
End-to-End Optimization for Geo-Distributed
MapReduce

Benjamin Heintz, Student Member, IEEE, Abhishek Chandra,Member, IEEE,

Ramesh K. Sitaraman,Member, IEEE, and Jon Weissman, Senior Member, IEEE

Abstract—MapReduce has proven remarkably effective for a wide variety of data-intensive applications, but it was designed to run on

large single-site homogeneous clusters. Researchers have begun to explore the extent to which the original MapReduce assumptions

can be relaxed, including skewed workloads, iterative applications, and heterogeneous computing environments. This paper continues

this exploration by applying MapReduce across geo-distributed data over geo-distributed computation resources. Using Hadoop, we

show that network and node heterogeneity and the lack of data locality lead to poor performance, because the interaction of

MapReduce phases becomes pronounced in the presence of heterogeneous network behavior. To address these problems, we take a

two-pronged approach: We first develop amodel-driven optimization that serves as an oracle, providing high-level insights. We then

apply these insights to design cross-phase optimization techniques that we implement and demonstrate in a real-world MapReduce

implementation. Experimental results in both Amazon EC2 and PlanetLab show the potential of these techniques as performance is

improved by 7-18 percent depending on the execution environment and application.

Index Terms—Batch processing systems, distributed systems, parallel systems

Ç

1 INTRODUCTION

RECENT years have seen increasing amounts of data gen-
erated and stored in a geographically distributed man-

ner for a large variety of application domains. Examples
include social networking, Web and Internet service pro-
viders, and content delivery networks (CDNs) that serve
the content for many of these services. For instance, Face-
book has more than one billion users, more than 80 percent
of whom are outside the US or Canada,1 and Google has
developed storage systems [1], [2] to manage data parti-
tioned across globally distributed data centers.

As another example, consider a large content delivery net-
work such as Akamai, which uses over 100,000 servers
deployed in over 1,000 locations to serve 15-30 percent of the
global web traffic [3]. Content providers use CDNs to deliver
web content, live and on-demand videos, downloads, and
web applications to users around the world. The servers of a
CDN, deployed in clusters in hundreds or thousands of geo-
distributed data centers, each log detailed data about each
user they serve. In aggregate, the servers produce tens of bil-
lions of lines of geo-distributed log data every day.

Many modern applications need to efficiently process
such geo-distributed data on a geo-distributed platform. As an

example, a CDN analytics application must extract
detailed information about who is accessing the content,
from which networks and from which geographies, as
well as the quality of experience for users, including page
download speeds, video startup times, and application
transaction times. This processing must complete quickly
so that content providers can understand and act upon
these key indicators.

A critical question for efficient processing of such distrib-
uted data is where to carry out the computation. As Jim Gray
noted, “you can either move your questions or the data” [4].
These two options, however, represent two extreme possi-
bilities. At one extreme, sending massive data from its
diverse origin locations to a centralized data center may
lead to excessive latency [5], [6]. Further, the bandwidth
cost may be prohibitive and it may be infeasible to fit all of
the data in a single central data center. A centralized
approach is also fundamentally less fault-tolerant than a
distributed one; failure of the single centralized data center
can cause a complete outage.

At the other extreme, if we map computation onto each
input datum in situ, the results of these subcomputations
comprise intermediate data that must be aggregated to
generate final results. If such intermediate data are large,
then aggregating them may be more costly than moving
input data to a centralized location in the first place. Fur-
ther, the various locations may differ in their compute
capacities, leading to imbalanced resource utilization and
task execution times.

In this paper, we use MapReduce as a vehicle for explo-
ration, and show that between these two extremes lies a
spectrum of possibilities that are often more efficient.
Because MapReduce was originally designed [7] for the
relatively homogeneous single-datacenter setting, how-
ever, it is natural to ask whether it is well suited for envi-
ronments where both data and compute resources are

1. http://newsroom.fb.com

� B. Heintz, A. Chandra, and J. Weissman are with the Department of Com-
puter Science and Engineering, University of Minnesota, Minneapolis,
MN 55455. E-mail: {heintz, chandra, jon}@cs.umn.edu.

� R.K. Sitaraman is with the Department of Computer Science, University of
Massachusetts, Amherst, MA 01003, and Akamai Technologies.
E-mail: ramesh@cs.umass.edu.

Manuscript received 13 Nov. 2013; revised 6 Mar. 2014; accepted 25 Aug.
2014. Date of publication 5 Sept. 2014; date of current version 7 Sept. 2016.
Recommended for acceptance by G. Agrawal.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2014.2355225

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2016 293

2168-7161� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

geo-distributed. Indeed, as our prior work has shown [8],
the Hadoop MapReduce implementation often performs
very poorly in geo-distributed environments with high
network heterogeneity. We find that the main reason for
this poor performance is the heavy dependency across dif-
ferent MapReduce phases. This happens because the data
placement and task execution are tightly coupled in Map-
Reduce, as tasks are usually assigned to nodes that
already host their input data. As a result, the choice of
mapper nodes to which inputs are pushed impacts both
how long the data push takes, as well as where the inter-
mediate data are generated. This in turn impacts the per-
formance of the data shuffle to the reducers. This problem
is particularly severe for wide-area environments, where
heterogeneity of both node and link capacities prevails.
Therefore, it is important to optimize the end-to-end com-
putation as a whole while taking into account the platform
and application characteristics.

In spite of the limitations of popular MapReduce imple-
mentations, however, the MapReduce abstraction is remark-
ably powerful, and implementing it in geo-distributed
settings is a worthy objective. MapReduce has been applied
to a surprising variety of data-intensive computing applica-
tions, and many data scientists have gained MapReduce
application development expertise. Further, a rich ecosys-
tem has been built on top of MapReduce, or more specifi-
cally the open-source Hadoop [9] implementation. We see
promise in expanding the reach of this ecosystem and
expertise into geo-distributed environments.

1.1 Research Contributions

In this paper, we take a two-pronged approach, first
focusing on a model-driven optimization that serves as
an oracle, and then applying the high-level insights from
this oracle to develop techniques that we apply in a real-
world MapReduce implementation. We make the follow-
ing research contributions.

1.1.1 Model-Driven Optimization

We develop a framework for modeling the performance of
MapReduce in geo-distributed settings (Section 3). We use
this model to formulate an optimization problem whose
solution is an optimal execution plan describing the best
placement of data and computation within a MapReduce
job. Our optimization minimizes end-to-end makespan and
controls multiple phases of execution, unlike existing
approaches which may optimize in a myopic manner or con-
trol only a single phase. Further, optimizations using our
model are efficiently solvable in practice as mixed integer
programs (MIP) using powerful solver libraries.

Second, we modify Hadoop to implement our optimiza-
tion outputs and use this modified Hadoop implementation
along with network and node measurements from the Plan-
etLab [10] testbed to validate our model.

Third, we evaluate our model-driven optimization and
demonstrate that its end-to-end objective and multi-phase
control both contribute significantly to improving task
placement in geo-distributed settings. Concretely, our
model results show that for a geo-distributed compute
environment, our end-to-end, multi-phase optimization

can provide nearly 82 and 64 percent reduction in execu-
tion time over myopic and the best single-phase optimiza-
tions, respectively.

1.1.2 Systems Implementation

We apply the results from our model-driven optimization
toward a practical implementation in Hadoop. The key idea
behind our techniques is to consider not only the execution
cost of an individual task or computational phase, but also
its impact on the performance of subsequent phases. We
develop two techniques in particular.

� Map-aware Push (Section 5). We propose making the
data push aware of the cost of map execution, based
on the source-to-mapper link capacities as well as
mapper node computation speeds. We achieve this
by overlapping the data push with map execution,
which provides us with two benefits. The first benefit
is a pipelining effect which hides the latency of data
push with the map execution. The second benefit is a
dynamic feedback between the map and push that
enables nodes with higher speeds and faster links to
process more data at runtime.

� Shuffle-aware Map (Section 6). InMapReduce, the shuf-
fling of intermediate data frommappers to reducers is
an all-to-all operation. In a heterogeneous environ-
ment, a mapper with a slow outgoing link can there-
fore become a bottleneck in the shuffle phase, slowing
down the downstream reducers. We propose map
task scheduling based on the estimated shuffle cost
from eachmapper to enable faster shuffle and reduce.

We implement these techniques in the Hadoop framework,

and evaluate their benefits on both Amazon EC2 and Planet-

Lab (Section 7). Experimental results show the potential of

these techniques, as performance is improved by 7-18 percent

depending on the execution environment and application

characteristics.

2 A MAPREDUCE OPTIMIZATION EXAMPLE

A typical MapReduce job executed in a cluster environment
comprises three main phases: (i) Map, where map tasks exe-
cute on their input data; (ii) Shuffle, where the output of
map tasks (intermediate key-value pairs) are disseminated
to reduce tasks; and (iii) Reduce, where reduce tasks are exe-
cuted on the intermediate data to produce the final outputs.
It is typically assumed that the input data are already avail-
able on the compute nodes before the job execution begins.
Such data push is usually achieved through file system
mechanisms such as those provided by HDFS. In geo-dis-
tributed settings, however, the process of pushing data
from sources to compute nodes may itself be costly, and
therefore must be considered as a separate phase of the
overall computation.

Before delving into the details of our research contribu-
tions, we further illustrate the challenges of task placement
in geo-distributed MapReduce with a simple example, dem-
onstrating that the best placement depends on both plat-
form and application characteristics.

Consider the example MapReduce platform shown in
Fig. 1. Assume that the data sources S1 and S2 have 150 and

294 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2016

50GB of data, respectively. Let us model a parameter a that
represents the ratio of the amount of data output by a map-
per to its input; i.e., a is the expansion (or reduction) of the
data in the map phase and it is specific to the application.

First, consider a situation where a ¼ 1 and the network is
perfectly homogeneous. That is, all links have the same
bandwidth—say 100MBps each—whether they are local or
non-local. Assume also that the computational resources at
each mapper and reducer are homogeneous; say, each can
process data at the rate of 100MBps. Clearly, in this case, a
uniform data placement, where each data source (resp.,
mapper) pushes (resp., shuffles) an equal amount of data to
each mapper (resp., reducer), produces the minimum exe-
cution time (formally, makespan).

Now, consider a slight modification to the above sce-
nario, where non-local links are much slower, transmitting
only at 10MBps, while all other parameters remain
unchanged. A uniform data placement no longer produces
the best makespan. Since the non-local links are much
slower, it makes sense to avoid non-local links when possi-
ble. In fact, a plan where each data source pushes all of its
data to its own local mapper completes the push phase
in 150GB=100MBps ¼ 1;500 seconds, while the uniform
push would have taken 75GB=10MBps ¼ 7;500 seconds.
Although the map phase for the uniform placement would
be smaller by 50GB=100MBps ¼ 500 seconds, the local
push approach makes up for this through a more efficient
data push.

Finally, consider the same network parameters
(100MBps local links and 10MBps non-local links), but
now with a ¼ 10, implying that there is 10 times more
data in the shuffle phase than in the push phase. The local
push no longer performs well, since it does not alleviate
the communication bottleneck in the shuffle phase. To
avoid non-local communication in the shuffle phase, it
makes sense for data source S2 to push all of its 50GB of
data to mapper M1 so that all the reduce can happen
within cluster 1 without having to use non-local links in
the communication-heavy shuffle phase.

From this example, we can see that an effective optimiza-
tion must control multiple phases with an end-to-end objec-
tive to minimize makespan.

3 MODEL-DRIVEN OPTIMIZATION

Our model-driven optimization framework allows us to
explore the spectrum between purely distributed and purely

centralized computation. In particular, we focus on how to
find the best location along this spectrum assuming perfect
knowledge under static conditions. In a real-world MapReduce
implementation, the applicability of such a model may be
limited by the need to gather all inputs ahead of time. For
example, the number of network links to measure may be
large, the computation time required by a new application
may not be known a priori, or conditions may vary over time.
In spite of these practical limitations, however, such a model
is highly valuable, as it provides insights that inspire the
design of pragmatic optimization mechanisms, as we dem-
onstrate later in this paper (Sections 5, 6, and 7).

3.1 Model

We present our model in terms of the distributed platform,
the MapReduce application, and the placement of data and
computation (formally, the execution plan).

3.1.1 Distributed Platform

We model the distributed platform available for executing
the MapReduce application as a tripartite graph with vertex
set V ¼ S [M [R, where S is the set of data sources, M is
the set of mappers, and R is the set of reducers (see Fig. 2).
The edge set E is the complete set of edges,
ðS �MÞ [ðM �RÞ.

Each node represents a physical resource: either a data
source providing inputs, or a computation resource avail-
able for executing map or reduce processes. A node can
therefore represent a single physical machine or even a sin-
gle map or reduce slot in a small Hadoop cluster, or it can
represent an entire rack, cluster, or data center of machines
in a much larger deployment. Each edge represents the
communication link connecting a pair of such nodes. The
capacity of a node i 2 M [R, denoted by Ci, captures the
computational resources available at that node in units of
bits of incoming data that it can process per second. Note
that Ci is also application-dependent as different MapRe-
duce applications require different amounts of computing
resources to process the same amount of data. Likewise,
the capacity of an edge ði; jÞ 2 E, denoted by Bij, represents
the bandwidth (in bits/second) that can be sustained on the
communication link that the edge represents.

3.1.2 MapReduce Application

Application characteristics are captured by two key param-
eters: the amount of data Di (in bits) originating at data
source i, for each i 2 S; and the expansion factor a that

Fig. 1. An example of a two-cluster distributed environment, with one
data source, one mapper, and one reducer in each cluster. The intra-
cluster “local” communication links are solid lines, while the inter-cluster
“non-local” communication links are the dashed lines.

Fig. 2. A tripartite graph model for geo-distributed MapReduce with three
data sources, two mappers, and two reducers.

HEINTZ ETAL.: END-TO-END OPTIMIZATION FOR GEO-DISTRIBUTED MAPREDUCE 295

represents the ratio of the size of the output of the map
phase to the size of its input. Note that a can take values
less than, greater than, or equal to 1, depending on whether
the output of the map operation is smaller than, larger than,
or equal in size to the input, respectively. Many applications
perform extensive aggregation in the map phase, for exam-
ple by filtering records according to a predicate, or by pro-
jecting only a subset of fields from complex records. These
applications have a much less than 1. On the other hand,
some applications augment the input data in the map phase
(e.g., relational join), or they emit multiple copies of inter-
mediate records (e.g., to compute an aggregate at city, state,
and national levels), yielding a > 1. This parameter has a
strong impact on optimal placement decisions, as observed
in our prior work [8]. The value of a can be determined by
profiling the MapReduce application on a sample of inputs
[11], [12].

3.1.3 Execution Plans

We define the notion of an execution plan to capture the man-
ner in which data and computation of a MapReduce appli-
cation are scheduled on a distributed platform. Intuitively,
an execution plan determines how the input data are dis-
tributed from the sources to the mappers and how the inter-
mediate key-value pairs produced by the mappers are
distributed across the reducers. Thus, the execution plan
determines which nodes and which communication links
are used and to what degree. An execution plan is repre-
sented by variables xij, for ði; jÞ 2 E, that represent the frac-
tion of the outgoing data from node i that is sent to node j.

We now mathematically express sufficient conditions for
an execution plan to be valid in a MapReduce implementa-
tion while obeying the MapReduce application semantics.
First, for each i, the xij values must be fractions that sum to
1, as enforced by (1) and (2). Second, the semantics of Map-
Reduce requires that each intermediate key be shuffled to a
single reducer, which we enforce with (3), where yk may be
interpreted as the fraction of the intermediate key-value
data reduced at reducer k.

8ði; jÞ 2 E: 0 � xij � 1; (1)

8i 2 V :
X

ði;jÞ2E
xij ¼ 1; (2)

8j 2 M; k 2 R: xjk ¼ yk: (3)

We define an execution plan to be valid if (1), (2), and (3)
hold.

3.1.4 Makespan of Valid Execution Plans

The push, map, shuffle, and reduce phases are executed
in sequence, but there are three possible assumptions we
can make regarding the boundaries between these phases.
The simplest is that a global barrier exists, requiring that
all nodes complete one phase before any node begins the
next. This clearly satisfies data dependencies, but limits
concurrency. An alternative is a local barrier, where each
individual node can move from one phase to the next
without regard to the progress of other nodes. This

increases concurrency, allowing for faster execution.
Finally, phases may be pipelined, where each individual
node can start a phase as soon as any data is available
rather than waiting for all of its data to arrive. Such pipe-
lined concurrency allows for even lower makespan.

Which of these three options is allowable, however,
depends on the application; the typical MapReduce
assumption is that shuffle and reduce are separated by at
least a local barrier, though with some system and applica-
tion changes [13], this assumption can be relaxed. Other
phase boundaries are more flexible. Due to space limita-
tions, this paper presents a model for the makespan of a
valid execution plan only for the case where all barriers are
global. For details of how local barriers and pipelining are
modeled in our framework, we refer readers to our Techni-
cal Report [14].2

In addition to assuming global barriers at each phase
boundary, we also assume that inputs are available at all
data sources at time zero when the push phase begins. For
each mapper j 2 M, the time for the push phase to end,
push endj, is then equal to the time at which the last of its

input data arrives; i.e.,

push endj ¼ max
i2S

Dixij

Bij
: (4)

Since we assume a global barrier after the push phase, all
mappers must receive their data before the push phase ends
and the map phase begins. The time when the map phase
starts, denoted bymap start, thus obeys the following:

map start ¼ max
j2M

push endj: (5)

The computation at each mapper takes time proportional to
the data pushed to that mapper. Thus, the time map endj
for mapper j 2 M to complete its computation obeys the fol-
lowing:

map endj ¼ map startþ
P

i2S Dixij

Cj
: (6)

As a result of the global barrier, the shuffle phase begins
when all mappers have finished their respective computa-
tions. Thus, the time shuffle start when the shuffle phase
starts obeys the following:

shuffle start ¼ max
j2M

map endj: (7)

The shuffle time for each reducer is governed by the slowest
shuffle link into that reducer. Thus the time when shuffle
ends at reducer k 2 R, denoted by shuffle endk, obeys the
following:

shuffle endk ¼ shuffle startþmax
j2M

a
P

i2S Dixijxjk
Bjk

: (8)

2. In short, modeling local barriers and pipelining involves (a)
removing the constraints in (5)-(7); (b) defining an abstract addition
operator that adds for local barriers, and takes the maximum for global
barriers; and (c) rewriting the constraints in (6), (8), and (10) in terms of
this abstract addition operator.

296 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2016

Following the global barrier assumption, the reduce phase
computation begins only after all reducers have received all
of their data. Let reduce start be the time when the reduce
phase starts. Then

reduce start ¼ max
k2R

shuffle endk: (9)

Reduce computation at a given node takes time propor-
tional to the amount of data shuffled to that node. Thus, the
time when reduce ends at node k denoted by reduce endk
obeys the following:

reduce endk ¼ reduce startþ a
P

i2S
P

j2M Dixijxjk

Ck
: (10)

Finally, the makespan equals the time when the last reducer
finishes. Thus

Makespan ¼ max
k2R

reduce endk: (11)

3.2 Model Validation

To validate our model, we modify the Hadoop MapReduce
implementation to follow a user-specified execution plan.
In particular, we modify two aspects of Hadoop: how map
and reduce tasks are defined, as well as how they are sched-
uled. Changes to task definition lie exclusively at the appli-
cation level, in the InputSplit, InputFormat, and
Partitioner classes. Map tasks are defined to combine
inputs from several data sources to match the distribution
dictated by the execution plan. Reduce tasks are defined to
contain larger or smaller fractions of the intermediate key
space as based on the execution plan.

Our changes to task scheduling lie largely at the applica-
tion level and only partially at the system-level, specifically
to the JobInProgress class. Map and reduce tasks are
assigned only to specified hosts, except when executed as
speculative backups, or re-executed for fault tolerance pur-
poses. Of course, this is only a brief summary of our imple-
mentation. For much deeper detail, readers are referred to
our Technical Report [14].

For validation purposes, we estimate parameters for our
model based on the PlanetLab globally distributed testbed
[10]. We base these measurements on a set of eight physical
PlanetLab nodes distributed across eight sites, including
four in the United States, two in Europe, and two in Asia.
Table 1 shows the intra-continental and inter-continental
bandwidths (averaged over several measurements) and
highlights the heterogeneity that characterizes such geo-dis-
tributed networks. Measured compute rates for a sample
computation range from as low as 9MBps to as high as
about 90MBps. We provide these parameters to our model

to compute a predicted makespan, and we also execute a
corresponding job on our modified Hadoop implementation
on a local cluster emulating the measured PlanetLab hetero-
geneity [14] and measure the actual makespan.

The results of the validation, for 96 combinations of a val-
ues, network heterogeneity, barrier configurations, and exe-
cution plans, are shown in Fig. 3, where the vertical axis
shows the measured makespan and the horizontal axis
shows the model prediction based on the Ci, Bij, and a

parameters, and (1)-(11). We observe a strong correlation

(R2 value of 0.9412) between predicted makespan and mea-
sured makespan. In addition, the linear fit to the data points
has a slope of 1.1464, which shows there is also a strong cor-
respondence between the absolute values of the predicted
and measured makespan.

3.3 Optimization Algorithm

Having defined and validated our model, we now use it to
find the execution plan—the xij values—to minimize the
makespan of a MapReduce job. To do so, we formulate an
optimization problem with two key properties. First, it min-
imizes the end-to-end makespan of the MapReduce job,
including the time from the initial data push to the final
reducer execution. Thus, though its decisions may be sub-
optimal for individual phases, they will be optimal for the
overall execution of the job. Second, our optimization is
multi-phase in that it controls the data dissemination across
both the push and shuffle phases; i.e., it outputs the best
way to disseminate both the input and intermediate data so
as to minimize makespan.

Viewing (1)-(11) as constraints, we need to minimize an
objective function that equals the variable Makespan. To
perform this optimization efficiently, we rewrite the con-
straints in linear form to obtain a mixed integer program.
(See our Technical Report [14] for the details of this transfor-
mation.) Writing it as MIP opens up the possibility of using
powerful off-the-shelf solvers such as Gurobi 5.0.0 as we
use here.

4 MODEL-DRIVEN INSIGHTS

We now apply our model-driven, end-to-end, multi-phase
optimization as an oracle, deriving high-level insights that
inspire the design of pragmatic implementation techniques
described in later sections. To realistically model the geo-
distributed environments that motivate our work, we use
actual measurements of the compute speeds and link band-
widths from PlanetLab nodes distributed around the world,
including four in the US, two in Europe, and two in Asia

TABLE 1
Measured Bandwidth (KBps) of the Slowest/Fastest Links

between Nodes in Each Continent

US EU Asia

US 216/9,405 110/2,267 61/3,305
EU 794/2,734 4,475/11,053 1,502/1,593
Asia 401/3,610 290/1,071 23,762/23,875

Fig. 3. Measured versus model-predicted makespan.

HEINTZ ETAL.: END-TO-END OPTIMIZATION FOR GEO-DISTRIBUTED MAPREDUCE 297

with compute rates and interconnection bandwidths as
described in Section 3.2.

4.1 Heuristics versus Model-Driven Optimization

We first compare our optimal execution plans to three base-
line heuristics, which we refer to as uniform, best-centralized
and push-to-local. In the uniform heuristic, sources push uni-
formly to all mappers, and mappers shuffle uniformly to all
reducers. This reflects the expected distribution if data sour-
ces and mappers were to randomly choose where to send
data. We model this heuristic by adding the following addi-
tional constraints:

Uniform Push: 8i 2 S; j 2 M: xij ¼ 1

jMj ; (12)

Uniform Shuffle: 8j 2 M; k 2 R: xjk ¼ 1

jRj : (13)

The best-centralized heuristic pushes data to a single map-
per node and performs all map computation there. Like-
wise, all reduce computation is performed at a single
reducer node at the same location. We can model this heu-
ristic by simply excluding all mappers and reducers other
than the selected centralized node, and then using the
model as usual. We compute the makespan for each possi-
ble centralized location, and report the minimum among
these values, hence the name best-centralized.

The push-to-local heuristic pushes data from each source
to the most local mapper (in this case, to a mapper on the
same node) and uses a uniform shuffle; it corresponds to
the purely distributed extreme. We model this heuristic by
adding the uniform shuffle constraint from Equation (13) as
well as a new local push constraint:

8i 2 S; j 2 M: xij ¼ 1 if j is closest to source i;
0 otherwise:

�
(14)

Fig. 4 shows the makespan achieved by each of these
heuristics, as well as by our end-to-end multi-phase optimi-
zation algorithm (e2e multi) for three values of a. We make
several observations from these results. First, both the
uniform and best-centralized heuristics have poor push per-
formance relative to the push-to-local heuristic and our end-
to-end optimization. The reason is that the uniform and best-
centralized heuristics place heavy traffic on slow wide-area
links while the push-to-local heuristic uses fast local links for
the push. Our optimization approach intelligently decides
how to utilize links to minimize end-to-end makespan.

Second, we see that the best-centralized heuristic becomes
more favorable relative to the push-to-local heuristic as a

increases, demonstrating that neither is universally better
than the other. The reason is that, as a increases, the shuffle
phase becomes heavier relative to the push phase. The best-
centralized heuristic avoids wide-area links in the shuffle,
and this becomes increasingly valuable as the shuffle
becomes dominant.

Finally, we see that our end-to-end multi-phase optimi-
zation approach is significantly better than any of the three
heuristics, reducing makespan over the best heuristic by
83.5, 77.3, and 76.4 percent for a ¼ 0:1, 1, and 10 respec-
tively. This demonstrates that the best data placement is
one that considers resource and application characteristics.

4.2 End-to-End versus Myopic

Next, we assess the benefit of optimizing with an end-to-end
objective as opposed to myopically minimizing the time for a
single phase, and we find that an effective optimization
should pursue an end-to-end objective.

The distinction between end-to-end and myopic alterna-
tives lies in the objective function that is being minimized.
With end-to-end, the objective function is the overall make-
span of the MapReduce job, whereas a myopic optimizer
uses the time for a single phase (or subset of phases) as its
objective function. Myopic optimization is a localized opti-
mization, e.g., pushing data from data sources to mappers
in a manner that minimizes the data push time. Such local
optimization might result in suboptimal global execution
times by creating bottlenecks in other phases of execution.
Note that myopic optimization can be applied to multiple
phases in succession. For example, the push phase might
first be optimized to minimize push time and then the shuf-
fle phase could be optimized to minimize shuffle time
assuming that the input data were pushed to mappers
according to the first optimization. Such myopic optimiza-
tions can be modeled by replacing (11) with alternate objec-
tive functions. For example, in this section we will model
myopically optimizing to minimize the push time (mini-
mize maxj2M push endj) followed by myopically optimizing
for minimum shuffle time (minimize maxk2R shuffle endk.)
Note that computing such a myopic multi-phase plan
requires solving several optimizations in sequence.

As an additional point of comparison, we also consider
the uniform heuristic from the previous subsection.

In Fig. 5, we show the makespan achieved in three differ-
ent cases: (i) a uniform data placement; (ii) a myopic, multi-
phase optimization, where the push and shuffle phases are
optimized myopically in succession; and (iii) our end-to-
end, multi-phase optimization that minimizes the total job
makespan. Note that since both (ii) and (iii) are multi-phase,
the primary difference between them is that one is myopic

Fig. 4. A comparison of three optimization heuristics and our end-to-end multi-phase optimization (e2e multi).

298 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2016

and the other is end-to-end. We see that for each of three
values of a, the myopic optimization reduces the makespan
over the uniform data placement approach (by 30, 44, and
57 percent for a ¼ 0:1, 1, and 10 respectively), but is signifi-
cantly outperformed by the end-to-end optimization (which
reduces makespan by 87, 82, and 85 percent). This is
because, although the myopic approach makes locally opti-
mal decisions at each phase, these decisions may be globally
suboptimal. Our end-to-end optimization makes globally
optimal decisions. As an example, for a ¼ 0:1, while both
the myopic and end-to-end approaches dramatically reduce
the push time over the uniform approach, the end-to-end
approach is also able to reduce the map time substantially
whereas the myopic approach makes no improvement to
the map time. A similar trend is evident for a ¼ 10, where
the end-to-end approach is able to lower the reduce time
significantly over the myopic approach. These results show
the benefit of an end-to-end, globally optimal approach
over a myopic, locally optimal but globally suboptimal
approach. Clearly, an effective optimization approach
should pursue and end-to-end rather than a myopic optimi-
zation objective.

4.3 Single-Phase versus Multi-Phase

Finally, we assess the importance of optimizing multiple
phases rather than only a single phase, and we find that
an effective optimization should jointly control multiple
phases.

The distinction between single-phase and multi-phase
alternatives lies in which phase (push, shuffle, or both) is
controlled by the optimization, so this distinction is orthogo-
nal to the end-to-end versus myopic distinction. A single-
phase optimization controls the data distribution of one
phase—e.g., the push phase—alone, while using a fixed
data distribution for the other communication phase. This is
a subtle but important distinction; note that a single-phase
optimization can also be end-to-end if it controls the single
phase so as to achieve the minimum end-to-end makespan.

We model a single-phase optimization by using one of the
uniform push or shuffle constraints (12) or (13) to constrain
the data placement for one of the phases, while allowing the
other phase to be optimized.

In Fig. 6, we compare (i) a uniform data placement, (ii) an
end-to-end single-phase push optimization that assumes a
uniform shuffle, (iii) an end-to-end single-phase shuffle
optimization that assumes a uniform push, and (iv) our
end-to-end multi-phase optimization. Note that both the
single-phase optimizations here are end-to-end optimiza-
tions in that they attempt to minimize the total makespan of
the MapReduce job. The primary difference between (ii)
and (iii) on the one hand and (iv) on the other is that the for-
mer are single-phase and the latter multi-phase, allowing us
to evaluate the relative benefit of single- versus multi-phase
optimization.

We observe that across three a values, the multi-phase
optimization outperforms the best single-phase optimiza-
tion (by 37, 64, and 52 percent for a ¼ 0:1, 1, and 10 respec-
tively). This shows the benefit of being able to control the
data placement across multiple phases. Further, for each a

value, optimizing the bottleneck phase brings greater
reduction in makespan than optimizing the non-bottleneck
phase. For instance, for a ¼ 0:1, the push and map phases
dominate the makespan in the baseline (25 and 66 percent
of the total runtime for uniform, respectively) and push
optimization alone is able to reduce the makespan over
uniform by 80 percent by lowering the runtime of these
two phases. On the other hand, for a ¼ 10, the shuffle and
reduce phases dominate (27 and 64 percent of total run-
time for uniform, respectively) and optimizing these
phases via shuffle optimization reduces makespan by 69
percent over uniform. By influencing the data placement
across multiple phases, however, our multi-phase optimi-
zation improves both the bottleneck as well as non-bottle-
neck phases. When there is no prominent bottleneck phase
(a ¼ 1), the multi-phase optimization outperforms the best
single-phase optimization substantially (by 64 percent).

Fig. 5. Our end-to-end multi-phase optimization (e2e multi) compared to a uniform heuristic and a myopic optimization approach.

Fig. 6. Our end-to-end multi-phase optimization (e2e multi) compared to a uniform heuristic as well as end-to-end push (e2e push) and end-to-end
shuffle (e2e shuffle) optimization.

HEINTZ ETAL.: END-TO-END OPTIMIZATION FOR GEO-DISTRIBUTED MAPREDUCE 299

These results show that the multi-phase optimization is
able to automatically optimize the execution independent
of the application characteristics.

Interestingly, Figs. 6b and 6c show that optimizing earlier
phases can have a positive impact on the performance of
later phases. In particular, for a ¼ 10, push optimization
also reduces the shuffle time, even though the push and
map phases themselves contribute little to the makespan.
This is because the decision of where to push inputs affects
where the mappers will produce outputs, in turn impacting
how the intermediate data are shuffle to reducers.

We therefore conclude that an effective optimization
approach should jointly control multiple phases rather than
controlling only a single phase in isolation.

4.4 Summary

Overall, our model-driven optimization leads to the follow-
ing high-level insights:

� Neither a purely distributed approach nor a purely
centralized approach is the best for all situations.
Instead, the best placement typically lies between
either of these extremes.

� Optimizing with an end-to-end objective yields sig-
nificantly lower makespan than optimizing with a
myopic objective. The reason is that end-to-end opti-
mization tolerates local suboptimality in order to
achieve global optimality.

� Jointly controlling multiple phases lowers the make-
span compared to controlling only a single phase.
Although optimizing the bottleneck phase alone can
be beneficial, each phase contributes to the overall
makespan, so controlling multiple phases has the
best overall benefit, independent of application
characteristics.

These high-level insights inspire the design of cross-phase
optimization techniques that are suitable to a real-world
MapReduce implementation, where decisions must be
made under imperfect knowledge, and the dynamic nature
of network, compute, and application characteristics might
render a static optimization approach impractical.

Based on the need for an end-to-end optimization objec-
tive, our Map-aware Push technique makes push decisions
aware of their impact not just on the push phase, but also
on the map phase. In the spirit of multi-phase optimization,
we also control communication in the shuffle phase through
our Shuffle-aware Map technique, which factors in predicted
shuffle costs while placing map tasks. This technique also
contributes to a more nearly end-to-end optimization, as it
allows both push and map placement to be influenced by
downstream costs in the shuffle phase.

5 MAP-AWARE PUSH

The first opportunity for cross-phase optimization in Map-
Reduce lies at the boundary between push and map. A typi-
cal practice is what we call a push-then-map approach, where
input data are imported in one step, and computation
begins only after the data import completes. This approach
has two major problems. First, by forcing all computation to
wait for the slowest communication link, it introduces

waste. Second, separating the push and map phases
deprives map tasks of a way to demand more or less work
based on their compute capacity. This makes scheduling the
push in a map-aware manner more difficult.

To overcome these challenges, we propose two changes:
first, overlapping—or pipelining—the push and map
phases; and second, inferring locality information at run-
time and driving scheduling decisions based on this knowl-
edge. Dynamically inferring locality information at runtime
makes this approach adaptable to changing network condi-
tions, and pipelining brings two main benefits: hiding
latency, and opening a new feedback channel. First, by pipe-
lining push and map, latency of the push phase can be par-
tially hidden by the map phase, as pipelining allows map
computation to begin at each mapper as soon as data begin
to arrive there, without the need to wait for the full push
phase to complete. Second, overlapping the two phases
addresses the lack of feedback from the map phase back to
the push phase. Without such feedback, and absent any
a priori knowledge of the map phase performance, we are
left with few options other than simply optimizing the push
phase in isolation. Such a single-phase optimization favors
pushing more data to mappers with faster incoming net-
work links, but these may not be the best mappers from a
computational perspective. For better overall performance,
we need to weigh the two factors of network bandwidth
and computation capacity and trade off between faster
push and faster map. By overlapping push and map, map-
pers can pull work from data sources on demand, thereby
influencing the push phase.

5.1 Map-Aware Push Scheduling

With overlapped push and map, the distribution of compu-
tation across mapper nodes can be demand-driven. Specifi-
cally, whereas push-then-map first pushes data from
sources, our approach logically pulls data from sources on-
demand. Using existing Hadoop mechanisms, this on-
demand pull is initiated when a mapper becomes idle and
requests more work, so faster mappers can perform more
work. This is how our proposed approach addresses map
computation heterogeneity.

To address network heterogeneity, our Map-aware Push
technique departs from the traditional Hadoop approach of
explicitly modeling network topology as a set of racks and
switches, and instead infers locality information at runtime.
It does this by monitoring source-mapper link bandwidth at
runtime and estimating the push time for each source-map-
per pair. Specifically, let d be the size of a task in bytes
(assume for ease of presentation that all task sizes are equal)
and let Ls;m be the link speed between source node s and
mapper node m in bytes per second. Then we estimate the
push time Ts;m in seconds from source s to mapperm as

Ts;m ¼ d

Ls;m
: (15)

Let S denote the set of all sources that have not yet com-
pleted their push. Then when mapper node m requests
work, we grant it a task from source s� ¼ argmins2STs;m.
Intuitively, this is equivalent to selecting the closest task in
terms of network bandwidth. This policy is similar to

300 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2016

Hadoop’s default approach of preferring data-local tasks, but
our overall approach is distinguished in two ways. First,
rather than reacting to data movement decisions that have
already been made in a separate push phase, it proactively
optimizes data movement and task placement in concert.
Second, it discovers locality information dynamically and
automatically rather than relying on an explicit user-speci-
fied model.

5.2 Implementation in Hadoop

We have implemented this technique in Hadoop 1.0.1. The
overlapping itself is possible using existing Hadoop mecha-
nisms, but a more creative deployment: We set up a Hadoop
Distributed File System (HDFS) instance comprising the
data source nodes, which we refer to as the “remote” HDFS
instance and use directly as the input to a Hadoop MapRe-
duce job. Map tasks in Hadoop typically read their inputs
from HDFS, so this allows us to directly employ existing
Hadoop mechanisms.3

Our scheduling enhancements, on the other hand,
require modification to the Hadoop task scheduler. To
gather the bandwidth information mentioned earlier, we
add a simple network monitoring module which records
actual source-to-mapper link performance and makes this
information accessible to the task scheduler. For Hadoop
jobs that read HDFS files as input, each map task corre-
sponds to an InputSplit which in turn corresponds to an
HDFS file block. HDFS provides an interface to determine
physical block locations, so the task scheduler can determine
the source associated with a task and compute its Ts;m based
on bandwidth information from the monitoring module. If
there are multiple replicas of the file block, then Ts;m can be
computed for each replica, and the system can use the rep-
lica that minimizes this value. The task scheduler then
assigns tasks from the closest source s� as described earlier.

6 SHUFFLE-AWARE MAP

We have shown how the map phase can influence the push
phase, in terms of both the volume of data each mapper
receives as well as the sources from which each mapper
receives its data. In turn, the push determines, in part, when
a map slot becomes available for a mapper. Thus, from the
perspective of the push and map phases, a set of mappers
and their data sources are decided. This decision, however,
ignores the downstream cost of the shuffle and reduce as
we will show. In this section, we show how the set of map-
pers can be adjusted to account for the downstream shuffle
cost. This was also motivated in Section 2 as we illustrated
the importance of shuffling and merging intermediate
results close to mappers, particularly for shuffle-heavy jobs.

In traditional MapReduce, intermediate map outputs are
shuffled to reducers in an all-to-all communication. In
Hadoop, one can (with some effort) control the granularity
of reduce tasks and the amount of work each reducer will
obtain. However, these decisions ignore the possibility that a
mapper-reducer link may be very poor. For example, in
Fig. 1, if the link betweenmapperM1 and reducerR1 orR2 is

poor, then performing too much map computation at M1

may lead to a bottleneck in the shuffle phase. For applica-
tions in which shuffle is dominant and the network is hetero-
geneous, this phenomenon can greatly impact performance.

Two solutions are possible: changing the reducer nodes,
or reducing the amount of work done by mapper M1 and in
turn reducing the volume of data traversing the bottleneck
link(s). We present an algorithm that takes the latter
approach. In this way, the downstream shuffle can impact
the map. This is similar to the Map-aware Push technique
where the map influenced the push.

As in typical MapReduce, our Shuffle-aware Map tech-
nique assumes that the reducer nodes are known a priori.
We also assume that we know the approximate distribution
of reducer tasks: i.e., we know the fraction of intermediate
data allocated to each reducer node. This allows our algo-
rithm to determine howmuch data must traverse each map-
per-to-reducer link. To achieve a true multi-phase
optimization, our model-driven optimization can be used in
conjunction with pre-profiled mapper-reducer link speeds
and reducer node execution power to determine an appro-
priate allocation of the intermediate key space to reducers.

6.1 Shuffle-Aware Map Scheduling

To estimate the impact of a mapper node upon the reduce
phase, we first estimate the time taken by the mapper to
obtain a task, execute it, and deliver intermediate data to all
reducers (assuming parallel transport). The intuition is that if
the shuffle cost is high then themapper node should be throt-
tled to allow the map task to be allocated to a mapper with
better shuffle performance. We estimate the finish time Tm

for amapperm to execute amap task as follows: Tm ¼ Tmap
m þ

Tshuffle
m , where Tmap

m is the estimated time for themapperm to
execute the map task, including the time to read the task
input from a source (using the Map-aware Push approach),

and Tshuffle
m is the estimated time to shuffle the accumulated

intermediate dataDm up to the current task, from mapperm
to all reducer nodes. Let Dm;r be the portion of Dm destined
for reducer r, and Lm;r be the link speed between mapper
nodem and reducer node r. Then, we can compute

Tshuffle
m ¼ max

r2R
Dm;r

Lm;r

� �
: (16)

The Shuffle-aware Map scheduling algorithm uses these
Tm estimates to determine a set of eligible mappers to which
to assign tasks. The intuition is to throttle those mappers
that would have an adverse impact on the performance of
the downstream reducers. The set of eligible mappers MElig

is based on the most recent Tm values and a tolerance
parameter b:

MElig ¼
�
m 2 M jTm � min

m2M
Tm þ b

�
; (17)

whereM is the set of all mapper nodes.
The intuition is that if the execution time for a mapper

(including its shuffle time) is too high, then it should not be
assigned more work at present. The value of the tolerance
parameter b controls the aggressiveness of the algorithm in
excluding slower mappers from being assigned work. At

3. To improve fault tolerance, we have also added an option to cache
and replicate inputs at the compute nodes. This reduces the need to
re-fetch remote data after task failures or for speculative execution.

HEINTZ ETAL.: END-TO-END OPTIMIZATION FOR GEO-DISTRIBUTED MAPREDUCE 301

one extreme, b ¼ 0 would enforce assigning work only to
the mapper with the earliest estimated finish time, intui-
tively achieving good load balancing, but leaving all other
mappers idle for long periods of time. At the other extreme,
a high value of b > ðmaxm2MTm �minm2MTmÞ would allow
all mapper nodes to be eligible irrespective of their shuffle
performance, and would thus reduce to the default MapRe-
duce map scheduling. We select an intermediate value:

b ¼ ðmaxm2MTm �minm2MTmÞ
2

: (18)

The intuition behind this value is that it biases towards
mappers with better shuffle performance. This is just one
possible threshold; many others are possible.

We note that the algorithm makes its decisions dynami-
cally, so that over time, a mapper may become eligible or
ineligible depending on the relation between its Tm value
and the current value of minm2MTm. As a result, this algo-
rithm allows an ineligible mapper node to become eligible
later should other nodes begin to offer worse performance.
Similarly, a mapper may be throttled if its performance
degrades over time.

6.2 Implementation in Hadoop

We have implemented this Shuffle-aware Map scheduling
algorithm by modifying the task scheduler in Hadoop.
The task scheduler now maintains a list of estimates Tm

for all mapper nodes m, and updates these estimates as
map tasks finish. It also uses the mapper-to-reducer node
pair bandwidth information obtained by the network
monitoring module to update the estimates of shuffle
times from each mapper node. Every time a map task fin-
ishes, the task tracker on that node asks the task sched-
uler for a new map task. At that point, the scheduler uses
(17) to determine the eligibility of the node to receive a
new task. If the node is eligible, then it is assigned a task
from the best source determined by the Map-aware Push
algorithm described in Section 5. On the other hand, if
the node is not eligible, then it is not assigned a task.
However, it can request for work again periodically by
piggybacking on heartbeat messages, when its eligibility
will be checked again.

7 EXPERIMENTAL RESULTS

To evaluate the performance of our techniques, we carry out
experiments on globally distributed testbeds on both

Amazon EC2 and PlanetLab using three applications:
WordCount, InvertedIndex, and Sessionization.

Our EC2 testbed uses eight nodes in total, all of the
m1.small instance type. These nodes are distributed
evenly across two EC2 regions: four in the US and the
other four in Europe. Each node hosts one map slot and
one reduce slot. Two PlanetLab nodes, one in the US and
one in Europe, serve as distributed data sources. Table 2
shows the bandwidths measured between the multiple
nodes in this setup.

For our PlanetLab testbed, we continue to use two nodes
as distributed data sources, and we use four other globally
distributed nodes as compute nodes, each hosting one map
slot and one reduce slot. Table 3 shows the bandwidths
measured between the multiple nodes in this setup.

Our WordCount job takes as input random text data gen-
erated by the Hadoop example randomtextwriter gener-
ator, and computes the number of occurrences of each word
in the input data. This is a map-heavy application, produc-
ing a relatively small volume of intermediate data.

The InvertedIndex application takes as input a set
of eBooks from Project Gutenberg [15] and produces, for
each word in its input, the complete list of positions
where that word appears. This application shuffles a
large volume of intermediate data, so it is an interesting
application for evaluating our Shuffle-aware Map schedul-
ing technique.

Our Sessionization application takes as input a set of
web server logs from the WorldCup98 trace [16], and sorts
these records first by client and then by time. The sorted
records for each client are then grouped into a set of
“sessions” based on the gap between consecutive records.
This is also a shuffle-heavy application, so we expect it to
benefit from our Shuffle-aware Map technique.

Using these testbeds and applications, we first study the
Map-aware Push and Shuffle-aware Map techniques in isola-
tion, and then show results where both techniques are
applied.

7.1 Map-Aware Push

We are interested in the performance of Map-aware Push,
which overlaps push and map and infers locality at run-
time, compared to a baseline push-then-map approach. To
implement the push-then-map approach, we also run an
HDFS instance comprising the compute nodes (call this the
“local” HDFS instance). We first run a Hadoop DistCP job
to copy from the remote HDFS to this local HDFS, and then
run a MapReduce job directly from the local HDFS. We
compare application execution time using these two
approaches. We run this experiment on both our Amazon

TABLE 2
Measured Bandwidths in EC2

From To Bandwidth (MB=s)

Source EU Worker EU 8
Source EU Worker US 3
Source US Worker EU 3
Source US Worker US 4
Worker EU Worker EU 16
Worker EU Worker US 2
Worker US Worker EU 5
Worker US Worker US 2

TABLE 3
Measured Bandwidths in PlanetLab

From To Bandwidth (MB=s)

All sources All workers 1-3
Workers A-C Workers A-C 4-9
Workers A-C Worker D 2
Worker D Workers A-C 0.2-0.4

302 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2016

EC2 and PlanetLab testbeds. Because we are concerned pri-
marily with push and map performance at this point, we
run the map-heavy WordCount application.

The left cluster of Fig. 7 shows the makespan4 of the
WordCount job on 2 GB of input data on our EC2
testbed, and it shows that our approach to overlapping
push and map reduces the total runtime of the push and
map phases by 17.7 percent, and the total end-to-end
makespan by 15.2 percent.

Next, we run the same experiment on our PlanetLab
testbed, using 1 GB of text input data due to the smaller
cluster size. The right cluster of Fig. 7 shows that push-map
overlap can reduce runtime of the push and map phases by
21.3 percent and the whole job by 17.5 percent in this envi-
ronment. We see a slightly greater benefit from push-map
overlap on PlanetLab than on EC2 due to the increased het-
erogeneity of the PlanetLab testbed.

7.2 Shuffle-Aware Map

We now present some results that show the benefit of Shuf-
fle-aware Map. Here we run our InvertedIndex applica-
tion, which shuffles a large volume of intermediate data
and is therefore an interesting application for evaluating
our Shuffle-aware Map scheduling technique.

First, we run this application on our EC2 testbed. In this
environment, we use 1.8 GB of eBook data as input, which
yields about 4 GB of intermediate data to be shuffled to
reducers. The left cluster of Fig. 8 shows the runtime for a
Hadoop baseline with push and map overlapped, as well as
the runtime of our Shuffle-aware Map scheduling technique,
also with push and map overlapped.

The reduce time shown includes shuffle cost. Note that in
Shuffle-aware Map the shuffle and reduce time (labeled
“reduce” in the figure) are smaller than in stock Hadoop.
Also observe that in Shuffle-aware Map the map times go up
slightly—our algorithm has decided to make this tradeoff to
achieve better performance.

On our wider-area PlanetLab testbed we use 800 MB of
eBook data and see a similar pattern, as the right cluster of
Fig. 8 shows. Again, an increase in map time is tolerated to
reduce shuffle cost. This may mean that a slower mapper is
given more work since it has faster links to downstream

reducers. For this application, we see performance improve-
ments of 6.8 and 9.6 percent on EC2 and PlanetLab,
respectively.

7.3 Putting It All Together

To determine the complete end-to-end benefit of our pro-
posed techniques, we run experiments comparing a tradi-
tional Hadoop baseline, which uses a push-then-map
approach, to an alternative that uses both Map-aware Push
and Shuffle-aware Map. Taken together, we will refer to our
techniques as the End-to-end approach. We focus here on the
InvertedIndex and Sessionization applications,
both of which are relatively shuffle-heavy, representing a
class of applications that can benefit from our Shuffle-aware
Map technique.

7.3.1 Amazon EC2

First, we explore the combined benefit of our techniques on
our EC2 testbed. The left cluster of Fig. 9 shows results for
the InvertedIndex application, where we see that our
approaches reduce the total makespan by about 9.7 percent
over the traditional Hadoop approach. There is little differ-
ence in total push and map time, so most of this reduction
in runtime comes from a faster shuffle and reduce (labeled
“reduce” in the figure). This demonstrates the effectiveness
of our Shuffle-aware Map scheduling approach, as well as the
ability of our techniques to automatically determine how to
tradeoff between faster push and map phases or faster shuf-
fle and reduce phases.

Fig. 7. Makespan of a Hadoop WordCount job on text data for the push-
then-map approach and the Map-aware Push approach on globally dis-
tributed environments.

Fig. 8. Makespan of the InvertedIndex job on eBook data for the
default Hadoop scheduler and our Shuffle-aware Map scheduler. Both
approaches use an overlapped push and map in these experiments.

Fig. 9. Makespan for traditional Hadoop compared with our proposed
Map-aware Push and Shuffle-aware Map techniques (together, End-to-
end) for InvertedIndex and Sessionization applications on glob-
ally distributed environments.

4. Throughout this paper, error bars indicate 95 percent confidence
intervals.

HEINTZ ETAL.: END-TO-END OPTIMIZATION FOR GEO-DISTRIBUTED MAPREDUCE 303

Now consider the Sessionization application, which
has a slightly lighter shuffle and slightly heavier reduce than
does the InvertedIndex application. The center cluster of
Fig. 9 shows that for this application on our EC2 testbed, our
approaches can reducemakespan by 8.8 percent. Againmost
of the reduction in makespan comes from more efficient
shuffle and reduce phases. Because this application has a
slightly lighter shuffle than does the InvertedIndex appli-
cation, we would expect a slightly smaller performance
improvement, and our experiments confirm this.

7.3.2 PlanetLab

Nowwemove to the PlanetLab testbed, which exhibits more
extreme heterogeneity than EC2. For this environment, we
consider only the InvertedIndex application, and the
right cluster of Fig. 9 shows that our approaches can reduce
makespan by about 16.4 percent. Although we see a slight
improvement in total push and map time using our
approach, we can again attribute the majority of the perfor-
mance improvement to amore efficient shuffle and reduce.

To more deeply understand how our techniques achieve
this improvement, we record the number of map tasks
assigned to each mapper node, as shown in Table 4. We see
that both Hadoop and our techniques assign fewer map
tasks to Mapper D, but that our techniques do so in a much
more pronounced manner.

Network bandwidth measurements reveal that this node
has much slower outgoing network links than do the other
mapper nodes; only about 200-400 KB=s compared to about
4-9 MB=s for the other nodes (see Table 3). By scheduling
three map tasks there, Hadoop has effectively “trapped”
intermediate data, resulting in a prolonged shuffle phase. Our
Shuffle-aware Map technique, on the other hand, has the fore-
sight to avoid this problem by denying Mapper D additional
tasks evenwhen it becomes idle and requestsmorework.

8 RELATED WORK

Several recent works consider data and task placement in
MapReduce. Purlieus [17] categorizes jobs by the relative
size of inputs to their map and reduce phases and applies
different optimization approaches for each category; this is
similar to our use of a as a key application parameter.
CoGRS [18] considers partition skew and locality and places
reduce tasks as close to their intermediate data as possible.
Unlike our approach, however, it does not consider reduce
task locality while placing map tasks.

Gadre et al. [19] and Kim et al. [20] focus on geo-distrib-
uted data and compute resources, respectively. Kim et al.
focus on reaching the end of the shuffle phase as early as
possible. Mattess et al. [21] dynamically provision remote
resources to improve map-phase completion time. Unlike
these works, our multi-phase optimization controls both

map and reduce phases, and we use an end-to-end optimi-
zation objective.

Other work considers wide-area MapReduce deploy-
ments from an architectural standpoint. Luo et al. [22] pro-
pose running multiple local MapReduce jobs and
aggregating their results using a new “Global Reduce”
phase. They assume that communication is a small part of
the total runtime, whereas our approach can find the best
execution plan for a broad range of application and system
characteristics.

Heterogeneity in tightly coupled local clusters has been
addressed by several recent works. For example Zaharia
et al. [23] propose the LATE scheduler to better detect strag-
gler tasks due to hardware heterogeneity. Mantri [24] and
Tarazu [25] take proactive approaches to recognizing strag-
glers and dynamically balancing workloads, respectively.
While these works focus on tightly coupled local clusters,
they may also apply at the level of a single data center in a
geo-distributed deployment.

Sandholm andLai [26], Quincy [27], andDelay Scheduling
[28] focus on multi-job scheduling in MapReduce clusters.
While this paper focuses on a single job running in isolation,
extending our work to multiple concurrent jobs in a geo-dis-
tributed setting is an interesting area for futurework.

Our model-driven optimization requires knowledge of
network bandwidth and compute speeds. The network
weather service (NWS) [29] and OPEN [30] demonstrate
systems for gathering and disseminating such information
in a scalable manner. He et al. [31] investigate formula- and
history-based techniques for predicting the throughput of
large TCP transfers, and show that history-based
approaches with even a small number of samples can lead
to accurate prediction.

9 CONCLUSION

Many emerging data-intensive applications are geo-distrib-
uted, due to the distributed generation and storage of their
input data. MapReduce performance suffers in these geo-
distributed settings, as the impact of one phase upon
another can lead to severe bottlenecks. Existing placement
and scheduling mechanisms do not take such cross-phase
interactions into account, and while they may try to opti-
mize individual phases, they can results in globally poor
decisions, resulting in poor overall performance. To over-
come these limitations, we have presented a model-driven
optimization framework, as well as cross-phase optimiza-
tion algorithms suitable for a real-world MapReduce imple-
mentation. Our model-driven optimization has two key
features: (i) it optimizes end-to-end makespan unlike myo-
pic optimizations which make locally optimal but globally
suboptimal decisions, and (ii) it controls multiple MapRe-
duce phases to minimize makespan, unlike single-phase
optimizations which control only individual phases. We
have used our model to show how our end-to-end multi-
phase optimization can significantly reduce execution time
compared to myopic or single-phase baselines.

Applying these insights, we have developed techniques
to implement cross-phase optimization in a real-world
MapReduce system. The key idea behind these techniques
is to consider not only the execution cost of an individual

TABLE 4
Number of Map Tasks Assigned to Each Mapper Node in Our

PlanetLab Testbed

Scheduler Node A Node B Node C Node D

Hadoop Default 5 4 5 3
End-to-end 5 5 6 1

304 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2016

task or computational phase, but also the impact on down-
stream phases. Map-aware Push enables push-map overlap
to hide latency and enable dynamic feedback between the
map and push phases, allowing nodes with higher speeds
and faster links to process more data at runtime. Shuffle-
aware Map enables a shuffle-aware scheduler to feed back
the cost of a downstream shuffle into the map process and
affect the map phase. Mappers with poor outgoing links to
reducers are throttled, eliminating the impact of mapper-
reducer bottleneck links. For a range of heterogeneous envi-
ronments (multi-region Amazon EC2 and PlanetLab) and
diverse data-intensive applications (WordCount, Inver-
tedIndex, and Sessionization) we have shown the
performance potential of our techniques, as runtime is
reduced by 7-18 percent depending on the execution envi-
ronment and application.

ACKNOWLEDGMENTS

The authors would like to acknowledge National Science
Foundation grants CNS-0643505, CNS-0519894, and IIS-
0916425, which supported this research, and Chenyu Wang
for his contributions to the cross-phase optimization techni-
ques and experiments.

REFERENCES

[1] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khorlin, J. Larson,
J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Pro-
viding scalable, highly available storage for interactive services,”
in Proc. Conf. Innovative Data Syst. Res., 2011, pp. 223–234.

[2] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S.
Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S.
Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D.
Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C.
Taylor, R. Wang, and D. Woodford, “Spanner: Google’s globally-
distributed database,” in Proc. 10th USENIX Conf. Operating Syst.
Design Implementation, 2012, pp. 251–264.

[3] E. Nygren, R. Sitaraman, and J. Sun, “The akamai network: A plat-
form for high-performance internet applications,” ACM SIGOPS
Operating Syst. Rev., vol. 44, no. 3, pp. 2–19, 2010.

[4] T. Hey, S. Tansley, and K. Tolle, Eds., The Fourth Paradigm: Data-
Intensive Scientific Discovery. Redmond, WA, USA: Microsoft
Research, 2009.

[5] D. Patterson and J. Gray, “A conversation with Jim Gray,” Queue,
vol. 1, no. 4, pp. 8–17, Jun. 2003.

[6] A. Rabkin, M. Arye, S. Sen, V. Pai, and M. J. Freedman, “Making
every bit count in wide-area analytics,” in Proc. 14th USENIX
Conf. Hot Topics Oper. Syst., 2013, p. 6.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” in Proc. 6th Symp. Operating Syst. Des. Imple-
mentation, 2004, pp. 137–149.

[8] M. Cardosa, C. Wang, A. Nangia, A. Chandra, and J. Weissman,
“Exploring MapReduce efficiency with highly-distributed data,”
in Proc. 2nd Int. Workshop MapReduce Its Appl., 2011, pp. 27–33.

[9] Hadoop [Online]. Available: http://hadoop.apache.org
[10] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawrzo-

niak, and M. Bowman, “PlanetLab: An overlay testbed for broad-
coverage services,” ACM SIGCOMM, vol. 33, no. 3, pp. 3–12, 2003.

[11] H. Herodotou, F. Dong, and S. Babu, “No one (cluster) size fits all:
Automatic cluster sizing for data-intensive analytics,” in Proc.
ACM 2nd ACM Symp. Cloud Comput., 2011, pp. 18:1–18:14.

[12] V. Jalaparti, H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron,
“Bridging the tenant-provider gap in cloud services,” in Proc. 3rd
ACM Symp. Cloud Comput., 2012, pp. 6:1–6:14.

[13] A. Verma, N. Zea, B. Cho, I. Gupta, and R. H. Campbell,
“Breaking the MapReduce stage barrier,” in Proc. IEEE Int. Conf.
Cluster Comput., 2010, pp. 235–244.

[14] B. Heintz, A. Chandra, and R. K. Sitaraman, “Optimizing MapRe-
duce for highly distributed environments,” Dept. Comput. Sci.
Eng., Univ. Minnesota, Minneapolis, MN, USA, Tech. Rep. TR 12-
003, Feb. 2012.

[15] Project Gutenberg [Online]. Available: http://www.gutenberg.
org/

[16] M. Arlitt and T. Jin, “Workload characterization of the 1998 World
Cup web site,” HP Labs, Palo Alto, CA, USA, Tech. Rep. HPL-
1999-35R1, Sep. 1999.

[17] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus: locality-
aware resource allocation for MapReduce in a cloud,” in Proc. Int.
Conf. High Performance Comput., Netw., Storage Anal., 2011, pp.
58:1–58:11.

[18] M. Hammoud, M. S. Rehman, and M. F. Sakr, “Center-of-Gravity
reduce task scheduling to lower MapReduce network traffic,” in
Proc. IEEE Cloud, 2012, pp. 49–58.

[19] H. Gadre, I. Rodero, and M. Parashar, “Investigating MapReduce
framework extensions for efficient processing of geographically
scattered datasets,” in Proc. ACM SIGMETRICS, 2011, pp. 116–118.

[20] S. Kim, J. Won, H. Han, H. Eom, and H. Y. Yeom, “Improving
Hadoop performance in intercloud environments,” ACM SIG-
METRICS Perform. Eval. Rev., vol. 39, no. 3, pp. 107–109, 2011.

[21] M. Mattess, R. Calheiros, and R. Buyya, “Scaling MapReduce
applications across hybrid clouds to meet soft deadlines,” in Proc.
IEEE 27th Int. Conf. Adv. Inf. Netw. Appl., Mar. 2013, pp. 629–636.

[22] Y. Luo, Z. Guo, Y. Sun, B. Plale, J. Qiu, andW. W. Li, “A hierarchi-
cal framework for cross-domain MapReduce execution,” in Proc.
2nd Int. Workshop Emerging Comput. Methods Life Sci., 2011, pp. 15–
22.

[23] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environ-
ments,” in Proc. 8th USENIX Conf. Operating Syst. Des. Implementa-
tion, 2008, pp. 29–42.

[24] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu,
and B. Saha, “Reining in the outliers in map-reduce clusters using
mantri,” in Proc. USENIX Conf. Operating Syst. Des. Implementation,
2010, pp. 265–278.

[25] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijayku-
mar, “Tarazu: Optimizing MapReduce on heterogeneous
clusters,” in Proc. 17th Int. Conf. Archit. Support Program. Languages
Operating Syst., 2012, pp. 61–74.

[26] T. Sandholm and K. Lai, “MapReduce optimization using
dynamic regulated prioritization,” in Proc. 11th Int. Joint Conf.
Meas. Model. Comput. Syst., 2009, pp. 299–310.

[27] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A.
Goldberg, “Quincy: Fair scheduling for distributed computing
clusters,” in Proc. ACM SIGOPS 22nd Symp. Operating Syst. Princi-
ples, 2009, pp. 261–276.

[28] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. 5th Eur. Conf.
Comput. Syst., 2010, pp. 265–278.

[29] R. Wolski, N. T. Spring, and J. Hayes, “The network weather ser-
vice: A distributed resource performance forecasting service for
metacomputing,” Future Generation Comput. Syst., vol. 15, pp. 757–
768, 1999.

[30] J. Kim, A. Chandra, and J. Weissman, “Passive network perfor-
mance estimation for large-scale, data-intensive computing,”
IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 8, pp. 1365–1373,
Aug. 2011.

[31] Q. He, C. Dovrolis, and M. Ammar, “On the predictability of large
transfer tcp throughput,” in Proc. ACM SIGCOMM, 2005, pp. 145–
156.

Benjamin Heintz received the BS degree in
mechanical engineering and economics from
Northwestern University, and the MS degree in
computer science from the University of Minne-
sota. He is currently working toward the PhD
degree in the Department of Computer Science
and Engineering at the University of Minnesota.
His research interests include distributed sys-
tems and data-intensive computing. He is a stu-
dent member of the IEEE.

HEINTZ ETAL.: END-TO-END OPTIMIZATION FOR GEO-DISTRIBUTED MAPREDUCE 305

Abhishek Chandra received the BTech degree
in computer science and engineering from the
Indian Institute of Technology Kanpur, and the
MS and PhD degrees in computer science from
the University of Massachusetts Amherst. He is
an associate professor in the Department of
Computer Science and Engineering at the Uni-
versity of Minnesota. His research interests are in
the areas of operating systems and distributed
systems. He is a member of the IEEE.

Ramesh K. Sitaraman received the BTech
degree in electrical engineering from the Indian
Institute of Technology, Madras, and the PhD
degree in computer science from Princeton Uni-
versity. He is currently in the School of Computer
Science at the University of Massachusetts at
Amherst. His research spans all aspects of Inter-
net-scale distributed systems, including algo-
rithms, architectures, performance, energy
efficiency, user behavior, and economics. As a
principal architect, he helped create the Akamai

network and is an Akamai fellow. He is best known for his pioneering
role in helping build the first large content delivery networks (CDNs) that
currently deliver much of the world’s web content, streaming videos, and
online applications. He received the National Science Foundation (NSF)
CAREER Award and a Lilly fellowship. He is a member of the IEEE.

Jon Weissman received the PhD degree in com-
puter science from the University of Virginia. He
is a professor of computer science at the Univer-
sity of Minnesota. His current research interests
are in distributed systems, high-performance
computing, and resource management. He is a
senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

306 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 4, NO. 3, JULY-SEPTEMBER 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

