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ABSTRACT
Environmental concerns and rising grid prices have motivated data
center owners to invest in on-site renewable energy sources. How-
ever, these sources present challenges as they are unreliable and
intermittent. In an effort to mitigate these issues, data centers are
incorporating energy storage systems. This introduces the oppor-
tunity for electricity bill reduction, as energy storage can be used
for power market arbitrage.

We present two supervised learning-based algorithms, LearnBuy,
that learns the amount to purchase, and LearnStore, that learns the
amount to store, to solve this energy procurement problem. These
algorithms utilize the idea of "learning from optimal" by using the
values generated by the offline optimization as a label for training.
We test our algorithms on a general case, considering buying and
selling back to the grid, and a special case, considering only buying
from the grid. In the general case, LearnStore achieves a 10-16%
reduction compared to baseline heuristics, whereas in the special
case, LearnBuy achieves a 7% reduction compared to prior art.

CCS CONCEPTS
• Computing methodologies→ Supervised learning; •Hard-
ware→ Power and energy; • Applied computing→ Data cen-

ters.
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1 INTRODUCTION
The electricity bill is a substantial part of the operating cost of
data centers and managing this cost has become critically impor-
tant [10, 13, 14, 18, 20–22, 27, 28, 33] in the recent years. A promising
direction to manage this cost is to procure the total energy of data
centers from a variety of sources including the electric grid, re-
newables, and energy storage systems. A few notable examples
include the Google data center in Belgium [5] and the Amazon
data center in Virginia [3] with on-site solar farms, energy storage
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in a Google data center in Taiwan [1], and Tesla batteries used
to power an Amazon data center in California [2]. The addition
of renewables and storage systems presents a great opportunity
for shifting energy usage over time to reduce the cost. However, it
also raises the question of how to orchestrate the energy procurement

among different sources (i.e., grid, renewables, and storage) such that

the electricity bill is minimized.

Our paper is focused on the above challenge of energy procure-
ment in a data center with on-site renewables and storage. Figure 1
depicts a typical energy procurement scenario in such a data center.
At each time t , the total energy demand of the servers in the data
center, dtot(t), must be met by drawing energy from three sources:
(i) xd(t) units from the grid, (ii) u(t) units from the renewable, and
(iii) bd(t) units by discharging the storage. To discharge the storage,
one must have stored that energy in it at earlier time steps. Thus,
at a time t , we could also choose to charge the storage by storing
xb(t) units from the grid. Further, the storage can store at most B
units and may have further limitations on the charge and discharge
rates. Finally, bg(t) is the energy flow by discharging the storage to
the grid, which captures the possibility of selling to the grid.

An energy procurement (EP) algorithmmust decide what amounts
to draw from the grid (x(t)) and the amounts to discharge (bd(t) +
bg(t)) or store in the battery (xb(t)), given the current unit price
of the grid energy (p(t)), amount of renewable generation (u(t)),
and the total energy demand of the data center (dtot(t)). The objec-
tive of an EP algorithm is to minimize the total electricity cost of∑
t x(t)p(t)−

∑
t p(t)bg(t),where the first term is the cost of buying

from the grid and the second term is the revenue from selling to
the grid. In addition the algorithm should respect the constraints of
the storage including charge/discharge rate and capacity limits. De-
signing energy procurement algorithms is difficult since the future
values of the grid energy prices, the renewable generation, and the
energy demand are unknown, highly variable, and unpredictable.

Energy Storage

B

Net Energy Demand

Electrict Grid

BTM Renewable Total Energy Demand

Figure 1: The energy procurement scenario with the possi-
bility of selling back to the grid (shown by the dashed line)

Similar problems have been studied in the literature using empir-
ical evaluations [13, 25, 34, 35], stochastic optimization [14, 17, 29,
30], and competitive design [10, 32]. All above approaches develop
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simple and fixed decision rules based on simplified mathematical
modeling of the underlying problem. Thus, they fail to capture
general scenarios, e.g., negative energy pricing and selling back to
the grid. In this paper, we pursue a new direction and study the
general problem of energy procurement for data centers using a
supervised learning approach.

We make the following key contributions.
1)Our primary contribution is an approach for energy procurement
using the concept of learning from the optimal [8]. While prior work
focused on designing fixed control rules based on simplified models,
we devise a supervised learning approach that derives the optimal
buy/sell/store decisions for training data consisting of historical
energy prices, data center energy demands, and renewable genera-
tion. We then use these optimal decisions on the training inputs as
labels to train our learning algorithms. Thus, our algorithms learn
from a provably-optimal offline decision maker.
2)We define price-, demand-, storage-, and time-related features
and devise two classes of learning algorithms: LearnBuy that at-
tempts to learn how much energy to buy/sell to the grid at each
time step; and LearnStore that attempts to learn what storage
level should be maintained at each step. For both LearnBuy and
LearnStore, we explore the effectiveness of different learning mod-
els such as decision trees, k-nearest neighbors, linear regression,
and deep neural networks, and present results for the best model
in each case.
3) To derive the real-world efficacy of our algorithms, we evaluate
them using extensive data traces of electricity prices from the New
York market (NYISO [24]), energy demands from multiple data
centers of Akamai’s CDN [23], and renewable production values
from wind installations [4]. As the metric of evaluation, we use the
notion of normalized cost which is ratio of the cost achieved by our
algorithmwith the cost achieved by the offline optimal algorithm for
the same set of inputs.1 We also consider two scenarios: a general
case scenario where the data center is able to both buy and sell
energy to the grid; and a special case scenario where the data center
is only able buy from the grid and selling back is disallowed.

a) For the general case scenario, LearnStore performs better
than LearnBuy achieving a normalized cost of 1.13 (resp.,
1.45) in the case where 5% (resp., 10%) of the storage can
be charged/ discharged at each time step. In both cases,
LearnStore performs 10.34% to 16.18% better than PreDay,
an intuitive data-driven heuristic that uses the optimal deci-
sions of the previous day to perform actions in the current
day.

b) For the special case scenario, LearnBuy performs better
than LearnStore achieving a normalized cost of 1.16 (resp.,
1.19) in the case where 5% (resp., 10%) of the storage can
be charged/discharged. LearnBuy achieves a cost 3.20% to
3.67% better than PreDay. Unlike the general scenario where
there are no known theoretically-validated algorithms, the
special case scenario has had some recent literature. In par-
ticular, an online algorithm BatManRate [32] is known to
have the smallest competitive ratio for the problem. However,

1Note that the cost ratio is always at least 1. However, no online algorithm may able
to achieve a value of 1, since the offline optimal algorithm has the benefit of knowing
the future values of all inputs.

LearnBuy is achieves a cost that is 7.18% to 7.26% smaller
than BatManRate.

2 THE ENERGY PROCUREMENT PROBLEM
An optimal energy procurement algorithm minimizes the energy
procurement cost, i.e., purchased cost subtracted by the revenue of
selling back to the grid, over the time horizon T . We can formulate
the energy procurement problem as follows.

EP : min
∑
t ∈T

p(t)(x(t) − bg(t))

s.t. : ∀t ∈ T :
x(t) = xd(t) + xb(t), (1)
d(t) = xd(t) + bd(t), (2)
b(t) = b(t − 1) + xb(t) − bd(t) − bg(t), (3)
0 ≤ xb(t) ≤ min{ρc ,B − b(t − 1)}, (4)
0 ≤ bd(t) + bg(t) ≤ min{ρd ,b(t − 1)}, (5)
0 ≤ b(t) ≤ B, (6)

vars. : {x(t),xd(t),xb(t),bd(t),bg(t),b(t)} ∈ R≥0.

The objective is to minimize the purchased cost from the electric
grid, i.e., p(t)x(t), and maximize the revenue from selling back to
the grid, i.e., p(t)bg(t). Constraints (1)-(2) determine the procure-
ment strategy. Constraint (3) dictates the evolution of the storage.
By denoting B, ρc , and ρd as the capacity of storage, charging, and
discharging rates, constraints (4)-(6) enforce the capacity and rate
limits of the energy storage. Since EP is a linear program, it can be
solved efficiently in an offline manner. The real-world practical set-
ting, however, is online, since the future price p(t), the total energy
demand dtot(t), and the renewable generation u(t) are not known
a priori. As compared to the simplified problem introduced in [32],
EP comes with two important generalizations: (1) in EP, we have
an additional optimization variable that captures the possibility of
selling back to the grid, i.e., bg(t); (2) in contrast to the problem
studied in [32], EP captures a more general pricing model in which
the real-time prices can be negative. In our experiments, we eval-
uate the performance of our proposed solutions as compared to
the state-of-the-art algorithms for the special cases of no negative
pricing and no selling back to the grid. For the general case, we
compare our results with the simple baseline heuristic PreDay.

3 OUR MACHINE LEARNING APPROACH
The key challenge in applying a machine learning approach to
the energy procurement problem is that an action, such as storing
energy in the storage, and its potential reward, such as not having
to purchase that energy from the grid at a higher price, can be
significantly separated in time, i.e., the reward does not manifest
until long after the action is taken. However, by solving our LP
formulation EP offline, one can derive the optimal set of actions for
any time sequence of demand, renewable generation, and energy
prices. Our main idea is to use supervised learning approach where

we train our algorithm to learn from the optimal decisions made by

EP.

Feature Selection. To be able to use supervised learning, we
choose a set of features as described below.
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Price-related Features. Energy price is a significant determinant
of the procurement strategy since we should buy and store energy
when the price is low, and discharge and sell when the price is high.

Demand-related Features. Demand is an important factor as our
energy procurement strategy must satisfy the demand at every step.
We use the current energy demand which averages demand over the
current 5-minute slot as a feature.

Storage-related Features. The amount of charge in the storage is a
key determinant of energy procurement since we are more likely to
buy and charge when the storage levels are low, and sell/discharge
when the storage levels are high. We use the storage level at the
beginning of the time step as a feature.

Time-related Features. Energy prices are set by matching supply
and demand and may have diurnal patterns. Further, month of
the year is indicative of seasons that could influence renewable
generation. Therefore, we use both the time of day, with each day
divided into 5-minute intervals, and month of the year as features.

Learning Algorithms. We present two classes of learning al-
gorithms for energy procurement: learning how much to buy, and
learning how much to store. We describe both approaches.

1) Learning to Buy Energy . Our algorithm LearnBuy computes
the desired buy amount of x̂(t) at time t using the learned model
that uses the features described earlier. Depending on whether x̂(t)
is positive or negative we do the following.

(1) If x̂(t) ≥ 0, we need to buy energy from the grid.We compute
the maximum amount that can bought from the grid:MAX =
d(t) +min{B − b(t − 1), ρc }. We also compute the minimum
amount that should be bought from the grid:MIN = d(t) −
min{b(t − 1), ρd }. If x̂(t) is within the acceptable range, i.e.,
MIN ≤ x̂(t) ≤ MAX , we buy x̂(t) from the grid. Otherwise,
we buy min{max{x̂(t),MIN },MAX } from the grid.

(2) If x̂(t) < 0, we need to sell energy to the grid. The most you
can draw from the battery for a sale is MAX = min{b(t −
1), ρd }, accounting for the maximum discharge rate and the
amount in the battery. We sell min{|x̂(t)|,MAX } to the grid.

2) Learning to Store Energy . LearnStore computes the desired
storage level b̂(t) at time t using the learned model that uses the
above features. Based on the value of b̂(t), it does the following.

(1) If b̂(t) ≥ b(t − 1), an additional amount of energy must be
stored in the battery. The amount that the battery can be
charged is C = min{b̂(t) − b(t − 1), ρc }, accounting for the
maximum charge rate. The algorithm buys the amount of
x(t) = d(t) +C from the grid that is required to cover both
the demand and the increase in the storage level.

(2) If b̂(t) < b(t − 1), some amount of energy must be removed
from battery. The amount that can be removed from the bat-
tery isD = min{b(t−1)−b̂(t), ρd }, accounting for maximum
discharge amount.We use themin{d(t),D} of the discharged
amount to serve the demand, and sell the remaining amount
of D −min{d(t),D} to the grid. Any demand that is not yet
satisfied is served from the grid.

In the case that selling to the grid is not an option, the selling is
skipped in step 2 and that amount is left in the battery. Note that
the actual amount b(t) at time t could be larger than the desired

learned amount b̂(t) when restricted by the maximum discharge
amount or when selling is not option.

Learning Models. For both LearnBuy and LearnStore, we ex-
perimented with different learning models, in particular, decision
trees (DT), k-nearest neighbors (KNN), linear regression (LR), and
deep neural networks (DNN). For DT, KNN, and LR, we used scikit-
learn [26], which is a Python library containing standard implemen-
tations of the most common machine learning models. For DNN,
we used TensorFlow [6] with Keras [11] on top. TensorFlow is a
library for implementing neural networks, and Keras is a high level
library that can use TensorFlow as the back-end to make neural
network implementation easier. For the DNN model, we tested
with a different number of layers, but we went with 4 feed-forward
dense layers as it results in the best performance for our model.
The loss function used is the mean squared error, and we used the
initialization proposed by He et al. [16] for the initial weights of the
neurons. We used ReLU as the activation function for all the layers,
and the RMSprop optimizer with a learning rate of 0.001. For all
the other models, we used the default parameters from scikit-learn.

4 EXPERIMENTAL EVALUATION
Data Traces. The energy consumption is gathered from Akamai
data centers for a 1 month period, at 5 minute intervals, which is
based on real-time settlement intervals of the US electricity markets.
The Akamai data traces contain the workload of the server clusters
at each time slot, hence, to obtain energy usage as a function of
load, we use the standard linear model [7]. For our experiments,
we report results for an Akamai data center in New York City and
electricity prices from NYISO [24] for New York for 2016-2018.

In addition to the total energy usage of data center, we assume
that at each location there is on-site renewable installation with 30%
penetration, i.e., if renewable generates at its maximum capacity,
it can satisfy 30% of the peak energy demand. We collected the
renewable generation values from Eastern andWestern data sets [4].

TrainingMethodology. The key idea of our training is to learn
from the optimal. Our training inputs consist of the real-time energy
prices, data center energy demand, and renewable data traces from
wind. We derive the optimal decisions for the training inputs by
solving EP. We run the offline optimal solution OPT on the input
traces to derive the optimal amounts to buy or sell and the optimal
battery level at that time step. We use two-thirds of the data (2016
and 2017) to train our learning models, and we report our results
by testing on the remaining one-third (2018).

Evaluation. In all experiments, we evaluate our algorithms
based on the normalized cost that they achieve, where the nor-
malized cost is defined as the cost of our (online) algorithm divided
by the optimal offline cost. The offline optimal cost is calculated
using Gurobi optimization software [15] to solve EP by providing
it the entire input to the problem. Thus, the offline optimal cost is
a lower bound on the cost of any online algorithm. Moreover, no
online algorithm may be able to achieve the optimal online cost.
However, normalized cost is still a very useful way of viewing the
costs in our setting.

We consider the following four different experimental scenarios:

(G5) General case where ≤ 5% of the storage can be charged or
discharged at each time step, i.e., ρc = ρd = B/20.
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Figure 2: Comparing LearnBuy and LearnStore
(G10) General case where ≤ 10% of the storage can be charged

or discharged at each time step, i.e., ρc = ρd = B/10.
(S5) Special case of the procurement problem where ≤ 5% of

the storage can be charged or discharged at each time step,
no energy can be sold to the grid, and no negative pricing.

(S10) Special case of the procurement problem where ≤ 10% of
the storage can be charged or discharged at each time step,
no energy can be sold to the grid, and no negative pricing.

Note that BatManRate [32], works in the special case of just buy-
ing from the market without negative pricing. Hence, we construct
S5 and S10 to enable comparison with the existing approach. To
the best of our knowledge there is no existing work that tackles the
general EP problem. Hence, we compare the results of our learning
algorithms with the optimal offline values, and also PreDay that is
a simple data-driven heuristic that uses the optimal values of the
EP problem for the previous day to make energy procurement deci-
sions for the current day. The PreDay algorithm needs an additional
feasibility check since there is no guarantee that the optimal values
for the previous day provide a feasible solution for the current day.

Comparing the learning algorithms. We compare the two
natural learning approaches of learning to buy and learning to store.
As shown in Figure 2, LearnStore does better than LearnBuy in the
general procurement scenarios, but worse in the special scenarios.

Comparing our approach with prior art. Next, we compare
LearnBuy and LearnStore with BatManRate that has the optimal
theoretical competitive ratio for the special case scenario and is the
best known algorithm for this scenario. We also compare it with
the heuristic PreDay that is applicable in both scenarios. Note that
there is no known online algorithmwith a provable optimal compet-
itive ratio for the general scenario. So, in the general scenario, we
only compare the results with PreDay. As reported in Figure 3(a),
LearnBuy outperforms PreDay and BatManRate by 3.67% and 7.26%
(resp. 3.20% and 7.18%) in S5 (resp. S10). In the general scenario,
LearnStore outperforms PreDay by 10.34% (resp. 16.18%) in G5
(resp. G10).

5 RELATEDWORK
Similar problems have been studied in literature using empirical
evaluations [13, 25, 34, 35]. These approaches require exact model-
ing and extensive training data, which is difficult to obtain due to
multidimensional uncertainty in the problem. Another direction
is stochastic optimization approaches [30], which propose optimal
policies given the probabilistic modeling of uncertain inputs. Devi-
ations from the stochastic models may severely degrade the overall
performance. Lyapunov optimization [14, 17, 29] obtains optimal
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Figure 3: Comparing the learning approach with prior art.

control policies over infinite horizon with i.i.d. assumptions for the
inputs. Another approach is to leverage competitive design [9] for
energy procurement algorithms [10, 32] The goal is to achieve a
bounded competitive ratio for the worst-case input, which might
be too conservative in reality. All of the above approaches design
simple and fixed decision rules based on simplified models and
mathematical modeling of the underlying problem. To the best of
our knowledge, this work is the first that tackles the general prob-
lem of energy procurement for data centers without relying on
any fixed decision making rules. There are several recent studies to
apply different machine learning approaches in the different areas
of energy efficiency and optimization in data centers [12, 19] and
more broadly in energy systems [31]. Last, we note that the idea of
learning from optimal has been recently used in other application
domain such as caching [8]. Our work pursues a similar paradigm
of learning form optimal, but for a different application scenario.

6 CONCLUSION
In this paper, we proposed learning-based algorithms for optimizing
the energy procurement for data centers with on-site energy storage
systems. We proposed and evaluated two algorithms, LearnBuy and
LearnStore, that use the approach of learning from the optimal.
Using extensive real-world data traces, we show that our algorithms
achieve near-optimal cost and are significantly better than the state-
of-the-art algorithms that rely on developing fixed rule policies.
Acknowledgments. This work is supported in part by NSF grants
CNS-1413998 and CNS-1763617 and a Google Faculty Research
Award.
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