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On the Complexity of Optimal Request
Routing and Content Caching in
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Abstract— In-network content caching has been deployed in
both the Internet and cellular networks to reduce content-access
delay. We investigate the problem of developing optimal joint
routing and caching policies in a network supporting in-network
caching with the goal of minimizing expected content-access
delay. Here, needed content can either be accessed directly from
a back-end server (where content resides permanently) or be
obtained from one of multiple in-network caches. To access
content, users must thus decide whether to route their requests
to a cache or to the back-end server. In addition, caches must
decide which content to cache. We investigate two variants of
the problem, where the paths to the back-end server can be con-
sidered as either congestion-sensitive or congestion-insensitive,
reflecting whether or not the delay experienced by a request sent
to the back-end server depends on the request load, respectively.
We show that the problem of optimal joint caching and routing is
NP-complete in both cases. We prove that under the congestion-
insensitive delay model, the problem can be solved optimally in
polynomial time if each piece of content is requested by only one
user, or when there are at most two caches in the network. We also
identify the structural property of the user-cache graph that
makes the problem NP-complete. For the congestion-sensitive
delay model, we prove that the problem remains NP-complete
even if there is only one cache in the network and each content
is requested by only one user. We show that approximate solutions
can be found for both cases within a (1 − 1/e) factor from the
optimal, and demonstrate a greedy solution that is numerically
shown to be within 1% of optimal for small problem sizes.
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Through trace-driven simulations, we evaluate the performance
of our greedy solutions to joint caching and routing, which
show up to 50% reduction in average delay over the solution
of optimized routing to least recently used caches.

Index Terms— Content placement, routing, joint optimization,
complexity.

I. INTRODUCTION

W ITH the rapid growth of data traffic over cellular
networks, it has been widely acknowledged that the

conventional macro-cell architecture (4G-LTE) will not be able
to support such traffic growth [1]. Since content caching has
proven to reduce server traffic by more than 60% [2], [3],
in-network caching of content at storage-enabled nodes has
received considerable attention as a means to reduce the
use of network link bandwidth while improving the delay
performance of end users by bringing content closer to the
users. The benefits of in-network content caching has been
demonstrated in the context of CDNs as well as in hybrid
networks comprised of cellular and MANETs or femto-
cell networks [4]–[6]. The FemtoCaching architecture [7]
effectively replaces back-haul capacity with storage capacity,
allowing user content requests to be satisfied by caches at
the wireless edge, with back-haul links being used primarily
to refresh cache content. Prior work [7]–[9] has focused
on the content placement problem, i.e., determining which
content should be placed at which caches for a given topol-
ogy and file popularity distribution, under the assumption
that users greedily access content over the minimum delay
path.

In this paper, we study a joint problem of caching and
routing, considering the inter-related routing and caching
decisions, with the goal of minimizing average content access
delay over all user requests. We consider a scenario in which
users request content that is permanently stored at a back-end
server, and that can be accessed in one of two ways − either
directly from the back-end server over an uncached path, or
via one of the caches located within the network. These caches
can be located either at the network edge as in the case of a
CDN, or can be in-network caches in the case of a hybrid
wireless network. In the latter setting, MANET-like routing
might be used to route content requests to in-network caches,
while a separate (and potentially costly, congested, and/or
slower speed) cellular link might be used to directly access
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the back-end server. If a request is routed to an in-network
cache that holds the content, the request is served immediately.
Otherwise, the cache must download the content from the
back-end server before serving it to the user, incurring an
additional delay. Additionally, the cache must decide whether
or not to store the downloaded content.

We address the following question − how should users
route requests between the in-network caches and the back-end
server, and what in-network cache management policy should
be adopted to minimize overall network delay? We consider
two variants of the problem. In the first case, referred to as
the congestion-insensitive case, we assume that delays are
independent of the traffic load on all paths. In the second case,
referred to as the congestion-sensitive case, we assume that
the delay to the back-end server depends on the traffic load;
we model the congestion-sensitive delay using G/G/1 queues.
In a hybrid cellular/MANET network, the uncached path in the
congestion-insensitive model corresponds to GBR (guaranteed
bit rate) 3GPP bearer service, while in the congestion-sensitive
model it corresponds to Non-GBR Aggregate Maximum Bit
Rate (AMBR) bearer service [10]. We investigate the time
complexity of finding the optimal solution for the joint caching
and routing problem for both cases.

Our goal in this paper is twofold. First, we seek an under-
standing of the computational complexity of the joint caching
and routing problem: Can the general problem be solved opti-
mally in polynomial time? If not, are there problem instances
that are tractable and what aspects make the general problem
intractable? Second, we seek efficient approximate solutions
to the joint caching and routing problem that perform well in
practice.

Our contributions can be summarized as follows:
• We provide a unified optimization formulation for the

joint caching and routing problem for the congestion-
insensitive and congestion-sensitive models and prove
that the problem is NP-complete in both cases.

• For the congestion-insensitive uncached path model,
we show that the optimal solution can be found in
polynomial time if each content is requested by only
one user, or when the number of caches in the net-
work is at most two. Moreover, we identify the root
cause of the problem complexity in general cases −
cycles with an odd number of users and caches in the
bipartite graph representing connections between users
and caches. For the congestion-sensitive uncached path
model, however, we show that the problem remains
NP-complete even if there is only one cache in the
network and each content is requested by only one
user.

• We develop a greedy caching and routing algorithm that
achieves an average delay within a (1−1/e) factor of the
optimal solution and a second greedy algorithm of lower
complexity.

• We evaluate the performance of the proposed greedy
algorithms together with the optimal solution (via brute-
force search) and a baseline solution based on LRU
through numerical evaluations and trace-driven simula-
tions. Numerical results show that the greedy algorithms

Fig. 1. Hybrid network with in-network caching.

perform close to optimal when computing the optimal
solution is feasible. Results from trace-driven simulations
show that the greedy algorithms yield significant per-
formance improvement compared to solutions based on
traditional LRU caching policy.

The remainder of this paper is organized as follows.
In Section II, we describe our network model, and in
Section III, we formulate the problem of optimal joint caching
and routing. In Sections IV and V, we present our com-
plexity results for the congestion-insensitive and congestion-
sensitive delay models, respectively. Section VI explains the
approximate algorithm, and Section VII presents simulation
results. Section VIII reviews the related work, and Section IX
concludes the paper.

II. NETWORK MODEL

In this section, we consider the network shown in Figure 1
with N users generating requests for a set of K unique files
F = {f1, f2, . . . , fK} of unit size. Throughout this paper, we
will use the terms content and file interchangeably. We assume
that these files reside permanently at the back-end server.
As shown in Figure 1, there are M caches in the network
that can serve user requests.

All files are available at the back-end server and users are
directly connected to this server via a cellular infrastructure.
We refer to the cellular path between the user and the back-
end server as the uncached path. Each user can also access a
subset of the M in-network caches where the content might be
cached. We refer to a connection between a user and a cache
as a cached path.

Let Cm denote the storage capacity of the m-th cache
measured by the maximum number of files it can store.
If user i requests file j and it is present in the cache, then
the request is served immediately. We refer to this event as a
cache hit. However, if content j is not present in the cache,
the cache then forwards the request to the back-end server,
downloads file j from the back-end server and forwards it
to the user. We refer to this event as a cache miss, since it
was necessary to download content from the back-end server
in order to satisfy the request. Note that in case of a cache
miss, the cache can decide whether to keep the downloaded
content.
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User i generates requests for the files in F according to
a Poisson process of aggregate rate λi. Aggregate request
rate of all users is λ. We assume the independent reference
model (IRM) and denote by qij the probability that a request
generated by user i is for file j (referred to as the file
popularity). The popularity of the same file can vary from
one user to another.

Let aim denote the existence of a connection between user i
and cache m, with aim = 1 if user i is connected to cache m,
and aim = 0, otherwise. We consider two models for the delay
over the paths to the back-end server. The first is a congestion-
insensitive delay model where the delays are independent of
the traffic load on the links to the back-end server. In this
case, the average delay experienced for a request by user i
sent over the uncached path is db

i . Also, for the user-cache
connections, we denote the average delays incurred by user i
in the event of a cache hit or miss at cache m by dh

im and dc
im,

respectively. We assume that dh
im < db

i < dc
im if aim = 1. The

second model is a congestion-sensitive delay model where
delays experienced over the paths to the back-end server
depend on the traffic load. In this case, we assume that the
requests sent over the uncached paths, and the requests missed
from caches experience constant initial delays db

i and dc
im as

well as load-dependent (queueing) delays captured by convex
functions db(·) and dc(·), respectively.

III. PROBLEM FORMULATION

In this work, we consider a joint caching and rout-
ing problem with the goal of minimizing average content
access delay over all user requests for all files. The solu-
tion to this problem requires addressing two closely-related
questions 1) How should cache contents be managed -
which files should be kept in the caches, and what cache
replacement strategy should be used? and 2) How should
users route their requests between the cached and uncached
paths?

For our routing policy, we define a decision variable pijm

that denotes the fraction of the requests of user i for content j
sent to cache m. User i sends the remaining 1−∑m pijm

fraction of her requests for content j to the back-end server
through the uncached path.

It is shown in [11] that static caching minimizes expected
delay for a single cache when user demands and routing are
fixed. With static caching, a set of files is stored in the cache,
and the cache content does not change in the event of a cache
hit or miss. The argument in [11] was extended in [12] and [13]
to a network of caches to show that static caching achieves
minimum expected delay under a fixed routing policy. Hence,
we define the binary variables xjm ∈ {0, 1} to denote the
content placement in caches, where xjm = 1 indicates file j
is stored in cache m and xjm = 0 indicates otherwise.

We denote by D(x,p) the expected delay obtained by
a content placement strategy x = [xjm], and a routing
strategy p = [pijm]. We also use D∅ to denote the expected
delay when no content is cached, where D∅ is assumed
to be finite. The caching gain can then be defined as
G(x,p) � D∅ −D(x,p). The goal of joint caching and rout-
ing is to maximize G(x,p) which can equivalently be obtained

by solving the following Mixed-Integer Program (MIP):

minimize D(x,p)

=
1
λ

[
∑

i

∑

j

λiqij

(
∑

m

pijmxjmdh
im+(1−

∑

m

pijm)db
i

+
∑

m

(1− xjm)pijmdc
im

)

+ λb(p)db

(
λb(p)

)
+ λc(x,p)dc

(
λc(x,p)

)
]

,

such that
∑

m

pijm ≤ 1 ∀i, j (1)

∑

j

xjm ≤ Cm ∀m

xjm ∈ {0, 1} ∀j, m
0 ≤ pijm ≤ aim ∀i, j, m.

In the formulation above,

λb(p) �
∑

i

∑

j

λiqij(1 −
∑

m

pijm),

and

λc(x,p) �
∑

i

∑

j

λiqij

∑

m

(1− xjm)pijm,

denote the request load over the uncached paths, and the load
of requests missed from caches, respectively.

In the next two sections, we express the delay func-
tion D(x,p) for the cases of i) congestion-insensitive and
ii) congestion-sensitive uncached path delay models, and
discuss why the joint caching and routing problem is
NP-complete.

IV. CONGESTION-INSENSITIVE UNCACHED PATH

First, we consider the case where delays on the uncached
path, db

i , do not depend on the traffic load on the back-
end server. Hence, throughout this section we assume that
db(·) = dc(·) = 0.

Without loss of generality, we assume that dh
im < db

i < dc
im

whenever user i is connected to cache m, i.e., aim = 1. The
routing variables pijm for user i are easily determined when
the above assumption does not hold. Note that if db

i ≥ dc
im,

user i will never use the uncached path. Also, if db
i ≤ dh

im,
user i will never use cache m.

It is easy to see that with the congestion-insensitive model,
given a content placement, the average minimum delay is
obtained by routing requests for the cached content to caches,
and routing the remaining requests to the uncached path. Note
that under this routing policy no cache misses occur.

Note that D(x,p) is a linear function of the routing vari-
ables. Also note the additional constraint pijm ≤ xjm · aim,
which is due to the fact that only requests for cached content
are routed to caches. Since dh

im < db
i < dc

im, users have
no incentive to split the traffic for any content between the
cached and uncached paths, and hence there will be an optimal
solution such that no routing variable has a fractional value,
i.e., pijm ∈ {0, 1}.
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A. Hardness of General Case

The above formulation of the joint caching and routing
problem is a generalization of the Helper Decision Prob-
lem (HDP) proved to be NP-complete in [7]. Our formulation
is more general as we consider non-homogeneous delays
for the cached and uncached paths. Therefore, we have the
following result.

Theorem 1: The optimal joint caching and routing problem
with congestion-insensitive uncached paths is NP-complete.

Proof: HDP reduces to the optimization problem in (1)
by setting db(·) = dc(·) = 0, db

i = 1, dh
im = 0, and Cm = C,

where C is the cache size at all caches in HDP. Hence, joint
caching and routing problem is NP-hard. Moreover, for any
given routing and caching, average delay can be computed
in polynomial time. Therefore, the joint caching and routing
problem in case of congestion-insensitive uncached paths is
NP-complete. �

Although the problem is NP-complete in general, we will
show that the joint caching and routing problem can be solved
in polynomial time for several special cases. We will also
identify what makes the problem “hard” in general. We first
consider a restrictive setting where each user is interested in
only one file and each file is requested by only one user.
Next, we consider a network with two caches (but each user
may be interested in an arbitrary number of files). We present
polynomial time solutions for both cases. Finally, we present
an example that demonstrates what we conjecture to be the
source of the complexity of this problem.

B. Special Case: One File per User

Consider the network illustrated in Figure 1, but assume
each user is interested in only one file, i.e., qii = 1, and
qij = 0 for i �= j. In this case, the optimal solution to the
joint caching and routing problem can be found in polynomial
time based on a solution to the maximum weighted matching
problem. A similar reduction of a caching problem to the
maximum weighted matching problem was also previously
presented in [14].

Note that in this case, the number of files equals the number
of users, i.e., N = K . To avoid triviality, we assume that the
number of users is larger than the capacity of each cache in
the network, i.e., Cm < N, ∀m.

Theorem 2: The solution to the joint caching and routing
problem with congestion-insensitive uncached paths in case of
one file per user can be computed in polynomial time.

Proof: The assumption that each user is interested in only
one file allows us to rewrite the objective function in (1) as

D(x,p) =
1
λ

( N∑

i=1

λid
b
i −

∑

i

∑

m

λipiim(db
i − dh

im)
)
.

Since
∑N

i=1 λid
b
i is a constant independent of the decision

variables, minimizing the above objective function is equiv-
alent to maximizing

∑
i

∑
m λipiim(db

i − dh
im). Note that

λi(db
i−dh

im) can be interpreted as the gain obtained by having
file i in cache m. This problem can then be naturally seen as
matching files to caches with the goal of maximizing the sum

Fig. 2. Modeling content placement as a maximum weighted matching
problem. Each user is interested in only one file and each file is requested by
only one user. Problem can be solved by matching users to cache spaces.

of individual gains. In what follows, we map this problem to
the maximum weighted matching problem.

For each cache of size Cm, we introduce Cm nodes
{v1

m, v2
m, . . . , vCm

m } representing unit size micro-caches that
form cache m. Let V = {v1

1 , v
2
1 , . . . , vC1

1 , . . . , v1
M , . . . , vCM

M }
denote the set of all such nodes, and let U = {u1, u2, . . . , uN}
denote the set of all files. We define the bipartite graph
G(U, V, E) with λi(db

i − dh
im) as the weight of the

edges connecting node ui to nodes vs
m, ∀s ∈ {1, 2, . . . , Cm}.

Figure 2 demonstrates a bipartite graph with user/file nodes u
and the micro-cache nodes v with the edge weights shown for
some of the edges. Note that the bipartite graph consists of
|U |+ |V | = N +

∑
m Cm vertices and |E| = O(N

∑
m Cm)

edges.
The optimal solution to the joint content placement and rout-

ing problem corresponds to the maximum weighted matching
for graph G. The edges selected in the maximum matching
determine what content should be placed in which cache.
Users then route to caches for cached content, and to the
uncached path for the remaining files.

The maximum weighted matching problem for bipartite
graphs can be solved in O(|V |2|E|) using the Hungarian
algorithm [15]. In our context, the complexity is O(M3N4).
Note that

∑
m Cm = O(MN) as we assume Cm < N, ∀m.

Therefore, we can solve the joint caching and routing problem
in polynomial time when users are interested in one file
only. �

C. Special Case: Network With Two Caches

Next, we show that the optimal solution for the joint caching
and routing problem can be found in polynomial time when
there are only two caches in the network. Specifically, we
prove that the solution to the integer program (1) can be found
in polynomial time when there are two caches in the network.

By relaxing the integer constraints on content placement
variables, xjm, and allowing them to take real values,
i.e., 0 ≤ xjm ≤ 1, we obtain a linear problem (LP)
that is generally referred to as the “relaxed” problem.
Since the objective function in (1) is convex, the solution
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Fig. 3. A network with three users (solid circles) and three caches (squares).
Each user is in the communication range of two of the caches.

to the relaxed problem can be found in polynomial
time for all instances of the problem. Note that the
set of constraints in the relaxed version of (1), namely,
i)
∑

m pijm ≤ 1, ii)
∑

j xjm ≤ Cm, iii) −xjm ≤ 0, xjm ≤ 1,
and iv) −pijm ≤ 0, pijm − xjm · aim ≤ 0 can be written in
the linear form Az ≤ b where the entries of A and b are all
integers, and z consists of the xjm and pijm entries. We will
show that for a network with two caches solving the relaxed
program will produce integral solutions.

Before delving into the proof we introduce some definitions
and results from [16]:

Definition 1: A square integer matrix is called unimodular
if it has determinant +1 or −1.

Definition 2: An m × n integral matrix A is totally uni-
modular if the determinant of every square submatrix is 0, 1,
or −1.

Proposition 1: If for a linear program {max cT z :
Az ≤ b}, A is totally unimodular and b is integral, then
all vertex solutions of the linear program are integral.

From Proposition 1, then, it suffices to show that the
matrix A is totally unimodular for a network with two
caches to prove that the optimization problem can be solved
in polynomial time. To prove that the matrix A is totally
unimodular we use the following result from [17]:

Proposition 2: A matrix is totally unimodular if and only if
for every subset R of rows, there is an assignment s : R→ ±1
of signs to rows so that the signed sum

∑
r∈R s(r)r (which

is a row vector of the same width as the matrix) has all its
entries in {0,±1}.

Theorem 3: For a network with two caches, the LP relax-
ation of (1) with db(·) = dc(·) = 0 produces an integral
solution in polynomial time.

Proof: In Appendix A, we give a constructive proof
showing that for any subset R of rows of A we can find
an assignment s that satisfies Proposition 2. �

D. Complexity Discussion

Consider a network with three users and three caches as
depicted in Figure 3. With each user connected to two of the
caches, the user-cache connections can be seen to form a cycle
as demonstrated in Figure 4a. Assume all paths from users to
caches have equal hit and miss delays. Also, assume that each
cache has the capacity of storing one file, and that all three
users are interested in two files, noted here as green and red.

Fig. 4. (a) A network of three users (circles) connected to three caches
(squares) forming a cycle. Users are equally interested in two files, red and
green. (b) Optimal content placement according to binary placement decisions,
i.e., xjm ∈ {0, 1}. (c) Optimal content placement assuming fractions of files
can be stored in caches, i.e., 0 ≤ xjm ≤ 1. (d) Optimal content placement
with the possibility of content coding. A copy of the two files is stored in
two of the caches, and the third cache keeps a coded copy, e.g., XOR of the
two files.

For the above network, the optimal content placement is
to replicate one of the files in two of the caches, and have
one copy of the other file in the third cache, as shown in
Figure 4b. The solution to the relaxed optimization problem
however would be to store half of each file in each cache,
i.e., x1m = x2m = 0.5, which achieves strictly smaller average
delay. This solution is illustrated in Figure 4c.1

The above discussion shows how the solution to the MILP
optimization problem differs from its relaxed counterpart for
the network shown in Figure 3. Such mismatch between the
two solutions is also observed for larger networks that contain
odd number of users and odd number of caches connected in
a way that form a cycle. We conjecture that these cycles are
the source of complexity in the problem of joint caching and
routing, and for networks that do not have any such cycles the
solution to the optimization problem (1) matches that of the
relaxed problem. More specifically we have:

Conjecture 1: The optimal solution to the problem of joint
caching and routing can be found in polynomial time if there
are no cycles of length 4k + 2 for any k ≥ 1 in the bipartite
graph corresponding to the user-cache connections.

We have performed numerical simulations with thousands
of randomly generated sample problems similar to the ones
shown in Figure 5, with networks of four and five caches
and up to 100 users in the network. We have then solved the
LP version of MILP (1) to compute the optimal caching and
routing. For all these sample problems, we have observed that
the optimal solutions are integral. Although not a proof, these
results support our conjecture.

1Note that we do not consider the solution of the relaxed problem as a
legitimate content placement. Although it looks like all users can access the
two files via the caches in Figure 4c, when splitting the files in halves, two
of the caches will store the same half copy of a file, and the user connected
to those caches will only get half of that file from the caches and still needs
to use the uncached path for the other half. However, we acknowledge that
with the possibility of coding, content placement can be done in such a way
that users can get both files from caches, as is shown in Figure 4d. We are
not considering coded content placement in this work.
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Fig. 5. Examples of network topologies conforming to conjecture criteria.

V. CONGESTION-SENSITIVE UNCACHED PATH

Next, we consider the case where delays for the requests
over the uncached paths and requests missed from caches
depend on the load from such requests. Namely, we compute
the delay over the uncached paths and the paths from the
caches to the back-end server using the convex functions
db(·) and dc(·), respectively. The reason we treat requests over
the uncached path and missed requests from caches separately
is that these paths could use different infrastructures to reach
the back-end server. For example, requests from mobile users
over the uncached path could use the LTE infrastructure, while
missed requests from caches deployed on WiFi access points
could use a wireline broadband connection.

A. Hardness of General Case

Note that we can consider the congestion-insensitive delay
model as a special case of the congestion-sensitive model
where db(·) = dc(·) = 0. Thus, this problem is NP-complete
in general. In the remainder of this section, however, we will
prove that the problem of joint caching and routing in the case
of a congestion-sensitive delay model remains NP-complete
even if there is only one cache in the network and each content
is of interest to no more than one user.

B. Hardness of Single-Cache Case

Here, we consider a special case of the problem where
the delays for the requests sent over the uncached paths are
modeled as an M/M/1 queue, i.e., db(λb) = 1/(μb − λb),
where μb denotes the service rate. Also, the requests missed
from caches are assumed to observe a constant delay dc

i , i.e.,
dc(λc) = 0. Modifying the delay function D(x,p) in (1) for
the case of one cache, i.e., M = 1, and assuming each user
is interested in only one file, i.e., qii = 1, ∀i, and qij = 0 for
i �= j, we can rewrite the optimization problem as

minimize

1
λ

[
N∑

i=1

λixipid
h
i +

N∑

i=1

λi(1 − xi)pid
c
i

+
N∑

i=1

λi(1− pi)db
i +

∑N
i=1 λi(1− pi)

μb −
∑N

i=1 λi(1− pi)

]

such that
N∑

i=1

xi ≤ C

0 ≤ pi ≤ ai

xi ∈ {0, 1}, (2)

where pi = pii1 denotes the fraction of user i requests routed
to the cache. Also, ai denotes whether user i is connected to
the cache.

To show that the above optimization problem is
NP-complete, we consider the corresponding decision prob-
lem, Congestion Sensitive Delay Decision Problem (CSDDP).

Problem 1 (Congestion Sensitive Delay Decision Problem):
Let Λ = [λ1, λ2, . . . , λN ] denote user request rates, and let
dh = [dh

i ], dc = [dc
i ] and db = [db

i ] denote the hit delay,
miss delay and initial access delay of the uncached path,
respectively. Also, let μ be the service rate of the back-end
server, and C be the cache capacity.

We ask the following question: given the parameters
(μb,Λ,dh,dc,db, C) and a real number d, is there any
assignment of x = [xi] and p = [pi] such that D(x,p) ≤ d.

It is clear that for any given content placement x and
routing policy p the answer to CSDDP can be verified in
polynomial time, and hence CSDDP is in class NP. To prove
that CSDDP is NP-hard, we use the fact that the Equal
Cardinality Partition (ECP) problem define below is NP-hard.

Problem 2 (Equal Cardinality Partition): Given a set A of
n numbers, can A be partitioned into two disjoint subsets
A1 and A2 such that A = A1∪A2, the sum of the numbers in
A1 equals the sum of the numbers in A2 and that |A1| = |A2|?

Lemma 1: ECP is NP-hard.
Proof: See Appendix B. �

By reducing ECP to CSDDP, we have the following result:
Theorem 4: CSDDP is NP-complete.

Proof: See Appendix C for a detailed proof. �
Although this problem is NP-complete even in a very

restrictive case with one cache and each user request-
ing one file, in the next section we show that a greedy
algorithm can find approximate solutions with guaranteed
performance.

Note that problem formulation (1) assumes a single queue
shared by all caches to the back-end server. An alternative
choice is to have distinct queues from each cache to the back-
end server. In that case, λcdc(λc) in (1) should be replaced
with a sum of M delay terms, where M is the number of
caches. The model with distinct queues also results in an
NP-complete problem, since problem (1) is NP-complete when
there is only one cache in the network.

VI. APPROXIMATION ALGORITHMS

In this section, we show that the problem of joint caching
and routing (for both congestion-insensitive and congestion-
sensitive delay models) can be formulated as the maximization
of a monotone submodular function subject to matroid con-
straints. This enables us to devise algorithms with provable
approximation guarantees.

We first review the definition and properties of
matroids [18], and monotone [19] and submodular [17]
functions, and then show our problem can be formulated as
the maximization of a monotone submodular function subject
to matroid constraints.

Definition 3: A matroid M is a pair M = (S, I), where
S is a finite set and I ⊆ 2S is a family of subsets of S with
the following properties:
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1) Ø ∈ I ,
2) I is downward closed, i.e., if Y ∈ I and X ⊆ Y , then

X ∈ I ,
3) If X, Y ∈ I , and |X | < |Y |, then ∃y ∈ Y \X such that

X ∪ {y} ∈ I .
Definition 4: Let S be a finite set. A set function

f : 2S → R is submodular if for every X, Y ⊆ S with X ⊆ Y
and every x ∈ S\Y we have

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ).
Definition 5: A set function f is monotone increasing if

X ⊆ Y implies that f(X) ≤ f(Y ).
Let Xm denote the set of files stored in cache m, and

define X = X1 �X2 � . . . �XM to be the set of files stored
in the M caches, where � denotes disjoint union. X is the set
equivalent of the binary content placement x defined in (1).
Note that |Xm| ≤ Cm

Let Sm = {s1m, s2m, . . . , sKm} denote the set of all pos-
sible files that could be placed in cache m where sjm denotes
the storage of file j in cache m. The set element sjm corre-
sponds to the binary variable xjm defined in the optimization
problem (1) such that xjm = 1 if and only if the element
sjm ∈ X . Define the super set S = S1 ∪ S2 ∪ . . . ∪ SM as
the set of all possible content placements in the M caches.
We have the following lemma.

Lemma 2: The constraints in (1) form a matroid on S.
Proof: For a given content placement x, the optimal

routing policy can be computed in polynomial time since
Dx(p) = D(p;x) is a convex function. With that in mind,
we can write the average delay as a function of the content
placement X ⊆ S. Thus, the constraints on the capacities of
the caches can be expressed as X ⊆ I where

I = {X ⊆ S : |X ∩ Sm| ≤ Cm, ∀m = 1, . . . , M}.
Note that (S, I) defines a matroid. �

Let dij(x) denote the minimum average delay for user i
accessing file j through a cached path, given content place-
ment x, excluding queueing delay for fetching content from
the back-end server in the case of a cache miss. We have

dij(x) = min
m

dijm,

where dijm denotes the average delay of accessing content j
from cache m, excluding the queueing delay, defined as
(xjm indicates that file j is in cache m)

dijm = dh
imxjm + dc

im(1− xjm).

Similarly, we define

yij = max
m

aimxjm,

denoting whether user i can access content j from a neigh-
boring cache.

Given the content placement in the caches, let
pij �

∑
m pijm denote the fraction of the traffic for which

user i uses the cached paths to access content j. Also, let

λc(p) =
∑

i,j

λiqij(1− yij)pij ,

and

λb(p) =
∑

i,j

λiqi,j(1− pij),

denote the aggregate request rate for missed requests, and
requests sent over the uncached paths, respectively. We rewrite
the delay functions for the congestion-insensitive and the
congestion-sensitive models as

D(p;x) =
1
λ

⎛

⎝
∑

i,j

λiqijpijdij(x) +
∑

i,j

λiqij(1 − pij)db
i

⎞

⎠,

and

D(p;x) =
1
λ

[
∑

i,j

λiqij

(
pijdij(x) + (1− pij)db

i

)

+ λb(p)db

(
λb(p)

)
+ λc(p)dc

(
λc(p)

)
]

,

respectively. The optimal routing policy for a given content
placement x, then, is one that minimizes D(p;x), and can
be found by solving the following optimization problem:

minimize D(p;x)
such that 0 ≤ pij ≤ 1 ∀i, j.

Note that D(p;x) is convex and the above optimization
problem can be solved in polynomial time.

Let xX be the equivalent binary representation of the
content placement set X . It is clear that adding items to the
set X can only decrease the value of D(p;xX). Moreover,
one might expect that adding an item to a set containing a
smaller number of files might decrease the delay by a larger
amount compared to adding the item to a set containing
a larger number of files. We formally prove this statement
through the following lemma for both congestion-insensitive
and congestion-sensitive delay models bearing in mind that
DØ denotes the expected delay with no files cached:

Lemma 3: Let P denote all routing policies. For X ⊆ S,
the function G(X) = DØ−minp∈P D(p;xX) is a monotone
increasing and submodular function.

Proof: See Appendix D for a detailed proof. �
A direct consequence of Lemma 3 is that the objective of the

joint caching and routing problem is to maximize a monotone
submodular function. Therefore,

Theorem 5: The approximate solution obtained by the
greedy algorithm in Algorithm 1 is within a (1 − 1/e) factor
of the optimal solution G(X∗).

Proof: It was shown in [20] that the greedy algorithm for
maximizing a monotone submodular set function with matriod
constraints yields a (1− 1/e)-approximation. �

Algorithm 1 starts with empty caches and at each step
greedily adds a file to the cache that maximizes function G.
This process continues until all caches are filled to capacity.
Optimal routing is then determined based on the content
placement.

Although the greedy algorithm in Algorithm 1 is guaranteed
to find solutions within a (1 − 1/e) factor of the optimal
solution, its complexity is high, O(M2N2K2 log (NK)).
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Algorithm 1 GreedyWG: A Greedy Approximation With
Performance Guarantees

1: S ← {sjm : 1 ≤ j ≤ K, 1 ≤ m ≤M}
2: Xm ← Ø, ∀m
3: X ← Ø
4: for c← 1 to

∑
m Cm do

5: sj∗m∗ ← arg maxsjm∈S G(X ∪ {sjm})
6: Xm∗ ← Xm∗ ∪ {sj∗m∗}
7: X ← X ∪ {sj∗m∗}
8: if |Xm∗ | = Cm∗ then
9: S ← S\sjm∗ , ∀j

10: else
11: S ← S\sj∗m∗

12: Content placement is done according to X .
13: Determine the routing as p∗ ← argminp D(p;xX).

Algorithm 2 Greedy: A Greedy Approximation Without
Known Performance Guarantees

1: Xm ← Ø, ∀m
2: X ← Ø
3: dij ← minm{dc

im}, ∀i, j
4: for c← 1 to

∑
m Cm do

5: Gjm ← [0]K×M

6: for m← 1 to M do
7: if |Xm| < Cm then
8: for j ← 1 to K do
9: Gjm ←

∑
i λiqij(dij −min{dij , d

h
im})

10: [j∗, m∗]← arg maxj,m Gjm

11: Xm∗ ← Xm∗ ∪ {sj∗m∗}
12: X ← X ∪ {sj∗m∗}
13: dij∗ ← min{dij∗ , dh

im∗}, ∀i
14: Content placement is done according to X .
15: Determine the routing as p∗ ← argminp D(p;xX)

We devise a second, computationally more efficient, greedy
algorithm in Algorithm 2 with time complexity O(M3NK).
We do not have accuracy guarantees for Algorithm 2, but in
the next section, we will show that it performs very well in
practice.

Algorithm 2 is based on the following ideas. It starts
with empty caches and initializes the cache access delays
for users as the miss delays to their closest caches. Then
at each step a file is greedily selected to be placed in a
cache that maximizes the change in the user access delays,∑

i λiqij(dij −min{dij , d
h
im}). This process continues until

the caches are filled. Finally, similar to Algorithm 1, a routing
policy that minimizes D(p;x) is determined.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the approx-
imate algorithms through discrete-event simulations. Our goal
here is to evaluate 1) how well the solutions for the greedy
algorithms compare to the optimal solutions (when computing
the optimal solution is feasible), and 2) how well solutions

from the greedy algorithms compare to those produced by a
baseline.

Here, we consider a congestion-sensitive model where the
requests over the uncached paths experience a queuing delay
modeled as an M/M/1 queue,2 while the requests missed
from caches experience a constant delay. For our baseline,
we compare the approximate algorithms to the delay obtained
by the following algorithm we refer to as p-LRU.

A. p-LRU

The cache replacement policy at all caches is Least Recently
Used (LRU). For the routing policy, we assume that users that
are not connected to any caches forward all their requests to
the back-end servers. The remaining users, for each request,
use a cached path with probability p and with probability 1−p
forward the request to the uncached path. If user i decides to
use a cached path, she chooses uniformly at random one of
the ni caches she is connected to. The value of p is the same
for all users that have access to a cache, and is chosen to
minimize the average delay.

First, assuming users equally split their traffic across the
caches that they can access, the aggregate popularity for
individual files is computed at each cache. Let rm

j denote the
normalized aggregate popularity of file j at cache m. We have

rm
j =

1
Λ

∑

i∈Im

λiqij/ni,

where Im denotes the set of users connected to cache m,
and Λ is the normalizing constant across all files. Note that
rm
j is independent of the parameter p. With the aggregate

popularities at hand, hit probabilities are computed at each
cache using the characteristic time approximation [21]. Let
P(xjm = 1) denote the probability that file j resides in
cache m. From [21] we have

P(xjm = 1) = 1− exp (−rm
j Tm),

where Tm is the characteristic time of cache m is the unique
solution to the equation

Cm =
∑

j

1− exp (−rm
j Tm).

Given the cache hit probabilities, the average delay in access-
ing content j from caches for user i equals

dc
ij =

1
ni

∑

m∈Mi

[
P(xjm = 1)dh

im + (1− P(xjm = 1))dc
im

]
,

where Mi denotes the set of caches that user i is connected
to. Note that |Mi| = ni.

Let I denote the set of users that are connected to at least
one cache, and let λI denote the aggregate request rate of
these users. The average delay to access content from caches
equals

Dc =
1
λI

∑

i∈I

∑

j

λiqijd
c
ij .

2Note that our analysis is valid for a G/G/1 queue, and the M/M/1 queue is
only assumed for evaluation purposes since there is no closed form formula
for a G/G/1 queue.
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Fig. 6. A network with (a) one cache, and (b) five caches.

Remember that some users may not be connected to any
caches. Considering the traffic from all users, we can write
the overall average delay as

DLRU =
1
λ

⎡

⎣pλIDc + (1− p)
∑

i∈I
λid

b
i +

∑

i�∈I
λid

b
i

+
μ

μ− (1− p)
∑

i∈I λi −
∑

i�∈I λi
− 1

]

.

By differentiating DLRU with respect to p, the optimal value
of p is found to be

p∗ = max{0, min{1,

(√
μ
∑

i∈I λi

λIDc−
∑

i∈I λidb
i

−μ+λ

)

/λI}}.

B. Network Setup

We consider a network with users uniformly distributed in a
2-D square. We consider two architectures. First, we assume
there is only one large cache at the center of the network
as in Figure 6a. Second, we consider a network with five
small caches with equal storage capacities as in Figure 6b.
Figure 6 also shows the communication range of the caches in
each case. In the single-cache network, the cache has a larger
communication range and five times the capacity of each of
the caches in the multi-cache network.

Users that are not in communication range of any caches
can only use the uncached path to the back-end server. The
hit delay for each user is linearly proportional to the distance
from the cache and has the maximum value3 of 12.5 time
units and 5.5 time units for the single and multi-cache systems,
respectively. For a cache miss, an additional delay of 25 time
units is added to the hit delay. The initial access delay of the
uncached path is set to five time units for each user, and the
service rate is proportional to the aggregate request rate, where
the scaling factor will be specified later.

C. Numerical Evaluation

1) GreedyWG vs. Optimal: First, we compare the solution
of GreedyWG the approximate algorithm in Algorithm 1 to the
optimal solution. Due to the exponential complexity of finding
the optimal solution, we are only able to compute the optimal
solution for small problem instances. Here, we consider a
network with five users and a single cache. User request
rates are arbitrarily set to satisfy

∑
i λi = 5. We assume

3Here, delay aggregates all request propagation and download delays as
well as the processing and queuing delays. We use normalized delay values
instead of using any specific time unit.

Fig. 7. Evaluation of GreedyWG against Optimal and p-LRU.

Fig. 8. Evaluation of the two greedy approximations over different values
of the cache budget split equally between five caches. Aggregate user request
rate is λ = 5, and service rate of the back-end server equals 2.5.

users are interested in 15 files, and that the aggregate user
request popularities follow a Zipf distribution with skewness
parameter 0.6. The service rate of the back-end server is μ = 1.

Figure 7 shows the average delay and the 95% confi-
dence interval over 100 runs of each algorithm. It is clear
that GreedyWG performs very close to optimal. In fact, we
observe that GreedyWG differs from the optimal solution less
than 20% of the time, and the relative difference is never more
than 1%.

2) GreedyWG vs. Greedy: Next, we compare the solutions
of GreedyWG against those of Greedy, the approximation
algorithm, Algorithm 2, with lower computational complexity
but no performance guarantees. We consider a network with
five caches and 100 users uniformly distributed in a 10 × 10
field.

Figure 8 shows the average delay and the 95% confi-
dence interval for different values of available cache budget.
Greedy (red curve) is barely distinguishable from GreedyWG
(black curve), meaning that Greedy performs very close to
GreedyWG.

We also evaluate these algorithms over different values of
the service rate at the back-end server. Figure 9 shows the
average delay for μ between 2 to 7, with the aggregate traffic
rate set to λ = 5. Similar to Figure 8, Greedy performs very
close to GreedyWG, and is always within 1% of GreedyWG.

D. Trace-Driven Simulation

Here, we present trace-driven evaluation results where
we use traces for web accesses collected from a gate-
way router at IBM research lab [22]. The trace consists
of approximately 9 million requests generated for more
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Fig. 9. Evaluation of the greedy algorithms for different values of the service
rate at the back-end server. Aggregate user request rate is λ = 5, and the
service rate varies from 2 to 10. Cache budget is set to 125.

Fig. 10. Evaluation of the Greedy and p-LRU for the single-cache (S) and
multi-cache (M) network setups for different values of the available cache
budget. The service rate is set to be 0.8 times the aggregate traffic rate.

around 3.3 million distinct files over a period of five hours.
We only consider Greedy, the greedy algorithm presented in
Algorithm 2, since it performs nearly as well as Algorithm 1,
and has lower complexity.

The access delay to each cache equals one-tenth of the
distance from the cache in case of a cache hit. For a cache
miss, an additional delay of 25ms is added to the hit delay.
The initial access delay of the uncached path is set to 5ms for
each user, and the service rate is proportional to the aggregate
request rate, where the scaling factor will be specified later.

To evaluate the Greedy algorithm using the trace data, we
first divide the trace into smaller segments of approximately
120,000 requests. Each segment includes requests for approx-
imately 40,000 distinct files, generated by approximately
2500 users. To simulate requests from the ith segment, we
first compute the file popularities using the (i− 1)st segment,
and compute the optimal value of p for the p-LRU algorithm.

Figure 10 compares the average delays for different cache
budgets for the p-LRU and the Greedy algorithms for the
single-cache (S) and multi-cache (M) networks. Significant
reductions in average delay of up to 50% are observed for both
single-cache and multi-cache networks when using Greedy
over p-LRU. While p-LRU yields similar performance in both
single-cache and multi-cache architectures, Greedy shows the
advantage of one architecture over the other depending on the
cache budget. When the cache budget is small, it is better to
have a single cache with larger cache size and coverage so
that more users can access popular files from the cache; when
the cache budget is large, it is better to have multiple caches,
each with smaller size and coverage, so that users can access
files from nearby caches with smaller hit delays.

Fig. 11. Evaluation of the Greedy and p-LRU algorithms for different values
of the service rate to aggregate traffic ratio for the single-cache (S) and multi-
cache (M) network setups.

We also evaluate the algorithms for different values of the
service rate of the uncached path assuming the cache budget
is fixed at 10, 000. Figure 11 shows the average delay when
the ratio of service rate to the total request rate changes
from 0.6 to 1.2. Similar to Figure 10, the Greedy algorithm
significantly reduces the average content access delay. Again,
the cache architecture makes little difference for p-LRU but
significant affect to the performance of the Greedy algorithm.
Moreover, the difference decreases as the service rate on the
uncached path increases, as more traffic is offloaded to the
uncached path.

VIII. RELATED WORK

Benefits of content caching have been theoretically ana-
lyzed [6], [23]–[26]. [6], [26] demonstrate that the asymptotic
throughput capacity of a network is significantly increased by
adding caching capabilities to the nodes. In this paper, we have
considered the joint routing and cache-content management
problems. Numerous past research efforts have considered
these problems separately. The problem of content placement
in caches, has received significant attention in the Internet,
in hybrid networks such as those considered in this paper,
and in sensor networks [4], [5], [8], [9], [27]. Baev et al. [8]
prove that the problem of content placement with the objective
of minimizing the access delay is NP-complete, and present
approximate algorithms. More recently, Giovanidis et al. [28]
introduced multi-LRU, a family of decentralized caching poli-
cies, that extends the classical LRU policy to cases where
objects can be retrieved from more than one cache. The sep-
arate problem of efficient routing in cache networks has also
been explored in the literature [29], [30]. Cache-aware routing
schemes that calculate paths with minimum transportation
costs based on given caching policy and request demand have
been proposed in [25].

The joint caching and routing problem, with the objec-
tive of minimizing content access delay, has recently been
studied in [4] and [5], where the authors consider a hybrid
network consisting of multiple femtocell caches and a cellular
infrastructure. Both papers assume that users greedily choose
the minimum delay path to access content, i.e., requests
for cached content are routed to caches (where content is
know to reside), whereas remaining requests are routed to the
(uncached) cellular network. They assume that the delays are
constant and independent of the request rate.
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Our work differs from much of the previous research
discussed above by considering a joint caching and routing
problem, where we determine the optimal routes users should
take for accessing content as well as the optimal caching
policy. Our research differs from [4], [5] in that we consider
heterogeneous delays between users and caches, consider a
congestion-insensitive delay model for the uncached path as
well as a congestion-sensitive model, investigate the problem’s
time complexity, and propose bounded approximate solutions
for both congestion-insensitive and congestion-sensitive sce-
narios. We also determine scenarios for which the optimal
solution can be found in polynomial time for the congestion-
insensitive delay model, and ascertain the root cause of the
complexity of the general problem.

Algorithms for joint caching and routing schemes were
previously proposed in [31] and [32] based on the primal-
dual method. These algorithms are based on the Lagrangian
relaxation method and rely on iterative algorithms to reach
a solution with certain optimality criteria. As such, there is
no efficiency guarantee on the results nor the running time
of these algorithms. In contrast, our proposed approximation
algorithms require fixed running time, and are guaranteed to
be withing a factor 1− 1/e of the optimal solution.

IX. CONCLUSION

In this paper, we have considered the problem of joint
content placement and routing in heterogeneous networks
that support in-network caching but also provide a separate
(uncached) path to a back-end content server; we considered
cases in which paths to the back-end server were modeled as
congestion-insensitive, constant-delay paths, and congestion-
sensitive paths modeled by a convex delay rate function.
We provided fundamental complexity results showing that
the problem of joint caching and routing is NP-complete in
both cases, developed a greedy algorithm with guaranteed
performance of (1 − 1/e) of the optimal solution as well
as a lower complexity heuristic that was empirically found
to provide average delay performance that was within 1% of
optimal (for small instances of the problem) and that signifi-
cantly reduce the average content access delay over the case
of optimized traditional LRU caching. Our investigation of
special-case scenarios − the congestion-insensitive multiple-
cache single-file-of-interest case (where we demonstrated an
optimal polynomial time solution) and the congestion-sensitive
single-cache single-file-of-interest case (which we demon-
strated remained NP-complete) − helped illuminate what
makes the problem “hard” in general. Our future work is aimed
at developing distributed algorithms for content placement and
routing, and on developing solutions for the case of time-
varying content popularity.

APPENDIX A
NETWORK WITH TWO CACHES

Proof: Consider the highlighted elements of the matrix
in Figure 12, and let r1 denote the first row of the matrix.
Also, let r2 and r3 denote the first two rows below the second
horizontal line. It is easy to see that if these three rows are

Fig. 12. An example of the constraints matrix A for a network with
two caches, two users and three files.

selected to be in R, any assignment satisfying Proposition 2
should have −s(r1) = s(r2) = s(r3). Otherwise, the signed
sum of the rows will have entries other than {0,±1}. This
observation can be easily extended to see that rows below the
second horizontal line can be considered in groups of two
such that if the two rows are selected to be in R they will be
assigned the same sign.

We sign the rows in R starting from the rows below the
second horizontal line. Considering the groups of two rows,
we make assignments such that the elements to the left of the
vertical line of the signed sum of the rows are in {0,−1} only.
To see why this is possible, note that the non-zero elements of
the matrix to the left of the vertical line can be seen as small
blocks of 2× 2 matrices. It is easy to see that the signed sum
of any subset of these blocks can be made to have elements
only in {0,−1}, with rows in the same group getting the
same assignment. The rows between the two horizontal lines
are always signed +1. The sign of the rows above the first
horizontal line follows the assignment of the lines below the
second horizontal line based on the previous discussion.

With the above procedure, the sum of the signed vectors
will have entries in {0,±1} for any set of rows R, and from
Proposition 2 it follows that the matrix A is totally unimodular,
and hence the solution for the optimization problem in (1)
for a network with two caches can be found in polynomial
time. �

APPENDIX B
PROOF OF LEMMA 1

Proof: A proof of NP-hardness of a more general form
of ECP is given in [33]. Here, we give a simpler proof by a
reduction from the Partition problem.
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Problem 3 (Partition): Given a set A of n positive integers,
can A be partitioned into two disjoint subsets A1 and A2 such
that A = A1 ∪ A2 and the sum of the numbers in A1 equals
the sum of the numbers in A2?

For each instance of Partition with input A = {a1, . . . , an}
create an instance A′ = {a1, . . . , an, 0, . . . , 0} by adding
n zeros to A. It is easy to see that A′ can be partitioned
into two subsets with equal cardinality if and only if A
can be partitioned. Therefore, Partition ≤P ECP, and ECP is
NP-hard. �

APPENDIX C
PROOF OF THEOREM 4

Proof: It is easy to see that given some x,p the expected
delay D(x,p) can be computed in polynomial time, and hence
CSDDP is in NP. To show it is NP-hard, we reduce the
problem of Equal Cardinality Partition (ECP) to our problem.
For an instance of the ECP(A) problem we create the instance
CSDDP(S, A, [ 4

S ], [+∞], [ 4
ai

], n
2 ) where S =

∑
ai∈A ai.

Now, the set A can be partitioned into subsets A1 and A2

with |A1| = |A2| if and only if CSDDP achieves delay
(2n + 3)/S.

To see more clearly why the reduction works, first note that
with the delay values being set to dh

i = 4/S and db
i = 4/ai,

since dh
i < db

i if a file exists in the cache all the requests for
that file will be directed to the cache. Also, since dc

i = +∞,
if a file is not in the cache all the requests for that file will
be requested from the back-end server. Therefore, we have
pi = xi, ∀i. Now, with the service rate set to μ = S, we can
re-write the optimization problem in (2) as follows

minimize
1
S

[
4
S

n∑

i=1

aixi+4
n∑

i=1

(1−xi)+
S

∑n
i=1 aixi

−1

]

such that
n∑

i=1

xi ≤ n

2

xi ∈ {0, 1}
Now, looking at the objective function in the above problem,

we can see that

Z1 = 4
n∑

i=1

(1− xi) ≥ 2n

since we should have
∑n

i=1 xi ≤ n/2. Moreover, Z1 = 2n if∑n
i=1 xi = n/2 meaning that exactly half of the files are in

the cache. We also have that

Z2 =
4
S

n∑

i=1

aixi +
S

∑n
i=1 aixi

≥ 4,

and Z2 = 4 only if
∑n

i=1 aixi = S/2.
Hence, Z1+Z2−1 = 2n+3 if and only if

∑n
i=1 aixi = S/2

and
∑n

i=1 xi = n/2.
Therefore, if CSDDP(S, A, [ 4

S ], [+∞], [ 4
ai

], n
2 ) achieves

minimum delay (2n + 3)/S then A can be partitioned into
equal cardinality subsets.

It is easy to see that if A can be partitioned into two subsets
of equal cardinality, then CSDDP(S, A, [ 4

S ], [+∞], [ 4
ai

], n
2 ) has

minimum delay of (2n + 3)/S. �

APPENDIX D
PROOF OF LEMMA 3

Here, we will first prove the lemma for the more general
case of convex delay rate function, and as an example consider
G/G/1 queues. Given a cache configuration X , let

(dh
X)ij = inf

{
dh

im : Xjm = 1
}
,

(dc
X)ij = inf {dc

im : Xjm = 0},
denote the minimum cache hit and miss delays for user i
accessing file j, with the convention inf ∅ = +∞. We assume
that dh

im ≤ dc
im and hence 0 ≤ dh

X ≤ dc
X ≤ +∞.

Define (Λ)ij = λiqij , and let (λh
X)ij , (λc

X)ij , (λb
X)ij

denote the rate of requests for file j sent by user i that are
routed through caches containing file j, routed through caches
without file j, and directly routed to the back-end server,
respectively. We suppress the subscript X when no confusion
arises.

The average delay can be written as

D(λh, λc, λb) = λh · dh + λc · dc + f(λc) + g(λb),

where4 λc = λc · 1 and λb = λb · 1, and f(·) and g(·)
denote the total expected delay cost rate for the G/G/1 queues
representing the paths from caches to the back-end server, and
direct paths from users to back-end servers, respectively. The
total expected delay cost rate function for G/G/1 queues is
proved to be convex in [34].

Now we have the following optimization problem,

minimize D(λh, λc, λb)
subject to λh, λc, λb ≥ 0,

λh + λc + λb = Λ. (3)

Since Slater’s condition holds, the optimal delay D� can
be found by solving the dual optimization problem. For
notational simplicity, we first assume that dh and dc are finite.
This assumption can be easily removed by setting to zero
the components of λh and λc corresponding to the infinite
components of dh and dc, which simply reduces the number
of decision variables.

The Lagrangian for (3)

L(λh, λc, λb, ν, ξh, ξc, ξb)
= D+ν · (Λ− λh − λc − λb)− ξh · λh − ξc · λc − ξb · λb

= ν ·Λ− ηc · λh − ηu · λc − ηs · λb + f(λc) + g(λb),

where ηh = ν +ξh−dh, ηc = ν +ξc−dc and ηb = ν +ξb.
The dual function is

D̂(ν, ξh, ξc, ξb) = inf
λh,λc,λh

L(λh, λc, λb, ν, ξh, ξc, ξb)

= inf
λh

(ν ·Λ−ηh · λh)+inf
λc

[f(λc)−ηc · λc]

+ inf
λb

[g(λb)− ηb · λb].

For D̂ > −∞, we need ηh = 0, ηc ≥ 0, ηb ≥ 0. When this
condition is met,

D̂(ν, ξh, ξc, ξb) = ν ·Λ− f∗(max(ηc))− g∗(max(ηb)),

4The dot product is defined by a · b =
�

ij aijbij .
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where f∗ and g∗ are the conjugates of f and g respectively,
defined by

f∗(y) = sup
x

[xy − f(x)], g∗(y) = sup
x

[xy − g(x)].

Thus the dual problem becomes

maximize ν ·Λ− f∗(max(ηc))− g∗(max(ηb))
subject to ηc, ηb ≥ 0,

dh − ν ≥ 0,

ηc + dc − ν ≥ 0,

ηb − ν ≥ 0.

or

maximize D̃(s, u) = m(s, u) ·Λ− f∗(u)− g∗(s)
subject to s, u ≥ 0, (4)

where m(s, u) = dh ∧ (s1) ∧ (dc + u1) with ∧ denoting
component-wise minimum.

Now we make explicit the dependence on cache configura-
tion. Given the cache configuration X , let s�

X and u�
X be an

optimal solution of the dual problem (4) and D�
X the optimal

delay.
Let X , Y be two cache configurations. We want to show

D�
X + D�

Y ≤ D�
X∪Y + D�

X∩Y . (5)

Assume that X \ Y �= ∅ and Y \X �= ∅; otherwise, (5) holds
trivially. Without loss of generality, assume u�

X ≤ u�
Y . Then

D�
X + D�

Y −D�
X∪Y −D�

X∩Y

= D̃X(s�
X , u�

X) + D̃Y (s�
Y , u�

Y )
− D̃X∪Y (s�

X∪Y , u�
X∪Y )− D̃X∩Y (s�

X∩Y , u�
X∩Y )

≤ D̃X(s�
X , u�

X) + D̃Y (s�
Y , u�

Y )
− D̃X∪Y (s�

X ∧ s�
Y , u�

X)− D̃X∩Y (s�
X ∨ s�

Y , u�
Y )

= Λ · [mX(s�
X , u�

X) + mY (s�
Y , u�

Y )
−mX∪Y (s�

X ∧ s�
Y , u�

X)−mX∩Y (s�
X ∨ s�

Y , u�
Y )]

= Λ · [Δ1 −Δ2],

where

Δ1 = mX(s�
X , u�

X)−mX∪Y (s�
X ∧ s�

Y , u�
X),

Δ2 = mX∩Y (s�
X ∨ s�

Y , u�
Y )−mY (s�

Y , u�
Y ).

Define h(x, y, z) = x∧y−x∧ z, which is nonnegative and
increasing in x for y ≥ z. Now consider two cases,

1) s�
X ≥ s�

Y .

Δ1 = dh
X ∧ (dc

X̄ + u�
X1) ∧ (s�

X1)

−dh
X∪Y ∧ (dc

X∪Y
+ u�

X1) ∧ (s�
Y 1)

= h
(
dh

X ∧ (dc
X∪Y

+ u�
X1),

(dc
Y \X + u�

X1) ∧ (s�
X1),dh

Y \X ∧ (s�
Y 1)

)

≤ h
(
dh

X ∧ (dc
X∪Y

+ u�
Y 1),

(dc
Y \X + u�

Y 1) ∧ (s�
X1),dh

Y \X ∧ (s�
Y 1)

)
,

and

Δ2 = dh
X∩Y ∧ (dc

X∩Y
+ u�

Y 1) ∧ (s�
X1)

−dh
Y ∧ (dc

Ȳ + u�
Y 1) ∧ (s�

Y 1)

= h
(
dh

X∩Y ∧ (dc
Ȳ + u�

Y 1),

(dc
Y \X + u�

Y 1) ∧ (s�
X1),dh

Y \X ∧ (s�
Y 1)

)
.

Since

dh
X∩Y ∧ (dc

Ȳ + u�
Y 1)− dh

X ∧ (dc
X∪Y

+ u�
Y 1)

= h
(
dh

X∩Y ∧ (dc
X∪Y

+ u�
Y 1),dc

X\Y + u�
Y 1,dh

X\Y

)

≥ 0,

it follows that Δ1 ≤Δ2.
2) s�

X ≤ s�
Y .

Δ1 = dh
X ∧ (dc

X̄ + u�
X1) ∧ (s�

X1)
−dh

X∪Y ∧ (dc
X∪Y

+ u�
X1) ∧ (s�

X1),

= h
(
dh

X ∧ (dc
X∪Y

+ u�
X1) ∧ (s�

X1),

dc
Y \X + u�

Y 1,dh
Y \X

)

≤ h
(
dh

X ∧ (dc
X∪Y

+ u�
Y 1) ∧ (s�

Y 1),

dc
Y \X + u�

Y 1,dh
Y \X

)
,

and

Δ2 = dh
X∩Y ∧ (dc

X∩Y
+ u�

Y 1) ∧ (s�
Y 1)

−dh
Y ∧ (dc

Ȳ + u�
Y 1) ∧ (s�

Y 1)

= h
(
dh

X∩Y ∧ (dc
Ȳ + u�

Y 1) ∧ (s�
Y 1),

dc
Y \X + u�

Y 1,dh
Y \X

)
.

Since

dh
X ∧ (dc

X∪Y
+ u�

Y 1) ∧ (s�
Y 1)

≤ dh
X∩Y ∧ (dc

Ȳ + u�
Y 1) ∧ (s�

Y 1),

it follows that Δ1 ≤Δ2.
In both cases, (5) holds and hence D� is supermodular,
and DØ −D� is submodular.
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