
Model-based Design and Analysis of Cache

Hierarchies

Amr Rizk

Technische Universität Darmstadt

amr.rizk@kom.tu-darmstadt.de

Michael Zink

University of Massachusetts, Amherst

zink@ecs.umass.edu

Ramesh Sitaraman
University of Massachusetts, Amherst

ramesh@cs.umass.edu

Abstract—The caching of web and video content is a key
component of today’s Internet. Caches are often organized as
hierarchies where one cache can retrieve and store content from
other caches. Cache hierarchies have three objectives: decreasing
the traffic served by the content provider’s origin (called origin
offload), decreasing the cost of transporting content over the
WAN (called midgress reduction), and providing a faster response
time for users downloading the content. While there is a large
body of research on individual caches, much less is known about
cache hierarchies. To gain insights into cache hierarchies, we
develop an analytical model that can be applied to arbitrary cache
hierarchies described by a directed acyclic graph. We show that
our model predicts hit rates and other metrics for upper layer
caches within cache hierarchies significantly better than prior
work. We use our model to shed light on fundamental questions of
cache hierarchy design such as how to size individual caches and
how to store and route content in a cache hierarchy. Using real-
world CDN traces and implementable cache eviction policies, we
provide insights that are applicable to real-world cache hierarchy
designs.

I. INTRODUCTION

Caching plays an important role in today’s Internet. Many
of the most popular applications like video streaming, the pro-
visioning of web content, and social networks heavily depend
on caching. Very popular applications and services need to
be based on cache hierarchies to make them scalable. One
example is video streaming where every major provider (e.g.,
Netflix, Hulu, YouTube) makes either use of their own cache
hierarchy or uses one offered by Content Distribution Network
(CDN) providers like Akamai or Limelight. In addition, the in-
creasing popularity of Information Centric Networks (ICN) [1],
[27] also motivates the investigation of the performance of
cache hierarchies. In ICN, routers serve as caches, and based
on the topology of the network and the routing policies, quite
complex cache hierarchies can be constructed.

Cache hierarchies involve three major players. Content
providers offer content on origin servers. The content providers
employ a CDN who operates the cache hierarchy that consists
of a network of caches, including edge caches that serve users
and parent caches that serve other edge caches. A request from
a user is first routed to the closest edge cache. If the edge cache
does not contain the requested content, the request is routed
to one or more parent caches. If the content is not found in

This work is supported in part by NSF grant CNS-1413998 and by the
German Research Foundation (DFG) within the Collaborative Research Center
(CRC) 1053 – MAKI.

the parent caches either, the request is routed to the origin
that serves the content. Content follows the reverse path of the
request and is often cached by all the caches on the way back.

Cache hierarchies are designed with three goals in mind:
i) the performance experienced by users must be enhanced by
serving the requested content from an edge cache or from a
parent cache as “close” to the user as possible; ii) Midgress
traffic, which is the traffic between parent or edge caches
within the hierarchy, must be reduced, since it represents an
operational overhead for the CDN; (iii) Traffic sent between
the origin and the cache hierarchy must be reduced, as it incurs
cost for the content providers. The reduction in origin traffic
due to the cache hierarchy is referred to as origin offload.

While there is a large body of work on the analysis of
single caches, there is much less work on the analysis of cache
hierarchies. Although cache hierarchies have been in use for
a few decades there are significant challenges in the design
and operation of these systems. In current practice, cache
hierarchies are designed in an ad-hoc fashion, since there is a
lack of models that allow for an analysis of such hierarchies. In
this paper, we derive a model for cache hierarchies that allows
for their analysis. The goal of our work is to provide designers
and operators with tools that will allow them to evaluate the
performance of alternative cache hierarchies. The models we
present in this paper are evaluated by a series of simulations
using both synthetic and real-world CDN traces. In this paper
we make the following contributions:

• Model: We introduce a new model for hit rate calculation
in cache hierarchies that builds on the work of Che
et al. [4] and Martina et al. [12], [16] by applying an
iterative approach. We show that our approach models the
hit rate and other metrics for cache hierarchy significantly
better than prior work.

• Analyzing Cache Hierarchies: Based on the improved
model we analyze cache hierarchies and how midgress,
origin offloading, and performance vary with cache size.
We show that i) single cache hit rates always have
diminishing returns but that is not generally true for
cache hierarchies where not all caches have diminishing
returns; ii) the midgress of a hierarchy increases with the
imbalance of the edge cache sizes for uniform requests
while the origin traffic stays relatively unchanged; and
iii) performance in terms of average hop-to-hit or average
response time has diminishing returns with cache size.

• Content request forwarding: We analyze different ap-
proaches for content request forwarding and show that i)
geo(graphic) splitting of requests does worse than object-ISBN 978-3-901882-94-4 c© 2017 IFIP

based splitting for midgress and origin offloading; ii)
object-based splitting behaves like a single unified cache;
iii) geo-splitting does better than object-based splitting
when hop-to-hit count is taken into consideration; and
iv) hybrid splitting strikes a balance between midgress
reduction and hop-to-hit count performance.

II. BACKGROUND ON CACHE HIERARCHIES

A. Cache Hierarchy

We start with a general description of cache networks and
introduce terms that are specific for this work. Our description
follows common descriptions of such networks as, e.g., given
in [21], [22]. We model a cache hierarchy as a directed
acyclic graphs (DAG) G = (V,E) with V = {v1, ..., vn},
and E ⊆ V × V . Each node of the DAG represents an origin,
parent, or edge cache. Edge (k, v) represents the fact that v can
download content from k. Note that DAGs can be topologically
sorted into levels. Let L be the number of levels, and Hl be the
number of caches on level l. We can represent vertices in the
DAG by a tuple 〈l, u〉 where the first subscript l ∈ {1, . . . , L}
denotes the level while the second subscript u ∈ {1, . . . , Hl}
is the cache index. The cache size of node 〈l, u〉 ∈ V is
denoted Cl,u and the total cache budget of a cache hierarchy

is expressed as Ctot =
∑L

l=1

∑Hl

u=1 Cl,u.

Each DAG contains a set S of one or more origin servers on
which all N equal sized objects O = {o1, ..., oN} are stored.
Besides the origin servers, the remaining caches in V are
divided in two subgroups: edge caches and parent caches. Edge
caches can download from parent caches or origins, but do not
feed other caches, i.e., there are no outgoing edges from an
edge cache. Parent caches download from other parent caches
or origins. Origins store original versions of the content and
so have no incoming edges in the DAG. Further, we associate
a value with each edge that describes the (average) latency
between two caches.

Figures 1a – 1d show a set of typical cache hierarchies
as they exist in today’s CDN networks. The routing policy is
expressed by the adjacency matrix of the hierarchy. In case
of request stream splitting as in Sect.V-C the entries of the
adjacency matrix encode the splitting algorithm, i.e., in terms
of probabilities, in case of random splitting or in terms of
ordered percentiles of the popularity distribution, in case of
popularity based splitting. When a request for object oi arrives
at cache v, a hit is generated if the object is stored on the
cache, otherwise it is a miss and the request is forwarded
according to the routing policy. In Sect. V-C, we show how
our model captures that clients, edge, and parent caches may
belong to different geographical regions R = r1, ...rn. The
region concept is important in cache networks, since it impacts
the performance at the client and the midgress.1

B. Cache Replacement Strategies

Since the storage capacity of an individual cache is usually
much smaller than the combined size of all objects in a
universe U , it fills up quickly. In case of a cache miss it a)

1Midgress is the traffic between parent and/or edge caches within the cache
hierarchy., i.e., it is traffic that is neither sent to a user or sent from an origin.
From a CDN perspective, midgress is purely an overhead to be minimized.

has to be decided if the requested object should be cached
to serve further requests, and b) if so, which of the currently
stored objects should be removed to free the space to cache the
new object. The first part is described as admission strategy,
while the second part is described as eviction strategy.
The admission strategy decides if a requested object that is
currently not cached should be cached or if the request should
be passed on to the next level cache without caching the object
locally. Caching every object that is requested by a client is not
necessarily the best approach since popularity distributions of
content like video have a long-tail (see Sect. II-D) and caching
so-called ”one-hit-wonders” [15] will not generate cache hits.

In the literature there exists a large body of work on cache
eviction strategies [18] with FIFO, LFU, and LRU being the
most prominent ones. Here, we briefly introduce LRU, since it
is the strategy which we will use throughout this paper. In the
case of LRU, the object that has been requested the longest
time ago will be evicted, which makes the algorithm easy to
implement and cheap in terms of computational overhead.

C. Che’s Approximation

Next, we describe Che’s approximation which is a decou-
pling technique that enables the analysis of caches implement-
ing different caching replacement strategies such as LRU [4],
FIFO and Random replacement [16]. The main idea of this
approximation [4] lies in the notion of a constant characteristic
time Tc that describes the time needed to evict an arbitrary
object that has just been requested. This time Tc is assumed
to be constant and independent of the object index which was
shown to be asymptotically true under fairly general conditions
[11]. Hence, given Che’s approximation we find that for N
distinct objects arriving at a cache of size C according to
Poisson processes with rates λi where i ∈ {1, . . . , N}, the
probability of an object i to be in the cache at a certain time
t equals the probability of having at least one prior request in
the time span (t − Tc, t]. For Poisson arrivals this is simply
po,i = 1− e−λiTc , which also equals the object hit probability
pi. In po,i the first subscript stands for occupancy, while the
second stands for the object index. Note that the popularity

of object i is given as λ̂i = λi∑
N
j=1

λj
with

∑N
i=1 λ̂i = 1.

Now to determine the characteristic time Tc the approximation
enforces that the sum of the average object occupancies equals
the cache size C, which is expressed as

∑N
i=1

(
1− e−λiTc

)
= C. (1)

Equation (1) relates the probability of an object to be in cache
(occupancy) to the cache size C in the sense of expectation. It
is justified in [11] for different object popularity distributions
such as the often observed Zipf distribution. Hence, to obtain
the average hit rate of an edge cache, one only needs to weight
the object hit probabilities correspondingly [4], i.e.,

p1,1 =
∑N

i=1 λ̂i

(
1− e−λiTc

)
. (2)

D. CDN Trace

To analyze the quality of our proposed model, we per-
formed trace-based simulations where we used a data set
(see [13] for further details) collected in June 2014 from
Akamai which operates one of the world’s largest CDNs. This

(a) One-level (b) Tree (c) Binary Tree (d) Line

Fig. 1: One-level (1a), tree (1b), binary tree (1c) and line (1d) hierarchies.

anonymized dataset was collected from a large cross-section
of actual users around the world. The dataset includes unique
video object names and lengths, and identifies geographical
regions from where the requests originate. Overall, the dataset
contains traces from 5 million video sessions originating
from 200 thousand unique clients who were served by 1294
video servers from around the world. We consider a 24 hour
excerpt from this trace that includes requests for more than 70
thousand distinct videos. The analysis of this dataset reveals

an approximately Zipf-distributed video popularity, i.e., λ̂i in
the model, in addition to a significant portion of objects that
are requested only once (so-called ”one-hit-wonders”).

III. MODELLING AND ANALYSIS OF CACHE

HIERARCHIES
A. Basic approach

We consider cache hierarchies represented as DAGs as ex-
emplified in Fig. 1 with no traffic replication. If not mentioned
otherwise, all caches apply LRU and misses are forwarded to
parent caches triggering replacements at every cache which
produces a miss (i.e., leave copy everywhere). We observe that
the following approximation by Martina et al. [16] significantly
improves the object hit rate estimates in parent caches in
comparison to [4]. This approximation is based on tracking
an object hit at a parent cache back to a corresponding arrival.
Consider for simplicity Fig. 1d and assume a hit of object i
at parent cache C2,1 at time t: Object i is in cache C2,1 at
time t if a request arrives at cache C1,1 in (t− Tc,2, t− Tc,1]
since requests arriving in (t − Tc,1, t] get filtered by the
edge cache with characteristic time Tc,1. This approximation
assumes Tc,2 > Tc,1, implying monotonically increasing cache
sizes along the path. Here, it is also assumed that the arrivals to
the second cache are characterized by a Poisson process, which
generally does not hold as this depends on the state of the first
cache and resembles in general an ON-OFF type of process.
However, this assumption helps determine the characteristic
time Tc,2 of the parent cache using a parameterized version
of (1). Together with this approximation, the object hit rate at
cache C2,1 is given in [16] as

pi,2,1 =
(
1− e−λi,2(Tc,2−Tc,1)

)
{Tc,2>Tc,1} (3)

where x is the indicator function and λi,2 is the Poisson rate
of object i within the input stream to the parent cache C2,1.
Now, we turn to our model where we use, first, the notion of
the object miss rate mi,l,u = 1− pi,l,u at an individual cache
Cl,u, and second, the object miss rate mi,l = f(mi,l,u) at a

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

cache size (cache2)

hi
t r

at
e

simulation
analytical [12]
analytical Eq. (6)

C
2,1 C

3,1

Fig. 2: Individual cache hit rates for a cache line of L = 3 LRU
caches. Fixed edge cache size C1,1 = 100 objects. Parent caches
possess a cache budget of CΣ

= C2,1+C3,1 = 500 objects. Equation
(6) provides better parent cache hit rates estimates than using [12].

cache level l. A good approximation for the overall system hit
rate Psys that consist of L cache levels is given by

psys = 1−

N∑
i=1

λ̂i

L∏
l=1

mi,l. (4)

On each level we calculate the average object miss rate as

mi,l =

Hl∑
u=1

mi,l,u

∑
i λ̂imi,l,u∑

u

∑
i λ̂imi,l,u

. (5)

Note that (5) differs in two ways from the literature, e.g.
[12]: First, the resulting object hit rate probability at an
intermediate cache is different from the formulation in [12].
Second, and most importantly, considering cache hierarchies
that are mapped to directed acyclic graphs allows us to
substitute a layer of caches feeding into one parent cache by an
equivalent system with corresponding approximate object miss
rates mi,l. In Sect. V, we will show two implications of cache
and input request heterogeneity on the hierarchy design using
this formulation. Next, we will present an iterative method to
approximate individual cache hit rates in a hierarchy.

B. Iterative cache hit rate calculation

Starting from the system hit rate formulation in (5) and the
approximation in Sect. II-C we provide accurate cache hit rate

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

cache size (cache2)

hi
t r

at
e

system, analytical
system, simulation

C
1,2

C
1,1

8 edge
caches

2 edge
caches

(a) Diminishing return of increased edge cache size

10
−6

10
−4

10
−2

10
0

10
2

10
3

10
4

10
5

10
6

admittance probability q

T
c

C = 5 ⋅ 102

C = 103

C = 2 ⋅ 103

C = 4 ⋅ 103

(b) Characteristic time Tc vs. q

10
−6

10
−4

10
−2

10
0

0.6

0.7

0.8

0.9

admittance probability q

ca
ch

e
hi

t r
at

e

C = 5 ⋅ 102

C = 103

C = 2 ⋅ 103

C =4 ⋅ 103

(c) Diminishing return of q

Fig. 3: (3a) Diminishing returns for LRU caches: Hit rate behavior of an entire edge level consisting of 2 or 8 LRU caches. (3b)-(3c) Diminishing
returns for probabilistic LRU: Nonlinear impact of changing the admittance probability q on the characteristic time (3b) and the cache hit rate
(3c). N = 10

4 objects.

estimates for the individual caches of a considered hierarchy.
We estimate the cache hit rate at cache level l as

p̂l = 1−
1− p̂sys,l

1− p̂sys,l−1
,

= 1−

∑N
i=1 λ̂i

∏l
k=1 mi,k∑N

i=1 λ̂i

∏l−1
k=1 mi,k

, (6)

where p̂sys,l denotes an estimated system hit rate of an
equivalent hierarchy consisting of the first l levels. We illustrate
the applicability of the method using the following example:
Consider a L = 3 level cache line hierarchy as in Fig. 1d. We
estimate the cache hit rate at the cache of level 2 as

p̂2 = 1−

∑N
i=1 λ̂ie

−λiTc,1(1−e−λiTc,1)e−λiTc,2e
−λiTc,1

∑N
i=1 λ̂ie−λiTc,1

. (7)

Further, for hierarchies that contain multiple caches per level
such as Fig. 1b we use (5) to calculate the average object miss
rates at the input of the next level cache and plug this into (7).
Finally, we use this method to estimate the individual cache hit
rates of parent caches to evaluate the efficiency of individual
caches within a hierarchy.

Individual cache hit rate estimation: Consider a line cache
hierarchy as shown in Fig. 1d with number of levels L = 3.
We depict individual cache hit rates (for the intermediate
and the parent cache) in Fig. 2 showing that the analytical
approximation accurately follows the behavior observed in
simulations. We consider a cache budget CΣ for the upper
levels, i.e., CΣ = C2,1+C3,1, while fixing the edge cache size.
While the approach from [12] models the system and first level
hit rates quite well, the model shows some discrepancies for
intermediate cache hit rates. Interestingly, the model from [12]
approximates the individual object hit probabilities at the
parent cache quite well. As shown in the figure the model we
propose in this section provides much closer cache hit rates
for parent caches compared to [12].

IV. UNDERSTANDING CACHE MECHANISMS

In this section, we examine how performance metrics of
hierarchies vary with allocated cache sizes. We consider the
aspects of diminishing returns of cache hit rates and the impact
of cache size imbalance on midgress. In addition, we validate
our model with results from trace-based simulations.

A. On the diminishing returns of cache hit rates

Next, we will analytically show a diminishing return phe-
nomenon, i.e., a diminishing impact of increased cache size
on improving the cache hit rate. The results also shed light on
the impact of cache size heterogeneity in cache hierarchies.

Diminishing returns at LRU caches: First, we consider
a single LRU cache as regarded in Sect. II-C and drop
unnecessary subscripts.

Proposition. Given an LRU cache of variable size C with an
IRM input stream containing N objects each with a popularity

λ̂i for i ∈ N . Increasing the cache size C has diminishing
marginal return on the cache hit rate.

Proof: In the following we provide a sketch of the proof.
The following derivations make use of the object miss proba-
bility mi = 1− pi and the average cache miss probability m
at cache C. From the convexity of the object miss probability
e−λiTc with respect to Tc we directly see the diminishing

return for the sum
∑

i λ̂imi, e.g., in (5). In a last step, we need
to characterize the relationship between the characteristic time
Tc and the cache size C. Using a Taylor series expansion of
the exponential function we rewrite (1) as

∑∞
k=1 (−1)

k+1
∑N

i=1
λk
i

k! T k
c = C. (8)

To relate Tc and the cache size C we resort to Vieta’s
theorem that establishes a relationship between the roots of
a polynomial and its coefficients. In our case, we consider the

polynomial in (8) and the coefficients
∑N

i=1
λk
i

k! . First, we make
the case using a finite odd power k in (8) and conjecture that
the observed analytical behavior remains unchanged for the in-
finite series in (8). Note that the coefficients of the polynomial

decrease rapidly with
∑N

i=1
λk
i

k! and that the derivation assumes
any finite cut of the series expansion (8) such that we safely
neglect this error in the neighborhood of the root Tc. We are
interested in the behavior of the roots of the polynomial in (8)
with increasing cache size C and will show in the following
that this polynomial possesses only one real root Tc that is
positive and increases with the cache size C as Tc ∼ Cγ with
γ > 0. For an increasing C one can show that the discriminant
of the polynomial (8) is negative such that (8) has only one

real root. Together with the condition
∑

i λ̂i = 1 and that the

0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

α (leaf cache size skewness)

hi
t r

at
e

lvl 2, analytical Eq. (6)
lvl 2, analytical [12]
lvl 2, simulation

C
1,1

system
C

1,2
C

1,3
C

1,4

(a)
∑

i C1,i = 500, C2,1 = 100

0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

α (leaf cache size skewness)

hi
t r

at
e

(b)
∑

i C1,i = 500, C2,1 = 300

0 1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

α (leaf cache size skewness)

hi
t r

at
e

(c)
∑

i C1,i = 300, C2,1 = 300

Fig. 4: Cache hit rates at a simple 2 level hierarchy (see Fig. 1b) with skewed level 1 cache sizes. Edge caches have a Zipfian cache size
distribution with parameter α.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

cache size C
i,1

hi
t r

at
e

analytical Eq. (6)
analytical [12]
simulation

system

C
1,1

C
2,1

Fig. 5: Diminishing returns for edge caches and the entire system
when simultaneously increasing all cache sizes Ci,1.

coefficients
∑N

i=1
λk
i

k! are monotonically decreasing in k one can
analyze the behavior of the real root and the pairs of complex
roots of (8) with increasing cache size C using the system
of equations provided by Vieta’s theorem. After some algebra
that we omit here due to space constraints we find that the
real root of (8) behaves asymptotically as Tc ∼ Cγ . Hence,
together with the formulation for the average cache hit rate (2)
we clearly see the diminishing returns of an increasing cache
size on the cache hit rate.

Figure 3a shows the diminishing return within cache levels.
Here, we depict the hit rate of an entire edge level of 2
(respectively 8) LRU caches, where we increase the size
of one cache while keeping the rest equally constant for
comparison. Note that the input request stream to all caches is
homogeneous. From (5) it is evident that here too a diminishing
return on cache size exists for the entire cache level. Note
that the rate of diminishing returns of the entire cache level
depends, however, on the number of parallel caches (plotted
here for 2 and for 8 edge caches) and on the request input
streams (specifically on the number of objects N in each
stream). Figure 5 further shows the diminishing return on the
entire system hit rate if all cache sizes are increased. Note
that in this case this behavior does not simply carry over to
individual caches such as the parent cache C2,1.

Diminishing returns for probabilistic LRU caches: Next
we consider probabilistic LRU caches (qLRU) that general-
ize known LRU caches [14] and show that the concept of
diminishing returns also extends to this type of caches. A
qLRU cache operates like an LRU cache except when it needs
to replace an object after a cache miss. Here, it admits the
new object (evicting the least recently used one) only with
probability q. From [12] we can write the hit probability for
an object i in a qLRU cache with q ∈ (0, 1] as

pi =
(1− e−λiTq,c)q

1− (1− e−λiTq,c)(1− q)
(9)

with the characteristic time Tq,c being the solution of the fixed
point equation

∑N
i=1

(1−e−λiTq,c)q

1−(1−e−λiTq,c)(1−q)
= C. (10)

Given Poissonian arrivals it becomes clear from (10) which
impact qLRU has on the caching performance. Setting the
admittance probability q = 1 leads to the standard LRU
case. Decreasing the admittance probability q < 1 leads
to characteristic times Tq,c that approximately correspond to
caches with larger capacity, which explains that qLRU with
q < 1 achieves a higher hit rate than LRU. This positive
impact is approximately limited to the relation N ≥ C

q yielding

a diminishing return on q. Hence, the boost by qLRU to
caching performance is stronger when the number of objects
N is large compared to the cache capacity C, as shown in
Fig. 3b and 3c. Here, the diminishing return is apparent as the
characteristic time and the cache hit rate experience a sharp
bend for increasing q. Also note the impact of the relative size
C/N of the cache size C compared to the object library N
leading to a staggered behavior of the hit rate as in Fig. 3c.

B. The impact of cache size imbalance on hierarchy midgress

In the following, we show that appropriately dimensioned
parent caches mitigate the impact of heterogeneous cache sizes
on the midgress. Simulation and analytical results for a simple
2-level hierarchy as depicted in Fig. 1b are shown in Fig. 4. In
this figure, the hit rates for the four edge caches and the single
parent cache are shown. In this particular case, we investigate
the individual hitrate of all caches in the hierarchy for a
skewed cache size distribution of the edge caches. Fig. 4 shows

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

cache size (cache2)

hi
t r

at
e

simulation
analytical Eq. (6)
analytical [12] C

2,1
,C

3,1

C
1,1

C
2,1

C
3,1

(a) Cache line with one hit wonders

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

cache size (cache2)
hi

t r
at

e

C
1,1

C
3,1

C
2,1

(b) Cache line without one hit wonders

Fig. 6: Individual cache hit rates for a cache line of L = 3 LRU
caches with (6a) and without (6b) one-hit-wonders. The edge cache
size is fixed to C1,1 = 100 objects while the parent caches possess
a cache budget of CΣ

= C2,1 + C3,1 = 500 objects. The individual
cache hit rates using (6) and the one obtained through trace-based
simulations are quite close.

cache and system hit rates against the skewness parameter
α of the edge cache distribution, i.e., for α = 0 the caches
are all of the same size while for increasing α > 0 the
discrepancy between the cache sizes increases according to
a Zipf distribution. Figs. 4a - 4c show that the analytical
estimate of the cache hit rate on intermediate levels, e.g., level
two in this case, follows the simulation result more closely
than the formulation from [12]. Given homogeneous inputs,
the simulation and analytical results show that the midgress
increases with an increase in the skewness of leaf cache sizes.
In addition to heterogeneity in cache size, the formulae in
Sect. III can also be used to optimize the overall system hit
rate for heterogeneous input streams, i.e., for different numbers
of objects within the different input streams (not shown here).

C. Trace-based model validation

In this section, we describe the results from trace-based
simulations to evaluate the quality of our model in the case
of real-world requests logged in a large CDN (see Sect. II-D
for a description of the data set). Figure 6 shows parent cache
hit rates derived using our model in comparison to trace-based
simulation and a reference calculated using [12]. Since the
trace contains a large set of one-hit-wonders, we compare
the hit rates for the case with and without filtering the one-
hit-wonders. We look at both cases, since techniques that
prevent the caching of such one-hit-wonders based on bloom
filters have been proposed, e.g., in [15]. We note that to the
best of our knowledge this is the first work that validates
cache hierarchy models using large-scale real world traces.
Figures 6a and 6b show the results for a 3-cache line hierarchy
with and without one hit wonders, respectively. The results
show that in both cases the hit rates obtained through our
model and the trace-based simulations are very close.

The results of a trace-based simulation in the case of a
tree hierarchy (as shown in Fig. 1b) are shown in Fig. 7. The
cache sizes at the level l = 1 are skewed as described in
Sect. IV-B. In contrast to the trace-based simulation described
above, here we split the requests from the trace according to
regions r1 to r4 where requests from one region are assigned
to one edge cache. We use the following distribution of the
requests to regions as observed in the trace: r1: (14% of total

0 1 2 3
0

0.2

0.4

0.6

0.8

1

α (leaf cache size skewness)

hi
t r

at
e

(a)
∑

C1,i = 100 w/ 1 hit wonders

0 1 2 3
0

0.2

0.4

0.6

0.8

1

α (leaf cache size skewness)

hi
t r

at
e C

1,1
C

1,2
C

1,3
C

1,4
C

2,1
system

(b)
∑

C1,i = 100 w/o 1 hit wonders

Fig. 7: Cache hit rates for a trace-based simulation with a two level
hierarchy (Fig. 1b), edge cache budget and skewed (Zipf) edge cache
sizes.

requests), r2: (13%), r3: (69%), and r4: (1%). For the sake of
simplicity we assume one parent cache. The edge caches in
this example resemble entire caching systems while the parent
cache represents a backbone caching system. For our analysis
it is sufficient to represent this system through the simple cache
topology described above. The results are very similar to the
ones shown in Fig. 4.

V. OPTIMIZING CACHE HIERARCHIES

In this section, we consider the optimization of three
aspects of cache hierarchies, i.e., (i) origin offloading, (ii)
average hop-to-hit count which relates to the object retrieval
latency, and (iii) request stream splitting between local and
global content.

A. Origin Offloading/System Hit Rate

Next, we analyze the impact of the hierarchy design on
the origin offloading, i.e., the system hit rate. From the model
in Sect. III we know that the origin offloading for a cache
hierarchy of multiple levels is based on the object miss rates
mi,l at the different levels. In Sect. IV-A we have shown how
the level miss rate mi,l relates to the number of parallel caches,
their individual size and their individual inputs. This allows us
to optimize the origin offloading given a cache hierarchy.

Next, we consider the question of optimizing the hierarchy
design for given homogeneous input request streams. Here, we
examine the two topologies shown in Fig. 1b and Fig. 1c with
overall H1 = 8 edge caches. In the first scenario, there is one
parent cache serving all eight edge caches, while in the second
scenario there are two parent caches that serve each half of the
edge caches (four). The overall cache capacity of the parent
level, i.e., l = 2, is kept identical for comparison. The result of
this analysis is given in Fig. 8. A comparison between Fig. 8a
and Fig. 8b shows that a concentration of the cache capacity
at the intermediate level l = 2, i.e., one cache on level 2,
increases the overall system hit rate (gray line) and reduces
midgress. Reducing midgress and increasing system hit rate
supports the content provider’s and CDN provider’s objectives
but might negatively impact the performance observed by users
since some requests may be served from a further away cache
increasing average latency.

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

level cache size

hi
t r

at
e

system

C
2,1

C
1,i

C
3,1

(a) 1 cache on level 2 (Fig. 1b)

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

level cache size

hi
t r

at
e

system

C
3,1C

2,1

C
1,i

(b) 2 caches on level 2 (Fig. 1c)

Fig. 8: Concentration of cache capacity (here on level 2) leads to a
higher overall system hit rate and lower midgress.

B. Optimization of Cache hierarchies for latency

Next, we consider tradeoffs in cache hierarchies that arise
when optimizing for object retrieval latency and for cache hit
rate, respectively. We will use an elementary example topology
from Sect. II to convey the message of this section. However,
the techniques discussed in the following are easily expanded
to DAGs as described in the previous sections. Here, we
consider the optimization of the allocation of a cache budget
to a given hierarchy, e.g., as depicted in Fig. 1b with H1 = 8
edge caches. Our optimization goal is to minimize the average
number of hops a request has to traverse to produce an object
hit, which in turn minimizes the average content retrieval
latency assuming stationary hop latency distributions. Next,
we assume a fixed cache size budget of CΣ = H1C1,1 +C2,1

where C2,1 is the cache size of level 2. For a given number
of requests Nrq of a given object we consider the number of
requests relayed through each cache level l, Nrq,l. We omit the
obvious step (as illustrated in Sect. III-A) of object weighting

by λ̂i at the end. We capture the average number of hops W
that an object traverses as

E[W] =
∑L

l=1
lNl

Nrq
=

Nrq,1+2Nrq,2+3Nrq,3

Nrq
, (11)

given

Nrq,1 = Nrqp1(C1,1)

Nrq,2 = Nrq(1− p1(C1,1))p2(C
Σ −H1C1,1)

Nrq,3 = Nrq(1− p1(C1,1))(1− p2(C
Σ −H1C1,1)),

where the first equation resembles the homogeneity of the
edge caches. The second equation resembles (5), while the
third equation is derived from the overall system hit rate.
Note that (11) can be rewritten in terms of the hit rates pi at
the different levels only. Even for this simplified optimization
problem a closed form solution is not viable due to the
evaluation of the fixed point equation in (1). However, since
the analytical model from Sect. III is shown to capture the
behavior of LRU cache hierarchies well enough, we use this
analytical model to numerically find the optimal cache budget
allocation that minimizes the average number of hops-to-hit
E [W]. Fig. 9a shows how the average hop count E [W]
evolves for different allocations of cache sizes. The figure also
includes the individual cache hit rates of an edge cache and
the parent cache. Equation (11) can be easily augmented using
weights each describing the (average) hop latency such that
the solution of this optimization problem is a cache budget
allocation that minimizes the average object retrieval time.

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

level 1 cache size Σ
i
 C

1,i

hi
t r

at
e,

 m
ea

n
ho

ps
 to

 h
it

simulation
analytical

mean hops to hit

C
1,1

C
2,1

system

(a) Reducing the average hops to hit

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

level 1 cache size Σ
i
 C

1,i

sy
st

em
 h

it
ra

te

hybrid split, δN =100
hybrid split, δN =500
object based split
geo split

(b) Impact of cache splitting

Fig. 9: (9a) Analytical optimization of the cache size allocation to
reduce the average hops (latency) for object retrieval. (9b) Compari-
son of cache hit rates for miss stream splitting between parent caches,
i.e., geo split, object-based split, and hybrid split. Parameters for both
figures: CΣ

= 500 objects, Poisson requests with N = 10
3 objects.

C. Split Caching

Our model from Sect. III utilizes the notion of DAGs to
allow forwarding requests to different parents within a cache
hierarchy. In general, clients direct their content requests to a
specific edge cache and, in the case of a miss, this edge cache
forwards the request to the parent cache which is higher up
in the hierarchy. Besides this straightforward approach other
alternatives for request forwarding exist, which we describe as
split caching. Next, we introduce and analyze the performance
of three approaches that we denote geo, object-based, and
hybrid split. The results of this analysis will provide general
design guidelines for request forwarding in cache hierarchies:

1) Geo Split Caching: This version follows the most com-
mon approach in today’s CDNs. Here, all requests from a
lower-layer cache in the hierarchy will always be directed to a
fixed higher level cache. An example for geo-based caching is
shown in Fig. 10a. This approach has the benefit that content
is always served from the “closest” cache located in the same
region, which can be important for low-latency applications.
Hence, for homogeneous request streams over N objects with

popularity λ̂i of object i, the system hit rate under geo split
is captured by the framework in Sect. II-C using (1). Geo
split caching is easy to implement and does not require any
additional complexity, since the forwarding path from requests
from level l − 1 to level l is predefined.

2) Object-based Split Caching: In this approach there is
no fixed one-to-one mapping between lower- and higher level
caches. Requests are directed based on the content itself, i.e.,
as shown in Figure 10b, some object requests remain local
while other object requests are forwarded globally to other
regions. It can be shown that under a uniformly distributed
strategy of assigning object requests to parent caches together
with consistent assignment of objects to caches the resulting
popularities within the split streams, i.e., the stream going from
an edge cache to a parent cache, remain Zipfian. The advantage
of the object-based split approach is the resulting increased
ratio of cache capacity to requested objects at the parent layer.
Assuming an object universe of size N of requested objects
at the edge caches, each parent cache in Fig. 10b receives
requests for only N/2 of the objects (assuming an object
is assigned to either cache with equal probability). This has
a strong impact on increasing parent and system hit rate.

(a) Geo split caching (b) Object based split caching

Fig. 10: Split caching.

Obviously, inter-region connections will come with the cost of
a higher object retrieval latency since at each edge cache N/2
of the objects will experience a higher inter-region average
delay. Hence, for homogeneous request streams over N objects

with popularity λ̂i of object i, the system hitrate in the object-
based split case can be computed using the framework in the
previous sections such as Sect. III, however, with the condition

C =
∑N/2

i

(
1− e−λ′iT

′

)
. (12)

Object-based split caching provides a superior hit rate when
compared to geo split caching as seen in Fig. 9b. The reason
behind this can be directly obtained from the comparison of
(12) and (1). In (12) a higher characteristic time T ′ is achieved,
thus a higher hit rate, due to the fact that the sum goes only
over N/2 terms. In other words, the ratio of parent cache size
to the number of objects that can be requested from that cache

increases significantly. Further, the popularity distribution λ̂′i of
the combined miss stream entering the parent nodes is approx.
a Zipf distribution that comprises only N/2 objects. Object-
based caching introduces some complexity at the caches, since
they have to keep a list of object to parent assignments.

3) Hybrid Split Caching: Next, we introduce a hybrid
splitting method which provides a combination of geo-split
caching and object-based split caching. Hybrid split caching
models the fact that some objects possess geographical locality
that arises either due to geographical popularity or as a
performance constraint, e.g., on the retrieval latency. Here, a
fraction of objects δN , with δ ∈ (0, 1), remains local while
the remaining objects are split similar to the object-based split
caching case. Consider the following example which is based
on the object popularity: We deploy geo-splitting for the hottest
δN objects in the input streams of the edge caches while all
colder objects are split randomly between parent caches as
described above. The impact of hybrid splitting can be clearly
seen in

C =
∑δN+(1−δ)N/2

i

(
1− e−λi,δTδ

)
, (13)

i.e., in the increased number of terms in the sum compared to

(12), but also in the changed popularity distribution λ̂i,δ .

Figure 9b depicts a comparison of the system hit rate
for geo, object-based, and hybrid split caching. We assume a

hierarchy as depicted in Fig. 10b with a cache size budget C
∑

for the entire system. We vary the fraction of the cache size
budget assigned to the edge level on the x-axis and give every
edge cache an equal share. Further, we assume homogeneous
request streams at the edge caches. Here, we model locality
using different local fractions δ. Figure 9b shows that the
hit rate of hybrid split lies always between the corresponding
curves of geo and object-based split. We observe diminishing
returns as outlined in Sect. IV, first, in the gain in hit rate
when switching from geo split to object-based split caching
increasing level 1 cache size. A diminishing behavior is also
observed when varying the local fraction δ, i.e., by keeping
a small fraction of the hottest objects local, the system hit
rate deviates at the beginning significantly from the result of
object-based split. Note that this is mainly due to the skewness
of the object popularity distribution. Note that hybrid splitting
introduces further complexity (if compared to object-based
splitting described in Sect. V-C2), since the leaf caches have
to keep track of the popularity of the content requested by the
clients to decide where to route a request that resulted in a
local cache miss.

VI. RELATED WORK

Despite the fact that individual caches have been exten-
sively studied in the past, e.g., [5], [20], many critical aspects
of caching hierarchies have not yet been fully understood. In
this section, we review related work on caching mechanisms
and hierarchies highlighting the distinctions to our work.
The analysis of caching hierarchies with traditional caching
algorithms, e.g., LRU and its variants or FIFO, resorts usually
to approximations, e.g., for Poisson request processes in the
seminal work by Che et al. [4]. This was further extended for
a broader class of conditions in [11]. These approximations
accurately map the cache dynamics using a single primitive
denoted as characteristic time. The use of approximations
circumvents the computationally exhaustive exact analysis of
caches, such as LRU. An exact analysis suffers from Marko-
vian state space explosion under a high numbers of objects,
e.g., as in CDNs [15] and, especially, under the paradigm of
Information-Centric networking (ICN) [26].

The work in [16] presents a unified methodology to analyze
the performance of caches running various algorithms such as
LRU, qLRU, LFU and FIFO. In [16] and [17] the authors
provide an excellent starting point for the analysis of hierar-
chies as they consider approximations for the concatenation of
LRU caches. In our work, we extend some results from [16]
for parent cache hit rates and show corresponding results in
Sect. III. The work in [10] provides a framework for analyzing
TTL-based caches with exogenous renewal arrivals. For the
TTL model, which assigns expiration timers to objects, the
authors provide closed-form expressions for single cache met-
rics under stationary and ergodic input, as well as, an iterative
method to approximate the hit rate in cache networks assuming
renewal input at every cache. The TTL abstraction has been
shown to approximate various caching algorithms such as
LRU, Random and FIFO pretty well [12] under the notion
of a characteristic time which relates the object occupation
probabilities to the cache size using a fixed-point equation. The
authors of [21] provide an iterative method to analyze caching
networks under the assumption of exogenous Poisson input
at every cache. The authors of [9] provide a hybrid method

for evaluating the performance of TTL cache networks that is
based on approximating the first two moments of the request
processes and fitting the processes to hyper/shifted exponential
renewal processes. Finally, exact results for feedforward TTL
cache networks are provided in [2] for object requests that are
characterized by Markov arrival processes. The authors of [7]
formulate a framework for optimizing the aggregate utility of
TTL caching networks which is based on the individual cache
utility derived from the object hit rates.

The rise of ICN [1], [3], [24], [26] has revived interest in
caching networks, respectively, hierarchies. In the ICN context,
the authors of [19] show in-network caching schemes that
use probabilistic LRU to reduce cache content redundancy
in a given caching network. The authors of [6] use a TTL
based approach to analyze and dimension the internal pending
interest tables of ICN caches. The work in [23] exploits
different graph properties such as betweenness and degree
centrality to distribute cache capacity. The authors of [8]
discuss the feasibility of an incremental deployment of ICN
and use trace-based simulations to analyze the quantitative
benefits of ICN showing that simple caching architectures can
provide most of the gain that is attributed to ICN. A further
trace-driven analysis of ICN caching algorithms in [25] has
shown that a combination of the Least-frequently used (LFU)
object replacement and the probabilistic admission (which is
analyzed in Sect. IV) yields the highest cache hit rates in the
considered caching network. In Sect. IV, we shed light on
the root cause for the improvement in cache hit rate under
probabilistic admission.

VII. CONCLUSIONS AND FUTURE WORK

In today’s Internet the caching of web and video content
is a key component. Such caches are often organized in
hierarchies as it is the case for CDNs and they are used to
decrease the traffic served by the content provider’s origin,
decrease the cost of transporting content over the WAN, and
providing a faster response time for users downloading the
content. In this paper, we presented a new analytical model
that can be applied to arbitrary hierarchies characterized as
directed acyclic graphs to determine the hit rate of individual
caches. Through comparison with simulations and real-world
trace data we show that our model predicts midgress traffic,
and hit rates of parent caches more accurately than existing
analytical models, while predicting origin offload and single
cache hierarchies equally well. In addition, we show how
this analytical model can be used to determine performance
characteristics of certain cache hierarchies and the trade-offs
between different configurations of these hierarchies.

REFERENCES

[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman.
A survey of information-centric networking. IEEE Communications

Magazine, 50(7):26–36, 2012.

[2] D. S. Berger, P. Gland, S. Singla, and F. Ciucu. Exact analysis of TTL
cache networks. Performance Evaluation, 79:2 – 23, 2014. Special
Issue: Performance 2014.

[3] W. K. Chai, D. He, I. Psaras, and G. Pavlou. Cache ”less for
more” in information-centric networks (extended version). Computer

Communications, 36(7):758 – 770, 2013.

[4] H. Che, Y. Tung, and Z. Wang. Hierarchical web caching systems:
modeling, design and experimental results. IEEE JSAC, 20(7):1305–
1314, Sep 2002.

[5] A. Dan and D. Towsley. An approximate analysis of the LRU and
FIFO buffer replacement schemes. SIGMETRICS Perform. Eval. Rev.,
18(1):143–152, Apr. 1990.

[6] M. Dehghan, B. Jiang, A. Dabirmoghaddam, and D. Towsley. On the
analysis of caches with pending interest tables. In Proc. of ACM ICN,
pages 69–78, 2015.

[7] M. Dehghan, L. Massoulie, D. Towsley, D. Menasche, and Y. Tay. A
utility optimization approach to network cache design. In Proc. of IEEE

INFOCOM, April 2016.

[8] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker. Less pain, most of the
gain: Incrementally deployable icn. In Proc. of ACM SIGCOMM, pages
147–158, 2013.

[9] N. C. Fofack, M. Dehghan, D. Towsley, M. Badov, and D. L. Goeckel.
On the performance of general cache networks. In Proc. of VALUE-

TOOLS, pages 106–113, 2014.

[10] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley. Performance evalu-
ation of hierarchical TTL-based cache networks. Computer Networks,
65:212–231, 2014.

[11] C. Fricker, P. Robert, and J. Roberts. A versatile and accurate
approximation for lru cache performance. In Proc. of ITC, pages 8:1–
8:8, 2012.

[12] M. Garetto, E. Leonardi, and V. Martina. A unified approach to the
performance analysis of caching systems. ACM Trans. Model. Perform.

Eval. Comput. Syst., 1(3):12:1–12:28, May 2016.

[13] D. K. Krishnappa, M. Zink, and R. K. Sitaraman. Optimizing the video
transcoding workflow in content delivery networks. In Proc. of the ACM

Multimedia Systems Conference, MMSys ’15, pages 37–48, New York,
NY, USA, 2015. ACM.

[14] N. Laoutaris, S. Syntila, and I. Stavrakakis. Meta algorithms for
hierarchical web caches. In Proc. of IEEE IPCCC, pages 445–452,
2004.

[15] B. M. Maggs and R. K. Sitaraman. Algorithmic Nuggets in Content De-
livery. ACM SIGCOMM Computer Communication Review, 45(3):52–
66, 2015.

[16] V. Martina, M. Garetto, and E. Leonardi. A unified approach to the
performance analysis of caching systems. In Proc. of IEEE INFOCOM,
pages 2040–2048, April 2014.

[17] N. B. Melazzi, G. Bianchi, A. Caponi, and A. Detti. A general, tractable
and accurate model for a cascade of lru caches. IEEE Communications

Letters, 18(5):877–880, 2014.

[18] S. Podlipnig and L. Böszörmenyi. A survey of web cache replacement
strategies. ACM Comput. Surv., 35(4):374–398, Dec. 2003.

[19] I. Psaras, W. K. Chai, and G. Pavlou. Probabilistic in-network caching
for information-centric networks. In Proc. of ICN Workshop on

Information-centric Networking, pages 55–60, 2012.

[20] P. Rodriguez and E. W. Biersack. Bringing the web to the network
edge: Large caches and satellite distribution. Mobile Networks and

Applications, 7(1):67–78, 2002.

[21] E. J. Rosensweig, J. Kurose, and D. Towsley. Approximate models
for general cache networks. In Proc. of IEEE INFOCOM, pages 1–9,
March 2010.

[22] E. J. Rosensweig, D. S. Menasche, and J. Kurose. On the steady-state
of cache networks. In Proc. of IEEE INFOCOM, pages 863–871, April
2013.

[23] D. Rossi and G. Rossini. On sizing ccn content stores by exploiting
topological information. In Proc. of IEEE INFOCOM Workshops, pages
280–285, March 2012.

[24] L. Saino, I. Psaras, and G. Pavlou. Hash-routing schemes for informa-
tion centric networking. In Proc. of the 3rd ACM SIGCOMM Workshop

on Information-centric Networking, ICN ’13, pages 27–32, 2013.

[25] Y. Sun, S. K. Fayaz, Y. Guo, V. Sekar, Y. Jin, M. A. Kaafar, and S. Uhlig.
Trace-driven analysis of icn caching algorithms on video-on-demand
workloads. In Proc. of ACM CoNEXT, pages 363–376, 2014.

[26] Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie. Design and evaluation
of the optimal cache allocation for content-centric networking. IEEE

Transactions on Computers, 65(1):95–107, 2016.

[27] G. Zhang, Y. Li, and T. Lin. Caching in information centric networking:
A survey. Computer Networks, 57(16):3128 – 3141, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

