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Abstract —We study fine-grain computation on the Reconfigurable Ring of Processors (553), a parallel architecture whose
processing elements (PEs) are interconnected via a multiline reconfigurable bus, each of whose lines has one-packet width and can
be configured, independently of other lines, to establish an arbitrary PE-to-PE connection. We present a “cooperative” message-
passing protocol that will, in the presence of suitable implementation technology, endow an 553 with message latency that is
logarithmic in the number of PEs a message passes over in transit. Our study focuses on the computational consequences of such
latency in such an architecture. Our main results prove that: 1) an N-PE 553 can execute a sweep up or down an N-leaf complete
binary tree in time proportional to log N log log N; 2) a broad range of N-PE architectures, including N-PE 553s, require time
proportional to log N log log N to perform such a sweep.

Index Terms —Communication protocols, dynamically reconfigurable parallel architectures, fine-grain parallel computing, rings of
processors, tree-sweep algorithms.

——————————   ✦   ——————————

1 INTRODUCTION

1.1 Overview
E study fine-grain computation on the Reconfigurable
Ring of Processors (553), a parallel architecture

whose processing elements (PEs) are interconnected via a
multiline reconfigurable bus: Each line of the bus has one-
packet width and can be configured, independently of
other lines, to establish an arbitrary PE-to-PE connection.

Our study is inspired by a novel strategy for

1) designing the bus of an 553 and for
2) passing one-word messages along the lines of the bus

in a way that yields message latency that is logarithmic
in the number of PEs the message traverses—at least
for (MOS) wafer-scale implementations of 553s.

We are currently working on estimating the technological
parameters that would enable our COoperative MEssage
Transmission (COMET) strategy to be realized. Our goal in
the current paper, as in its companion paper [7], is to un-
derstand the computational consequences of a fine-grain
logarithmic delay model for 553s: Sufficiently good news
would provide powerful motivation for paying the tech-
nological cost that would enable the model to be realized.
Henceforth, we focus only on 553s that have been im-
plemented so as to achieve logarithmic message latency—
perhaps, but not necessarily, via COMET. The interested
reader should see [6] for another theoretical study of recon-
figurable architectures with logarithmic message latency.

In the remainder of this section, we describe, in turn, our
main results, the detailed architecture of 553s, and the
COMET message-passing protocol. The subsequent sections
of the paper describe our results and their proofs in detail.

1.2 Our Results
Our results are parameterized by the number of PEs in an
553 and the number of lines in its bus. We denote an N-PE
ring whose bus has L lines an (N, L)-553 when we want to
make all parameters explicit, an N-553 when we want to
concentrate only on the number of PEs, and an 553 when
the specific parameter values are not consequential.

In [7], we showed that 553s can efficiently execute any
normal hypercube algorithm,1 a class which contains efficient
algorithms for such diverse problems as sorting, matrix
multiplication, and the Fast Fourier Transform. The upper-
bound results of the current paper, which appear in Section
2, show that 553s can perform, with close to optimal effi-
ciency, any leveled tree-structured algorithm (LTS algorithm),
i.e., any algorithm that can be specified in terms of a fixed
number of complete up- and/or down-sweeps on complete
binary trees, performing a unit-time task each time a tree-
node is encountered. Problems that can be solved by such
algorithms include (segmented versions of) broadcast and
accumulation (or, reduction), which are one-sweep algo-
rithms, and parallel-prefix (or, scan), which is a two-sweep
algorithm. When executed on an (N, L)-553, our algo-
rithm performs each sweep in time bounded above by

log
log log log log

2 N
L N L+ .     (1.1)

Thus, for values of L smaller than N1/log log N, the time TSWEEP

for each sweep by the algorithm satisfies the inequality:

1. See, e.g., [4] for definitions.
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TSweep £
2 2log

log
N

L ,

while, for larger values of L, the time satisfies the following
inequality, up to low-order terms:

TSWEEP £ 2 log N log log N.

It follows that an N-553, endowed with sufficient com-
munication bandwidth (as measured by the number of
buslines), can execute LTS algorithms almost as fast as can
an N-node hypercube of commensurate-power PEs: The
slowdown incurred is only roughly 2 log log N.

REMARK. Since we envision only chip- or wafer-scale
553s, the values of N will always be moderate, no
more than, say, a few hundred. This small range of
values for N has two consequences for our study.
First, for such N, a bus with N1/ loglog N lines, as man-
dated when we discuss “larger values of L,” is quite
within the realm of feasibility. Second, the limited
range of N renders asymptotic bounds (which begin
to hold only “eventually”) inappropriate. This second
fact has led us to use the evocative, but imprecise,
phrase “low-order terms” when describing our
bounds; of course, the analyses leading to the bounds
are quite precise.

In Section 3, we show that the algorithms of Section 2 are
within constant factors of optimal, in a variety of senses.
Throughout this section, we use (one-to-all) broadcast as
the prototypical one-sweep LTS algorithm, since it is—in a
sense made precise in Section 4—the simplest such algo-
rithm. In Section 3.1, we show that the time for performing a
one-to-all broadcast on an (N, L)-553 is bounded below by

TBroadcast ≥
1
4

2log
log

N
L .

Since this bound trivializes when L is as large as Ne

(because even communicating between PEs 0 and N/2
takes time proportional to log N), we were motivated to
find a nontrivial lower bound that holds for all 553s, no
matter how many buslines they have. In Section 3.2, we
prove such a bound: The time required for any N-553—no
matter how many buslines it has—to perform a one-to-all
broadcast is no smaller than

TBroadcast ≥
1

15 log log logN N .

This lower bound is surprisingly general: Not only does it
apply to all N-553s, it applies also, with minor adapta-
tion, to a much broader class of logarithmic-latency archi-
tectures. One can view this fact as suggesting that, at least
for LTS algorithms, one could not gain appreciably—i.e., by
more than a constant factor—if one replaced the ring-
structured topology of 553s by a more highly connected
topology, such as a mesh.

The extendibility of the lower bound in Section 3.2 both
inspires and lays the technical groundwork for our very
general lower bound in Section 4. We focus in that section
on the following broad class of algorithms for any parallel
architecture that uses point-to-point communication. We term

an algorithm nontrivial if it requires some one PE of the ar-
chitecture to receive and/or send information—either di-
rectly or indirectly—to and/or from all other PEs. We
prove that, to within constant factors, no nontrivial algo-
rithm can be performed more efficiently than the (one-to-
all) broadcast operation. As a consequence, any N-PE ar-
chitecture of the sort discussed in Section 3.2 requires time
proportional to log N log log N to execute any nontrivial
algorithm. We stress that this lower bound is a fundamental
limitation imposed by the logarithmic-latency model and is
independent of specific architectural implementations!2

1.3 The Abstract 553 Architecture
1.3.1 A Static View
An (N, L)-553 is an SIMD architecture that comprises N
identical PEs,3 30, 31, º, 3N-1, which we view as placed
with equal spacing around a circle (see Fig. 1). There is a
“bundle” of L lines, each having one-packet-width, passing
outside the circle “over” the PEs and “through” the
switches that provide the reconfiguration capability. Each
PE of an (N, L)-553 has L associated communication sub-
PEs (CPEs) to help it manage the message traffic on its bus;
specifically, CPE &3i,j controls switches on line j that allow
PE 3i to participate (either as a source, a destination, or an
intermediate node) in a dedicated point-to-point path along
that line.

Fig. 1. An abstract view of an 553.

We impose certain limitations on 553s, in order to
minimize the technological resources required to imple-
ment them. First, as is implicit in the fact that buslines form
point-to-point paths between pairs of communicating PEs,
we assume that each message has exactly one sending PE
and exactly one receiving PE; in particular, we do not sup-
port any “wired-or” or multireader bus capability. Second,
we have our 553s observe a single-port communication
regimen: In a single step, a PE can send at most one mes-
sage and receive at most one (possibly, though not neces-
sarily, involving distinct buslines). A word about these re-
strictions is in order. The constraint of single-port commu-
nication may well decrease the efficiency of 553s on a

2. It is instructive to see how our model and results compare with those of [6].
3. Throughout, when we discuss the PEs of an N-553, all PE-indices are

computed modulo N.
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broad range of computational problems; we have yet to
study the multiport version of our model. However, the
absence of a multireader capability has less overall impact
than one might initially expect. Clearly, a multireader bus
capability would enable an N-553 to perform one-to-all
broadcasts in time proportional to log N; however, this
speedup would likely incur nonnegligible costs, as the
multiple voltage drains would require either larger drivers,
hence, a smaller 553 for a fixed amount of real estate, or
slower CPEs, hence, a larger constant of proportionality on
the time-function. Moreover, building on the techniques of
Sections 3 and 4, one can show that a multireader bus capa-
bility would not accelerate operations such as accumula-
tion, hence, would have only small impact on operations
such as parallel-prefix.

The SIMD regimen observed by our 553s allows
switch settings to be computed centrally and downloaded
to the CPEs; hence, we shall not comment further on this
aspect of 553 operation.

For reasons that will become clear when we describe the
COMET message-passing protocol (in Section 1.4), we study
only “fine-grain” computations by 553s, i.e., ones in
which every inter-PE communication consists of a single
one-packet message which is sent along a single busline.

Finally, to simplify algorithm specification and analysis,
we assume henceforth that our 553s have numbers of PEs
N and numbers of buslines L that are powers of 2; in par-
ticular, we shall write (when convenient) N = 2n and L = 2,.
These assumptions, which can be avoided by clerical modi-
fications to our development, will affect only small additive
terms in our bounds.

NOTATION. For any pair of PE-indices i and j π i, we denote
by B(i, j) the block of PEs {3i, 3i+1, º, 3j}.

1.3.2 Path Formation and Communication
The first step in performing a communication between PEs
3i and 3j (in either direction) is to establish a dedicated
path that connects these two PEs. This is achieved as fol-
lows: The SIMD controller appropriates a segment of some

busline which runs above either block B(i, j) or block B(j, i)
and which is not currently used by any other communica-
tion. (Presumably, but not necessarily, if segments above
both blocks are available, then the controller will choose the
shorter one.) Say, for definiteness, that the available seg-
ment is a portion of busline k that runs above block B(i, j).
The controller then establishes the following connections,
using the switches in the CPEs; see Fig. 2.

• PE 3i is connected to line k, via CPE &3i,k;
• PE 3j is connected to line k, via CPE &3j,k;
• each CPE &3h,k, where i £ h < j is connected to CPE

&3h+1,k.

(If no busline is free above either block B(i, j) or B(j, i), then
the message transmission must be deferred until a later
time. The algorithms we present are carefully designed to
avoid such an event.) After forming the dedicated path, the
desired (one-packet) message is transmitted from 3i to 3j
along line k.

MORE NOTATION. For any block of PEs B(i, j), a communi-
cation between PEs 3i and 3j that is transmitted
above block B(i, j)—in either direction—is termed an
(i ´ j) communication. Of course, every communica-
tion between 3i and 3j is either an (i ´ j) communi-
cation or a (j ´ i) communication.

1.3.3 Message Latency
We assume that the latency (or, duration) of a communica-
tion depends only on the distance the message travels (not
the direction) and is logarithmic in this distance. Specifically,
we assume that every (i ´ j) communication takes4

Èlog((j - i) mod N)˘

steps. In the next subsection, we sketch a possible imple-
mentation of 553s, which has the promise of implement-
ing this delay model.

4. All logarithms are to the base 2 unless otherwise specified.

Fig. 2. A section of a bus of an (N, 4)-553.
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1.4 An Implementation Proposal
Our aim in this study is not to propose yet another abstract
model, but rather to explore the consequences of stretching
existing VLSI technology in certain directions. Therefore,
we view the following outline of a strategy for achieving
logarithmic (fine-grain) message latency in 553s as an
integral part of our research. This strategy has been a major
motivating factor for our work; its technological feasibility
and costs are currently under study.

Despite our interest in determining if the following
design strategy could be developed to yield a “real”
instantiation of the results we prove here, our results
do not rely on any such determination. To wit, the re-
sults in this paper, as those in [7], rely only on the ab-
stract properties of 553s (such as logarithmic mes-
sage latency) that are described in Section 1.3. We
view this as a strength, since our results will continue
to hold no matter what mechanism is ultimately de-
veloped to achieve these properties.

The hardware-design portion of our strategy is specified
only implicitly: We would like to design the CPEs of 553s
so that they can support the COMET “cooperative” message
transmission protocol, which (on paper, at least) allows the
PEs of 553s to exchange one-word messages with only
logarithmic communication latency.

The COMET protocol builds on the assumption that there
is a fixed transit time t such that a one-packet message can
be transmitted in t (machine) cycles between:

• any PE 3i and any one of its CPEs &3i, k (in either
direction);

• any CPE &3i, k and a neighboring CPE &3i±1, k.

As our description of COMET proceeds, the reader should
note two defining properties of the protocol.

• COMET builds on specific characteristics of MOS VLSI
technology, particularly its being a capacitive, volt-
age-driven technology, rather than a current-driven
one. Therefore, COMET will accelerate message trans-
mission only with chip- or wafer-scale implementa-
tions of 553s, not with implementations that leave
an MOS environment. Consequently, we envisage the
553s we study as comprising at most a few hundred
PEs. This world view makes it imperative that we al-
ways seek explicit analyses of bounds, rather than as-
ymptotic ones.

• COMET depends on having neighboring CPEs
“cooperate” to accelerate the progress of a message in
transit. This “cooperation” precludes pipelining mes-
sages, so we must restrict attention to routing small
packets rather than, say, potentially long worms. This
limitation explains our focusing here only on fine-
grain computations and messages.

1.4.1 The Logic of COMET

We define the cooperative message transmission protocol
that COMET uses to accelerate message transmission, via the
following generic example. Let us focus on an arbitrary sin-
gle-packet (i ´ j) message M that PE 3i wishes to transmit to

PE 3j on busline k. Assume that 3i has already inserted
message M onto busline k via CPE &3i,k.

Step 0. &3i, k sends message M to &3i+1, k. Pictorially:
∑ fi Æ Æ Æ Æ Æ Æ Æ Æo o o o o o o o L

In this illustration:

• a filled circle denotes a CPE that “knows” message M;
• an empty circle denotes a CPE that does not “know”

message M;
• a single arrow denotes an “empty” link of the dedi-

cated path P(i, j),
• a double arrow denotes a link of the dedicated path

P(i, j) that contains message M.

Thus, the above diagram is intended to illustrate that, after
one step (of duration t cycles), both CPEs &3i, k and &3i+1,k
“know” message M.

Step 1. &3i+1,k starts helping &3i,k send message M along
line k.

∑ fi ∑ fi Æ Æ Æ Æ Æ Æ Æo o o o o o o L

Step 2. &3i+2,k and &3i+3,k start helping &3i, k and &3i+1,k
send message M along line k.

∑ fi ∑ fi ∑ fi ∑ fi Æ Æ Æ Æ Æo o o o o L

º
Step m. &3 &3 &3

i k i k i km m m+ + + + -- -2 2 1, 2 1,1 1,
, , ,K  start helping

&3 &3 &3i k i k i km, , , ,+ + --1, 2 1,1K  send message M along line k.

∑ fi ∑ fi ∑ fi ∑ fi ∑ fi ∑ fi ∑ fi ∑ fi Æo L

1.4.2 The Technology and the Timing
Each step (of duration t cycles) of a COMET message trans-
mission doubles both the number of CPEs transmitting
message M and the number receiving the message (the lat-
ter number ignores a possible discrepancy in the very last
step when j - i mod N is not a power of 2). The feature of
MOS technology that allows a transmission to speed up in
this way (traveling twice as far at step t as at step t - 1) is
that 2t CPEs can “pump” voltage twice as hard as can 2t-1

CPEs. In a voltage-driven technology, where delays are
caused by capacitive loads, this harder “pumping” allows
successively longer line segments to fill to threshold at suc-
cessive steps of the transmission. This scheme leads to the
logarithmic latency model described earlier.

Of course, the trick in making COMET work in a real
technology is to build wires that will carry the pumped
charge without melting. This limitation explains why we
must model and simulate the electrical overhead of the
COMET protocol, in order to determine how large and fast
an 553 the protocol will permit. Specifically, we wish to
determine what clock speed (which is embodied in the
transit time t) can be supported with various numbers of
PEs. As we stated in Section 1.1, our goal here is to deter-
mine whether or not logarithmic message latency leads to
computational efficiency that would induce one to pursue
vigorously a switch design that will efficiently support the
COMET protocol. We believe that our upper bounds, here
and in [7], supply an affirmative answer to this question.
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REMARK. We stress that the COMET protocol is intended to
diminish only the capacitive delays of message trans-
mission in MOS technologies; it does not affect
transmission-line limitations. Therefore, our speedup
scheme does not run into any conflicts with speed-of-
light limitations [1], [8].

2 LTS ALGORITHMS FOR 555533S

This section is devoted to our upper-bound results. We be-
gin, in Section 2.1, with an algorithm that allows an (N, L)-
553 to perform a single sweep of an LTS Algorithm in
time

T N L
N
L N L;

log
log log log loga f £ +

2

.

We then describe briefly, in Section 2.2, how to perform the
operations of broadcast and accumulation using one-sweep
LTS algorithms and how to compute the parallel-prefix us-
ing a two-sweep LTS algorithm; our descriptions are brief
because these LTS algorithms are well known.

2.1 Generic Single-Sweep LTS Algorithms
In this subsection, we describe two intimately related
parameterized families of one-LTS algorithms. Each algo-
rithm 'own(N;L) (resp., 8p(N;L)) simulates, on an (N, L)-
553, a single downward (resp., upward) sweep on an N-leaf
complete binary tree. For the sake of simplicity, we describe
only algorithms that involve the entire 553. However,
because our algorithms actually work on a path of PEs,
rather than on a ring, it should be clear that they are easily
modified to compute segmented versions of the same opera-
tions.5 (This fact is essential for the correctness of our recur-
sive simulations.) In fact, we exploit the wraparound
structure of our rings only in our allowing any PE to play
the role of the root of the tree in a simulated sweep.

2.1.1 Specification of Algorithms 'own(N;L) and 8p(N;L)

Fix the parameters N and L, and focus on an (N, L)-553

5N,L. Both our downward-sweep algorithm 'own(N;L)  and
our upward-sweep algorithm 8p(N;L) have 5N,L simulate the
N-leaf complete binary tree 7N via a recursive sequence of
remappings of the nodes of 7N onto the PEs of 5N,L. These
mappings and remappings are specified for 'own(N;L) im-
plicitly via the following recursive three-phase process.

Informal Specification of 'own(N;L)

Phase 1: Sweeping down the top of 7N. 'own(N;L) recursively
uses the block of PEs B(0, 2k - 1) to execute the top k + 1
levels of 7N. (We choose the parameter k later.) We as-
sume that this execution ends with the 2k level-k nodes of
7N distributed, in left-to-right order, in the PEs of block
B(0, 2k - 1).

Phase 2: Remapping. 'own(N;L) remaps level k of 7N by

having each PE 3i of block B(0, 2k - 1) send its current
“state” to PE 3

i n k2 - .

(We assume here that fine-grain LTS algorithms produce

5. Our lower bounds hold for arbitrary algorithms on 553s, not just those
that operate as ours do.

very small “states.” This is true for the motivating ex-
amples in the literature.)

Phase 3: Sweeping down the bottom of 7N. 'own(N;L) recur-
sively uses all blocks of PES B(i2n-k, (i + 1)2n-k - 1), in
parallel, to execute the bottom n - k levels of 7N. We as-
sume that this execution ends with the leaves of 7N
(which are its level-n nodes) distributed, in left-to-right
order, in the PEs of 5N,L.

Choosing the parameter k. We have two goals that jointly
determine our choice of the parameter k.

1) In order to minimize the communication overhead of
our tree-sweep, we wish to be able to perform the re-
mapping (Phase 2) at each level of the recursion via a
single global communication. To accomplish this, we
choose k so that 2k £ L + 1. We reason that we can re-
map up to L level-k nodes of 7N via a single global
communication, since 5N,L has precisely this many
buslines. Since the leftmost level-k node does not
move in the remapping (staying in PE 30), we arrive
at the indicated inequality; since L is a power of 2, our
inequality mandates making k £ ,.

2) Letting T(M; L) denote the time that 'own(N;L) takes to
sweep down an M-leaf subtree of 7N, we expect the
recursive initiation (Phase 1) of the algorithm to take
time T(2k; L) and the recursive extension (Phase 3) to
take time T(2n-k; L). Heuristic arguments suggest that
T(M; L) is a convex function of M, whence the time for
'own(N;L) (which is dominated by the sum T(2k; L) +
T(2n-k; L)) will be minimized if we balance the times
for Phases 2 and 3 by choosing k so that 2k < 2n-k.

These two arguments lead us to choose the parameter k to
be as large as possible, subject to the restriction that

2k L N£ min ,o t .

We now present a detailed specification of Algorithm
'own(N;L). Each recursive invocation of the algorithm re-
quires two parameters: the index root.index of the PE of
5N, L that plays the role of the root of the current tree at that
point in the recursion, and the number num.leaves of
leaves of that tree. With no loss of generality, PE 30 of 5N

will play the role of the root of the initial tree 7N; of course,
the initial number of leaves is N. The detailed specification
appears in Fig. 3. We simplify the specification by assuming
that num.leaves is always divisible by

min ,L num.leaveso t ;

only small additive errors result from this assumption.
Algorithm 8p(N;L) is just the dual of Algorithm 'own(N;L),

with Phases 1 and 3 temporally interchanged. We leave
both the informal and formal specification of 8p(N;L) to the
reader.
2.1.2 Analysis of Algorithms 'own(N;L) and 8p(N;L)

We now assess the time complexity of Algorithms 'own(N;L)
and 8p(N;L). For simplicity, we analyze only Algorithm
'own(N;L)(0, N). The reader can easily adapt the analysis to
both upward and/or segmented sweeps.
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THEOREM 2.1. For N ≥ 4 and L ≥ 2, Algorithm 'own(N;L)(0, N)
operates in time

T N L N L
N
L; log log log

log
loga f £ +

2

. (2.1)

PROOF. The following recurrence for T(N; L) is clear from
the description and specification of 'own(N;L).

T N L T N N N T
N
N L; ; log ;a f a f£ ¢ ¢ + + ¢

F
HG

I
KJ ,          (2.2)

where, as before, ¢ =N L Nmin ,o t . The first term

in (2.2) is the time for the Phase-1 recursive invocation
of the algorithm, which sweeps down the first N¢ lev-
els of 7N; the second term is the time for the message-
transmissions that effect the Phase-2 remapping of the
level-N¢ tree-nodes; the third term is the time for the
Phase-3 recursive invocation of the algorithm, which
sweeps down the remaining, bottom, levels of 7N.
Using the following easily verified initial condition
for the recurrence,

T(4; 2) = 2,

we now bound the recurrence term by term.
We claim first that, for all M ≥ 4,

T(M; M) £ log M log log M.        (2.3)

We proceed by induction on M. The basis is true,
since T(4; 4) £ T(4; 2) = 2. By invoking the inductive
hypothesis and bound (2.2), we bound T(M; M) for
arbitrary M > 4 as follows.

T M M T M M M

M M M

M M

; ; log

log log log log

log log log .

a f d i
d i d i

£ +

£ +

=

2

2

We now use bounds (2.2), (2.3) to establish the
claimed bound (2.1) on T(N; L).

T N L N N N T N N L

L L N N

N L N L

L

; log log log log ;

log log log log log

log log log log log .

a f c h
c h

£ ¢ ¢ + + ¢

£ +

= + 2

The second step here uses bound (2.2) logL N times to
bound the T(N/N¢; L) term. �

2.2 Specific LTS Algorithms
We describe here simple LTS algorithms for three funda-
mental operations: broadcasting, accumulation, and paral-
lel-prefix [2], [3], [4].

One-to-all broadcasting. In the operation of broadcasting,
one PE—with no loss of generality, 30—sends a single-
packet message M to all other PEs. Let the PEs of the archi-
tecture be mapped to the nodes of a complete binary tree in
any way that places PE 30 at the root of the tree. Now, per-
form a sweep down the tree: as each PE-node receives the
message M from its parent, it relays the message to both of
its children. At the end of the downward sweep, each PE
“knows” the message M.

In the sequel, we denote by %r(N;L) the algorithm for
broadcasting within an (N, L)-553, that is based on the
downward sweep algorithm 'own(N;L).

Accumulation. The operation of accumulation (or, reduction)
is defined for any binary associative operator ƒ. The ƒ-
reduction of the vector ·x0, x1, º, xN-1Ò is the product x0 ƒ x1
ƒ � ƒ xN-1. An architecture whose PEs are indexed from 0
to N - 1 in such a way that each PE 3i initially “knows”
value xi can compute this reduction as follows. Assign the
nodes of 7N to the PEs in any way that assigns the leaves of
7N to the PEs in their natural left-to-right order. Now, per-
form a sweep up the tree: Each PE computes the ƒ-product
of the quantities it receives from its children and passes this
product to its parent. At the end of this upward sweep, the
PE that is assigned the root of 7N “knows” the accumulated
ƒ-product.

Parallel-prefix. The parallel-prefix (or, scan) operation is also
defined for any binary associative operator ƒ. The ƒ-scan
of the vector ·x0, x1, º, xN-1Ò is the vector ·y0, y1, º, yN-1Ò,
where each yi = x0 ƒ x1 ƒ � ƒ xi. An architecture whose
PEs are indexed from 0 to N - 1 in such a way that each PE
3i initially “knows” value xi can compute this scan as fol-
lows. Assign the nodes of 7N to the PEs in any way that
assigns the leaves of 7N to the PEs in their natural left-to-
right order. Now, perform a sweep up the tree, followed by
a sweep down the tree. During the upward sweep, the ar-
chitecture performs an ƒ-reduction of the vector, but each
PE retains (for the downward sweep) the value computed
by its left child. During the downward sweep, each PE
sends its retained value to its right child, which then com-
putes the ƒ-product of its parent’s retained value by its
retained value (in that order). At the end of the downward
sweep, each PE 3i “knows” the quantity yi.

Algorithm 'own(N;L)(root.index, num.leaves)
Execute the task at root.index
while num.leaves > 1 do

begin
¢ =N Lmin , num.leavesn s

{Execute Phase 1: recursive initiation}
'own(N;L)(root.index, N¢)
{Execute Phase 2: remapping}
for i= root.index +1 to root.index + N¢ - 1 do in parallel

Remap 3i to 3iN/N¢ via an (i ´ iN/N¢) communication
{Execute Phase 3: recursive extension}
'own(N;L)(i N/N¢, N/N¢)

endfor
end

end Algorithm

Fig. 3. The broadcast algorithm 'own(N;L).
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3 LOWER BOUNDS FOR LTS ALGORITHMS ON
555533S

In this section, we prove lower bounds on T N L* ( ; ) =
def

 the
fastest time in which an (N, L)-553 can perform a one-to-
all broadcast. Our formal bound takes the following form.

THEOREM 3.1. For all integers N > 4 and L ≥ 7,

T N L
N
L N N* ; max

log
log , log log loga f ≥

R
S|
T|

U
V|
W|

1
4

1
15

2

.

The first bound in this maximization, which we prove in
Section 3.1, says roughly that no (N, L)-553 can perform a
one-to-all broadcast in fewer than (log2 N)/(log L) steps.
The second bound in this maximization, which we prove in
Section 3.2, says, roughly, that no N-553—no matter how
many buslines it has—can perform a one-to-all broadcast in
fewer than log N log log N steps. Since broadcasting is in-
tuitively the simplest one-sweep LTS algorithm (an intui-
tion that is verified in Section 4), these lower bounds dem-
onstrate that our one-sweep LTS algorithms in Section 2
(which operate within timebound (1.1)) cannot be sped up
by more than a modest constant factor. We turn now to the
proofs of our bounds.

3.1 A Lower Bound for Small L
The following lower bound on T*(N; L) establishes the op-
timality (to within a constant factor) of our one-pass LTS
algorithms 'own(N;L) and 8p(N;L), for “small” values of L,

i.e., values no greater than N1/log log N.

THEOREM 3.2. For all integers N > 0 and L ≥ 7,

T N L
N
L* ;

log
loga f ≥

1
4

2

.      (3.1)

PROOF. Say that the (N, L)-553 5 has a PE 30 which wants
to broadcast a one-word message M to all other PEs.
We demonstrate that, no matter how 5 disseminates
M to its PEs (subject, of course, to the limitations of
553s), it can decrease only slowly the size of the
largest remaining block of PEs that are “ignorant” of
message M. To the end of verifying this, let us con-
sider the execution of an arbitrary broadcast algo-
rithm $ on 5.

At the beginning of the broadcast, only PE 30

“knows” message M, so the initial block of “ignorant”

PEs is precisely the block B B N0 1 1= -
def

( , ) .

Let T0 be the first instant in the execution of Algo-

rithm $ in which a message crosses either PE 3ÈN/3˘

or PE 3È2N/3˘. By our delay model, T0 ≥ log N/3. Be-

cause our 553 has L buslines, at time T0, no more
than 2L messages are “traveling” along the bus and
directed to the block B N N3 2 3,d i . Now, even if

we assume that all of these 2L messages arrive at their
destinations instantaneously at time T0 (which can
only speed up Algorithm $), there must remain at

time T0 a block of “ignorant” PEs B1 of size

B
N
L1 3 2 1

≥
+

L
MM

O
PPa f .

Let us now apply the above reasoning to the block
B1. Let T1 be the first instant after time T0 in the execu-
tion of Algorithm $ in which a message crosses one
of the two PEs located at |B1|/3 positions to the right
of the beginning of B1 and |B1|/3 positions to the left
of the end of B1. (In other words, we imagine that we
“reset the clock” after time T0 and begin looking at the
indicated PEs.) Since we allowed all messages that
were in transit at time T0 to get to their destinations
instantaneously, two things are clear. First,

T B
N
L1 1

1
3 9 2 1

≥ ≥
+

log log a f .

This follows just from the fact that no messages were
in transit at time T0 (because we let all of them arrive
instantaneously), so the message that determines time
T1 must have traversed at least one-third of block B1
since time T0. Second, even if we assume that all of
the 2L messages that could be in transit at time T1 ar-
rive at their destinations instantaneously, and that all
of them are destined for PEs in the center of block B1,
there must remain at time T1 a block of “ignorant”
PEs B2 of size

B
N

L2 2 23 2 1
≥

+

L
M
MM

O
P
PPa f .

We continue this reasoning with block B2, which
yields a block B3 of “ignorant” PEs, then with block
B3, and so on. Eventually, we infer the existence of a
sequence of time instants, T0, T0 + T1, T0 + T1 + T2 º in
the execution of Algorithm $, with associated blocks
B0, B1, B2, º of “ignorant” PEs, such that, for each i,

T B B
N

L
i i i i i≥ ≥

+
log

1
3 3 2 1

  and a f .

Now, since Algorithm $ must eventually get the
broadcast message to every PE, the total time taken by
$ can be bounded as follows. Let

g = =
++log

log

log3 2 1 3 2 1L N
N

La f a fc h .

Then, we have

T N L T

N

L

N L

i
i

i
i

* ;

log

log log log .

a f

a f
a fc h

≥ +

≥
+

+

= - - F
H

I
K + +

=

-

=

-

Â

Â

1

3 3 2 1
1

3 2 3 2 1 1

0

1

0

1

g

g

g g g

If we now substitute for g  in this bound and simplify,
we obtain the desired bound (3.1). Since our reason-
ing holds for any broadcast algorithm on an (N, L)-
553, the theorem follows. �
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By substituting L in the upper and lower bounds pro-
vided by Theorems 2.1 and 3.2, respectively, one establishes
the following result.

COROLLARY 3.1. If L £ N1/loglog N, then Algorithm %r(N;L) is
within a constant factor of optimal on an (N, L)-553.

We close this section by noting that the bound of Theorem
3.2 trivializes for large L (e.g., L ≥ N1/loglog N) to the observa-
tion that T*(N; L) must be proportional to log N. This bound
tells us nothing about the complexity of the broadcast opera-
tion on 553s, because simply getting message M from PE

30 to PE 3N/2 must take time proportional to log N (because
of the subadditivity of logarithms). In the next subsection, we
derive a lower bound on T*(N; L) that is nontrivial no matter
how large L is, i.e., no matter how many buslines the 553 in
question has. Moreover, this bound establishes the optimality
(to within a constant factor) of %r(N;L) (hence, of 'own(N;L) and

8p(N;L)), even for large values of L.

3.2 A Lower Bound for All 553s
In this section, we prove that the time taken by an N-553

5 to broadcast must be proportional to log N log log N, no
matter how many buslines 5 has. As usual, we assume,
with no loss of generality, that PE 30 of 5 is broadcasting a
message M to all other PEs. The reader should note that we
could rephrase the proof of this bound to hold for any one-
sweep LTS algorithm. The rephrasing for downsweeps is
little more than a change in terminology; the rephrasing for
upsweeps is a bit more complicated, as one has to “run the
proof backwards,” which requires a bit of reformulation.

THEOREM 3.3. For all N > 4 and all L,

T N L N N* ( ; ) log log log≥
1

15 .

PROOF. We proceed by induction on N, using as a base all
N £ 1,024. Our lower bound is trivial for N in this
range, since it asserts only that an 553 requires
more than two steps to broadcast when N > 4. Let us,
therefore, focus on an arbitrary fixed N > 1,024, and
let us assume inductively that the theorem holds for
all smaller N. Say that we have an optimal algorithm
$ that broadcasts on an N-553 5 within time T*(N; L).
By Theorem 2.1, we know that $ operates within
time 2 log N log log N. We can derive from $ a broad-
cast tree BT($) whose structure exposes how $ dis-
seminates the broadcast message. The tree BT($) has
node-set {0, 1, º, N - 1}; BT($) has an edge from
node i to node j precisely if, in Algorithm $, PE 3j of
5 receives the broadcast message for the first time via a
direct communication from PE 3i. Note that node 0 is
the root of BT($).

Henceforth, let us focus on the broadcast of a mes-
sage M by Algorithm $.

The intuitive flow of our proof is as follows. From
the structure of BT($), we find in 5 a block of adja-
cent PEs, called a barrier, that partitions a portion of
the broadcast operation into three disjoint phases:

Phase 1. The root-PE 30 supplies the PEs in the bar-
rier with message M.

Phase 2. The PEs in the barrier supply a new set of
“subroot” PEs with message M.

Phase 3. The new subroot-PEs broadcast message M
to the PEs in their broadcast subtrees.

The sum of the times for these three phases is clearly a
lower bound on the total time for Algorithm $’s
broadcast. The strategy of our proof is to show that
there must exist a barrier for which each of these three
operations takes a rather long time. We achieve this
by showing that there must exist a barrier whose PEs
must supply message M to “many” subroots, all of
which are “far” from the barrier and each of which
must broadcast message M to PEs of 5 which belongs
to a “big” subtree of BT($). One can view the rest of
the proof as quantifying the quoted words in the pre-
ceding sentence.

We turn now to the details of the argument. Given
a barrier B, we call any PE that receives the broadcast
message—for the first time—directly from some PE of
B a subroot induced by B. We say that a subroot 3i cov-
ers a PE 3j precisely when node j is in the subtree of
BT($) rooted at node i; this is equivalent to saying
that 3j receives the broadcast message for the first
time from 3i, either directly or indirectly. For any set
of PEs P, we denote by COV(P) the set of PEs P < {PEs
covered by PEs in P}.

In order to define the barriers of interest, we first
partition the (universal) block of PEs B(0, N - 1) = {30,

31, º, 3N-1} into N - 1 subsets, each subset being
the union of two blocks of PEs. For each

i NŒ -1 2 1, , ,Kn s,

the ith subset Bi is the set6

B B N i N i

B N i N i

i = - -
M
NM

P
QP

- - -
M
NM

P
QP

F
HG

I
KJ

- -
L
MM

O
PP

L
MM

O
PP

F
HG

I
KJ

def 1
2 1

1
2 1 1

1
2 1 1

1
2

d i d ia f

d ia f d i

,

, .U

The kth barrier of 5 comprises the PEs whose indices

are in the set %k ii

k
B=

=

def

1U .

NOTATION. We denote the set of subroots induced by the kth
barrier by Rk (see Fig. 4). Also, for notational clarity, we
henceforth abbreviate the quantity 1

15 log log logN N

by lN.
Our first lemma shows that 5 must have a barrier

which induces subroots that are located “far” from
the barrier and that cover “many” PEs. Specifically,
the lemma is our first step in quantifying the qualifi-
ers we have been putting in quotes.

LEMMA 3.1. There exists a k NŒ { , , , }1 2 2K l  such that

6. Recall that all arithmetic on the indices of PEs is modulo N, so that 3-i
= 3N-i.
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Cov R B
N

k Nk k
N

- ≥ -+1 2c h
l

.         (3.2)

PROOF. Let the parameter i range over the set { , , , }1 2 2K l N .

Note first that, for all i, the set of subroot PEs Ri cov-

ers at least N i N-  PEs. Let us now consider the l N
2

sets of subroots Ri > Bi+1, for varying i (see Fig. 4). We
claim that at least one of these sets covers fewer than

N N1 1 2- le j  PEs. Were this not the case, each of the sets

COV(Ri > Bi+1) would contain more than N N1 1 2- le j
PEs. By the pigeon-hole principle, then, some PE
would be covered by all l N

2  sets Ri > Bi+1. This, how-
ever, would imply that there is a “chain” of subroots,

r R B r R B r R B
N N N

1 1 2 2 2 3 12 2 2Œ « Œ « Œ «
+

, , ,K
l l l

,

such that each subroot rj covers subroot rj+1. Such a
chain of subroot dependencies is equivalent to a path
in BT($) of length ≥ l N

2 , hence would imply that Al-

gorithm $ takes time ≥ l N
2 . This, however, contra-

dicts our having chosen Algorithm $ from among
those broadcast algorithms that operate within time
proportional to lN. This contradiction proves the
lemma. �

Now, let k0 be an index for which the set

¢ = - +5k k kR B
0 0 0 1

def

has large coverage in the sense of (3.2). Our second
lemma shows that there are “many” remote subroots
in ¢5k0

, each of which covers a “big” subtree of PEs.

LEMMA 3.2. There exists a nonempty set of subroots ¢¢ Õ ¢5 5k k0 0

such that:

1) The number of PEs covered by the subroots in ¢¢5k0
 ex-

ceeds

1
2 2 0

N
k N

Nl
-

F
HG

I
KJ

.

2) For each subroot r kŒ ¢¢5
0
, the number of PEs covered by

r exceeds

1

4
0

2 0
l l

N k N

N
k N

¢¢
-

F
HG

I
KJ5

.

PROOF. Let us index the elements of ¢Rk0
 in nondecreasing

order of coverage, that is, so that

Cov Cov Covr r r
Rk

1 2
0

m rd i m rd i≥ ≥ ≥
RST

UVW
F
HG

I
KJ¢

L .

For each i RkŒ ¢1 2
0

, , ,K{ } , let us denote by ni and Ni,

respectively, the cardinalities n ri i=
def

Cov({ })  and

N r r ri i=
def

Cov({ , , , })1 2 K . We now show that there is a
nonempty set of subroots in ¢Rk0

 which comprises the

desired set ¢¢Rk0
.

Let k1 be the largest index i such that Ni £ 2ilNni.

Note that, since N1 < 2lNN1 = 2lNn1, we are sure that

k1 “exists,” i.e., that k1 ≥ 1. Let us abbreviate the quan-

tity ¢Rk0
 by S. Now, by definition of k1, we know that,

for each subroot ri, where k i Rk1 1
0

+ £ £ ¢ ,

n
N
i

N
ii

i

N

S

N
< <2 2l l .

It follows that7

n
N

j
N

S Nj
j k

S
S

N j

S
S

N
S

= + =
Â Â< £ + £

1 1 1
2

1
2 1

1
2l l lna f .

We now claim that the set { , , , }r r rk1 2 1
K  can serve

as the sought set of subroots ¢¢Rk0
. To wit, Lemma 3.1

assures us that

¢¢ = ≥ ≥ -R N N
N k N

k k S
N

0 1

1
2 2 22

0

l
.

Moreover, by definition, each subroot r Ri kŒ ¢¢
0
 covers

at least

n n
N
k k

N
k Ni k

k

N N N

≥ ≥ > -
F
HG

I
KJ1

1

2
1

41 1
2 0l l l

PEs. ¢¢Rk0
 thus yields the desired set of k1 roots, which

completes the proof. �

We are now ready to prove Theorem 3.3. Let k0 and k1
be the integers produced in the proofs of Lemmas 3.1
and 3.2, respectively. We bound the time that the opti-
mal algorithm $ takes for each of the three phases of the
broadcast defined by the barriers we have selected.

The time for Phase 1. We claim that Algorithm $ (indeed,
any algorithm) needs time

T T
k

k k L1
1

1 1
≥

F
HG

I
KJ* log log log ;

in order to generate the k1 instances of message M that

PEs within barrier %k ii

k
B

0

0

1
=

=U  must transmit (in

Phase 2) to the k1 “remote” subroot PEs of ¢¢Rk0
.

In order to see this, say that, at the instant when the

last copy of these k1 instances of message M leaves
barrier %k0

, there are p PEs in %k0
 that “know” mes-

sage M. Since only such knowledgeable PEs can
transmit the message instances, some one of these p

PEs must have transmitted at least k1/p instances of
M to the remote subroots. Furthermore, Algorithm $

7. ln x denotes the natural logarithm of x.
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must have taken time at least T*(p; L) to create p
knowledgeable PEs. Thus, we have

T T p L k p
p1 1≥ min max * ; ,b gn s.       (3.3)

Since T*(x; L) ≥ log x for all x (see the closing para-
graph of Section 3.1), the value of p that minimizes
maximization (3.3) can be determined to have the
form p0 = k1/log k1 + (low-order terms). Therefore,
since T* is (clearly) monotonically increasing as a
function of N, we have

T T
k

k L T
k

k k L1
1

1

1

1 1
≥

F
HG

I
KJ ≥

F
HG

I
KJ* log ; * log log log ; .     (3.4)

The time for Phase 2. The k1 instances of message M that
are sent from within barrier %k0

 to the “remote” sub-

root PEs must pass over block Bk0 1+  in transit. The

time T2 necessary for the last message instance to
make this trip can be no smaller than

T N2

1
2≥ log ,        (3.5)

because of the distance traveled.

The time for Phase 3. Finally, we focus on the last subroot
to receive the message—call it r0—that receives mes-
sage M in Phase 2, and on the time it takes r0 to relay
message M to all the PEs in its subtree. By Lemma 3.2,
r0 covers no fewer than

N

k

k N
k

N

kN N N4 4 81
3

0

1 1
3l l l

- ≥

PEs; consequently, r0 must take time at least

T T
N

k
L

N
3

1
38

=
F
HG

I
KJ* ;

l
(3.6)

to transmit message M to these PEs.
Adding bounds (3.4), (3.5), and (3.6), we find that

the optimal time to perform a one-to-all broadcast in a
N-553 is no smaller than

T N L T
k

k k L N T
N

k
L

N

* ; * log log log ; log * ;a f ≥
F
HG

I
KJ + +

F
HG

I
KJ

1

1 1 1
3

1
2 8 l

≥
F
HG

I
KJ + +

F
HG

I
KJ

R
S|
T|

U
V|
W|

min * ; log * ;
x N N

T
x

L N T
N

x
Ll l

1
2 8 3 .  (3.7)

Now, since T*(N; L) £ 2 log N log log N, we know
that the function T* is subadditive; hence, the value of
x that minimizes the final expression in (3.7) must
satisfy

x N

xN N
l l

= 3 ,

so that

x
N

N
=

1

2 2 l .

Thus, (3.7) yields the recurrence

T N L T
N

N N
L N* ; *

log log log
; loga f

c h
≥

F
H
GG

I
K
JJ +2

225

2 2

1
22

which we now set out to solve.
First, using the inductive hypothesis, we obtain

T N L T
N

N N
L N

N

N N

N

N N
N

N N N N

N N

N

N N
N

* ; *
log log log

; log
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log log log

log log
log log log
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log log log log log log log

log log log log
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log log log
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Now, for any N > 1,024, we have

log log log log log log
225

2 2

5
42

2
N N N N

F
HG

I
KJ - >c h ;

therefore,

T N L N N

N N
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N N N
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N N
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Since
1
2

1
15

42
5 0 29- >log . ,

and since, for any N > 1,024,

0 29
2
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2

. log log log log log

log log
log log log

,

N N N

N

N N

> ◊

F
H
GG

I
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c h

c h
we have finally shown that

T N L N N* ; log log loga f ≥
1

15 ,

as was claimed. �
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4 NONTRIVIAL ALGORITHMS ON ARBITRARY
ARCHITECTURES

This section is devoted to proving two rather surprising
generalizations of Theorem 3.3. First, the lower bound of
the theorem holds, not only for any single-sweep LTS algo-
rithm, as shown in Section 3.2, but also for any algorithm
that requires nontrivial communication. We say that an algo-
rithm $ requires nontrivial communication (for short, is a non-
trivial algorithm) if it requires some PE 3 to receive/send
information—directly or indirectly—from/to all other PEs
during the course of the computation.

The second generalization of Theorem 3.3 is perhaps
even more surprising. The lower bound of the theorem—
even when generalized to all nontrivial algorithms—holds
for a much broader class of parallel architectures than just
553s. In fact, the bound holds for parallel machines that
communicate via arbitrary point-to-point fixed interconnec-
tion networks, provided only that the machines have been
implemented in a way that satisfies the following condi-
tions (which are quite consistent with current technology).

1) The machines must be laid out in some fixed number
of spatial dimensions. For simplicity, we assume two-
dimensional layouts in what follows, but our argu-
ment can be adapted easily to three dimensions.

2) Each PE of a machine must occupy a “unit-square”
and can send at most one message per time step. (Of
course, this condition really just defines our units.)

3) The message latency of the machine must be at least
logarithmic in the Manhattan (rectilinear) distance in
the layout, between the sending and receiving PEs,
and it must be unaffected by the direction of the
communication.

Let 0 be any N-PE parallel machine having point-to-point
connections between PEs, which is implemented in such a
way that these three conditions hold.

THEOREM 4.1. The N-PE machine 0 requires time proportional
to log N log log N to execute any nontrivial algorithm $.

PROOF. An algorithm $ for machine 0 can be nontrivial in
two symmetric ways: Either there is at least one PE of
0 whose final state is affected by the initial state of
every other PE, or there is at least one PE of 0 whose
initial state affects the final state of every other PE.
With no loss of generality, we concentrate on the for-
mer contingency, the latter following by “running the
following argument backward.” Let us assume hence-
forth that PE 30 of 0 is a “sink,” in the sense that its
final state is affected by the initial state of every other
PE. We prove the theorem in two steps. First, we es-
tablish that the time that 0 takes to execute Algo-
rithm $ can be no smaller than the time that 0 takes
to perform a one-to-all broadcast from PE 30. Second,
we bound from below the time that 0 must take to
perform this broadcast. The latter proof evolves in a
manner similar to the proof of Theorem 3.3.

Let us attack the first portion of our proof by con-
sidering the dependency tree DT($) of Algorithm $,
that is constructed as follows: We assign PE 30 to be
the root of DT($). We assign as the children of 30
those PEs—call them 31, 32, º, 3k—that communi-
cated directly to 30 during the execution of $. We as-
sign as the children of 30’s child 31 those PEs that:

• communicated directly with 31 before its last com-
munication with 30 and

• have not yet been assigned within the tree;

Fig. 4. Illustrating barriers (a) and the subroots induced by a barrier (b). In part (b), each open square denotes a root in Sk, and each filled square
denotes a root in Rk - Sk.
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name these grandchildren of the root 3j, for j = k + 1,
k + 2, º. We repeat the assignment process for PEs
32, 33, º, in order of the indices we are assigning
during this process, until all PEs of 0 are assigned to
tree-nodes. The essential features of the assignment
are that the children of PE 3i must have communi-
cated directly with 3i before its last communication
with its parent in the tree, and they must not yet have
been assigned within the tree; we then index these
new tree-nodes using the smallest as-yet unassigned
indices. Now, it is obvious that DT($) is a spanning
tree of the computation graph of Algorithm $. Given
that communication delay is not affected by the direc-
tion of the communication (by condition 3), we can
conclude that the time taken by 0 to execute Algo-
rithm $ is no smaller than the time that 0 would take
to perform a one-to-all broadcast from 30, using DT($)
as the broadcast tree (cf. the proof of Theorem 3.3).

We next bound from below the time taken to per-
form the broadcast. To this end, we formally define
the two-dimensional analog of the blocks Bi of Theo-
rem 3.3, for our proof follows the logical flow of the
proof of that theorem.

Given any two-dimensional layout of machine 0,

let us use the position of PE 30 as a reference point, in
order to partition the PEs of 0 into two-dimensional
blocks; we call these blocks squares as an aid to the
intuition. We effect the partition as follows: square SQi

comprises those PEs whose distance from 30 in the

tree DT($) is greater than 1
2

1 4 1N i -  but less than
1
2

1 4N i ; see Fig. 5.
Let us now define the kth barrier (of the layout) as

the set of PEs SQii

k

=1U . Finally, let us denote by Rk the

set of subroots of the broadcast tree DT($) that learn
the broadcast message directly from PEs in the kth
barrier.

The following lemmas are the two-dimensional
analogs of Lemmas 3.1 and 3.2 and are proved in
much the same way.

Let T be the optimal time to broadcast using
broadcast tree DT($).

LEMMA 4.1. There exists a k Œ {1, 2, º, T2}, such that

Cov SQR
N

T
k Nk k- ≥ -+1 2c h .

The interested reader can adapt the proof of Lemma
3.1 to prove Lemma 4.1. Let k0 be an integer for which

¢ = - +5k k kR
0 0 0 1

def
SQ  is large as in Lemma 4.1.

LEMMA 4.2. There exists a nonempty set of subroots ¢¢ Õ ¢5 5k k0 0

such that:

1) The number of PEs covered by the set ¢¢5k0
 exceeds

1
2 2 0

N

T
k N-

F
HG

I
KJ .

2) For each subroot r kŒ ¢¢5
0
, the number of PEs covered by

r exceeds

1

8
0

2 0
T

N

T
k N

k¢¢
-

F
HG

I
KJ5

.

PROOF SKETCH. Define Ni, ni, and S as in Lemma 3.2. Select x
to be the largest i such that

n
N
iTi

i> 4 .

For each subroot ri, where x + 1 £ i £ S,

n
N
iT

N
iTi

i S< <4 4 .

Now,

n n
N

T j
N

T S Nj
j x

S

j
j

S
S

j

S
S

S
= + = =
Â Â Â£ < £ + £

1 1 1
4

1
4 1

1
2lna f ,

where the last inequality comes from the fact that for
any nontrivial computation, T N≥ 1

2 log . The rest of
the proof is similar to Lemma 3.2 and is left to the
reader. �

The proof of the theorem now proceeds by induc-
tion on N and is similar to that of Theorem 3.3. �
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