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ABSTRACT
Modern CDNs cache and deliver a highly-diverse set of tra�c

classes, including web pages, images, videos and software down-

loads. It is economically advantageous for a CDN to cache and

deliver all tra�c classes using a shared distributed cache server

infrastructure. However, such sharing of cache resources across

multiple tra�c classes poses signi�cant cache provisioning chal-

lenges that are the focus of this paper.

Managing a vast shared caching infrastructure requires careful

modeling of user request sequences for each tra�c class. Using

extensive traces from Akamai’s CDN, we show how each tra�c

class has drastically di�erent object access patterns, object size

distributions, and cache resource requirements. We introduce the

notion of a footprint descriptor that is a succinct representation of

the cache requirements of a request sequence. Leveraging novel

connections to Fourier analysis, we develop a footprint descriptor

calculus that allows us to predict the cache requirements when

di�erent tra�c classes are added, subtracted and scaled to within a

prediction error of 2.5%. We integrated our footprint calculus in the

cache provisioning operations of the production CDN and show

how it is used to solve key challenges in cache sizing, tra�c mixing,

and cache partitioning.
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1 INTRODUCTION
Much of the world’s online content are delivered by Content Deliv-

ery Networks (CDNs). Modern CDNs cache and deliver a highly-

diverse set of tra�c classes with di�erent content types such as

web pages, images, videos and software downloads. CDNs use a

large network of cache servers to deliver content from locations

that are proximal to the user. Users download content from these
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cache servers. If the requested content is found in the cache (i.e.,

cache hit), the user experiences a faster response time. A large CDN

such as Akamai has a platform of hundreds of thousands of cache

servers deployed in thousands of locations around the world.

A large CDN may host content from tens of thousands domains

belonging to web sites of thousands of content providers. Further,

each content provider may host di�erent types of content, including

web, downloads, videos, and images
1
. Requests from users access-

ing the content provider’s web sites are routed by the CDN to an

appropriate cache server that can serve the content using a process

called mapping [6].

The content tra�c served by a CDN can be classi�ed into tra�c
classes. Each tra�c class is a set of domains that host a speci�c

content type belonging to one or more content providers with

similar requirements. For instance, a tra�c class could be web

content from a speci�c news site, or image content from a speci�c e-

tailer, or iOS downloads from Apple, or video content from Hulu, etc.

Thus, a major CDN may have several hundred tra�c classes, each

with di�erent access characteristics and performance requirements.

A CDN performs cache provisioning and request routing at the

granularity of a tra�c class. Thus, a key decision a CDN must make

is which subset of its hundreds of thousands of servers must serve

which tra�c classes. Di�erent tra�c classes may have di�erent

caching characteristics and di�erent performance requirements. A

tra�c class consisting of web content from an e-tailer may require

fast response times and high cache hit rates to aid more sales con-

versions, and the object sizes are smaller. In contrast, a tra�c class

consisting of background software downloads has large object sizes,

but can tolerate lower hit rates and slower response times.

1.1 Cache Provisioning
Cache provisioning is the process of determining which tra�c classes

are hosted in which cache servers of the CDN, given a vast platform

of cache servers with varying amounts of cache space available at

each server. Despite the potentially diverse requirements for each

tra�c class, it is economically and operationally advantageous for

the CDN to use a single shared platform of servers to serve all

the tra�c classes and to have each cache serve multiple tra�c

classes. However, such sharing across multiple tra�c classes poses

signi�cant challenges that are the focus of this paper.

1
Content providers often segregate their content by type and place them on

di�erent domains for better content management and delivery. For instance, a

content provider may have a di�erent domain for each content type, such as

{www,video,image,download}.foo.com.
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Provisioning tra�c classes and controlling the sharing of the

available cache space between those classes to maximize cache

hit rates is an important challenge with direct impact on the cost-

performance tradeo� of the CDN. For example, servers hosting an

aggressive mix of tra�c classes relative to available cache space

may end up providing poor cache hit rates. This may violate the

performance requirements for some classes, and raise bandwidth

cost due to elevated cache-miss tra�c. Conversely, servers hosting

a conservative mix of tra�c classes may end up underutilizing their

resources, which makes the CDN buy more servers than necessary.

The goal of cache provisioning is to model the caching require-

ments of tra�c classes and to predict the best way to assign tra�c

classes to cache servers, so as to optimize the use of the cache re-

sources and provide an acceptable hit rate at a reasonable cost. To

do so, the process takes as input the sizes of the caches available

in servers across the CDN, and the characteristics of the request

sequences for each tra�c class. The process outputs the set of

servers that serve each tra�c class. Cache provisioning is an o�ine

planning step but it must be performed regularly, since new tra�c

classes are added or removed to the system and caching character-

istics of existing classes may change. Once cache provisioning is

complete, its output is used by a mapping system (cf. Section 2.1)

to route the requests of each tra�c class to one of the provisioned

cache servers in real-time.

1.2 Challenges and Contributions
The main conceptual challenges in cache provisioning and our

contributions in addressing those challenges are below.

1) To provide e�ective cache provisioning, we need to �rst under-

stand the diversity of tra�c classes hosted on a modern CDN, and

how they vary in terms of user request patterns, content popularity,

object sizes, and caching requirements. In Section 3, we provide the
�rst detailed characterization of tra�c classes on a modern CDN.

2) The user requests for each tra�c class must be modeled ef-

�ciently from the traces. While traces may contain hundreds of

millions of requests, the model must be concise, and must be able

to predict the resource-performance tradeo�s for caches that serve

that tra�c class. In Section 4.1, we propose the novel notion of a foot-

print descriptor (FD) that is computed e�ciently from user request
traces of that tra�c class. Using footprint descriptors, we can derive
the full tradeo� between cache size and hit rate for each tra�c class.

3) A main goal of cache provisioning is to answer important

"what-if" questions through modeling and prediction. Examples of

such questions include: what would the hit rate be when multiple

tra�c classes are mixed together and served by a single shared

cache? How should you partition a cache across multiple tra�c

classes, so that each class receives its target hit rate? How would the

hit rates change if the tra�c volume of a tra�c class is increased?

In Section 4.3, we develop a calculus for footprint descriptors that lets
us perform addition, subtraction, and scaling operations on request
sequences. The calculus lets us model, predict, and answer the key
“what-if” questions that arise in the cache provisioning context. For
instance, the calculus allows us to e�ciently compute the footprint
descriptor for a mix of tra�c classes, given the footprint descriptors
of each individual class in the mix.

4) Cache provisioning must be able to process and manipulate

tra�c class models in an e�cient fashion. In Section 4.3, we show
an intriguing connection to Fourier Analysis that lets us visualize
and manipulate footprint descriptors. Speci�cally, we show how Fast
Fourier Transform (FFT) can be used to transform footprint descriptors
to the “frequency” domain. Analogous to how signal processing can
be speeded up by using Fourier Transforms, we show how footprint
descriptors can be e�ciently manipulated in the frequency domain.

5) The models used in cache provisioning should provide predic-

tions that are accurate enough to use in production CDN operations.

In Section 4.5, we highlight the need for footprint descriptor calculus
through simulations using traces from production servers. We also
compare our predictions with hit rates from the production network
and show that the prediction error is at most 2.5% in the scenarios
considered. In Section 5, we show how footprint descriptors are used
to solve key challenges in CDN operations.

Footprint descriptor modeling versus cache simulations.
In theory, one could evaluate the hit rates of di�erent tra�c class

mixes by experimentally simulating cache operations on each re-

quest trace mix. But, simulating various combinations of several

hundred tra�c classes for di�erent cache sizes is unscalable and

prohibitively expensive, even for an o�ine computation, since it

must be repeated periodically (say, every few days). With our ap-

proach, the footprint descriptor is computed for each tra�c class

only once (Section 5.3 shows how to compute FDs e�ciently using

a map-reduce paradigm) and tra�c mixes are evaluated rapidly us-

ing footprint descriptor calculus. The power of footprint descriptors
is that it needs to be computed only once for each tra�c class from the
voluminous traces. Various operations on tra�c classes can then be
performed rapidly using the calculus without costly cache simulations
of tra�c class mixes.

Roadmap. The rest of the paper is organized as follows. In

Section 2, we provide background on cache provisioning in CDNs

and how footprint descriptors �t into the complex environment

of CDN operations. In Section 3, we describe the characteristics

of the di�erent tra�c classes hosted on the CDN. In Section 4, we

introduce the notion and develop the theory of footprint descriptors.

In Section 5, we show how footprint descriptors can be used in

a production setting for CDN cache operations. In Section 6 we

review prior work and conclude in Section 7.

2 BACKGROUND
A large CDN such as Akamai has a network of a few hundred

thousand cache servers deployed in clusters that are located in

thousands of data centers and in most major countries around

the globe. In this section, we describe how the mapping, caching,

and cache provisioning systems interact with each other to serve

content to users. When a user accesses content using a URL (say,

https://domain/path), the mapping system [6, 19] is responsible

for routing the user’s request to a cache server that can serve the

request. Note that the domain of the request belongs to a tra�c

class, e.g., the domain downloads1.foo.com might belong to a

tra�c class of software downloads from foo.com. The cache server

that is picked by mapping to serve the request must host the tra�c

class to which the request belongs. The (o�ine) cache provisioning

process determines which set of cache servers host each tra�c class.
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Mapping uses that information to route requests in real-time to one

of the servers in that set. Once the request is received by a cache

server, it is served by the caching system running on that server.

We provide some additional relevant details below.

2.1 The Cache Provisioning Process
The cache provisioning process works in an o�ine fashion un-

dertaking the complex task of periodically deciding which tra�c

classes are hosted on which subset of the CDN’s servers. Let T be

the set of all tra�c classes and N be the set of all cache servers

of the CDN. Formally, the cache provisioning process computes a

function π : T → 2
N

, where each tra�c class τ ∈ T is hosted on

a chosen subset of the servers π (τ ) ∈ 2N . The cache provisioning

process should accurately predict the e�ects of tra�c mixing under

varying tra�c conditions and availability of caching resources. The

goal of cache provisioning is maximizing metrics that are important

to the CDN, such as the aggregate hit rate of each cache server and

the speci�c hit rates of each tra�c class that it hosts.

Currently, cache provisioning in production CDNs happens in

an adhoc fashion where a human operator frequently modi�es

the tra�c class assignment π based on past experience, as the

characteristics of tra�c classes change, or when new tra�c classes

are added or removed, or when server clusters in data centers

are deployed or deconstructed. Our goal is to develop models and

prediction tools that a human operator could use to quickly answer

“what-if” questions on how tra�c class mixes behave when they

share the same server and what hit rates each class gets individually

and in aggregate. In this paper, we propose footprint descriptors

that succinctly model request sequences of di�erent tra�c classes

and a footprint descriptor calculus that accurately predicts the

outcome of tra�c mixing. We show how footprint descriptors can

be used to address the complex challenges listed in Section 1.2. We

also discuss many such scenarios through case studies in Section 5.

Our current work is focused on providing tools for a human

operator who determines the function π , rather than eliminating

the human operator from the cache provisioning process altogether.

The holy grail of cache provisioning is to compute π automatically

without human intervention at all. Extending footprint descriptors

to such a scenario is left as future work.

Once cache provisioning is complete, the mapping system routes

user requests to their appropriate servers in real time. The mapping

system assigns each request for a domain in tra�c class τ to a

live server in π (τ ) that is proximal to the user. The reader is re-

ferred to [6, 19] for a more detailed description of mapping system

architecture.

2.2 The Caching System
After the user receives a server IP from the mapping system, the

user requests the content from that assigned server. Each server

has a cache for storing content. If the server has the requested

content in its cache (i.e, a “cache hit”), it is delivered to the user. If

the content is not available in cache (i.e., a “cache miss”), the server

fetches it from the content provider’s origin that has the original

copy of the content.

The caching system consists of hundreds of thousands of servers

deployed around the world, each server implementing a content

cache. The servers are heterogenous and implement caches of vary-

ing sizes. Each cache server implements a cache replacement algo-

rithm. Most production CDNs and caching software use extensions

or variants of LRU, including Akamai [15], Nginx [17], and Var-

nish [13]. The LRU cache replacement algorithm works as follows.

When an object is accessed, it is placed in cache. If the cache is full,

the least-recently-used object is evicted from cache. Our calculus

models an LRU cache, though it can also be extended to a broader

class of stack algorithms that satisfy the inclusion property [16].

The primary metric of cache e�ciency is its hit rate. Hit rate2

is the percentage of the requested bytes that were found in cache.

That is, hit rate is percentage of requests for objects that were cache

hits, weighted by object size. A cache hit is highly desirable, since

it does not incur the additional latency of fetching the requested

object from elsewhere. Thus, the user sees faster response times on

a cache hit. Further, a cache hit does not incur any forward tra�c

to origin to fetch the content, reducing the “midgress” tra�c costs

for the CDN [21]. Another key goal of a CDN is to decrease the

tra�c on the origin site, since it reduces the operating costs for

the content provider. A measure of that goal is the origin o�oad
factor, which is simply the ratio of the content tra�c served to users

and the content tra�c served by origin. It is easy to see that the

origin o�oad is simply 1/(1 − hit rate), i.e., the o�oad increases

with hit rate. Thus, from multiple perspectives, a key goal of a CDN

operator is to optimize the cache hit rates for each server and for

each of the tra�c classes that it hosts.

3 TRAFFIC CLASS CHARACTERISTICS
Each domain hosted on the CDN can be thought of generating a

request sequence that consists of users requesting content from that

domain. A domain also belongs to a tra�c class, where each tra�c

class is a set of domains from a set of similar content providers,

usually serving a speci�c content type. A request sequence for a

tra�c class is simply a sequence of requests received for some

domain within that class. The major tra�c classes in a modern

CDN have content types that are either web sites, videos, images,

or downloads. A large CDN may host tens of thousands of domains

from thousands of content providers that form several hundred

tra�c classes. The main challenge in cache provisioning is the

diversity of access patterns, object sizes, and resource requirements

across di�erent tra�c classes.

3.1 Trace Collection
To illustrate this diversity of tra�c classes in a quantitative fashion,

we collected extensive traces from Akamai’s production CDN for

four representative tra�c classes from 2 production cache servers

in Akamai’s CDN. The data set contains anonymized logs of content

accessed by end-users. Each line in the production trace corresponds

to a single request and contains a timestamp, the requested URL

(anonymized), and the size of the object.

The four representative tra�c classes each represent a major

content type: web, downloads, videos and images. The web request

trace is for HTML objects and associated objects such as css and

2
This is also called the byte hit rate. There is another notion of hit rate called the object

hit rate which is the percentage of requests that were found in cache. In this paper, we

only focus on byte hit rates, though our work easily extends to object hit rates.
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javascript �les. The downloads request trace contains predomi-

nantly large objects consisting of software updates from a content

provider. The image trace contains images embedded in web pages.

The video trace contains video-on-demand (VOD) objects. Typically

the objects belonging to the download and video tra�c classes are

several GB in size. But, in our traces these objects are smaller be-

cause a CDN fragments such large �les to smaller chunks to avoid

caching the entire object. CDNs typically cache only the byte-range

that is requested and a few extra bytes, anticipating future requests

(spatial locality). Videos are normally served in chunks that corre-

spond to a few seconds of the video. Hence, CDNs typically only

cache those chunks that are requested to avoid polluting the cache

with content that has not been requested.

We collected the web and download traces from one production

server and the image and video traces from the other production

server. The characteristics of these traces are described in Table 1.

We also collected additional web, download, image and video traces

from two more servers to evaluate the accuracy of our cache models.

These traces are described in Section 4.5.

Tra�c class Web Download Image Video

Length of trace

(days)

2.5 2.5 3.5 3.5

Arrival rate

(req/s)

520 77 52 57

Tra�c volume

(Mbps)

333.0 216.5 8.4 361.5

Object count

(millions)

10.3 0.7 1.3 6.1

Average object

size (MB)

0.21 2.32 0.03 1.53

Table 1: Characteristics of the chosen tra�c class traces.

3.2 Analysis of Tra�c Classes
We compare and contrast the four chosen tra�c classes based on

their popularity distribution, object size distribution and cache hit

rate. Figure 1 shows the popularity distribution of each tra�c class.

For our download tra�c class, we see that 92% of all requests are for

only 10% of the objects. For our web tra�c class, 87% requests are

for 10% of the objects. Both of these tra�c classes have a long tail of

popularity, indicating the presence of a large amount of unpopular

content. For our image tra�c class, 90% requests are for 30% of the

objects. The footprint of a set of objects is the total bytes that need

to be stored in cache to serve those objects from cache. From the

traces we collected, we observe that we can achieve a high cache hit

rate with a small footprint for our image class due to smaller object

sizes. Finally, 90% of the requests in our video class are for 65% of

the requested objects (i.e. requested video chunks), indicating that

a larger footprint needs to be cached to achieve a good hit rate.

Figure 2 shows the CDF of the object size distribution for each

tra�c class. The x-axis is shown in log scale for clarity. In gen-

eral, we see that the image and web tra�c classes have predomi-

nantly small objects and both the download and video tra�c classes

have predominantly large objects. The extreme variability in object

sizes across tra�c classes makes it challenging to manage cache

Figure 1: Popularity distribution of the 4 tra�c classes.

Figure 2: Object size distribution of the 4 tra�c classes.

Figure 3: Hit rate curves of the 4 tra�c classes.

resources across the CDN because di�erent tra�c classes require

di�erent amounts of cache space to achieve the same hit rate.

We compare the cache hit rate of the di�erent tra�c classes in

Figure 3 by plotting their hit rate curves (HRCs) which gives the hit

rate as a function of cache size. These hit rate curves were derived

using footprint descriptors as shown in Section 4.2. The x-axis is

shown in log scale for clarity. Note that we need a relatively smaller
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cache to achieve a large cache hit rate for the image tra�c class,

when compared to the video tra�c class which needs a much larger

cache for the same hit rate. For example, to achieve a hit rate of

60%, the image class requires a cache space of about 2 GB, whereas

the video class requires a cache space of about 1 TB.

The extreme variability in popularity, object size and caching

performance highlights the importance of e�cient cache provision-

ing when caching content belonging to di�erent classes in a shared

server. Note that two tra�c classes of the same content type but dif-

ferent content providers may have di�erent access characteristics

and performance requirements. Thus, cache provisioning is done

on a per-tra�c-class basis, rather than on content types.

4 THEORY OF FOOTPRINT DESCRIPTORS
We now describe a concise space-time representation of a traf-

�c class called footprint descriptor (FD) and derive a calculus for

evaluating tra�c mixes. Let ρ be a request sequence 〈r1,r2, · · · rn〉,
corresponding to a tra�c class τ , where each request ri represents

a user requesting an object belonging to that tra�c class. Each

request ri has associated with it the timestamp ti when the request

was made, a unique identi�er idi of the object (such as its URL),

and the size of the object si . We denote a subsequence ρ ′ of ρ to be

the sequence of consecutive requests 〈ri ,ri+1, · · · r j 〉 of ρ, for some

i ≤ j. We call ρ ′ a reuse subsequence if the same object is accessed

in the �rst and last request of the subsequence, but is not accessed

elsewhere in ρ ′. It is known that reuse subsequences have great

signi�cance in evaluating caching properties in other contexts [16].

They play an important role in FDs and their calculus as well.

4.1 Footprint Descriptors (FD)
A typical request stream ρ may have tens of millions of requests.

We would like to e�ciently summarize the attributes of ρ using the

notion of a footprint descriptor FD, so that we may answer questions

regarding the cacheability of ρ using FD. To that end, we de�ne the

footprint descriptor FD of ρ as the tuple 〈λ,Pr (s,t ),Pa (s,t )〉, where

λ is the tra�c volume (in bits requested per second), Pr (s,t ) is the

reuse-sequence descriptor function, and Pa (s,t ) is the all-sequence

descriptor function. We describe each component of FD below.

1) The tra�c volume λ is the average number of bits requested

per second in the request sequence ρ. For a sequence ρ with n
requests, the tra�c volume λ = (

∑
i bi )/(tn − t1), where bi denotes

the number of bits requested by the ith request and ti denotes the

time of the ith request.

2) The reuse-sequence descriptor Pr (s,t ) is a “space-time” de-

scription of the reuse-subsequences ρ ′ of the ρ. In particular, it

provides the joint probability distribution of the unique bytes s and

the duration t for reuse subsequences ρ ′ of ρ. The unique bytes

s accessed in ρ ′ is simply the sum of the sizes of all the unique

objects requested in ρ ′. The duration of t of ρ ′ is the di�erence

in timestamps of the �rst and the last request in ρ ′. Then, Pr (s,t )
is the probability that s unique bytes of content is requested in

some reuse sequence ρ ′ of duration t . Given a request sequence ρ,

Pr (s,t ) can be estimated by enumerating all its reuse sequences ρ ′

and tallying its unique bytes s and duration t . Note that the unique

bytes and duration on the �rst access of any object is in�nity. This

accounts for the cold cache miss rate.

3) The all-sequence footprint descriptor Pa (s,t ) computes a sim-

ilar statistic, but using any subsequence ρ ′ of ρ, i.e., ρ ′ is not nec-

essarily a reuse subsequence and the �rst and last request of ρ ′

can be arbitrary. Pa (s,t ) is the probability that s unique bytes of

content is requested in some subsequence ρ ′ of duration t . Given a

request sequence ρ, Pa (s,t ) can be estimated by enumerating all

its subsequences ρ ′ and tallying the unique bytes s and duration t .

4.2 Estimating cache properties from footprint
descriptors

A footprint descriptor FD is a succinct representation of a request

sequence that allows us to predict the hit rate performance that

can be achieved for that sequence. We now show that the hit rate

curve (HRC) of a request sequence can be derived from its FD in

the context of the commonly-implemented Least-Recently-Used

(LRU) caching algorithm. Most production CDNs use extensions of

LRU, including Akamai [15].

Theorem 4.1. The hit rate curve HRC (s ) for a request sequence
ρ is a function that provides the hit rate achieved for ρ by an LRU
cache of size s . The function HRC (s ) can be computed from the reuse-
sequence descriptor Pr (s,t ) as follows.

HRC (s ) =
∑
s ′≤s

∑
t

Pr (s ′,t ).

Proof. Let ρ ′ = 〈ri ,ri+1, · · · r j 〉 be a reuse sequence of the re-

quest sequence ρ. That is, ri and r j are consecutive requests for the

same object. For any cache of size s that uses LRU, the request r j
experiences a cache hit if and only if the unique bytes requested

in ρ ′ is at most s , i.e., if the unique bytes is more than s the object

requested by ri that enters the cache will get evicted by the time

the next request for the same object arrives at r j . Thus, the hit rate

HRC (s ) is simply the probability that a reuse sequence has unique

bytes that is at most s , which in turn equals

∑
s ′≤s

∑
t
Pr (s ′,t ). �

Besides LRU, the above theorem can be extended to other stack

algorithms using the well-known relationship between unique bytes

in a reuse sequence (called the stack distance) and hit rate [16].

4.3 A Calculus of Footprint Descriptors
The power of footprint descriptors is that it can support operations

on request sequences that are important for cache provisioning. We

present three key operations, addition, subtraction, and scaling. In

Section 5, we show key applications of these operations in cache

provisioning in the production network.

4.3.1 Addition. Let ρ1 and ρ2 be two request sequences that are

independent and share no common objects
3
. The addition operator

⊕ can be applied to the two sequences to obtain a new sequence ρ
which we represent as ρ = ρ1 ⊕ ρ2. Request sequence ρ is obtained

by interleaving ρ1 and ρ2 in accordance with the time stamp for

the requests. We now show how the footprint descriptor FD =
〈λ,Pr ,Pa〉 for ρ can be derived from the footprint descriptor FD1 =

〈λ1,P
r
1
,Pa

1
〉 for ρ1 and FD2 for ρ2 = 〈λ2,P

r
2
,Pa

2
〉.

3
The assumption that two tra�c classes share no common objects is reasonable in

practice, since the objects belong to di�erent domains from possibly di�erent content

providers. Such objects are treated as being di�erent by the caching system.
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The tra�c volume λ of ρ is simply the sum of the tra�c volumes

of ρ1 and ρ2, i.e.,

λ = λ1 + λ2 (1)

To compute the descriptor functions, we introduce some notation.

Given a descriptor function P (s,t ), let P (s | t ) denote the conditional

probability of unique bytes s given time duration t and let P (t )
denote the marginal distribution, i.e., P (t ) =

∑
s P (s,t ). Thus,

P (s,t ) = P (s | t )P (t ). (2)

The key observation of our calculus is that when two request

sequences are combined, i.e., ρ = ρ1 ⊕ ρ2, and we examine a sub-

sequence ρ ′ of ρ of duration t with s unique bytes, the unique

bytes s in ρ ′ either come from ρ1 or ρ2. Since the ρ1 and ρ2 have

non-overlapping sets of objects, some s1 come from ρ1 and the

remaining s − s1 must come from ρ2. Thus, to compute a descriptor

function P (s | t ) for ρ from the descriptor functions P1 (s | t ) and

P2 (s | t ) for ρ1 and ρ2 respectively, we can use the convolution

operator to enumerate and add up the probabilities of all possible

ways of obtaining s1 unique bytes from ρ1 and the remaining s − s1
unique bytes from ρ2. That is,

P (s | t ) = P1 (s | t ) ∗ P2 (s | t )

=

s∑
s1=0

P1 (s1 | t )P2 (s − s1 | t ).

Using this observation, we now compute Pr (s | t ) of ρ from

〈Pr
1
(s | t ), Pa

1
(s | t )〉 of ρ1 and 〈Pr

2
(s | t ), Pa

2
(s | t )〉 of ρ2 as follows.

Let ρ ′ be a reuse sequence of ρ, i.e., the �rst and the last request of ρ ′

is for the same object. Let ρ ′ have s unique bytes and duration t . ρ ′

can be broken up into two subsequences ρ ′
1

of ρ1 and ρ ′
2

of ρ2. With

probability
λ1

λ1+λ2
the �rst (and, last) request of ρ ′ is derived from

ρ1. That is, ρ ′ is composed of a reuse sequence ρ ′
1

and an arbitrary

sequence ρ ′
2
. Similarly, with probability

λ2
λ1+λ2

, ρ ′ is composed of a

reuse sequence ρ ′
2

and an arbitrary sequence ρ ′
1
. Thus,

Pr (s | t ) =
λ1

λ1 + λ2

(
Pr
1
(s | t ) ∗ Pa

2
(s | t )

)
+

λ2
λ1 + λ2

(
Pa
1
(s | t ) ∗ Pr

2
(s | t )

)
, (3)

where ∗ denotes the convolution operator.

We can also compute Pa (s | t ) from Pa
1
(s | t ) and Pa

2
(s | t ). The

computation is analogous to the above, except that ρ ′ can be an

arbitrary sequence of ρ, not necessarily a reuse sequence. Since

ρ ′ is composed of two arbitrary subsequences of ρ1 and ρ2, our

computation involves only one convolution below.

Pa (s | t ) = Pa
1
(s | t ) ∗ Pa

2
(s | t ). (4)

Note that the convolution operator ∗ arises naturally in our cal-

culus, allowing us to leverage the powerful tools of Fourier analysis

for the e�cient computation of footprint descriptors. Putting to-

gether Equations 1, 2, 3, and 4 above, we can compute the FD of ρ
from the FDs of ρ1 and ρ2 as we show in more detail in Algorithm 1.

Time Complexity. We can use Fourier analysis to speedup the

computation of the addition operation. Let S and T be the maxi-

mum value buckets for s and t respectively. The addition operation

can be performed in O (TS log S ) time, since we need to perform

3 convolution operations in total for Equations 3 and 4 for every

Algorithm 1 Addition algorithm

Input: FD1 = 〈λ1, P r
1
, Pa

1
〉, FD2 = 〈λ2, P r

2
, Pa

2
〉, S and T be the buckets

for s and t respectively

Output: FD = 〈λ, P r , Pa 〉
1: λ = λ1 + λ2
2: for all t ∈ T do
3: P r (t ) = λ1

λ1+λ2
P r
1
(t ) + λ2

λ1+λ2
P r
2
(t )

4: Pa (t ) = λ1
λ1+λ2

Pa
1
(t ) + λ2

λ1+λ2
Pa
2
(t )

5: for all s ∈ S do
6: P r (s | t ) = λ1

λ1+λ2

(
P r
1
(s | t ) ∗ Pa

2
(s | t )

)
+

λ2
λ1+λ2

(
Pa
1
(s | t ) ∗ P r

2
(s | t )

)
7: P r (s, t ) = P r (s | t )P r (t )
8: Pa (s | t ) = Pa

1
(s | t ) ∗ Pa

2
(s | t )

9: Pa (s, t ) = Pa (s | t )Pa (t )

value of t , where each convolution takes O (S log S ) time using Fast

Fourier Transform algorithm (FFT) and t takes on T values.

Inferring the individual hit rates of ρ1 and ρ2 after addi-
tion. Let the hit rate curves HRC ′

1
(s ) and HRC ′

2
(s ) represent the

post-addition individual hit rate curves of ρ1 and ρ2 within ρ1 ⊕ ρ2,

i.e. HRC ′i (s ) is the post-addition hit rate of ρi when the tra�c mix

occupies cache capacity s . Then, HRC ′
1
(s ) and HRC ′

2
(s ) can be com-

puted as follows.

HRC ′
1
(s ) =

∑
s ′≤s

∑
t

Pr (s ′ | t )P1 (t ).

HRC ′
2
(s ) =

∑
s ′≤s

∑
t

Pr (s ′ | t )P2 (t ). (5)

4.3.2 Subtraction. The subtraction operation models the cache

provisioning operation of removing some tra�c classes from the

list of tra�c classes served by a cache server. The result of that

operation is that the request stream corresponding to those tra�c

classes are subtracted out. Given a request sequence ρ1 that is a

subsequence of ρ, we de�ne ρ2 = ρ	ρ1 to be the sequence obtained

when the requests of ρ1 are removed from ρ. We show how the FD

of the resultant sequence ρ2 can be obtained from the FDs for ρ
and ρ1. Note that we relate the request streams with the addition

operator, i.e., ρ = ρ1 ⊕ ρ2. Thus, the FD of ρ2 can be computed by

simply “inverting” Equations 1, 3, and 4 that we derived earlier for

addition. By inverting Equation 1, we get

λ2 = λ − λ1 (6)

The key idea for �nding the descriptor functions is that the

convolution A = B ∗ C can be inverted by using the frequency

domain, i.e.,C = F −1 (F (A)/F (B)), where F and F −1 are Fourier

transform and its inverse respectively. Thus, inverting Equation 4

we get

Pa
2
(s | t ) = F −1 (F (Pa (s | t ))/F (Pa

1
(s | t ))). (7)

To �nd Pr
2
(s | t ), we use Equation 3 to �rst compute Pr

2
(s |

t ) ∗ Pa
1
(s | t ). Then, since we know Pa

1
(s | t ), we can compute

Pr
2
(s | t ) by using the Fourier transform and its inverse as above.

We provide the details of the subtraction algorithm in Algorithm 2.

Pr
2
(s | t ) on line 8 in Algorithm 2 is computed from Equations 3

and 7.

Time Complexity. Let S and T be the maximum value buckets

for s and t respectively. The subtraction operation can be performed
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Algorithm 2 Subtraction algorithm

Input: FD = 〈λ, P r , Pa 〉, FD1 = 〈λ1, P r
1
, Pa

1
〉, S andT be the buckets for

s and t respectively

Output: FD2 = 〈λ2, P r
2
, Pa

2
〉

1: λ2 = λ − λ1
2: for all t ∈ T do
3: P r

2
(t ) =

(
P r (t ) − λ1

λ1+λ2
P r
1
(t )

) λ1+λ2
λ2

4: Pa
2
(t ) =

(
Pa (t ) − λ1

λ1+λ2
Pa
1
(t )

) λ1+λ2
λ2

5: for all s ∈ S do
6: Pa

2
(s | t ) = F −1 (F (Pa (s | t ))/F (Pa

1
(s | t )))

7: Pa
2
(s, t ) = Pa

2
(s | t )Pa

2
(t )

8: P r
2
(s, t ) = P r

2
(s | t )P r

2
(t )

in O (TS log S ) time, since t takes on T values, we need to perform

O (1) Fourier (or, inverse Fourier) transforms for each value of t ,
and each Fourier (or, inverse Fourier) transform takes O (S log S )
time using FFT.

4.3.3 Scaling. Suppose we wish to increase or decrease the traf-

�c volume for a request sequence ρ1. This operation is called scaling

and we express the new request sequence ρ = ρ1 ⊗ τ , where τ is

the factor by which the volume is increased (decreased). We model

the volume increase (decrease) as scaling the time variable, i.e., the

time stamp of each request in ρ1 is divided by the factor τ . This has

the e�ect of decreasing (increasing) the inter-arrival times for the

requests by τ when τ > 1 (τ < 1). We compute the FD of ρ from

the FD of ρ1 as follows.

λ = λ1τ ; P
r (s,t/τ ) = Pr

1
(s,t ); Pa (s,t/τ ) = Pa

1
(s,t ). (8)

It is worth noting that scaling does not change the hit rate curve of

Pr (s,t/τ ) since the marginal distribution of Pr (s ) = Pr
1
(s ).

Time Complexity. Let S and T be the maximum value buckets

for s and t respectively. The computations in Equation 8 can be

performed in O (ST ) time, faster than addition or subtraction.

Note. It should be noted that the footprint descriptor calculus

described in this section predicts the byte hit rate of a request

sequence, which is the metric considered in this paper. The calculus

works just the same to predict the object hit rate, with the slight

modi�cation that λ for a request sequence ρ is the arrival rate

in requests per second rather than in bits per second. Also, note

that the calculus allows us to compute the FD of complex tra�c

mixing operations by composing the three supported operators.

For example, to add half the volume of class τ1 to τ2 and add a

third of the resultant to τ3, the FD of the �nal tra�c mix τ =
((((τ1 ⊗ 1/2) ⊕ τ2) ⊗ 1/3) ⊕ τ3) can be computed e�ciently using

the calculus and FFT from the FD’s of τ1,τ2 and τ3.

4.4 A Simpler Footprint Descriptor (SFD)
In this section, we outline a simpli�cation of footprint descriptors

that makes implementations faster, at the cost of some theoretical

rigor. Empirically, we observed that on production traces the de-

scriptor functions Pa (s,t ) and Pr (s,t ) were statistically similar, i.e.,

the reuse sequences that start and end in a request for the same

object, and arbitrary sequences that do not have the reuse property

were statistically similar. The reason is that request sequences have

requests for millions of di�erent objects, and conditioning on start-

ing and ending on a request for the same object does not alter the

statistical behavior of the rest of the sequence very much. There-

fore, a simpler footprint descriptor (SFD) is a tuple 〈λ,Pr (s,t )〉, i.e.,

the any-sequence descriptor Pa (s,t ) is dropped since it is similar

to reuse-sequence descriptor Pr (s,t ). Having just one descriptor

function makes computing SFD much simpler and faster for the

addition and subtraction operations. For instance, if Pa (s,t ) is as-

sumed identical to Pr (s,t ), Equation 4 simpli�es to the following

equation that requires just one convolution instead of two.

Pr (s | t ) = Pr
1
(s | t ) ∗ Pr

2
(s | t ). (9)

Note that SFDs can be used to derive the cache hit rate curve HRC

as described in Section 4.2, since it depends only on Pr (s,t ). For

these reasons, we often use SFDs in practice, in lieu of FDs.

4.5 Validation of Footprint Calculus
In this section, we validate the addition operation described in

Section 4.3 by computing the hit rate curves using the footprint

calculus on SFDs described in Section 4.4. We then compare the

calculus predictions with the hit rates obtained via cache simu-

lations using the production traces, a simple baseline algorithm,

as well as hit rates obtained directly from the production server.

Further validation of addition and subtraction also appears as part

of the case studies in Sections 5.1.1 and 5.1.3 respectively. We do not

validate the scaling operator since the hit rate curve after scaling

remains unchanged.

Additional traces for validating scalability of addition.Most

production CDN servers serve at most two major tra�c classes, i.e.,

the top two tra�c classes account for most of the tra�c from the

server. Our initial set of traces described in Table 1 were from such

servers that each served two classes. However, a few servers serve

three or more tra�c classes. To validate the addition of more tra�c

classes, we chose two additional production servers one that served

four tra�c classes across the four content types of web, image,

video and download and another server that served nine tra�c

classes across three content types, namely web, video and down-

load. These new traces let us evaluate the accuracy of the calculus

when a larger number of tra�c classes are mixed. The details of

the additional traces are described in Tables 2 and 3 respectively. In

Table 3 we show nine di�erent tra�c classes that have web, video,

and download content from di�erent content providers.

Tra�c class Web Download Image Video

Length of trace

(days)

1 1 1 1

Arrival rate

(req/s)

223.53 51.04 216.42 180.01

Tra�c volume

(Mbps)

411.95 101.40 41.23 181.11

Object count

(millions)

2.89 0.23 8.78 2.54

Average object

size (MB)

0.3 0.4 0.02 0.24

Table 2: Characteristics of the 2nd set of traces.

Baseline cache provisioning algorithm. We describe a base-

line cache provisioning algorithm commonly used in operations

that predicts the cache hit rate of a tra�c mix using only the hit
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Tra�c class Web-1 Web-2 Web-3 Web-4 Video-1 Video-2 Video-3 Video-4 Download

Length of trace

(days)

8 8 8 8 8 8 8 8 8

Arrival rate

(req/s)

168 16 6 3 53 21 4 3 22

Tra�c volume

(Mbps)

1105.4 114.7 1.8 0.002 292.6 112.4 21.6 14.9 234.5

Object count

(millions)

15 1.6 0.05 0.07 11.7 2.5 1.9 0.6 1.9

Average object

size (MB)

1.6 1.9 0.05 1.7 0.7 0.8 0.7 0.9 2.0

Table 3: Characteristics of the 3rd set of traces.

rate curves of all tra�c classes. For every value of the cache hit

rate, the baseline algorithm determines the cache capacities for

each tra�c class from their respective hit rate curves and adds

them up. The hit rate curve thus produced is the predicted curve

for the tra�c mix. For example, consider two tra�c classes with

hit rate curves HRC1 (s ) and HRC2 (s ) respectively. Then, the cache

capacity required by the tra�c mix to achieve hit rate h is predicted

as HRC−1
1

(h) + HRC−1
2

(h). This is repeated for all values of h to

produce the hit rate curve of the mix.

The baseline algorithm described above is extremely simple and

fast with time complexity O (S ), for hit rate curves having S cache

size buckets. While simple, the baseline scheme does not account

for the inter-arrival time distributions of the request sequences,

and hence is an unreliable predictor of cache hit rates. We discuss

the shortcomings in the following section.

FD calculus is superior to the baseline algorithm. We show

via simulations using production traces that the calculus is more

accurate at predicting hit rates of tra�c mixes and is necessary

for cache provisioning. For our simulation-based validation, we

combine production traces corresponding to each tra�c mix and

perform a cache simulation on these merged traces for di�erent

cache sizes to obtain a hit rate curve. We call this the “simulated”

hit rate curve. We also compute the hit rate curve of the tra�c

mix using the calculus. We call this the “calculated” hit rate curve.

Finally, we compute the hit rate curve using the baseline algorithm

and we call this the “baseline” hit rate curve.

Tra�c mixes Average error of

baseline, %

Average error of

calculus, %

web+download (Table 1) 0.24 0.13

video+image (Table 1) 0.63 0.10

Tra�c classes in Table 2 10.2 0.28

Tra�c classes in Table 3 11.8 0.34

Table 4: Average prediction error of the baseline algorithm
vs. the FD calculus.

In Table 4, we present the average error of the baseline and the

calculated hit rates with respect to the simulated values. We present

the error for performing the addition operation for the web and

download classes, and video and image classes in Table 1 and the

addition of all classes in Tables 2 and 3. While the baseline algo-

rithm has a small error for web+download and video+image from

Table 1, the large di�erence and variability in error between the

baseline algorithm and the calculus in general, and the consistently

small average error of the calculus, highlight the need for the more

accurate calculus in predicting the e�ects of tra�c mixing.

We now discuss another scenario where the calculus is superior

to the baseline algorithm. Very often, CDN operators need to pre-

dict the e�ects of tra�c scaling on tra�c mixing, to better provision

caches under varying tra�c conditions. For instance, CDN opera-

tors would like to know the hit rate of a tra�c mix when the tra�c

volumes of one or more tra�c classes are varied. We show that

under such circumstances, the calculus (using the scaling operation

in conjunction with addition) provides more reliable outputs than

the baseline algorithm which responds erratically to tra�c scaling.

To illustrate this scenario, we consider the tra�c mix of the

tra�c classes in Table 2. We consider two scenarios, 1) the tra�c

classes are mixed at their current tra�c volumes (unscaled versions)

and 2) we scale the tra�c volume of the download tra�c class up

by 20 times, to 2028 Mbps, and predict the cache hit rate under

tra�c mixing in this new scenario (scaled versions). In Figure 4,

we plot the “simulated”, “calculated” and “baseline” hit rate curves

without scaling. We also plot the hit rates curves of the tra�c mix

(after scaling the download tra�c class) predicted by the calculus

(“calculated-scale”) and the baseline algorithm (“baseline-scale”).

We refer to tra�c mix web+image+video+download from Table 2

as “wivd”. We also zoom in on the x-axis for clarity.

Figure 4: Hit rate curves of the tra�c mix in Table 2 before
and after scaling the download tra�c class by a factor of 20.

From Figure 4, we see that the hit rate curve predicted by the

calculus, wivd(calculated), closely matches the simulated hit rate
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Figure 5: Hit rate curves of tra�c classes in Table 2.

curve, wivd(simulated), with an average error of 0.28%. However,

the error between the simulated curve, wivd(simulated), and the

baseline scheme, wivd(baseline), without scaling is much higher

at 10.2% on average, as previously discussed. After scaling the

download tra�c class up by a factor of 20, we see that the hit

rate of the tra�c mix, wivd(calculated-scale), increases as expected

because the download tra�c class dominates the mix (see the hit

rate curve of the download tra�c class labelled pre-addition in

Figure 5). On the contrary, there is little change in the estimate

of the baseline algorithm after scaling, wivd(baseline-scale), and

the estimated hit rate is less than that of the calculus by 17.8% on

average. This is because the baseline algorithm is unaware of the

changes in the inter-arrival times of requests after scaling, which

the calculus takes that into account.

We do similar comparisons for the other sets of traces. We scale

up 20 times the image tra�c class in the video+image mix in Table 1.

We also scale up 20 times the download tra�c class in both the

web+download mix in Table 1 and the mix of tra�c classes in

Table 3. We �nd that “baseline-scale“ is 8.6% less than “calculated-

scale” on average in the case of video+image in Table 1, 4.2% less

than “calculated-scale” on average in the case of web+download in

Table 1 and 23.1% less than “calculated-scale” on average for the

tra�c mix in Table 3. This evaluation further emphasizes the need

for the more accurate calculus that accounts for both the spatial and

temporal interactions between tra�c classes during tra�c mixing

and predicts hit rates accurately.

FD calculus matches well with production setting. We per-

form a production validation by comparing the hit rates produced

by our calculus with the hit rates measured directly from the pro-

duction server serving the required mix of tra�c over the same time

period. Measuring it directly from the production server measures

the actual production caching software implemented on the de-

ployed hardware. This validation method validates only one point

on the HRC, the point that corresponds to the actual cache size of

the production server. We measured the average hit rate reported

by the production servers corresponding to the tra�c mixes in

Tables 1, 2 and 3. The results are in Table 5.

From Table 5, we see that that calculus predicts the cache hit

rate of the tra�c mixes considered with a prediction error of at

Tra�c mix Cache size

(TB)

Hit rate from

calculus, %

Hit rate from

server, %

web+download

(Table 1)

3.0 86.6 84.1

video+image

(Table 1)

3.7 37.7 39.3

Tra�c classes

in Table 2

2.0 79.9 77.4

Tra�c classes

in Table 3

3.7 68.6 67.5

Table 5: Production validation.

most 2.5% in all cases. The di�erence in hit rates is in part due to

the fact that the production servers were intermittently used to

serve small amounts of other tra�c classes by the mapping system.

Moreover, the footprint calculus models a pure LRU algorithm

while the production system has extra optimizations that we do not

currently model. The low prediction errors from our production

validation further strengthens the case for using footprint descriptor

calculus to provision caches in CDNs.

5 APPLYING FOOTPRINT DESCRIPTORS IN A
PRODUCTION CDN

In this section, we provide case studies to show how footprint

descriptors plays a key role in cache provisioning in CDNs.

5.1 Tra�c mix evaluation service
Several what-if questions arise in the process of determining the

optimal tra�c mix of tra�c classes that is served by a cache server.

A tra�c mix evaluation service can provide detailed information

about cache occupancy and hit rates when various tra�c classes

are combined together. The output of the service prevents poor

mixing choices from going into e�ect in any cache server. We used

footprint descriptors to implement the service that is currently

in use by the operations sta� at Akamai in a limited beta setting.

The service computes footprint descriptors for each tra�c class

hosted on the CDN using the techniques described in Section 4. The

service keeps a database of all the cache servers and their properties,

including the cache space available. We show how FDs are used to

answer key questions that arise in the context of tra�c mixing.

5.1.1 Estimating space requirement of a tra�ic mix. Given a set of

tra�c classes with their respective tra�c volumes, a CDN operator

might be interested in the cache capacity required by the tra�c

mix to provision servers to achieve a target hit rate. The tra�c mix

evaluation service computes the output using the following steps.

(1) The footprint descriptor of all the tra�c classes of interest

are computed e�ciently using the techniques outlined later in

Section 5.3. Each tra�c class is then scaled to the required tra�c

volume using the ⊗ described in Section 4.3.3, and added together

using the ⊕ described in Section 4.3.1, which gives the footprint

descriptor of the tra�c mix.

(2) Using Theorem 4.1, the HRC of the tra�c mix is computed

from its footprint descriptor.

(3) Given the HRC and the target hit rate h, the required cache

size s is determined such that the hit rate HRC (s ) ≥ h.
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Figure 6: Addition operation on web and download tra�c
classes in Table 1.

Validation of functionality. We consider one example, the tra�c

mix of the web and download tra�c classes in Table 1 to illustrate

the use of footprint descriptor calculus. Figure 6 shows the HRCs

of the web and download tra�c classes labeled “pre-addition", as

well as the HRC of the mix as computed by the calculus labeled

“calculated”. To validate the correctness of the HRC of the mix,

we merge the request traces for both the classes by interleaving

the requests in the ascending order of their time stamp. The HRC

derived from the merged trace using cache simulations is shown

in Figure 6, labeled “simulated”. As can be seen, the calculated and

simulated HRCs match closely with an average error of 0.13%, thus

validating that the addition algorithm works on production traces.

5.1.2 Predicting the outcome of tra�ic mixing in a given server.
For this use case, the operator provides the cache size of the server

and the tra�c classes with their respective tra�c volumes to be

mixed in that server. With this input, the service does the following:

(1) The footprint descriptors of all the tra�c classes of interest

are computed, scaled to the required tra�c volume using the ⊗

described in Section 4.3.3, and added together using the ⊕ described

in Section 4.3.1, to give the footprint descriptor of the tra�c mix.

(2) Using Theorem 4.1, the HRC of the tra�c mix is computed.

Using Equation 5, we also compute the (post-addition) HRCs of

each tra�c class in the mix.

(3) Given the total cache size and the HRC of the mix, we obtain

the hit rate of the mix. Using the total cache size and the (post-

addition) HRC of the individual tra�c classes, we obtain the hit

rates of each tra�c class in the mix.

(4) Using the post-addition hit rates of each tra�c class and their

(pre-addition) HRCs, we can obtain the cache space occupied by

each tra�c class after the addition.

Thus, our service predicts the overall cache hit rate for a given

tra�c mix, individual cache hit rates for each tra�c class after

mixing, and the cache space occupied by each tra�c class in the

cache after mixing. This information is valuable to di�erentiate

between good and poor mixes.

Validation of functionality. We continue with the above example

of mixing web and download tra�c classes described in Table 1. We

assume here that the cache server has a total cache size of 1 TB. As

Figure 7: Pre-addition and post-addition HRCs of web and
download tra�c classes in Table 1.

shown in Figure 6, the HRC labeled “web+ download(calculated)”

says that the cache will get 82% overall hit rate. The HRC labeled

“web+download(simulated)” con�rms the correctness of the value.

Figure 7 shows the pre-addition and post-addition HRCs for both

the web and download tra�c classes. Plugging in 1 TB as the cache

space, we see that within the mix, the web tra�c class gets a hit

rate of 80.5%, while the download tra�c class gets a hit rate of 84%.

Now, performing a reverse lookup for these hit rates in the original

HRCs for these two tra�c classes in Figure 7, we see that the web

tra�c class occupies 300 GB in cache, while the download tra�c

class occupies the remaining 700 GB.

5.1.3 Spli�ing domains in a tra�ic class. A tra�c class consists

of user requests for content hosted on a speci�c set of domains.

Often, domains need to be removed from tra�c classes to achieve

better load balancing. In such situations, it is important to predict

how the caching characteristics of the tra�c class would change if

some domains are removed. This prediction can be performed using

the subtraction operator 	 described in Section 4.3.2. We �rst collect

the traces for the domains to be removed from the original tra�c

class, and we compute the footprint descriptor for the resulting

tra�c class using the subtraction operation. The resultant footprint

descriptor can be used to compute the hit rates after the split.

Validation of functionality. We plot the results of this operation

in Figure 8. Note that the x-axis has been truncated for clarity of

presentation. In this instance, we want to remove a certain set

of domains from the video tra�c class in Table 1. In Figure 8,

video_complete indicates the hit rate curve for the entire tra�c

class, video_set2(calculated) is the hit rate curve of the remain-

ing domains when video_set1 is removed. video_set2(simulated)

is the hit rate curve of video_set2 computed via cache simula-

tions. We see that video_set2(calculated) compares very well with

video_set2(simulated), with an average error of 0.05%, con�rming

that 	 works well on production traces as well.

5.2 Hit rate targets with cache partitioning
In many situations, it is necessary to guarantee a certain hit rate

performance for a subset of tra�c classes in a tra�c mix, while
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Figure 8: Subtracting a subset of domains from the video traf-
�c class in Table 1.

ensuring that the tra�c mix does well overall. The tra�c mix evalu-

ation service uses cache partitioning to ensure that each tra�c class

meets its target hit rate while making the best use of the remaining

cache space to maximize the overall cache hit rate.

The aims of cache partitioning are twofold: (1) ensure that each

tra�c class gets at least its requisite cache space, and (2) any leftover

space is assigned appropriately to the tra�c classes, so that the hit

rate of the cache as a whole is maximized.

The �rst aim is achieved using our calculus as follows: (1) Using

Theorem 4.1, HRCs are computed from the footprint descriptor for

all tra�c classes; (2) A reverse lookup is performed on the HRCs,

to get the cache size needed for the given target hit rate. This is the

requisite partition size for each tra�c class.

Towards the second aim, the leftover cache space is divided into

a number of smaller blocks. Each block is added incrementally to

the tra�c classes, using the following method: (1) Compute the

tra�c-weighted �rst derivative of the HRC of each tra�c class at

the point where size of the cache is equal to its current partition

size; (2) Identify the tra�c class with the highest value of this �rst

derivative. This class can provide the most bene�t in cache hit rates

if it is given the block being considered; (3) Assign the block to the

class with the highest derivative, and increase its partition size.

All the remaining cache space is assigned to tra�c classes in this

way. The resulting partition of cache space maximizes the server’s

cache hit rate, while meeting the hit rate targets of the individual

tra�c classes. Once the partition sizes are determined, the partitions

are implemented as separate virtual LRU caches within the given

server. The method of allocating leftover cache space is similar to

the utility maximization approach described in [20] where the �rst

derivative of the HRC is the utility function.

Validation of functionality. We continue with our example of

mixing web and download tra�c classes from Table 1. We assume

here that the cache server has a total cache size of 1 TB. First we

consider targets of 85% hit rates to both the tra�c classes. The (post-

addition) HRCs for the individual tra�c classes suggest that neither

class can achieve this hit rate, since the cache space available is 1

TB. Thus, partitioning to achieve 85% hit rate is infeasible. Next,

we consider a hit rate target of 83% for the web class and 75% to the

1 2 N-­‐1 N.  .  .  .

+ +

+ +

+

Footprint  descriptor  of  input  sequence

Input  sequence

N  object-­disjoint  sequences

N  footprint  descriptors

REDUCE

MAP

Figure 9: Map-reduce framework to parallelize footprint de-
scriptor computation.

download class. These targets are chosen to illustrate how footprint

descriptors can be used for cache partitioning. A reverse lookup of

hit rate in Figure 6 shows that the requisite cache spaces for the

web and download classes are 625 GB and 125 GB, respectively.

This leaves 250 GB of available cache space unassigned to either

class. The �rst derivative method [20] is used to determine the

assignment of the leftover 250 GB, and it assigns all of it to the

download class. Thus, the 1 TB cache is partitioned into 625 GB

and 375 GB partitions. The hit rate of the web class meets its target

of 83%, while the download class achieves a better than target hit

rate of 82.5%. As observed in [20], cache partitioning can be used

to improve the overall cache hit rate when multiple tra�c classes

share the cache space. Indeed the cache hit rate after mixing the web

and download tra�c classes increases from 82% without explicit

partitioning to 83% with partitioning.

5.3 Parallelizing the computation of FDs
Before footprint descriptors can be used in operational decision

making as illustrated in previous sections, they need to be com-

puted from request sequences. Typically, request sequences over

observation periods of a couple of days to a week are processed to

compute footprint descriptors. These sequences may contain over

a billion distinct URLs. Such industrial-strength computation is a

heavyweight proposition both in terms of memory and CPU cycles.

We develop a novel map-reduce-based framework that uses the ⊕

operation of our calculus to parallelize the computation of footprint

descriptors for large request sequences. The procedure is below.

Map phase. Split the input request sequence into N smaller request

sequences that share no objects between them. We accomplish this

by hashing the URL of each request into N buckets, each bucket

representing a smaller request sequence.

Reduce phase. Compute the footprint descriptors of the N smaller

sequences in parallel. Using ⊕, add the footprint descriptors for the

smaller sequences in parallel, until we are left with one footprint

descriptor. This is the footprint descriptor of the input stream.

The complete framework is shown in Figure 9 where, ⊕ is the ad-

dition algorithm described in Section 4.3.1. The reduce phase begins

by computing the footprint descriptors for the N object-disjoint
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smaller sequences (the N leaves) and adding them in parallel, bot-

tom up, until we obtain the footprint descriptor of the original

input sequence which is the root of the tree. This framework paral-

lelizes a seemingly serial process and can speed up computation

that increases nearly linearly in the number of compute nodes.

Validation. We implement this parallel footprint descriptor com-

putation algorithm in Amazon EMR [1]. We run map-reduce jobs in

a cluster with up to 32 nodes. We use m3.xlarge machines in all ex-

periments. The reported time is the elapsed time of the map-reduce

job recorded by the cluster.

To evaluate the speedup due to parallelization, we use a much

larger set of production traces corresponding to a video tra�c class

collected from 29 servers over a period of 8 days. The request rate

is 1,234 req/s and the tra�c volume is 6.76 Gbps. The trace contains

227.3 million objects with an average object size of 0.7 MB.

We observe that it takes 420 minutes to compute the footprint

descriptor of the video tra�c class without parallelization and 28

minutes with a 16-way parallelization and 16 minutes with a 32

way parallelization, that is a speed up of 15 and 26.2 respectively

with no impact on the accuracy of the output.

6 RELATEDWORK
Caching has been active area of research for the past decades. We

only review the work on caching that is most closely related to our

work. Much of the closely-related prior work fall into the realm of

cache modeling and cache composition.

Cache modeling. We subdivide the relevant work on cache mod-

eling into empirical modeling based on stack distance, which is

the number of unique bytes in a request subsequence, and theo-

retical modeling that assumes certain statistical properties of the

request sequences. Stack distance-based caching models were �rst

proposed in [16]. Stack distance is useful to compute hit rate curves

that plot the cache hit rate as a function of cache size. The simple

algorithm proposed in [16] has high space and time overheads and

is infeasible for large input sequences such as those in the CDN

context. Subsequently, several time and space-e�cient algorithms

have been proposed in the literature, such as those in [3, 18, 24, 26].

However, none of the stack distance algorithms in the literature pro-
vide a calculus that allows operations such as addition, subtraction,
and scaling, a key necessary ingredient that the footprint descriptor
calculus provides for CDN cache provisioning. Several theoretical

models have been proposed to predict cache hit rates as early as

the 1970’s [11, 14]. Of particular interest is the work in [5, 9] that

relates the cache size with the cache hit rate and cache eviction

age for IRM tra�c. More recent work [7, 10] extend such ideas to

caching policies beyond LRU. In contrast, our work is focused on
modeling and predicting properties of arbitrary production workloads
of a CDN that are hard to capture with IRM-like models.
Cache composition. Cache composition has been studied in the

context of CPU caches, where applications running in multi-processor

machines share the CPU cache. More recently, cache composition

has been studied in the context of memory caches and storage sys-

tems. Analytical models have been developed to predict cache hit

rates of time-shared systems, such as those in [2, 22, 23]. These

models compute the hit rate of a shared cache in the presence of

context switching. The authors in [4] propose three cache compo-

sition models with varying degrees of accuracy that predict the

impact on cache hit rates when two non-overlapping applications

run together in the shared L2 cache. The model presented in [8] goes

one step further to characterize overlapping data in multi-threaded

programs by predicting the overlapping footprint based on how

threads interleave when running concurrently. Some other related

work [25, 27, 28] develop models that more accurately characterize

memory footprint of processes using novel sampling techniques

and derive hit rates from those footprints. A more recent work

[12] develops a kinetic model of LRU cache, based on the average

eviction time (AET). In contrast to prior work in cache composition,
we support a wider range of composition operations on tra�c classes,
including addition, subtraction and scaling. Unlike prior work, our
work is based on a theoretical sound foundation of footprint descriptor
calculus. Further, our empirical approach is focused to the speci�c
challenges in CDN cache provisioning.

7 CONCLUSIONS AND FUTUREWORK
Cache provisioning in CDNs is challenging because of the diverse

requirements imposed by diverse tra�c classes. It is also challeng-

ing due to the immense scale of the operations, both in terms of

tra�c volumes and the large network of cache servers. Footprint de-

scriptors provide a simple and elegant way of capturing the caching

properties of a tra�c class. The theory of footprint descriptor cal-

culus allows us to add, subtract, and scale tra�c classes to answer

important “what-if” questions that arise in CDN operations. The

connections to Fourier analysis that allow footprint descriptors

to be manipulated in the “frequency domain” is also of interest.

Footprint descriptors are well-suited for use in production network

operations, since as we show the prediction error is under 2.5% for

key use cases on the servers considered.

Our work also leaves several interesting open problems for fu-

ture work. We brie�y highlight two such directions. Given the

footprint descriptor of a request sequence entering a cache, can

we derive the footprint descriptor of the requests that result in a

cache miss? Such an extension will allow us to analyze a hierarchy

of caches using footprint descriptors. Another challenging problem

of immense interest is how to load balance tra�c classes across

servers or groups of servers such that the overall miss tra�c of the

tra�c mix is minimized, without overloading the servers or the

network? In this paper, we discuss how the tra�c mix evaluation

service could be used to predict the e�ects of a tra�c mix. But

this requires manual intervention by an operator. We are working

on developing optimization models based on footprint descriptor

calculus to automate the evaluation of tra�c mixes such that the

overall miss rate is minimized while the servers are load balanced.
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