chosen by algorithm RANDSET between input
i and output φ(i) in a 2N -input Beneš network passes through any of the N middle
switches (switches in level logN) with equal probability (1/N).

Proof. At the first stage, the path from i to φ(i) goes to the top or the bottom sub-
Beneš network with probability 1/2 depending on whether the matching that contains
the edge corresponding to this input–output pair is chosen to be routed through the
top or the bottom. The decisions made at the succeeding levels of the recursion are
similar and independent of all other decisions.

It is important to remember that given a permutation, the paths themselves could
be highly correlated and determining one path gives some information about the others.

We classify the input and output switches of the Beneš network as either good
or bad depending on whether they can reach a sufficiently large number of middle
switches. In a fault-free Beneš network, there is a path from each input (and output)
switch to each of the N middle switches. The middle switches in fact form the leaves
of a complete binary tree with the input (or output) switch as the root. The faults
could make some of these paths unusable. We declare an input (or output) switch
bad if the number of middle switches that it cannot reach exceeds a certain threshold.
The threshold is chosen so that it is possible to establish edge-disjoint paths between
the good (i.e., not bad) inputs and outputs in any permutation. (The two inputs
coming into an input (or output) switch are good or bad depending on whether the
corresponding input (or output) switch is good or bad.)

Let BAD(t) be the set of input and output switches for which more than t middle
switches are unreachable. The first and last logN+1 levels of the Beneš network each

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1321

form a logN -dimensional butterfly. Applying Lemma 3.1.1 to each of these butterflies
separately, we know that |BAD(t)| < 2fN/t. (Note that these butterflies share the
middle level of switches and hence might share some faults.)

Theorem 3.2.2. For any constants 0 < δ < ε ≤ 1, there exists a constant
b = d1 + (2− ε)/(ε− δ)e such that a 2N -input b-dilated Beneš network with N1−ε

worst-case switch faults has a set of N − 4N1−δ input switches and output switches
between whose input and output edges it is possible to route any permutation using
edge-disjoint paths.

Proof. We declare any input or output switch in BAD(N1+δ−ε/2) to be bad.
Since we need the number of good input switches and good output switches to be
equal we may have to declare some extra input switches or output switches to be bad.
From Lemma 3.1.1, we know that |BAD(N1+δ−ε/2)| ≤ 4N1−δ. Thus, the number of
good input switches (or output switches) is at least N − 4N1−δ.

We now prove that we can route any permutation between the good inputs and
good outputs using edge-disjoint paths. In this proof, we simply show that for every
permutation such a set of paths exists, without showing how to compute these paths
efficiently. Later, we give an efficient procedure for computing these paths.

Given a permutation φ on the good inputs and outputs, we select paths using
RANDSET in b rounds. In the first round, we route all the paths using RAND-
SET. Some of these paths pass through faults in the network. The number of paths
that pass through faults is at most 2N1−ε, since each fault appears on at most two
paths. These paths are not permissible and must be rerouted in the second round
using RANDSET. Note that every good input switch (or output switch) has at most
N1+δ−ε/2 unreachable middle switches. Thus, from Lemma 3.2.1, the probability
that any one of the paths hits a fault in the first logN+1 levels is at most N−(ε−δ)/2.
The probability that it hits a fault in the second logN + 1 levels is also at most
N−(ε−δ)/2. The net probability that the path hits a fault is at most N−(ε−δ). Even
though the probabilities that any two paths hit a fault is correlated, the expected
number of paths that hit faults in the second round is at most 2N1−εN−(ε−δ). This
implies that with nonzero probability RANDSET finds a set of paths such that at
most 2N1−ε−(ε−δ) paths hit faults. Note that this also means that there exists a way
of selecting the paths so that at most 2N1−ε−(ε−δ) paths hit faults. We select paths
such that this criterion is satisfied and route the paths that hit faults again using
RANDSET. We continue to do the rerouting until the expected number of paths that
hit faults drops below 1. At this point, with nonzero probability RANDSET routes all
of the paths without hitting any faults. In particular, such a set of paths exists. The
expected number of paths that hit faults in the ith round is 2N1−ε−(i−1)(ε−δ). Thus,
for b = d1 + (2− ε)/(ε− δ)e the number of paths that hit faults at the end of the
bth round is less than 1. Therefore, all paths are routed by the end of the bth round.
Since we use at most b rounds of routing and since each edge of the Beneš network has
been replaced by b edges, we obtain edge-disjoint paths for the permutation.

3.2.1. Derandomizing RANDSET. In the proof of Theorem 3.2.2, we show
the existence of edge-disjoint paths by using the fact that algorithm RANDSET finds
them with nonzero probability. In this section we construct a deterministic algorithm
that finds these paths using the technique due to Raghavan [45] and Spencer [50] to
remove the randomness. Like Waksman’s algorithm for finding the switch settings in
a fault-free Beneš network with N input switches, the algorithm runs in O(N logN)
time.

Let P be the random variable that denotes the number of paths that go through

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1322 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

faults at some round of rerouting. Let X be the binary random variable used by
RANDSET to make its random decision to select which matching is to be routed
through which sub-Beneš network. Let us further define two random variables Pl and
Pr to denote the number of paths that RANDSET routes through faults in the left
butterfly and the right butterfly, respectively. Let U(P) be an upper bound on E(P)
that is defined as U(P) = E(Pl) + E(Pr). In the proof of Theorem 3.2.2, we used
the fact that with nonzero probability RANDSET finds a set of paths in which at
most U(P) paths hit faults. We define an algorithm DSET (for deterministic switch
SETting) that deterministically finds such a set of paths. Algorithm DSET is the
same as RANDSET except that instead of selecting a random value for X, we select
the “better” choice for X as follows. We compute U(P |(X = i)) = E(Pl|(X =
i)) +E(Pr|(X = i)) for i = {0, 1}. We then choose X to be the value of i that yields
the minimum of the two values computed above.

Theorem 3.2.3. Given a (partial) permutation φ to be routed, algorithm DSET
deterministically computes paths such that at most U(P) paths hit faults, and DSET
has the same asymptotic running time as RANDSET.

Proof. We prove the theorem by induction on the size of the Beneš network.
The base case is trivial. Now consider a 2N -input Beneš network with a (partial)
permutation φ to route. Let Pf and Pe denote the number of paths that hit faults in
the first and last levels of the Beneš network, respectively. Also, let Pt and Pb denote
the number of paths that hit faults in the top and bottom sub-Beneš networks (but
not in the first or last levels of the Beneš network), let Pt,l and Pt,r denote the number
of paths that hit faults in the left and right halves of the top sub-Beneš network, and
let Pb,l and Pb,r denote the number of paths that hit faults in the left and right halves
of the bottom sub-Beneš network. Finally, let i be the value chosen for X in step 2
of DSET. The total number of paths that hit faults P is bounded as follows:

P ≤ Pf + U(Pt|(X = i)) + U(Pb|(X = i)) + Pe(3.1)

= Pf + E(Pt,l|(X = i)) + E(Pt,r|(X = i))(3.2)

+ E(Pb,l|(X = i)) + E(Pb,r|(X = i)) + Pe

= E(Pl|(X = i)) + E(Pr|(X = i))(3.3)

= U(P |(X = i))(3.4)

≤ U(P).(3.5)

These inequalities have the following explanation. Independent of the choice of i, Pf
paths are blocked at the first level and Pe are blocked at the last. Once i is chosen, we
know by induction that at most U(Pt|(X = i)) paths are blocked in the top sub-Beneš
network and at most U(Pb|(X = i)) are blocked in the bottom sub-Beneš network.
Hence inequality (3.1) holds. Equation (3.2) is derived by substituting the definitions
of U(Pt|(X = i)) and U(Pb|(X = i)). Equation (3.3) is derived by observing that

E(Pl|(X = i)) = Pf + E(Pt,l|(X = i)) + E(Pb,l|(X = i))

and

E(Pr|(X = i)) = Pe + E(Pt,r|(X = i)) + E(Pb,r|(X = i)).

Equation (3.4) follows from the definition of U(P |(X = i)). Finally, (3.5) holds by
the choice of i.

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1323

Now we deal with the question of how fast U(P |(X = i)) can be calculated in step
2 of DSET for i ∈ {0, 1}. For every switch m in the Beneš network, let REACH(m)
be the set of middle switches reachable from switch m using fault-free paths. We
can precompute |REACH(m)| as follows. The value for the middle switches are
trivially known. We then compute the values for levels on both sides adjacent to levels
where the values are known and continue in this manner. This takes only O(N logN)
steps of precomputation and does not affect the asymptotic time complexity of the
algorithm. Given the values of |REACH(m)|, the values of U(P |(X = i)) can be
easily calculated by summing up the appropriate values of |REACH(m)|. This is an
O(N) time computation. Since step 1 of the algorithm takes N time just to set N
switches in the first level, this does not affect the asymptotic time complexity. Hence
using DSET yields the same asymptotic time complexity as RANDSET and takes
time linear in the size of the Beneš network.

4. Emulations on faulty butterflies. In this section, we show that for any
constant ε > 0, a (logN)-dimensional butterfly with N1−ε worst-case faults (the host
H) can emulate any computation of a fault-free (logN)-dimensional butterfly (the
guest G) with only constant slowdown. We assume that a faulty node cannot perform
computations and that packets cannot route through faulty nodes. For simplicity we
assume that both the guest and host butterflies wrap around; i.e., the nodes of level
0 are identified with the nodes of level logN .

We model the emulation of G by H as a pebbling process. There are two kinds
of pebbles. With every node v of G and every time step t, we associate a state pebble
(s-pebble) 〈v, t〉 that contains the entire state of the computation performed at node v
at time t. The s-pebble contains local memory values, registers, stacks, and anything
else that is required to continue the computation at v. We view G as a directed graph
by replacing each undirected edge between nodes u and v by two directed edges: one
from u to v and the other from v to u. With each directed edge e and every time
step t, we associate a communication pebble (c-pebble) [e, t] that contains the message
transmitted along edge e at time step t.

The host H emulates each step t of G by creating an s-pebble 〈v, t〉 for each node
v of G and a c-pebble [e, t] for each edge e of G. A node of H can create an s-pebble
〈v, t〉 only if contains s-pebble 〈v, t−1〉 and all of the c-pebbles [e, t−1], where e is an
edge into v. It can create a c-pebble [g, t] for an edge g out of v only if it contains an
s-pebble 〈v, t〉. A node of H can also transmit a c-pebble to a neighboring node of H
in unit time. A node of H is not permitted to transmit an s-pebble since an s-pebble
may contain a lot of information. Note that H can create more than one copy of an
s-pebble or c-pebble. The ability of H to create redundant pebbles is crucial to our
emulation schemes. In our emulations, each node of H is assigned a fixed set of nodes
of G to emulate and creates s-pebbles for them for each time step.

4.1. Assignment of nodes of G to nodes of H. We now show how to map
the computation of G to the faulty butterfly H. The host H has N1−ε arbitrarily
distributed faults. We first divide H into subbutterflies of dimension (ε logN)/2
spanning levels (iε logN)/2 through ((i + 1)ε logN)/2 for integer i = 0 to 2/ε − 1.
(Without loss of generality, we assume that 2/ε and ε logN/4 are integers.) Note
that every input node of a subbutterfly is also an output node of another subbutterfly
and vice versa. Each band of ((ε logN)/2) + 1 levels consists of N1−ε/2 disjoint
subbutterflies. Thus, there are a total of (2/ε)N1−ε/2 subbutterflies. The faults in
the network may make some of these subbutterflies unusable. We identify “good” and
“bad” subbutterflies according to the following rules.

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1324 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

Rule 1. A subbutterfly that contains a node that lies in a butterfly row in which
there is a fault is a bad subbutterfly (even if the fault lies outside of the subbutterfly).

Rule 2. In order to apply Rule 2, we embed a Beneš network in the butterfly. The
edges of the first stage of the Beneš network traverse the butterfly in increasing order
of dimension and the edges of the second stage in decreasing order of dimension. The
input switches, the middle switches, and the output switches of the Beneš network are
all embedded in level 0 of the butterfly (which is the same as level logN). For δ = 2ε/3,
identify the set of bad inputs/outputs (they are the same set here) according to the
procedure outlined in the proof of Theorem 3.2.2 in section 3.2. Any subbutterfly
that contains a node that has a bad input/output at the end of its butterfly row is a
bad subbutterfly.

Lemma 4.1.1. For any ε > 0, the number of rows in which there is either a fault
or a bad input or output is at most N1−ε + 4N1−2ε/3.

Proof. The number of rows containing a fault is at most N1−ε, since there are
at most N1−ε faults. By Theorem 3.2.2, for δ = 2ε/3, the number of bad inputs and
outputs (they are the same nodes) is at most 4N1−δ = 4N1−2ε/3.

Lemma 4.1.2. For any ε > 0, at least half the subbutterflies of H are good for
sufficiently large N .

Proof. The total number of subbutterflies is (2/ε)N1−ε/2. By Lemma 4.1.1,
the number of rows containing either a fault or a bad input or output is at most
N1−ε + 4N1−2ε/3. Since each bad row passes through 2/ε different subbutterflies,
the total number of subbutterflies identified as bad by Rules 1 and 2 cannot exceed
2(N1−ε+4N1−2ε/3)/ε. Observe that 2(N1−ε+4N1−2ε/3)/ε ≤ N1−ε/2/ε for sufficiently
large N .

Now we divide the guestG into overlapping subbutterflies of dimension (ε logN)/2
and map them to the good subbutterflies of H. For any node v of G, at most three
nodes of H receive the initial state of the computation of node v, i.e., s-pebble 〈v, 0〉.
(A node v of G can appear as an input in one subbutterfly, an output in another,
and a middle node in a third.) These nodes in H create the s-pebbles for v. The
mapping proceeds as follows. Take the guest G and cut it into subbutterflies at levels
iε logN/2 for integers i = 0 to 2/ε− 1. Map each subbutterfly to a good subbutterfly
of H so that each subbutterfly of H gets at most two subbutterflies of G. Now cut
G again, this time at levels (ε/4 + iε/2) logN for integers i = 0 to 2/ε− 1. Map the
subbutterflies to good subbutterflies of H as before. At most eight nodes of G are
mapped to each node of H.

4.2. Building constant congestion paths. We call the nodes v of G belonging
to level iε logN/4, for i = 0 to 4/ε−1, boundary nodes since they lie on the boundary
of some subbutterfly of G. Let the set of boundary nodes of G be denoted by BG .
Similarly we define the nodes in the levels where H was cut to form subbutterflies,
i.e., level iε logN/2 for i = 0 to 2/ε− 1, the boundary nodes of H. Let us denote this
set BH.

Let φ be the function that maps an s-pebble 〈v, t〉 to the node in H that creates it.
The creation of 〈v, t〉 requires that node φ(〈v, t〉) of H gets all the c-pebbles [e, t] from
some other node of H for every edge e into v. Suppose that 〈v, t〉 is mapped to some
node m = φ(〈v, t〉) in the interior (i.e., not on the boundary) of a good subbutterfly
of H. Then the neighbors of m in H also create the s-pebbles of the neighbors of v
in G. In this case m receives the required c-pebbles from its neighbors in H.

On the other hand, if the s-pebble for v is mapped to some node m ∈ BH, the
neighbors of m in H may not create the s-pebbles of the neighbors of v in G. However,

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1325

since every node v of G is mapped to at least two nodes of H, there is another node
m′ of H that also creates an s-pebble for v. In particular, m′ is necessarily a node in
the center of a subbutterfly of H, i.e., in level ε logN/4 of the subbutterfly. Node m′

of H forwards a copy of the c-pebble [e, t] to node m for each of the edges e into v.

To facilitate the transmission of c-pebbles, we use the results of section 3.2 to
establish constant-congestion fault-free paths in H between all pairs of nodes m and
m′ of H that create the s-pebbles for the same node v in BG . The number of paths
originating in a row of H is simply the number of nodes mapped to subbutterfly
boundaries in that row, which is at most 8 · 2/ε = 16/ε, i.e., a constant. Similarly the
number of paths ending in any row is 16/ε. We can divide the paths into 8/ε sets such
that each set has at most two paths originating in a row and two paths ending in a
row. Note that all paths start and end in rows that have good inputs and outputs for
doing Beneš-type routing. Therefore, each set can be routed with dilation 4 logN and
with congestion O(1) using the results of section 3.2. Since there are only a constant
number of such sets the total congestion is also a constant.

4.3. The emulation. We now formally describe the emulation and prove its
properties. Initially, nodes of H contain s-pebbles 〈v, 0〉 for nodes v of G. We say
that H has emulated T steps of the computation of G if and only if for every node v
of G, an s-pebble 〈v, T 〉 has been created somewhere in H. The emulation algorithm
is executed by every node m of H and proceeds as a sequence of macrosteps. Each
macrostep consists of the following four substeps.

1. Computation step. For each node v of G that has been assigned to m, if m
contains an s-pebble 〈v, t− 1〉 and c-pebbles [e, t− 1] for every edge e into v
and m has not already created an s-pebble 〈v, t〉, then it does so.

2. Communication step. For each node v whose s-pebble was updated from
〈v, t − 1〉 to 〈v, t〉 in the computation step and for each edge g from v to
a neighbor u of v, node m sends a c-pebble [g, t] to its neighbor in H that
creates s-pebbles for u (if such a neighbor exists).

3. Routing step. Ifm has any c-pebble that was created on the previous copy step
or that was received on the previous routing step but whose final destination
is not m, then m forwards the c-pebble to the next node on the pebble’s path
to its destination.

4. Copy step. If m is a node in the center level (level ε logN/4 in the subbutter-
fly) and in the communication step m received a c-pebble [e, t] for an edge e
into a node v that has been assigned to m, then m makes two copies of the
c-pebble, one for each of the two nodes m′ and m′′ that also create s-pebbles
for v. On the next routing step, m forwards each copy to the next node on
the path from m to m′ or m′′.

Lemma 4.3.1. Each macrostep takes only a constant number of time steps to
execute.

Proof. At most eight s-pebbles mapped are to each node. Therefore, the compu-
tation step takes constant time. Every s-pebble that is updated can cause at most four
c-pebbles to be sent in the communication step. Therefore, the communication step
takes only constant time. Since only a constant number of paths passes through any
node, only a constant number of c-pebbles enters a particular path at any macrostep,
and every c-pebble that has not yet reached its destination moves in every macrostep,
the number of c-pebbles entering any node during any macrostep is at most a con-
stant. Thus, the routing step and the copy step both take only a constant number of
time steps.

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1326 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

Theorem 4.3.2. Any computation on a fault-free butterfly G that takes time T
can be emulated in time O(T + logN) by H.

Proof. We show that only O(T + logN) macrosteps are required to emulate a
T -step computation of G. The final result then follows from Lemma 4.3.1.

The dependency tree of an s-pebble represents the functional dependency of this
s-pebble on other s-pebbles and can be defined recursively as follows. As the base
case, if t = 0, the dependency tree of 〈v, t〉 is a single node 〈v, 0〉. If t > 0, the creation
of s-pebble 〈v, t〉 requires s-pebble 〈v, t − 1〉 and a c-pebble [e, t − 1] for each edge e
into node v in G. Each c-pebble is sent by an s-pebble 〈u, t−1〉 where u is a neighbor
of v in G. The dependency tree of 〈v, t〉 is defined recursively as follows. The root
of the tree is 〈v, t〉 and the subtrees of the root are the dependency trees of 〈v, t− 1〉
and all s-pebbles 〈u, t− 1〉.

Let the emulation of T steps of G take T ′ macrosteps on H. Let 〈v, T 〉 be an
s-pebble that was updated in the last macrostep. We now look at the dependency
tree of 〈v, T 〉. We choose a critical path, sT , sT−1, . . . , s0, of tree nodes from the root
to the leaves of the tree as follows. The first node on the path sT is 〈v, T 〉. Let φ
be the function that maps an s-pebble 〈v, t〉 to the node in H that creates it. The
creation of sT requires the s-pebble 〈v, T − 1〉 and c-pebbles [e, T − 1]. If the s-pebble
〈v, T − 1〉 was created after all the c-pebbles were received then choose sT−1 to be
〈v, T − 1〉. Otherwise, choose the s-pebble that sent the c-pebble that arrived last at
node φ(〈v, T 〉). After choosing sT−1, we choose the rest of the sequence recursively
in the subtree with sT−1 as the root. The last s-pebble on the path s0 is one that
was present initially, i.e., at time step 0. We define a quantity li as follows. If φ(si)
and φ(si−1) are the same node or neighbors in H, then li = 1. Otherwise, li is the
length of the path by which a c-pebble generated by si−1 is sent to si. For every tree
node s, we can associate a time (in macrosteps) τ(s) when that s-pebble was created.
From the definition of our critical path and because a c-pebble moves once in every
macrostep, τ(si)− τ(si−1) = li. Thus,

T ′ =
∑

0<i≤T
(τ(si)− τ(si−1)) =

∑
0<i≤T

li.

Now suppose that some li is greater than one. This corresponds to a long path taken
by some c-pebble to go from φ(si−1) in the center level of a subbutterfly of H to φ(si)
in BH. Thus li is the length of one of the constant congestion paths and is at most
(4 logN)+1. (In fact, the paths are somewhat shorter, but (4 logN)+1 is a convenient
quantity to work with.) The key observation is that since φ(si−1) is a node in the
center level, working down the tree from si−1 there can be no long paths until we reach
an s-pebble mapped to the boundary BH; i.e., li−j = 1 for 1 ≤ j ≤ (ε logN)/4 − 1.
Thus, the extra path length of 4 logN can be amortized over (ε logN)/4 s-pebbles.
Hence, T ′ =

∑
0<i≤T li ≤ (16/ε+ 1)T + 4 logN + 1 = O(T + logN).

We can extend these results to the shuffle-exchange network using Schwabe’s proof
[26, 47] that an N -node butterfly can emulate an N -node shuffle-exchange network
with constant slowdown, and vice versa.

Theorem 4.3.3. Any computation on a fault-free N -node shuffle-exchange net-
work G that takes time T can be emulated in O(T +logN) time by an N -node shuffle-
exchange network H with N1−ε worst-case faults for any constant ε > 0.

Proof. Schwabe [26, 47] shows how to emulate any computation of a butter-
fly on a shuffle-exchange network with constant slowdown and vice versa. First we
use Schwabe’s result to map the computation of a butterfly B to the faulty shuffle-
exchange network H. Any node of B that is mapped to a faulty node of H is declared

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1327

faulty. If there are any routing paths required by the emulation that pass through
a faulty node of H, we declare the nodes of B that use this path to be faulty. The
faulty nodes of B do no computation, and H is not required to emulate them. Hence,
the faulty shuffle-exchange network H can emulate the faulty butterfly network B
with constant slowdown. The number of faults in B is only a constant factor larger
than N1−ε, since both the load and the congestion of the paths used in Schwabe’s
emulation are constant. Now we use Theorem 4.3.2 to emulate a fault-free butter-
fly B′ on B. Finally, use Schwabe’s result (in the other direction) to emulate the
fault-free shuffle-exchange network G on the fault-free butterfly B′. Each of these
emulations has constant slowdown. Therefore, the entire emulation of G on H has
constant slowdown.

4.4. Emulating normal algorithms on the hypercube. Many practical com-
putations on the hypercube are structured. The class of algorithms in which every
node of the hypercube uses exactly one edge for communication at every time step
and all of the edges used in a time step belong to the same dimension of the hyper-
cube are called leveled algorithms (also known as regular algorithms [13]). A useful
subclass of leveled algorithms are normal algorithms. A normal algorithm has the
additional restriction that the dimensions used in consecutive time steps are consec-
utive. Many algorithms including bitonic sort, FFT, and tree-based algorithms like
branch-and-bound can be implemented on the hypercube as normal algorithms [27].
An additional property of normal algorithms is that they can be emulated efficiently
by bounded-degree networks such as the shuffle-exchange network and the butterfly.
We state a result due to Schwabe [48] to this effect.

Lemma 4.4.1. An N -node butterfly can emulate any normal algorithm of an
N -node hypercube with constant slowdown.

We also require the following well-known result concerning the embedding of a
butterfly in a hypercube. (See [20] for the stronger result that the butterfly is a
subgraph of the hypercube.)

Lemma 4.4.2. An N -node butterfly can be embedded in an N -node hypercube
with constant load, congestion, and dilation.

Theorem 4.4.3. An N -node hypercube with N1−ε worst-case faults (for any
ε > 0) can emulate T steps of any normal algorithm on an N -node fault-free hypercube
in O(T + logN) steps.

Proof. Let the faulty N -node hypercube be H and the fault-free N -node hyper-
cube be G. H emulates any normal algorithm of G by using a sequence of constant
slowdown emulations. Let an N -node butterfly B be embedded in H in the manner
of Lemma 4.4.2. Any node of B that is mapped to a faulty node of H is considered
faulty. (And H is not required to emulate these faulty nodes.) Since this is a constant
load embedding, the number of faulty nodes in B is O(N1−ε). Clearly, H can emulate
any computation of B with constant slowdown using the constant load, congestion,
and dilation embedding of B in H. Let B′ be a fault-free N -node butterfly. From
Theorem 4.3.2, B can emulate B′ with a constant slowdown. Now, from Lemma 4.4.1,
B′ can emulate any normal algorithm of G with a constant slowdown. Putting all
these emulations together, we obtain a constant slowdown emulation of any normal
algorithm on G on the faulty hypercube H.

5. Random faults. In this section we show that an N -input host butterfly H
can sustain many random faults and still emulate a fault-free N -input guest butterfly
G with little slowdown. In particular, we show that if each node in H fails indepen-
dently with probability p = 1/ log(k) N , where log(k) denotes the logarithm function

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

1328 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

iterated k times, the slowdown of the emulation is 2O(k), with high probability. For
any constant k this slowdown is constant. Furthermore, for k = O(log∗N) the node
failure probability p is constant, and the slowdown is 2O(log∗N). Previously, the most
efficient self-emulation scheme known for an N -input butterfly required ω(log logN)
slowdown [51].

The proof has the following outline. We begin by showing that the host H can
emulate another N -input butterfly network Bk with constant slowdown. As in H,
some of the nodes in Bk may fail at random (in which case it is not necessary for H
to emulate them), but Bk is likely to contain fewer faults than H. In turn, Bk can
emulate another butterfly Bk−1 with even fewer faults. Continuing in this fashion, we
arrive at B1, which, with high probability, contains so few faults that it can emulate
the guest G with constant slowdown. There are k + 1 emulations, and each incurs a
constant factor slowdown, so the total slowdown is 2O(k).

5.1. Emulating a butterfly with fewer faults. We begin by explaining how
H emulates Bk. The first step is to cover the N -input butterfly Bk with overlapping
(log(k) N)2-input subbutterflies. For ease of notation, let Mk = (log(k) N)2. (For
simplicity, we assume that logMk is an integral multiple of 4.) For each i from 0
to 4(logN/ logMk)− 4, there is a band of disjoint Mk-input subbutterflies spanning
levels (i logMk)/4 through ((i + 4) logMk)/4. We call these subbutterflies the band

i subbutterflies. Note that each band i subbutterfly shares M
3/4
k rows with M

1/4
k

different band i − 1 subbutterflies and M
3/4
k rows with M

1/4
k different band i + 1

subbutterflies.

Each Mk-input subbutterfly in Bk is emulated by the corresponding subbutterfly
in H. We say that an Mk-input subbutterfly in Bk fails if more than α

√
Mk logMk

nodes inside the corresponding Mk-input subbutterfly in H fail, where α is a constant
that will be determined later. If a subbutterfly in Bk fails, then H is not required to
emulate any of the nodes that lie in that subbutterfly. As we shall see, if it does not
fail, then the corresponding subbutterfly in H contains few enough faults that we can
treat them as worst-case faults and apply the technique from section 4 to reconfigure
around them. The following lemma bounds the probability that a subbutterfly in Bk

fails.

Lemma 5.1.1. For α > 4e, an Mk-input subbutterfly in Bk fails with probability
at most 1/ log(k−1) N .

Proof. An Mk-input subbutterfly fails if the corresponding Mk-input subbutterfly
in H contains too many faults. An Mk-input subbutterfly in H contains a total of
Mk(1+logMk) ≤ 4(log(k) N)2(log(k+1) N) nodes, each of which fails with probability

1/ log(k) N = 1/
√
Mk. Thus, the expected number of nodes that fail is at most

2
√
Mk logMk = 4(log(k) N)(log(k+1) N). Since each node fails independently, we can

bound the probability that more than α
√
Mk logMk nodes fail using a Chernoff-type

bound. For α > 4e, the probability that more than α
√
Mk logMk nodes fail is at most

2−α
√
Mk logMk (for a proof, see [46]). Since α

√
Mk logMk > log(k) N , this probability

is at most 2− log(k) N = 1/ log(k−1) N .

The next lemma shows that if a subbutterfly in Bk does not fail, then the corre-
sponding subbutterfly in H can emulate it with constant slowdown.

Lemma 5.1.2. If an Mk-input subbutterfly in Bk does not fail, then the corre-
sponding subbutterfly in H can emulate it with constant slowdown.

Proof. Since the number of faults in an Mk-input subbutterfly that does not fail is
most α

√
Mk logMk, we can treat them as worst-case faults and apply Theorem 4.3.2

with ε ≈ 1/2.

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1329

The next lemma shows that the host H can emulate any computation performed
by an N -input butterfly network Bk with constant slowdown. Recall that H is not
required to emulate nodes in Bk that lie in subbutterflies in Bk that have failed.

Lemma 5.1.3. The host H can emulate Bk with constant slowdown.
Proof. By Lemma 5.1.2, each Mk-input subbutterfly in Bk that has not failed

can be emulated by the corresponding subbutterfly in H with constant slowdown
using the technique of section 4. (Note that each node in Bk may be emulated by as
many as four different subbutterflies in H.) In order to emulate the entire network
Bk, it is also necessary to emulate the connections between the subbutterflies. As
in section 4, let M1−ε

k denote the number of faults in an Mk-input subbutterfly of
H. For a subbutterfly that has not failed, ε ≈ 1/2. By Lemma 4.1.1, the number
of rows in the subbutterfly containing either a fault or an input or output that is

bad for Beneš routing is at most M1−ε
k /2+4M

1−2ε/3
k , which is approximately 4M

2/3
k .

Each band i subbutterfly that does not fail shares M
3/4
k rows with each of the band

i − 1 subbutterflies (and band i + 1 subbutterflies) with which it overlaps. Thus,
for each pair of overlapping butterflies that do not fail, most of the shared rows
are both fault-free and good for routing in both subbutterflies. In order to emulate
an Mk-input subbutterfly of H, the emulation strategy of section 4 covers it with

smaller subbutterflies, each having M
ε/2
k inputs. If a smaller subbutterfly is used in

the emulation, then none of the rows that pass through it contain either a fault or a

bad input or output. Thus, the M
3/4
k connections between each pair of overlapping

Mk-input subbutterflies in bands i and i − 1 can be emulated by routing constant
congestion paths of length O(logMk) through the shared rows. The rest of the proof
is similar to that of Theorem 4.3.2.

5.2. Emulating a series of butterflies. So far we have shown that the host
H can emulate an N -input butterfly Bk that contains some faulty nodes. Although
our ultimate goal is to show that H can emulate the guest network G, which contains
no faulty nodes, we have made some progress. In the host network H, each node fails
independently with probability 1/ log(k) N . In Bk, each (log(k) N)2-input subbutterfly

fails with probability 1/ log(k−1) N . A node in Bk fails if it lies in a subbutterfly

that fails. Since each node in Bk lies in at most five (log(k) N)2-input subbutterflies
(once as an input, once as an output, and three times as an interior node), we have

reduced the expected number of faults from (N logN)/ log(k) N in H to fewer than

(5N logN)/ log(k−1) N in Bk.
The next step is to show that butterfly Bk can emulate a butterfly Bk−1 with even

fewer faults. In general, we cover butterfly Bj with (log(j) N)2-input subbutterflies.

For ease of notation, let Mj = (log(j) N)2. We say that an Mj-input subbutterfly
in Bj fails if the corresponding Mj-input subbutterfly in Bj+1 contains more than
α
√
Mj Mj+1-input subbutterflies that have failed. The following three lemmas are

analogous to Lemmas 5.1.1 through 5.1.3.
Lemma 5.2.1. For α > 8e, the probability that an Mj-input subbutterfly in Bj

fails is at most 1/(log(j−1) N).
Proof. The proof is by induction on j, starting with j = k and working backward

to j = 0. The base case is given by Lemma 5.1.1. For each value of i from 0
to 4(logMj/ logMj+1) − 4, there is a band of disjoint Mj+1-input subbutterflies in
Bj+1 that span levels (i logMj+1)/4 through ((i+ 4) logMj+1)/4. These Mj+1-input
subbutterflies can be partitioned into eight classes according to their band numbers.D

ow
nl

oa
de

d
12

/1
0/

19
 to

 1
28

.1
19

.2
42

.1
46

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

1330 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

Two bands of subbutterflies belong to the same class if their band numbers differ by
a multiple of eight. There are at most

(Mj logMj)/(2Mj+1 logMj+1) = (log(j) N)2/2(log(j+1) N)(log(j+2) N)

subbutterflies in each of these classes, and within a class the subbutterflies are dis-
joint. By induction, each subbutterfly fails with probability at most 1/ log(j) N . Thus,
in any particular class, the expected number of subbutterflies that fail is at most
(log(j) N)/2(log(j+1) N)(log(j+2) N), which is less than log(j) N . Using Chernoff-type

bounds as in Lemma 5.1.1, for α > 16e, the probability that more than (α log(j) N)/8 =

(α
√
Mj)/8 of these subbutterflies fail is at most 2−(α log(j) N)/8, which is less than

1/8 log(j−1) N . Thus, the probability that a total of α log(j) N subbutterflies fail in

the eight classes is at most 1/ log(j−1) N .

Lemma 5.2.2. If an Mj-input subbutterfly in Bj does not fail, then the corre-
sponding Mj-input subbutterfly in Bj+1 can emulate it with constant slowdown.

Proof. If an Mj-input subbutterfly does not fail, then at most α
√
Mj of the over-

lapping Mj+1-input subbutterflies in the corresponding Mj-input subbutterfly in H

fail. Each of these subbutterflies containsMj+1(1+logMj+1) ≤ 4(log(j+1) N)2 log(j+2) N
nodes. Since the total number of nodes in all of these subbutterflies is at most
4α log(j) N(log(j+1) N)2 log(j+2) N , i.e., approximately

√
Mj , we can treat them all

as if they were worst-case faults and apply Theorem 4.3.2 with ε ≈ 1/2.

Lemma 5.2.3. For 1 < j ≤ k + 1, butterfly Bj can emulate Bj−1 with constant
slowdown.

Proof. The proof is similar to the proof of Lemma 5.1.3.

Theorem 5.2.4. For any fixed γ > 0 with probability at least 1 − 1/2N
1−γ

, an

N -input butterfly in which each node fails with probability 1/ log(k) N can emulate a
fault-free N -input butterfly with slowdown 2O(k).

Proof. The host network H = Bk+1 can emulate network B1 with slowdown 2O(k).

In B1, each subbutterfly with (logN)2 inputs fails with probability 1/ log(0) N = 1/N .
Using Chernoff-type bounds as in Lemma 5.1.1, the probability that more than N1−γ

of these subbutterflies fail is at most 1/2N
1−γ

. If fewer than N1−γ of them fail, then we
can treat the nodes contained in these subbutterflies as if they were worst-case faults.
In this case, the total number of worst-case faults is at most 4N1−γ(logN)2 log logN .
Hence, by applying Theorem 4.3.2 with ε ≈ γ, B1 can emulate the guest network G
with constant slowdown.

6. Open problems. Some of the interesting problems left open by this paper
are listed below.

1. Can a butterfly tolerate random faults with constant failure probability and
still emulate a fault-free butterfly of the same size with constant slowdown?

2. Can an N -node butterfly (or any other N -node bounded-degree network)
tolerate more than N1−ε worst-case faults (e.g., N/ logN) and still emulate
a fault-free network of the same type and size with constant slowdown?

3. Can a 2N -input Beneš network tolerate Θ(N) worst-case switch failures and
still route disjoint paths in any permutation between some set of Θ(N) inputs
and outputs?

4. Can an N -input butterfly be embedded with constant load, congestion, and
dilation in an N -input butterfly with more than logO(1) N (e.g., N1−ε) worst-
case faults?

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1331

Acknowledgments. Thanks to Bob Cypher and Joel Friedman for helpful dis-
cussions. We are also grateful to Bill Aiello for suggesting that our butterfly results
imply results in fault-tolerant emulations of normal algorithms. The third author
wishes to thank Bob Tarjan for his support and encouragement.

REFERENCES

[1] G. B. Adams, III and H. J. Siegel, The extra stage cube: A fault-tolerant interconnection
network for supersystems, IEEE Trans. Comput., C–31 (1982), pp. 443–454.

[2] W. Aiello and T. Leighton, Coding theory, hypercube embeddings, and fault tolerance, in
Proc. 3rd Annual ACM Symposium on Parallel Algorithms and Architectures, July 1991,
pp. 125–136.

[3] W. A. Aiello, personal communication, July 1992.
[4] M. Ajtai, N. Alon, J. Bruck, R. Cypher, C. T. Ho, M. Naor, and E. Szemerédi, Fault

tolerant graphs, perfect hash functions and disjoint paths, in Proc. 33rd Annual Symposium
on Foundations of Computer Science, Oct. 1992, pp. 693–702.

[5] F. Annexstein, Fault tolerance in hypercube-derivative networks, Computer Architecture
News, 19(1)(1991), pp. 25–34.

[6] S. Arora, T. Leighton, and B. Maggs, On-line algorithms for path selection in a non-
blocking network, SIAM J. Comput., 25 (1996), pp. 600–625.

[7] S. Assaf and E. Upfal, Fault-tolerant sorting network, in Proc. 31st Annual Symposium on
Foundations of Computer Science, Oct. 1990, pp. 275–284.

[8] Y. Aumann and M. Ben-Or, Asymptotically optimal PRAM emulation on faulty hypercubes,
in Proc. 32nd Annual Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Piscataway, NJ, Oct. 1991, pp. 440–457.

[9] S. N. Bhatt, F. R. K. Chung, F. T. Leighton, and A. L. Rosenberg, Tolerating faults in
synchronization networks, Parallel Processing: CONPAR92-VAPPV, Lyon, France, Lec-
ture Notes in Comput. Sci. 634, Springer, Berlin, 1992, pp. 1–12.

[10] J. Bruck, R. Cypher, and C.-T. Ho, Fault-tolerant meshes with minimal numbers of spares,
IEEE Trans. Comput., 42 (1993), pp. 1089–1104.

[11] J. Bruck, R. Cypher, and C.-T. Ho, Fault-tolerant meshes with small degree, SIAM J.
Comput., 26 (1997), pp. 1764–1784.

[12] J. Bruck, R. Cypher, and D. Soroker, Running algorithms efficiently on faulty hypercubes,
Computer Architecture News, 19(1)(1991), pp. 89–96.

[13] J. Bruck, R. Cypher, and D. Soroker, Tolerating faults in hypercubes using subcube parti-
tioning, IEEE Trans. Comput., 41 (1992), pp. 599–605.

[14] R. Cole, B. Maggs, and R. Sitaraman, Reconfiguring arrays with faults part I: Worst-case
faults, SIAM J. Comput., 26 (1997), pp. 1581–1611.

[15] R. Cole, B. Maggs, and R. Sitaraman, Routing on butterfly networks with random faults, in
Proc. 36th Annual Symposium on Foundations of Computer Science, Oct. 1995, pp. 558–
570.

[16] S. Dutt and J. P. Hayes, On designing and reconfiguring k-fault-tolerant tree architectures,
IEEE Trans. Comput., C–39 (1990), pp. 490–503.

[17] S. Dutt and J. P. Hayes, Designing fault-tolerant systems using automorphisms, J. Parallel
and Distributed Computing, 12 (1991), pp. 249–268.

[18] S. Even and A. Litman, Layered cross product—A technique to construct interconnection
networks, in Proc. 4th Annual ACM Symposium on Parallel Algorithms and Architectures,
July 1992, pp. 60–69.

[19] M. R. Fellows, Encoding Graphs in Graphs, Ph.D. thesis, Department of Computer Science,
University of California, San Diego, CA, 1985.

[20] D. S. Greenberg, L. S. Heath, and A. L. Rosenberg, Optimal embeddings of butterfly-like
graphs in the hypercube, Math. Systems Theory, 23 (1990), pp. 61–77.

[21] R. I. Greenberg and C. E. Leiserson, Randomized routing on fat-trees, in Randomness
and Computation, Advances in Computing Research, Vol. 5, S. Micali, ed., JAI Press,
Greenwich, CT, 1989, pp. 345–374.

[22] J. W. Greene and A. El Gamal, Configuration of VLSI arrays in the presence of defects, J.
Assoc. Comput. Mach., 31 (1984), pp. 694–717.

[23] J. Hastad, T. Leighton, and M. Newman, Reconfiguring a hypercube in the presence of faults,
in Proc. 19th Annual ACM Symposium on Theory of Computing, May 1987, pp. 274–284.

[24] J. Hastad, T. Leighton, and M. Newman, Fast computation using faulty hypercubes, in Proc.
21st Annual ACM Symposium on Theory of Computing, May 1989, pp. 251–263.

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://epubs.siam.org/sam-bin/jvip.pl?journal=SICOMP&vol=26&iss=6&pg=1764
http://epubs.siam.org/jvip.pl?journal=SICOMP&vol=26&iss=6&pg=1581

1332 F. T. LEIGHTON, B. M. MAGGS, AND R. K. SITARAMAN

[25] C. Kaklamanis, A. R. Karlin, F. T. Leighton, V. Milenkovic, P. Raghavan, S. Rao,
C. Thomborson, and A. Tsantilas, Asymptotically tight bounds for computing with faulty
arrays of processors, in Proc. 31st Annual Symposium on Foundations of Computer Science,
IEEE Computer Society Press, Piscataway, NJ, Oct. 1990, pp. 285–296.

[26] R. Koch, T. Leighton, B. Maggs, S. Rao, and A. Rosenberg, Work-preserving emulations
of fixed-connection networks, J. Assoc. Comput. Mach., 44 (1997), pp. 104–147.

[27] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays • Trees •
Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.

[28] F. T. Leighton and B. M. Maggs, Fast algorithms for routing around faults in multibutterflies
and randomly-wired splitter networks, IEEE Trans. Comput., 41 (1992), pp. 578–587.

[29] F. T. Leighton, B. M. Maggs, A. G. Ranade, and S. B. Rao, Randomized routing and
sorting on fixed-connection networks, J. Algorithms, 17 (1994), pp. 157–205.

[30] F. T. Leighton, B. M. Maggs, and S. B. Rao, Packet routing and job-shop scheduling in
O(congestion + dilation) steps, Combinatorica, 14 (1994), pp. 167–180.

[31] T. Leighton and C. E. Leiserson, Wafer-scale integration of systolic arrays, IEEE Trans.
Comput., C–34 (1985), pp. 448–461.

[32] T. Leighton, Y. Ma, and C. G. Plaxton, Breaking the Θ(n log2 n) barrier for sorting with
faults, J. Comput. System Sci., 54 (1997), pp. 265–304.

[33] C. E. Leiserson, Fat-trees: Universal networks for hardware-efficient supercomputing, IEEE
Trans. Comput., C–34 (1985), pp. 892–901.

[34] G. Lin, Fault tolerant planar communication networks, in Proc. 24th Annual ACM Symposium
on the Theory of Computing, May 1992, pp. 133–139.

[35] M. Livingston, Q. Stout, N. Graham, and F. Hararay, Subcube Fault-Tolerance in Hyper-
cubes, Tech. report CRL-TR-12-87, University of Michigan Computing Research Labora-
tory, Ann Arbor, Sept. 1987.

[36] Y.-D. Lyuu, Fast fault-tolerant parallel communication and on-line maintenance using infor-
mation dispersal, Math. Systems Theory, 24 (1991), pp. 273–294.

[37] B. M. Maggs and R. K. Sitaraman, Simple algorithms for routing on butterfly networks with
bounded queues, in Proc. 24th Annual ACM Symposium on the Theory of Computing, May
1992, pp. 150–161; SIAM J. Comput., to appear.

[38] F. Meyer auf der Heide, Efficiency of universal parallel computers, Acta Inform., 19 (1983),
pp. 269–296.

[39] F. Meyer auf der Heide, Efficient simulations among several models of parallel computers,
SIAM J. Comput., 15 (1986), pp. 106–119.

[40] F. Meyer auf der Heide and R. Wanka, Time-optimal simulations of networks by universal
parallel computers, in Proc. 6th Symposium on Theoretical Aspects of Computer Science,
Lecture Notes in Comput. Sci. 349, Springer, Berlin, 1989, pp. 120–131.

[41] D. C. Opferman and N. T. Tsao-Wu, On a class of rearrangeable switching networks–part II:
Enumeration studies and fault diagnosis, Bell System Tech. J., 50 (1971), pp. 1601–1618.

[42] N. Pippenger, Telephone switching networks, in Proc. Symposia in Applied Mathematics,
Vol. 26, American Mathematical Society, Providence, RI, 1982, pp. 101–133.

[43] N. Pippenger and G. Lin, Fault-tolerant circuit-switching networks, in Proc. 4th Annual ACM
Symposium on Parallel Algorithms and Architectures, June 1992, pp. 229–235.

[44] M. O. Rabin, Efficient dispersal of information for security, load balancing, and fault tolerance,
J. Assoc. Comput. Mach., 36 (1989), pp. 335–348.

[45] P. Raghavan, Probabilistic construction of deterministic algorithms: Approximate packing
integer programs, J. Comput. System Sci., 37 (1988), pp. 130–143.

[46] P. Raghavan, Lecture Notes on Randomized Algorithms, Research Report RC 15340 (#68237),
IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY, Jan. 1990.

[47] E. J. Schwabe, On the computational equivalence of hypercube-derived networks, in Proc. 2nd
Annual ACM Symposium on Parallel Algorithms and Architectures, July 1990, pp. 388–
397.

[48] E. J. Schwabe, Efficient Embeddings and Simulations for Hypercubic Networks, Ph.D. thesis,
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, June
1991.

[49] S. Sowrirajan and S. M. Reddy, A design for fault-tolerant full connection networks, in
Proc. International Conference on Science and Systems, IEEE Computer Society Press,
Piscataway, NJ, Mar. 1980, pp. 536–540.

[50] J. Spencer, Ten Lectures on the Probabilistic Method, SIAM, Philadelphia, PA, 1987.
[51] H. Tamaki, Efficient self-embedding of butterfly networks with random faults, in Proc. 33rd

Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press,
Piscataway, NJ, Oct. 1992, pp. 533–541.

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

FAULT TOLERANCE OF POPULAR BOUNDED-DEGREE NETWORKS 1333

[52] H. Tamaki, Robust bounded-degree networks with small diameters, in Proc. 4th Annual ACM
Symposium on Parallel Algorithms and Architectures, June 1992, pp. 247–256.

[53] S. Toledo, Competitive fault-tolerance in area-universal networks, in Proc. 4th Annual ACM
Symposium on Parallel Algorithms and Architectures, June 1992, pp. 236–246.

[54] L. G. Valiant, A scheme for fast parallel communication, SIAM J. Comput., 11 (1982),
pp. 350–361.

[55] A. Waksman, A permutation network, J. Assoc. Comput. Mach., 15 (1968), pp. 159–163.
[56] A. Wang and R. Cypher, Fault-Tolerant Embeddings of Rings, Meshes and Tori in Hyper-

cubes, Tech. report IBM RJ 8569, IBM Almaden Research Center, San Jose, CA, Jan.
1992.

[57] A. Wang, R. Cypher, and E. Mayr, Embedding complete binary trees in faulty hypercubes,
in Proc. 3rd IEEE Symposium on Parallel and Distributed Processing, IEEE Computer
Society Press, Piscataway, NJ, Dec. 1991, pp. 112–119.

D
ow

nl
oa

de
d

12
/1

0/
19

 to
 1

28
.1

19
.2

42
.1

46
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

