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ABSTRACT
Content delivery networks (CDNs) operate hundreds of thou-
sands of servers that cache content and deliver them to users
with high performance. Each CDN server has multiple spin-
ning disks that are used for caching content. These disks
account for 40-55% of the total server energy usage of a
CDN. Reducing the energy consumption of a CDN by shut-
ting down some of the disks during off-peak hours is the
main focus of our work. The primary challenge with this ap-
proach is that shutting down disks decreases the size of the
content cache, potentially lowering the cache hit rates, and
resulting in a degradation in user-perceived performance.
Our main contribution is developing and evaluating algo-
rithms for cache sizing, disk shutdown, content placement
and eviction that allow disks to be shut down without sig-
nificantly impacting cache hit rates and user-perceived per-
formance. We empirically evaluate the energy-performance
tradeoff for our algorithms using extensive request traces
from the world’s largest CDN. We show that it is feasible to
obtain a 30% disk energy savings with a 6.5% decrease in
the normalized server hit rate and a mere 3% reduction in
the normalized cluster hit rate. This work establishes disk
shutdown as a key mechanism for energy savings in CDNs,
paving the way for its future rollout on production networks.

Keywords
Content Delivery Network, Web Caching, Energy Optimiza-
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1. INTRODUCTION
Content delivery networks (CDNs) are Internet-scale dis-

tributed systems that deploy a large number of servers around
the world to cache and serve web pages, videos, and other
content to billions of users around the world. Content providers
such as web portals, SaaS application providers, e-commerce
sites, news outlets, media companies, social networks, and
movie distribution services use CDNs to host and deliver
their content. CDNs are now ubiquitous and are key to
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the functioning of the Internet, as most of the content ac-
cessed by users are served by such networks. To provide
high performance for users accessing content, CDNs deploy
clusters of servers in hundreds of data centers located at the
“edges” of the Internet, so as to be proximal to users around
the world. For instance, Akamai’s CDN [16] deploys over
200,000 servers in over 1500 data centers around the world
and serves 15-30% of the global web traffic.

Why focus on energy reduction of CDNs? While
providing better performance in the form of fast downloads
is the primary goal of a CDN, energy minimization has be-
come critical in the past few years for two reasons. De-
ployed servers in data centers now account for more than
1.5% of the global power consumption [10], consuming more
than mid-sized countries such as Argentina, and growing
at a rapid pace commensurate with growth of the Internet.
With greater awareness of climate change, the CDN indus-
try is increasingly focused on making their systems more
sustainable. For CDNs, reducing the energy usage of server
deployments is a major part of their sustainability goals.

A second motivator for the reduction of the energy us-
age of CDN servers is the rising cost of energy. The oper-
ational expenditure (OPEX) of a CDN can be divided into
two broad categories: bandwidth cost and colocation cost.
Colocation cost is the cost of the datacenter space, racks,
the energy needed to power the servers up and cool them
down. While bandwidth costs have been the dominant fac-
tor in a CDN’s OPEX in the past, bandwidth prices have
fallen sharply each year in the past decades. The bandwidth
cost of delivering 1 MByte has fallen from $0.15 in 1998 to
$0.00005 per MB today, a drop of 1.8x per year. In stark
contrast, the cost of energy has been rising over the past
decade [2]. Due to these long-term price dynamics, coloca-
tion cost is now comparable to the bandwidth cost. The
cost structures at most data centers are such that energy
cost presently ranges between 30-50% of the total coloca-
tion cost, and is expected to only rise further in this decade.

Why focus on disk energy reduction? In each server,
there are several components that consume energy. Energy
consumed by the CPU, disks, fans, memory chips and moth-
erboard chipset account for most of the consumed energy.
CDN server models vary widely from each other. The num-
ber of disk drives per server is a model-specific parameter
and can vary from 2 to as high as 64. Across most production
server models that CDNs use, the average fraction of energy
consumption attributed to the spinning disks is estimated to
range from 40% to 55%. Therefore, disk energy represents
a sizable chunk of the CDN’s energy consumption, making

212



it the main focus of our study.
Why is disk shutdown uniquely well-suited for CDNs?

The primary mechanism to save energy that we explore in
our work is disk shutdown. For hard disks, the two nat-
ural options for energy reduction are shutting down disks
entirely or reducing their rotational speed, the former pro-
viding more drastic energy reduction than the latter. In
most IT systems, disks store original data that could be
accessed at any time and shutting down disks means that
the data is completely unavailable, an unacceptable outcome
that must be avoided at all costs. In fact, most server soft-
ware would need to be re-designed significantly to handle
the unavailability of data from disk shutdowns. Therefore,
disk shutdown has seldom been explored or implemented in
industry. However, disk shutdown is a viable energy sav-
ing mechanism for a CDN because the disk cache of a CDN
server only stores a copy of the content that is stored per-
sistently at the content provider’s origin servers. Thus, the
unavailability of a cached copy is easily rectified by retriev-
ing it from a peer server or origin. While this causes perfor-
mance degradation for the user, it is less severe than content
unavailability. Thus, if disk shutdown provides significant
energy saving in exchange for a small performance degrada-
tion, that is an interesting possibility from the stand point
of a CDN operator. Our work is focused on understanding
this energy-performance tradeoff, allowing a CDN operator
to choose an acceptable operating regime in that tradeoff.

Why not shutdown the entire server? A complemen-
tary approach studied in the literature is turning off servers
entirely [5, 18, 11, 12, 14]. However, turning off servers has
the disadvantage of complicating network management in a
global CDN. If servers are unreachable for extended periods
of time, they miss real-time reporting, software updates and
control messages for that duration. This may upend net-
work management guarantees and operational practices of
the CDN platform. Thus, shutting down disks as proposed
here, while the servers are live and serving content, repre-
sents an attractive complimentary option worth exploring.

What are the challenges in shutting down disks
in a CDN? An important determinant of user-perceived
performance is the cache hit rate which we define as the
percentage of content bytes served to users from the server’s
cache, as opposed to being retrieved from a peer server or
the origin1. When disks are shut down, the content stored
on them become unavailable, leading to a decrease in the
cache hit rate. To scope out the impact of disk shutdown on
performance, we first implemented a simple baseline scheme
that shuts down disks in proportion to the disk load, e.g.,
when the disks are loaded at x% of its I/O capacity, we
turn off roughly x% of the disks chosen at random. The
baseline scheme was tested on a simulated CDN server with
traffic logs from a live server in the Akamai CDN. Figure 1
shows the hit rate for a server with the baseline disk shut-
down algorithm (labeled Load/Random/LRU) in comparison
with hit rate for the same server when all disks on (labeled
NOOFF). The observed 15-20% drop in cache hit rate with
disk shutdown would be unpalatable to the CDN operator
for performance reasons, even if the energy savings were sig-
nificant. Our main challenge is to evolve algorithms that are
smarter than the baseline scheme, so that the performance

1This metric is also called the byte hit rate. A similar alter-
nate metric used in the literature is object hit rate which is
the percentage of requests that are served from cache.

Figure 1: Hit rate decreases significantly when disks
are shutdown using a simple baseline scheme.

penalty incurred to obtain energy savings is not steep.

1.1 Our contributions
The main contribution of our work is to show that un-

like most enterprise class servers, CDN servers are able to
save energy through disk shutdown without major software
redesign or major performance degradation. We develop
energy-efficient cache management schemes to address three
key questions.

- Cache sizing. How large a disk cache does a server
need to hold the “working set” of the content that is
being accessed by users?

- Disk shutdown. Which disks must be shut down (or
woken up) to realize the cache size that is required?

- Content placement & eviction. Where should content
be placed and what is to be evicted if the cache is full?

For each of the above questions, we explore simple and
implementable algorithms to understand their impact on
both energy savings and cache hit rates. Using extensive
traces from Akamai’s CDN servers, we derive the energy-
performance tradeoff for our algorithms. As shown in Fig-
ure 2, our algorithms achieve significant energy savings while
incurring only a modest degradation in performance. For in-
stance, our algorithms achieve a 30% energy reduction with
only a 3% reduction in the normalized cluster hit rate and
6.5% reduction in the normalized server hit rate.

A key reason behind the effectiveness of our algorithms
lies in the very nature of how content on the Internet is
accessed by users. As shown in Figure 3, of the 25 million
objects accessed on an Akamai CDN server over a period of
9 days, over 16 million were “one-hit-wonders” accessed only
once! In fact, only 6.6% of the objects were accessed more
than 10 times over the 9-day span. Further, as shown in
Figure 6, 80% of the requests are for 1% of the objects. Our
algorithms migrate the more popular content to a subset of
disks within the server, allowing the other disks to be shut
down. As long as our algorithms place at least one copy of
the small fraction of popular objects on an active disk, the
loss of the remaining “long tail” of less popular content due
to disk shutdown has only a modest impact on hit rates.

In summary, our work is the first to establish disk shut-
down as a key mechanism for energy savings in CDNs, paving
the way for its future roll-out on the production network.
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Figure 2: Energy-Performance tradeoff: significant
energy reduction is possible by judiciously shutting
down disks with only a modest reduction in hit rates.

Figure 3: Popularity of content accessed by users on
a CDN server.

1.2 Roadmap
The rest of the paper is organized as follows. We review

background information, describe the data sets, and provide
an overview of the simulator used in our empirical work in
Section 2. Then, in Section 3, we describe the typical cache
management function of the edge-server, and how we modify
it to be energy efficient. The three main components of en-
ergy efficient cache management are cache sizing algorithm,
disk shutdown algorithm, and content placement and evic-
tion algorithm. We describe and evaluate the performance
of these components in Sections 4, 5, and 6 respectively. The
evaluation is performed in the context of the hit rate of a
single server. In Section 7, we evaluate the different cache
management schemes in the context of a cluster of servers
and show how the hit rates for an entire cluster differ from
that of individual servers. Finally, we review related work
in Section 8 before concluding in Section 9.

2. BACKGROUND AND METHODOLOGY
We introduce the basics of CDN architecture in brief. A

key component of a CDN server is its content cache that
stores content in its disks and serves it to users. When

a user accesses an object2 such as a web page or a video
hosted by the CDN, the CDN’s mapping system directs the
user to a server that is “nearby” in the network sense (cf.
Figure 4). If the content requested by the user is in the
server’s cache (i.e. a “cache hit”), then the user experiences
superior performance in the form of a fast download of the
content. However, if the content is not to be found in the
cache (i.e. a “cache miss”), then the server requests the
content from “peer”’ servers that are deployed in the same
server cluster. If the content is found in one of the peer server
caches, then it is fetched from that peer server and then
served to the user. If requested content is found in either
the server itself or its peer, we call that a “cluster hit”. If
the requested content is not found in either the chosen server
or its peers, i.e., a cluster miss, then the content is fetched
from a remote origin location that is operated by the content
provider, and served to the requesting user. The server also
caches the content that it fetched from the origin. The origin
stores the original copy of all the published content.

When a user’s request results in a cluster hit, the response
time for serving the object is not as good as a cache hit due
to the additional overhead of fetching the content from a
peer. The latency of content fetch between peer servers is
fast and is of the order of several hundred microseconds,
while fetching content from the origin over the WAN is slow
and could add hundreds of milliseconds of latency to each
download. Cluster hit is therefore still desirable, and an
origin fetch is the least desirable.

The two main metrics of performance we consider in this
work are the hit rate3 which is percentage content bytes
served to users directly from the server cache and the cluster
hit rate which is the percentage of content bytes served to
users from the cache of either the server or one of its peers
within the same data center.

Figure 4: Content is served from the cache of the
CDN server, from one of its peers within the same
datacenter, or from the content provider’s origin.

2.1 Content request traces
The extensive data set used in this paper was collected

from one of the server clusters in Akamai’s commercially-
deployed CDN. The data set contains anonymized access
logs for content requested by users. Each log line corre-
sponds to a single request and contains a timestamp, the
requested URL (anonymized), object size, and bytes served
for the request. The access logs were collected over a period
of 9 days from a cluster containing 5 CDN servers. Each
server has a disk configuration that is typical for deployed

2We use the term object for pieces of content that users
access using an URL.
3We also use the term server hit rate when it is necessary
to distinguish it from cluster hit rate.
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Figure 5: Content traffic served to users from our
cluster (in Gbps), averaged hourly.

CDN servers: 8 spinning disks with a capacity of 600GB
each with a content cache. We chose a busier cluster for our
analysis to provide a conservative bound on the energy sav-
ings. Disk load is a function4 of the number and the amount
of read and write I/O operations that are being performed
on the disk and is expressed as a fraction of its I/O capac-
ity5. The average disk load of the servers in our cluster
was 39.4% of capacity, this average includes both peak and
off-peak periods. The average disk load of a typical CDN
server cluster tends to be lower than 20%, and is likely to
provide an even greater opportunity for energy savings from
disk shutdown. The traffic served in Gbps captured in our
data set is shown in Figure 5. We can see that the cluster
has a short off-peak duration of about 6 hours each day.

Total requests 3 billion
Total bytes served 429 TB
Total distinct objects 162 million
Total distinct bytes served 67 TB

Table 1: Characteristics of content access data for
the Akamai cluster.

Table 1 lists some of the characteristics of the content
request traces used in this work. As shown in Figure 3, the
content popularity distribution exhibits a “long tail” with
nearly 70% of the objects accessed only once. Further, as in
Figure 6, 80% of the requests are for 1% of the objects.

2.2 Cache simulator for disk shutdown
We evaluate our algorithms using a custom event-driven

simulator. This simulator simulates all the necessary hard-
ware and functional details of an CDN server as shown in
Figure 7. The simulator mimics the content placement and
eviction algorithms used by the live CDN servers. Every
incoming request is placed on one of the disks and existing
content is evicted from disks when necessary. In addition to
the above fundamental functionality, the simulator imple-
ments new architectural components, the cache sizing and

4See linux utility iostat for a description of how disk load is
computed[1].
5We conservatively use 80% of the hardware-rated I/O ca-
pacity as our available I/O capacity in our experiments.

Figure 6: A large fraction of the requests are for a
small fraction of the objects.

Figure 7: The architectural components of a content
cache that uses disk shutdown.

disk shutdown components. These components do not exist
presently in the live production CDN servers. The cache siz-
ing component estimates the number of active disks needed
to store the working set of content that is currently being ac-
cessed by users. The disk shutdown component chooses the
precise set of disks to be shutdown or woken up. For each
of these components, we implement multiple algorithms de-
scribed in Table 2 in Section 3. The simulator also carefully
tracks the I/O request rates that every disk receives. It
plugs these I/O request statistics into the disk power model
outlined in Appendix A to compute per-disk, per-server and
cluster-wide energy consumption.

From the configuration provided, the simulator constructs
the multi-layer cache hierarchy within each server: a num-
ber of simulated disks of the given size, the filesystem buffer
cache, and the web-server software’s hot-object memory cache.
In addition to a single-server environment, the simulator is
also able to create a cluster of servers. In this mode, it
mimics the Internet Cache Protocol (ICP)-based [20] intra-
cluster content sharing among all the servers of a cluster,
same as the mechanism used in production servers. As its
input, it accepts content access logs from live CDN servers
in production network. It periodically outputs a rich set
of metrics such as traffic volumes, cache hit rates (broken
down into the hit-rate seen at every cache hierarchy layer
within the server and cluster hit rates when ICP is used).
The simulator was validated by replaying 9 days of a produc-
tion cluster’s logs and matching the simulator output metrics
with the production cluster’s traffic and hit rate statistics.
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Cache Disk Content
Sizing Shutdown Placement & Eviction

Hybrid

(Load�

&
storage
based)

Random� LRU�

(Random placement & LRU)
Fixed SLRU

(Segmented placement & LRU)
LRU-DS

LRU-ordered disk shutdown

Table 2: Algorithms for energy-efficient cache man-
agement. The starred algorithms are simple options
that we use as a baseline that we improve upon.

3. CACHE MANAGEMENT SCHEMES
We describe the cache management schemes that we pro-

pose, implement, and study in our work.

3.1 A typical algorithm without disk shutdown
We describe a typical cache management scheme that is

often used by CDNs that we call NOOFF. NOOFF does not
shutdown disks and hence performs only content placement
and eviction. Each server has multiple disks. Each requested
object that is not already in cache is placed on a randomly-
selected disk so that load and space utilization are uniform
across all disks. The entire cache space is part of one single
Least-Recently-Used (LRU) stack. Eviction occurs when the
cache is more than 95% full, at which time ∼5% of the least
recently used bytes are evicted from cache.

We implement NOOFF to assess the hit rates that current
CDN servers achieve when no energy savings are in place and
no disks are shutdown. The hit rates of the algorithms we
propose for disk energy reduction must be viewed in relation
to the hit rate of NOOFF. The decrease in the hit rate of
an energy-efficient algorithm in comparison to NOOFF is the
performance penalty that is paid in exchange for the energy
savings. In particular, for our energy-efficient algorithms, we
compute the normalized hit rate which is simply the ratio of
the algorithm’s hit rate and that of NOOFF.

3.2 Energy-efficient cache management
Besides content placement and eviction, our energy-efficient

cache management schemes incorporate two other compo-
nents (see Table 2). A cache sizing algorithm determines
the number of active disks required for storing and serving
the current working set of content that is being accessed by
users. We describe our cache sizing algorithm, Hybrid, in
Section 4. Once cache sizing sets a target number of active
disks, a disk shutdown algorithm chooses the precise set of
disks that must be shutdown or woken up. We study two
algorithms, Random and Fixed, that we describe in Section 5.
Finally, we study content placement and eviction algorithms
and compare the baseline scheme of LRU with a sophisticated
scheme of segmented placement and LRU (SLRU) as shown
in Table 2.

In the rest of the paper, we represent our energy-efficient
cache management solutions as a triple, specifying what al-
gorithm was used for cache sizing, disk shutdown, and con-
tent placement & eviction. We start out with the sim-
ple baseline solution of Load/Random/LRU whose poor hit
rate performance we outlined earlier Figure 1. We progres-
sively improve each of the three algorithms to show that Hy-
brid/Fixed/SLRU outperforms other combinations and pro-

vides the excellent energy-performance tradeoffs that we out-
lined earlier in Figure 2.

3.3 An ideal energy-efficient variant of LRU
LRU is known to be an effective technique for content

eviction, variants of which are implemented in most real-
world CDNs. We propose a simple extension of LRU to
incorporate disk shutdown which we call LRU-ordered disk
shut down (LRU-DS). LRU-DS keeps content on disk as per
the LRU ordering, i.e., the content on disk i + 1 is less re-
cently used than the content on disk i for all 1 ≤ i < n.
When the cache sizing algorithm requires k disks to be shut
down, LRU-DS marks the k lowered numbered disks as being
inactive, i.e., the ones with content that was least recently
used are marked inactive. Likewise, when k disks need to
be woken up, the higher numbered disks are marked active,
i.e., the disks that have the more recently accessed content
are marked active. If a requested object is present on a disk
that is marked active, that request is considered a cache hit.
If a requested object is not present or if it is present only on
an inactive disk, that request is deemed a cache miss.

Note that LRU-DS is not an implementable algorithm as
it requires the content on both active and inactive disks to
be always ordered in an LRU fashion. It is not possible to
maintain that property since inactive disks cannot be read
or written into. However, LRU-DS in combination with a
cache sizing algorithm such as Hybrid provides an idealized
upper bound on hit rates that our algorithms can attempt
to reach. For this reason, we plot the energy-performance
tradeoff of Hybrid/LRU-DS as a point of comparison to the
tradeoff achieved by our algorithms, though the former may
not be achievable by any implementable algorithm.

4. CACHE SIZING ALGORITHMS
A cache sizing algorithm determines how many active

disks are required for storing and serving the current working
set of content that is being accessed by users. The number of
disks that need to be active depends on the current incoming
requests for content, i.e., potentially more active disks are
required when large volumes of content are being accessed
than during periods when access volumes are smaller.

A cache sizing algorithm must consider two different types
of resource constraints. First, each disk has an I/O capac-
ity that determines the number of input/output operations
(IOPS) that it can sustain. We define disk load demand L as
the amount of disk IOPS required to serve the incoming con-
tent requests, expressed in the units of the maximum IOPS
that a single disk can support. For instance, if L = 6.5, then
the number of IOPS that need to be supported is 6.5 times
that of the IOPS of a single disk. Thus, we need to have
at least �L� active disks to serve the content requests, since
otherwise the load of some active disk will exceed 100%,
resulting in very slow response times for retrieving content
from disk. A second constraint is the disk storage capac-
ity that dictates how much content you can store in the
disk. Shutting down too many disks results in a decrease in
the active disk storage capacity, resulting in an increase in
cache misses, leading to poor performance. The goal of the
cache sizing algorithm is to determine the number of active
disks, taking into consideration both disk I/O and storage
constraints.

As shown in Figure 8, our cache-sizing algorithm takes
as input the disk load demand L that needs to be supported
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Figure 8: The Hybrid cache-sizing algorithm.

by the active disks and a target hit rate HRtarget that must
be sustained and computes the number of disks that must
stay active. We call our algorithm “Hybrid” as it uses two
different estimators, a load-based cache size estimator and a
storage-based cache size estimator, and takes the maximum
of these two estimates.We describe each estimator in turn.

Load-based cache size estimator. Load-based sizing
determines the number of active disks using the disk load
demand L that must be supported to serve the incoming
content requests. Specifically, it estimates that �L� disks
need to be active. In our trace-based simulations, at time t,
we record the average disk load xt% of a CDN server with
n (active) disks and estimate the disk load demand L to
equal xt

100
· n. To provide more stability to the algorithm,

the average disk load xt is computed as the average of the
instantaneous disk load values for all the disks during the
time interval [t− τl, t]. Note that the choice of τl presents a
recency-stability tradeoff, smaller values of τl could lead to
more recent but spiky estimates, and larger τl could lead to
less recent but more stable estimates.

Storage-based cache size estimator. Storage-based
cache sizing uses the recent content access sequence to pre-
dict how much cache storage is required to achieve a target
cache hit rate HRtarget. It performs the following two steps.
i) Compute the hit rate curve (HRC). The HRC relates

cache size with hit rate. Figure 9 shows an example HRC
computed for a segment of our CDN content access trace.
Given a request sequence R = 〈r1, r2, · · · , rn〉, we first com-
pute a metric we call stack size si for each request ri, 1 ≤
i ≤ n. Stack size is a measure of temporal locality of the
requested content and is a variant of the classical notion of
stack distance [15]. If the object requested by ri was never
requested before, its stack size si is infinite. Otherwise, let j
be the largest integer such that j < i and rj is a request for
the same object as ri, i.e., rj is the previous request for the
same object as ri. The stack size of ri is simply the number
of unique bytes accessed in the request sequence 〈rj , · · · ri〉.
The hit rate for request sequence R and cache size C is com-
puted by assuming that every request r ∈ R that has stack
size less than or equal to C is a cache hit and every request
r′ ∈ R that has stack distance greater than C is a cache
miss. This computation is repeated for different values of
C to obtain the HRC. A keen reader will note that HRC is
the hit rate achieved on request sequence R by an idealized
cache of size C that is maintained in LRU order.

ii) Given a target hit rate HRtarget, estimate the number
of active disks required to achieve that target using the HRC.
The timeline is divided into segments of length of τhrc hours.
At the end of each time segment, a new HRC is computed by

setting the request sequence R to be all the requests received
in that segment. The choice of τhrc presents a tradeoff.
Larger τhrc records more history but varies slowly with time
and smaller τhrc records lesser history but is more sensitive
to time-varying traffic. The variability in input traffic can
be used to decide a suitable value for τhrc.

Once the HRC is computed, the “ideal” cache size esti-
mate Cideal is the value that corresponds to HRtarget in
the HRC (cf. Figure 9). One key aspect of our algorithms
not modeled by the idealized LRU cache is that multiple
copies of the same object may be stored on a server, albeit
the copies must appear on different disks within the server.
Such object replication occurs when an object stored in a
currently inactive disk is accessed by a user, resulting in a
new copy being created on an active disk. When the first
disk becomes active again, we may end up with multiple
copies of an object in the active disks. The degree of object
replication depends on the algorithms being used for disk
shutdown. To account for this replication, we compute a
replication factor ρ which is simply the actual total bytes
currently in cache divided by the total unique bytes. The
required cache size C is set to be equal to ρ · Cideal. Thus,
the number of active disks is min{�C/Cs�, n} disks, where
Cs is the storage capacity of a single disk and n is the total
number of disks in the server.

Example. Suppose that HRtarget = 75% and the HRC
is as shown in Figure 9. Cideal is 3000GB requiring 5 active
disks of 600 GB each. If ρ = 1.15, then C = 3450GB, requir-
ing an additional disk to account for the replication. Our
storage-based sizing algorithm recommends 6 active disks.

Cideal

HRtarget

Figure 9: Hit rate curve (HRC) shows the relation
between cache size and hit rate.

After the load-based and storage-based cache size esti-
mates have been determined, our Hybrid algorithm com-
putes the maximum of the two estimates to satisfy both the
load and storage constraints.

4.1 Performance evaluation
We evaluate the performance of our cache sizing algorithm

Hybrid, with two other algorithms Load that uses only a
load-based cache size estimator and Storage that uses only
a storage-based cache size estimator. We use baseline al-
gorithm of Random for disk shutdown and LRU for content
placement & eviction (cf., Table 2), i.e., we pick the disks to
be shut down (or woken up) randomly and we place new ob-
jects on a random disk and use LRU eviction when the cache
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is full. We evaluate all three sizing algorithms and NOOFF us-
ing our Akamai content access traces for a CDN server that
had n = 8 disks, each disk having capacity Cs = 600GB.
We use τl = 60s in the simulations. We set τhrc = 6 hrs
to account for the day/night variations in the traffic and we
set HRtarget to equal the current hit rate of NOOFF.
In Figure 10, we see that Load/Random/LRU has an av-

erage hit rate that is nearly 15% lower than NOOFF, since
the load-based scheme underestimates the needs for cache
space and turns off more disks than it should during off-
peak hours when the incoming content request volume is
low. The load-based scheme keeps only ∼2 disks (out of the
8) active during off peak hours, leading to a higher rate of
eviction. Eviction age, which is the average amount of time
that an object spends in cache before being evicted, also tells
a similar story. Eviction age for the load-based cache siz-
ing scheme was ∼2.5 times lower than that of NOOFF. Thus,

Figure 10: Comparing the hit rate performance of
the different cache sizing algorithms with the hit
rate of NOOFF that does not shutdown disks.

a load-based scheme alone does not provide good hit rate
performance, since cache sizing also depends on the actual
content access patterns that cause a given disk load. For
instance, if the disk load was caused by very few popular
objects in cache, that implies that a smaller cache size with
fewer active disks is sufficient. However, if the same disk
load was distributed over a large number of less popular ob-
jects, more active disks are required to hold the working set.
Thus, we must consider the actual content access patterns
to determine the number of active disks.

In Figure 10, note that the Hybrid/Random/LRU has a
higher cache hit rate when compared to Load/Random/LRU,
since Hybrid also accounts for the storage constraints. But,
the cache hit rate of the Hybrid/Random/LRU is still ∼3%
lower than the ideal target hit rate that was set to equal
NOOFF. This discrepancy is in part due to the inefficiency of
random disk shutdown that could make frequently accessed
objects in the randomly-selected disks inactive. To remove
this effect, we compare the performance of Hybrid/LRU-DS
with NOOFF. We see that Hybrid/LRU-DS has a hit rate per-
formance that is ∼1.5% less than NOOFF. This small differ-
ence indicates that Hybrid is a good cache sizing algorithms
that is able to closely match the target hitrate of NOOFF.

What about storage-based only cache sizing? The
hit rate of storage-based cache sizing, Storage/Random/LRU,

is nearly the same as using Hybrid/Random/LRU as shown in
Figure 10. However, the former has the drawback of occa-

Figure 11: The storage-based cache sizing algorithm
occassionally overloads the disks, since it does not
factor in disk load. This deficiency can be corrected
with a hybrid scheme.

sionally overloading the disks. The disk load occasionally
goes over the 100% mark as highlighted in Figure 11. To
avoid such overloading, the hybrid cache sizing algorithm
proposed above should be used to account for both the load
and storage constraints of the server disks.

Concluding Remark. The Hybrid algorithm works the
best for cache sizing and we use this algorithm as the default
option in all our future experiments where we investigate
disk shutdown, content placement, and eviction algorithms.

5. DISK SHUTDOWN ALGORITHMS
Once the cache sizing algorithm outputs a target number

of disks that need to be active, the disk shutdown algo-
rithm decides precisely which disks should be shutdown (or
woken up) to meet that target. Let dcountt be the num-
ber of active disks at time t and suppose that the cache
sizing algorithm produces a target dtargett of active disks.
Then, if dtargett > dcountt, the disk shutdown algorithm
wakes up |D| = dtargett − dcountt disks, where the set
D is the set of all disks that need to be woken up, and
if dtargett < dcountt, the disk shutdown algorithm shuts
down |D| = dcountt −dtargett disks, where the set D is the
set of all disks to be shutdown. There are a number of ways
in which the set of disks D can be chosen and we review two
shutdown algorithms below.

1) Random disk shutdown. Algorithm Random is a simple
baseline scheme where the required number of disks to be
shut down (resp., woken up) are randomly selected from
among the active (resp. inactive) disks.

2) Fixed disk shutdown. The disks are ordered in sequence
from 1 through n. Algorithm Fixed shuts down disks in the
increasing order starting from 1, i.e., if k disks are to be
made inactive the disks 1 to k are shut down. When the
disks are made active, they are woken up in the decreasing
order, i.e., disk k is woken up, followed by k − 1, and so on
till disk 1.

The objects may get replicated on two or more disks within
the same server in both shutdown schemes. If an object that
is currently accessed is on an inactive disk, a new copy is
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made on an active disk. When both disks are active at a
later time, we have more than one copy of the object.

5.1 Performance evaluation
We empirically evaluate the algorithms Random and Fixed

by simulating them on the CDN content request traces. In
particular, we use Hybrid for cache sizing and the baseline
content placement & eviction algorithm of LRU with our
two shutdown algorithms. We also compare the energy-
performance tradeoff of these two algorithms with that of
the idealized algorithm LRU-DS described in Section 3.3.

To explore different ranges for the energy-performance
tradeoff, we use an internal disk shutdown aggressiveness
knob. The knob lowers the hitrate target HRtarget given to
the cache sizing algorithm with respect to NOOFF, and con-
trols how aggressively that algorithm turns disks off to save
energy. In order to plot the tradeoff curve between energy
savings and the corresponding hit rates, we run the simula-
tion five times, each time with a higher agressiveness than
the previous run. In each run, the hitrate target HRtarget is
lowered in steps of 5%. This creates five scenarios of gradu-
ally increasing energy savings.

In Figure 12, we plot the energy-performance tradeoff for
algorithms Random and Fixed. For comparison, we also plot
the tradeoff for the idealized algorithm LRU-DS. Note that an
algorithm that provides a larger hit rate for a given reduction
in energy can be deemed to be better. We see that Fixed

offers a better energy-performance tradeoff when compared
to Random. For instance, for a 30% energy reduction, Random
has a 88% normalized hit rate, while Fixed has a larger
normalized hit rate of 91.5%. (Recall that normalized hit
rate is the actual hit rate divided by the hit rate of NOOFF.)

The reasons for the superior hit rate performance of Fixed
in comparison with Random are two-fold.

1) As noted in Figure 6, 80% of requests are for a small
fraction of 1% of popular objects. In the case of Fixed, the
popular objects that get accessed throughout the day tend
to get replicated on higher disks that are seldom ever shut-
down. Thus, popular objects that account for almost all
of the user requests are eventually always available on an
active higher disk in cache, even when the lower disks are
shutdown. However, in the case of Random, there is a proba-
bility that copies of popular objects are made inactive, since
the disks are shutdown randomly, generating cache misses
for future requests for them.

2) Random also has a greater replication factor ρ than
Fixed. The reason is that when Fixed replicates an ob-
ject to a higher disk, more copies are not likely to be needed
since that copy is likely to be available at all times. How-
ever, Random could continue to make more copies with some
probability, since the existing copies could be made inac-
tive by the random choice of disks for shutdown. Figure 13,
shows the higher replication factor for Random in comparison
with Fixed, for all five settings of the disk shutdown aggres-
siveness knob. Higher replication factor means that fewer
unique objects are stored for a given cache size, resulting in
a less efficient use of the cache space.

Figure 12 also plots the tradeoff for the LRU-DS that shows
tradeoff that is better than fixed, for instance, a 30% energy
savings can be had with a hit rate of 96%. This suggests that
further improvements are possible, motivating our quest for
better content placement & eviction algorithms in Section 6.

Concluding Remark. Fixed disk shutdown algorithm

Figure 12: Fixed disk shutdown provides a better
energy-performance tradeoff than Random shutdown.

Figure 13: Fixed replicates content less than random

resulting in a more efficient use of the cache space.

should be used to select disks that need to be switched on
and off since it offers a better energy-performance tradeoff.
We use Fixed as our default disk shutdown algorithm in our
experimental results in the future sections.

6. CONTENT PLACEMENT & EVICTION
Cache management schemes comprise content placement

algorithms and eviction algorithms that work together to
manage the objects in cache. The cache sizing algorithms
and the disk shutdown algorithms described in Sections 4
and 5 control the number of disks, and the actual disks that
are shutdown; but they have no control over the placement
of objects on those disks. Content placement algorithms
choose one among all the active disks in a server, to place
the requested object on. Content eviction algorithms select
the objects to be evicted from active disks to make space for
new ones. In this section, we describe two algorithms below
for content placement and eviction. We assume that Hybrid
sizing and Fixed shutdown are used with the two algorithms
studied in this section.

1) Random object placement with LRU eviction (LRU).
LRU is a baseline scheme and all the algorithms evaluated
in the Section 5 used LRU. Each requested object is placed
on a randomly selected active disk. All objects are part of
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one LRU stack. During eviction, the least recently accessed
objects on active disks are evicted until enough cache space
is reclaimed.

2) Segmented placement and LRU (SLRU). LRU is oblivi-
ous to the fixed order in which disks are shutdown. SLRU

avoids the drawbacks of LRU by placing more popular ob-
jects on higher numbered disks that are less likely to be
shutdown. Specifically, SLRU divides the cache space into k
equally sized segments, where segment 1 contains the least
popular objects and segment k contains the most popular
objects. Every incoming object is first placed in segment
1. Each subsequent request for that object migrates it one
segment up, until it reaches segment k. Objects in each seg-
ment are evicted independently using the LRU eviction pol-
icy. Hence, we have k LRU stacks, one for each segment. In
this work, we assume that that the maximum number of seg-
ments in a cache is the number of disks in the server, k ≤ n.
Since the available cache space in the server is reduced or
increased at the granularity of a disk, k > n provides no
benefit from the perspective of disk energy savings.

6.1 Performance evaluation
We empirically evaluated the hit rate performance of LRU

and SLRU by performing simulations using the CDN con-
tent request traces. In particular, as we experiment with
LRU and SLRU, we use Hybrid and Fixed as the cache sizing
and disk shutdown algorithms respectively. To explore dif-
ferent ranges for the energy-performance tradeoff, we used
5 different settings for disk shutdown aggressiveness knob
as before. Recall that for higher values of the knob, Hybrid
cache sizing will lower the target hit rate HRtarget, resulting
in fewer disks being active, saving more energy. As in prior
experiments, we set τl = 60s, τhrc = 6 hrs. Further, we
simulate the simplest form of SLRU that has k = 2 segments,
i.e., there is a segment with the 4 higher-ordered disks and
a segment with the 4 lower-ordered disks,

From Figure 14, we see that SLRU has higher hit rate than
LRU for any given value of the energy reduction. For instance,
for a 30% reduction in energy, SLRU has a normalized hit rate
of 93.5%, while LRU has a normalized hit rate of 91.5%. This
is due to the fact that SLRU is cognizant of the manner in
which algorithm Fixed shuts down disks and places popu-
lar objects accessed more than once in the higher segment.
Since the higher segment resides in the higher half of the
disks, it is unlikely to be shutdown.

6.2 Disk power cycles and impact on lifetimes
One of the major impacts on disk lifetime is the number

of disk power cycles, in other words the number of times the
disk is switched off and switched on. Disks used in current
CDN servers are limited to anywhere from 7 to 35 in the
number of disk power cycles per day, given that servers are
upgraded every 4-5 years. We measure the average num-
ber of disk power cycles per day for all 5 simulations and
see that both LRU and SLRU have ∼2-4 disk transitions per
day. This is within the bounds of manufacturer specifica-
tions and hence disk shutdown is feasible without sacrificing
disk lifetimes.

Concluding Remark. The Hybrid/Fixed/SLRU scheme
provides the best energy-preformance tradeoffs from the stand-
point of a single server. In addition, the significant energy
savings are obtainable without an impact on disk lifetimes.

Figure 14: Energy-performance tradeoff for content
placement & eviction algorithms

7. UNDERSTANDING CLUSTER HIT RATES
In a typical CDN cluster, popular objects are often stored

in more than one server. Algorithms such as consistent hash-
ing [9, 13] that replicate content within a cluster were origi-
nally designed to better balance the load within the cluster.
Here we study how disk shutdown interacts with load balanc-
ing and content replication within a cluster by simulating an
entire CDN server cluster consisting of 5 servers for 9 days.

When the requested object is unavailable on the chosen
server, due to disk shutdown or otherwise, the server at-
tempts to fetch a copy from a peer server within the same
cluster via ICP [20]. If no copy of the object is found within
the cluster, the server fetches it from the origin server over
the WAN. While server cache hits are the most desirable sce-
nario, cluster hits also often provides adequate performance,
since latencies between servers in the same datacenter are
quite small. Further, ICP transfers within the same cluster
incur no cost for the CDN, since such ICP traffic does not
exit the datacenter. The least desirable scenario is when the
object experiences a cluster miss, and the object will have
to be fetched from a distant origin server over the WAN.
Such WAN traffic incurs additional bandwidth costs for the
CDN. This cluster hit rate that we study in this section is
important both from a performance and cost perspective.

7.1 Performance evaluation
In this paper, thus far, we have looked at (server) hit

rates. This section evaluates the energy-performance trade-
off from the standpoint of cluster hit rates. To perform
the evaluation, we ran cluster-wide simulations where ev-
ery server independently shuts down disks using one of the
proposed cache management schemes: Hybrid/Random/LRU,
Hybrid/Fixed/LRU and Hybrid/Fixed/SLRU. For each cache
management scheme, we ran the simulation five times, each
time with a higher disk shutdown aggressiveness knob than
the previous run. The normalized cluster hit rates for the
three cache management schemes are shown in Figure 15.
We see that the difference in the normalized cluster hit
rates for the three cache management schemes are not as
significant as the differences in the (server) hit rates ob-
served for these schemes in Figures 12 and 14. From a clus-
ter hit rate perspective, simple disk shutdown algorithms
such as Hybrid/Random/LRU and Hybrid/Fixed/LRU provide
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energy-performance tradeoffs that are comparable to Hy-

brid/Fixed/SLRU. This is due to the following reasons: 1)
since popular objects are replicated across servers, a cluster
miss occurs only when all the copies of on objects within
the cluster are inaccessible, and 2) content placement and
eviction are performed independently on each server within
a cluster. Hence, the probability that all the copies of an
object will be on inactive disks is now much smaller for all
three cache management schemes.

Figure 15: Energy-performance tradeoff of disk
shutdown within a cluster

We also compare the normalized cluster hit rate for Hy-

brid/Fixed/LRU) with its normalized (server) hit rates in
Figure 2. We see that cluster hit rates have a better energy-
performance tradeoff when compared to a single server hit
rates. For instance, for an energy reduction of 30%, the
normalized cluster hit rate reduces by a mere 3%, in com-
parison with the normalized server hit rate that reduces by
6.5%. In this case, the absolute hit rate reduction for the
cluster hit rate and the server hit rate were 2.5% and 5%
respectively. Thus, shutting down disks to save energy has
a much smaller impact on cluster hit rates than server hit
rates.

Concluding Remark. For CDNs primarily concerned
with maximizing cluster hit rates to minimize bandwidth
costs, our simple scheme Hybrid/Fixed/LRU is an attractive
option, as it saves significant amounts of energy with only a
modest performance loss and a small implementation over-
head. However, CDNs interested in maximizing both server
and cluster hit rates must invest in more sophisticated algo-
rithms such as Hybrid/Fixed/SLRU.

8. RELATED WORK
First we review work that reduce disk energy consumption

by the use of multi-speed disks that consume less energy by
rotating at lower speeds at periods of low load. The authors
in [8] propose the use of multi-speed disks to reduce disk
power consumption, instead of shutting down disks. The
rotation speed is chosen proportional to the disk load. The
work in [4] focusses on reducing the energy consumption of
disks in network servers that serve web traffic. The authors
in this work, also use multi-speed disks, to conserve energy
while maintaining the server’s throughput. Hibernator [23],
is another work that uses multi-speed disks to reduce energy
consumption. This work is targeted at conserving disk en-

ergy in disk arrays that serve transaction workloads. Our
work differs from these approaches in that we consider typ-
ical CDN servers that are commodity hardware with fixed
speed disks, and typical CDN workloads. Further, our ap-
proach saves additional energy by shutting down disks en-
tirely, an approach that is feasible for CDNs but not for
other enterprise networks that store original content.

Other work that attempt to switch disks to a lower power
mode include [17] were popular objects are migrated to a
subset of disks so that the other disks can be switched to
a low-power mode without affecting the performance of the
server. The decision to switch disks to low-power modes is
based on the incoming request rate. In [3], the size of the
front end cache is optimized to reduce the energy consump-
tion of back-end disks in a storage system, while the front
end cache consumes power. The cache size is estimated as
being proportional to the disk load. However, in our CDN
context, we identify that the disk load alone is not a good
indicator of the cache space requirement.

Complementary to our work, there is significant work on
saving energy in other components of the server such as
CPU, including dynamic power scaling and dynamic com-
ponent deactivation [19, 21, 6, 7].

Prior work also study turning off servers entirely in the
context of a data center [5, 18, 11, 12] and in the context
of a CDN [14]. However, turning off servers makes net-
work management difficult in a global CDN. If servers are
unreachable for extended periods of time, they may miss
real-time reporting, software updates and control messages
for the duration. This may upend some of the network man-
agement guarantees and operational practices of the CDN
platform. Therefore, shutting down disks as proposed in
this paper, while the servers are still live and serving con-
tent, represents an attractive alternative worth exploring.

9. CONCLUSION
CDNs are ubiquitous and carry much of the traffic on the

Internet. Reducing the energy consumption of CDNs is an
important problem, both from the standpoint of sustain-
ability and OPEX cost reduction. The energy consumed by
spinning disks constitute a significant portion of a CDN’s
energy usage. Our work explores the possibility of reducing
the disk energy usage by shutting down disks, a possibility
that is particularly well-suited for CDNs since these disks do
not store original copies of the content. Our main contribu-
tion is developing and evaluating algorithms for cache sizing,
disk shutdown, content placement and eviction that allow
disks to be shut down without significantly impacting cache
hit rates and user-perceived performance. We empirically
evaluate the energy-performance tradeoff for our algorithms
using extensive request traces from the world’s largest CDN.
We show that it is feasible to obtain 30% disk energy savings
with only a 6.5% decrease in the normalized server hit rate
and a mere 3% reduction in the normalized cluster hit rate.
This work establishes disk shutdown as a key mechanism
for energy savings in CDNs, making it a prime candidate
for implementation on the production network.
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APPENDIX
A. DISK POWER MODEL

In the simulator, we used a power model similar to the 2-
parameter disk-power model described in Dempsey [22]. In
this model, the energy consumed by the disk is modeled as
Etotal = Eidle + Eactive. The values of the two components
of the total energy were empirically determined as follows.

Measurement of Eidle: We used a typical CDN server
that comes equipped with a power-supply unit that has a
PMBus interface that allows us to query the server’s power
consumption at any time. We used the CDN server in the
lab for disk power measurement in which four of the disks
had no files or directories. A script running on this server
queried the PMBus interface every 10 seconds to record a
time-series of server power. All the processes other than the
bare minimum needed to keep the server up were stopped.
Then the four disks were accessed for a duration of time,
then left idle for a duration of time, and then spun-down
using the SCSI stop command. The time series of server
power measurement collected during the time allows us to
identify Protation and Pelectronics. Since the disks in CDN
servers never get a chance to shut their electronics down,
we use Protation + Pelectronics as Pidle, which is used to
compute Eidle. Further, in the manufacturer’s detailed data
sheet, we located the maximum observed power consump-
tion of the disk model. We call this Pmax. Pmax−Pidle gives
Piomax, the maximum power that the disk’s I/O activity can
consume. These observations are listed below in Table 3.

Component Power consumption (W)

Piomax 2.25
Pelectronics 0.75
Protation 3
Pmax 6

Table 3: Disk power consumption.

Model for Eactive: Eactive is the sum of the products of
Tactive and Pactive for all the I/O operations, where Tactive

is the time consumed by an I/O operation, and Pactive is the
power consumption of that operation. In the typical CDN
servers that we studied, the disk I/O pattern caused by serv-
ing web traffic has a very narrow range of bytes transferred
per request. Over 85% of the I/O requests to the disks have
transfer sizes of less than 100KB. Since most transfer sizes
are clustered in such a narrow band, we do not create a gen-
eralized fine-grain model for Pactive covering a wide range
of I/O sizes, but assume that Pactive is narrowly clustered
around a mean. Due to the low variance property, Pactive

can be said to scale linearly with Tactive.
We model Tactive as a function of four disk activity pa-

rameters collected at the block layer. To create this model,
we collected a large archive of disk statistics using the linux
iostat command. The archive contains data points from each
machine in this cluster of edge servers for 5 days. Each data
point is of the form (read operations/sec, average read size,
write operations/sec, average write size, Tactive), each pro-
viding the average of a 30 second observation period. The
value of Pactive for every data point in the archive was esti-
mated as Pmax × Tactive/observation− duration.

Using linear regression, the 172,800 data points so col-
lected were converted to a power model, which expresses

Tactive and Pactive as a piecewise linear function of the four
disk activity parameters.

Ideally, the power model should also address the energy
consumed by disk spin-up phase, which is easily obtained
from measurement. But as we saw earlier, the number of
power cycles per day per disk is low (approximately 3).
Therefore, this component has a minor impact on the total
energy consumption, and is excluded from the power model.
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