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ABSTRACT
Several major Internet service providers today also o↵er con-
tent distribution services. The emergence of such “network-
CDNs” (NCDNs) is driven both by market forces as well as
the cost of carrying ever-increasing volumes of tra�c across
their backbones. An NCDN has the flexibility to determine
both where content is placed and how tra�c is routed within
the network. However NCDNs today continue to treat tra�c
engineering independently from content placement and re-
quest redirection decisions. In this paper, we investigate the
interplay between content distribution strategies and tra�c
engineering and ask whether or how an NCDN should ad-
dress these concerns in a joint manner. Our experimental
analysis, based on traces from a large content distribution
network and real ISP topologies, shows that realistic (i.e.,
history-based) joint optimization strategies o↵er little bene-
fit (and often significantly underperform) compared to sim-
ple and “unplanned” strategies for routing and placement
such as InverseCap and LRU. We also find that the simpler
strategies su�ce to achieve network cost and user-perceived
latencies close to those of a joint-optimal strategy with fu-
ture knowledge.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management; C.2.4
[Distributed Systems]: Distributed applications

Keywords
Tra�c engineering; Content distribution; Network CDN

1. INTRODUCTION
Content delivery networks (CDNs) today provide a core

service that enterprises use to deliver web content, down-
loads, and streaming media to a global audience of end-
users. The traditional and somewhat simplified, tripartite
view of content delivery involves three sets of entities as

CDN

Content Providers

Networks
Network CDN

Figure 1: Network CDNs (NCDNs) allow a tighter
integration of content delivery functionality with the
ISP’s network operations.

shown in Figure 1. The content providers (e.g., media com-
panies, news channels, e-commerce sites, software distribu-
tors, enterprise portals, etc.) own the content and wish to
provide a high-quality experience to end-users who access
their content. The networks (e.g., telcos such as AT&T,
multi-system operators such as Comcast, and ISPs) own the
underlying network infrastructure and are responsible for
provisioning capacity and routing tra�c demand. Finally,
the CDNs (e.g., Akamai [28], Limelight) optimize content
delivery to end-users on behalf of the content providers, re-
siding as a global, distributed overlay service [13].

Recent powerful trends are reshaping the simplified tri-
partite view of content delivery. A primary driver is the
torrid growth of video [27, 11] and downloads tra�c on the
Internet. For example, a single, popular TV show with 50
million viewers, with each viewer watching an HD-quality
stream of 10 Mbps, generates 500 Tbps of network tra�c!
The increasing migration of traditional media content to the
Internet and the consequent challenges of scaling the net-
work backbone to accommodate that tra�c has necessitated
the evolution of network CDNs (or NCDNs)1 that vertically
integrate CDN functionality such as content caching and
redirection with traditional network operations [19, 26, 24,
8, 36] (refer Figure 1). Another economic driver of NCDNs
is the desire of networks to further monetize the “bits” that
flow on their infrastructure and to o↵er value-added services
to their own end-user subscribers, e.g., Verizon’s recent of-
fering that delivers HBO’s content to FIOS subscribers [35].
Two key trends in how networks implement NCDNs [3] are
managed CDNs where a CDN provider (such as Akamai)
deploys their own servers at the network’s PoPs and oper-
ates the CDN service on behalf of the network provider [2];
and, licensed CDNs where the CDN provider licenses their
software to the network who then deploy and operate the
NCDN themselves [1, 10].

1NCDNs are also called Telco CDNs, or Carrier CDNs.
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As NCDNs control both the content distribution and the
network infrastructure, the costs and objectives of their in-
terest are di↵erent both from a traditional CDN and a tradi-
tional ISP. In particular, an NCDN is in a powerful position
to place content in a manner that “shapes” the tra�c de-
mand so as to optimize both network cost and user-perceived
latency. Indeed, several recent works have alluded to the
benefits of such joint optimization strategies in the context
of cooperative or competitive interaction between ISPs and
content providers [38, 14, 21, 18]. NCDNs today largely
treat the content distribution layer and the tra�c engineer-
ing layer separately, treating the former as an overlay over
the latter. However, an NCDN is the perfect setting for
fielding a joint optimization as both layers are for the first
time closely alligned in terms of both the business objectives
and the system architecture.

The intriguing prospect of jointly optimizing content de-
livery and tra�c engineering raises several research ques-
tions that form the focus of this paper. How should an
NCDN determine content placement, network routing, and
request redirection decisions so as to optimize network cost
and user-perceived latency? How much benefit do joint opti-
mization strategies yield over simpler strategies as practiced
today, and does the benefit warrant the added complexity?
How do content demand patterns and placement strategies
impact network cost? How do planned strategies (i.e., us-
ing knowledge of recently observed demand patterns or hints
about anticipated future demands) for placement and rout-
ing compare against simpler, unplanned strategies?

Our primary contribution is to empirically analyze the
above questions for realistic content demand workloads and
ISP topologies. To this end, we collect content request
traces from Akamai, the world’s largest CDN today. We fo-
cus specifically on on-demand video and large-file downloads
tra�c as they are two categories that dominate overall CDN
tra�c and are significantly influenced by content placement
strategies. Our combined traces consist of a total of 28.2
million requests from 7.79 million unique users who down-
loaded a total of 1455 Terabytes of content across the US
over multiple days. Our main finding based on trace-driven
experiments using these logs and realistic ISP topologies is
that simple, unplanned strategies for placement, routing, and
redirection of NCDN content are better than sophisticated
joint-optimization approaches. Specifically,

• For NCDN tra�c, simple unplanned schemes for place-
ment and routing (such as least-recently-used and In-
verseCap) yield significantly lower (2.2–17⇥) network
cost and user-perceived latency than a joint-optimal
scheme with knowledge of the previous day’s demand2.

• NCDN tra�c demand can be“shaped”by simple place-
ment strategies so that tra�c engineering, i.e., opti-
mizing routes with knowledge of recent tra�c matri-
ces, hardly improves network cost or user-perceived
latency over unplanned routing (InverseCap).

• For NCDN tra�c, unplanned placement and routing is
just 1%-18% sub-optimal compared to a joint-optimal
placement and routing with perfect knowledge of the
next day’s demand at modest storage ratios (⇡ 4).

2We use the term “optimal” when placement or routing is
the solution of an optimization problem, but the solution
may not have the lowest cost (for reasons detailed in §5.3.1)
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Figure 2: NCDN Architecture

• With a mix of NCDN and transit tra�c, tra�c engi-
neering does lower network cost (consistent with pre-
vious studies), but the value of tra�c engineering sub-
stantially diminishes as the relative volume of NCDN
tra�c begins to dominate that of transit tra�c.

In the rest of this paper, we first overview the NCDN ar-
chitecture highlighting why it changes traditional ISP and
CDN concerns (§2). Next, we formalize algorithms that
jointly optimize content placement and routing in an NCDN
(§3). We then describe how we collected real CDN traces
(§4) and evaluate our algorithms using these traces and real
ISP topologies (§5). Finally, we present related work (§7)
and conclusions (§8).

2. BACKGROUND AND MOTIVATION
A typical NCDN architecture, as shown in Figure 2, re-

sembles the architecture of a global CDN but with some
important di↵erences. First, the content servers are de-
ployed at points-of-presence (PoPs) within a single network
rather than globally across the Internet as the NCDN is pri-
marily interested in optimizing content delivery for its own
customers and end-users. Second, and more importantly,
content distribution and network operations are tightly al-
ligned, so that a joint optimization of these layers is feasible.
In fact, in some cases such as a Licensed CDN, a single en-
tity may own and manage both the content servers and the
underlying network. Content providers whose content is de-
livered by the NCDN publish their content to origin servers
that they maintain external to the NCDN itself.

Each PoP is associated with a distinct set of end-users
who request content such as web, video, downloads etc. An
end-user’s request is first routed to the content servers at
the PoP to which the end-user is connected. If a content
server at that PoP has the requested content in their cache,
it serves that to the end-user. Otherwise, if the requested
content is cached at other PoPs, the content is downloaded
from a nearby PoP and served to the end-user. If the content
is not cached in any PoP, it is downloaded directly from the
content provider’s origin servers.

2.1 Why NCDNs Change the Game
Managing content distribution as well as the underlying

network makes the costs and objectives of interest to an
NCDN di↵erent from that of a traditional CDN or a tra-
ditional ISP. Figure 3 (top) shows the traditional concerns
of content distribution and tra�c engineering as addressed
by a traditional CDN and a traditional ISP respectively,
while Figure 3 (bottom) shows the combined concerns that
an NCDN must address. We explain these in detail below.
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Figure 3: (Top) Traditional formulation with con-
tent distribution and tra�c engineering optimized
separately. (Bottom) Our new formulation of
NCDN magamenent as a joint optimization.

2.1.1 Content Distribution

A traditional CDN has two key decision components—
content placement and request redirection—that seek to op-
timize the response time perceived by end-users and balance
the load across its content servers. Content placement de-
cides which objects should be cached at which nodes. An
object may be stored at multiple nodes in the network or not
stored in the network at all and be served from the origin
server instead. Request redirection determines which server
storing a replica of the object is best positioned to serve it.

Content placement schemes can either be planned or un-
planned. A planned scheme calculates placement using a
content matrix that specifies the demand for each content at
each location. The content matrix is learned by monitoring
a recent history of system-wide requests and possibly includ-
ing hints, if any, from content providers about anticipated
demand for some objects. A planned scheme uses a recent
content matrix to decide on a placement periodically (e.g.,
daily) but does not alter its placement in between. In con-
trast, an unplanned scheme can continually alter its place-
ment potentially even after every single request. A simple
and widely used example of an unplanned placement scheme
is LRU, where each server evicts the least-recently-used ob-
ject from its cache to make room for new ones.

2.1.2 Traffic Engineering

A key component of ISP network operations is tra�c en-
gineering, which seeks to route the tra�c demands through
the backbone network so as to balance the load and mit-
igate hotspots. Tra�c engineering is commonly viewed as
a routing problem that takes as input a tra�c matrix, i.e.,
the aggregate flow demand between every pair of PoPs ob-
served over a recent history, and computes routes so as to
minimize a network-wide cost objective. The cost seeks to
capture the severity of load imbalance in the network and
common objective functions include the maximum link uti-
lization (MLU) or a convex function (so as to penalize higher
utilization more) of the link utilization aggregated across all
links in the network [16]. ISPs commonly achieve the com-
puted routing either by using shortest-path routing (e.g.,

the widely deployed OSPF protocol [16]) or by explicitly
establishing virtual circuits (e.g., using MPLS [15]). ISPs
perform tra�c engineering at most a few times each day,
e.g., morning and evening each day [17].

Routing can also be classified as planned or unplanned
similar in spirit to content placement. Tra�c engineering
schemes as explained above are implicitly planned as they
optimize routing for recently observed demand. To keep the
terminology simple, we also classify online tra�c engineering
schemes [22, 15] (that are rarely deployed today) as planned.
In contrast, unplanned routing schemes are simpler and rely
upon statically configured routes [7, 9], e.g., InverseCap is
a static shortest-path routing scheme that sets link weights
to the inverse of their capacities; this is a common default
weight setting for OSPF in commercial routers [17].

2.1.3 NCDN Management

As NCDNs own and manage the infrastructure for content
distribution as well as the underlying network, they are in a
powerful position to control all three of placement, routing,
and redirection (Figure 3). In particular, an NCDN can
place content in a manner that “shapes” the tra�c demands
so as to jointly optimize both user-perceived latency as well
as network cost.

To appreciate how placement can shape tra�c, consider
the simple example in Figure 4. Node C has an object in
its cache that is requested by end-users at nodes A and D.
Suppose that one unit of tra�c needs to be routed from C

to A and 0.5 units from C to D to satisfy the demand for
that object. The routing that achieves the minimum MLU
of 0.5 to serve the demanded object is shown in the figure.
Note that the routing that achieves the MLU of 0.5 is not
possible with a simple, unplanned protocol like InverseCap
as that would route all the tra�c demand from C to A

via B, resulting in an MLU of 1. Thus, a (planned) tra�c
engineering scheme is necessary to achieve an MLU of 0.5.

On the other hand, NCDNs can shape the tra�c demand
matrix by using a judicious placement and redirection strat-
egy. Suppose that there is some space left in the content
server’s cache at node B to accommodate an additional copy
of the demanded object. By creating an additional copy of
the object at B, the tra�c demand of A can be satisfied
from B and the demand of D from C achieving an MLU of
0.125. In this case, judicious content placement decreased
the MLU by a factor of 4. Even more interestingly, this
best MLU can be achieved using a simple routing scheme
like InverseCap while also improving user-perceived latency
(assuming that the latency of link BA is lower than that of
the two-hop paths from C to A).

The above toy example suggests benefits to jointly opti-
mizing placement, routing, and redirection, but raises sev-
eral natural questions. How much additional benefit does
such joint optimization o↵er compared to treating CDN and
ISP concerns independently as practiced today? Is the added
complexity of joint optimization strategies worth the bene-
fit? Which of the three—placement, routing, and redirection—
is the most critical to reducing network cost and user-perceived
latency? How sensitive are these findings to characteristics
of the content workload (e.g., video vs. download tra�c)?

3. NCDN MANAGEMENT STRATEGIES
To answer the above questions, we develop an optimiza-

tion model for NCDNs to decide placement, routing, and
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Input variables and descriptions

V Set of nodes where each node represents a PoP

E Set of edges where each link represents a communica-

tion link

o Virtual origin node that hosts all the content in K

X Set of exit nodes in V

D

i

Disk capacity at node i 2 V (in bytes)

C

e

Capacity of link e 2 E (in bits/sec)

K the set of all content accessed by end-users

S

k

Size of content k 2 K.

T

ik

Demand (in bits/sec) at node i 2 V for content k 2 K

Decision variables and descriptions

↵ MLU of the network

z

k

Binary variable indicating whether one or more copies

of content k is placed in the network

x

jk

Binary variable indicating whether content k is placed

at node j 2 V [ {o}
f

ij

Total tra�c from node j to node i

f

ije

Tra�c from node j to node i crossing link e.

t

ijk

Tra�c demand at node i 2 V for content k 2 K served

from node j 2 V [ {o}

Table 1: List of input and decision variables for the
NCDN problem formulation.

redirection so as to optimize network cost or user-perceived
latency. We formulate the optimization problem as a mixed-
integer program (MIP), present hardness and inapproxima-
bility results, and discuss approximation heuristics to solve
MIPs for realistic problem sizes.

3.1 NCDN Model
Table 1 lists all the model parameters. An NCDN consists

of a set of nodes V where each node represents a PoP in the
network. The nodes are connected by a set of directed edges
E that represent the backbone links in the network. The set
of content requested by end-users is represented by the set
K and the sizes of content are denoted by S

k

, k 2 K. The
primary resource constraints are the link capacities C

e

, e 2

E, and the storage at the nodes D

i

, i 2 V . We implicitly
assume that the content servers at the PoPs have adequate
compute resources to serve locally stored content.

A content matrix (CM) specifies the demand for each con-
tent at each node. An entry in this matrix, T

ik

, i 2 V, k 2 K,
denotes the demand (in bits/second) for content k at node
i. CM is assumed to be measured by the NCDN a priori
over a coarse-grained interval, e.g., the previous day. The
infrastructure required for this measurement is comparable
to what ISPs have in place to monitor tra�c matrices today.

Origin servers, owned and maintained by the NCDN’s con-
tent providers, initially store all content published by con-
tent providers. We model origin servers using a single virtual
origin node o external to the NCDN that can be reached via
a set of exit nodes X ⇢ V in the NCDN (Figure 2). Since we

are not concerned with tra�c engineering links outside the
NCDN, we model the edges (x, o), for all x 2 X, as having
infinite capacity. The virtual origin node o always maintains
a copy of all the requested content. However, a request for a
content is served from the virtual origin node only if no copy
of the content is stored at any node i 2 V . In this case, the
request is assumed to be routed to the virtual origin via the
exit node closest to the node where the request was made
(in keeping with the commonly practiced early-exit or hot
potato routing policy).

ISP networks carry transit tra�c in addition to NCDN
tra�c, which can be represented as a transit tra�c matrix
(TTM). Each entry in the TTM contains the volume of tran-
sit tra�c between two PoPs in the network.

3.2 Cost Functions
We evaluate NCDN-management strategies based on two

cost functions. The first cost function is maximum link uti-
lization (or MLU) which measures the e↵ectiveness of tra�c
engineering in an NCDN. MLU is a widely used network
cost function for traditional TE.

The second cost function models user-perceived latency
and is defined as

P
e2E

X

e

, where X

e

is the product of traf-
fic on link e and its link latency L(e). The latency of a
link L(e) is the sum of a fixed propagation delay and a
variable utilization dependent delay. For a unit flow, link
latency is defined as L

e

(u
e

) = p

e

(1+ f(u
e

)), where p

e

is the
propagation delay of edge e, u

e

is its link utilization, and
f(u) is a piecewise-linear convex function. This cost func-
tion is similar to that used by Fortz and Thorup [16]. At
small link utilizations ( < 0.6), link latency is determined
largely by propagation delay hence f is zero. At higher link
utilizations (0.9 and above) an increase in queuing delay
and delay caused by retransmissions significantly increase
the e↵ective link latency. The utilization-dependent delay is
modeled as proportional to propagation delay as the impact
of (TCP-like) retransmissions is more on paths with longer
links. Since L

e

is convex, a set of linear constraints can be
written to constraint the value of X

e

(as in [16]).

3.3 Optimal Strategy as MIP
We present here a joint optimization strategy for NCDN-

management formulated as a MIP. This formulation takes
as input a content matrix, i.e., the demand for each content
at each network point-of-presence (PoP), and computes con-
tent placement, request redirection and routing that mini-
mizes an NCDN cost function while respecting link capacity
and storage constraints. The decision variables for this prob-
lem are listed in Table 1. The MIP to minimize an NCDN
cost function C (either MLU or latency) is as follows:

minC (1)

subject to

X

j2V

t

ijk

+ t

iok

= T

ik

, 8k 2 K, i 2 V (2)

X

k2K

t

ijk

= f

ij

, 8j 2 V �X, i 2 V (3)

X

k2K

t

ijk

+
X

k2K

�

ij

t

iok

= f

ij

, 8j 2 X, i 2 V (4)

where �
ij

is 1 if j is the closest exit node to i and 0 otherwise.
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Note that �
ij

is not a variable but a constant that is deter-
mined by the topology of the network, and hence constraint
(4) is linear.

X

p2P (l)

f

ijp

�

X

q2Q(l)

f

ijq

=

8
><

>:

f

ij

if l = i,

�f

ij

if l = j,

0 otherwise,

8i, j, l 2 V (5)

where P (l) and Q(l) respectively denote the set of outgoing
and incoming links at node l.

X

i2V,j2V

f

ije

 ↵⇥ C

e

, 8e 2 E (6)

X

k2K

x

ik

S

k

 D

i

, 8i 2 V (7)

x

ok

= 1, 8k 2 K (8)
X

i2V

x

ik

� z

k

, 8k 2 K (9)

x

ik

 z

k

, 8k 2 K, i 2 V (10)

t

ijk

 x

jk

T

ik

, 8k 2 K, i 2 V, j 2 V [ {o} (11)

t

iok

 T

ik

(1� z

k

), 8k 2 K (12)

x

jk

, z

k

2 {0, 1}, 8j 2 V, k 2 K

f

ije

, t

ijk

, t

iok

� 0, 8i, j 2 V, e 2 E, k 2 K

The constraints have the following rationale. Constraint
(2) specifies that the total tra�c demand at each node for
each content must be satisfied. Constraints (3) and (4) spec-
ify that the total tra�c from source j to sink i is the sum
over all content k of the tra�c from j to i for k. Constraint
(5) specifies that the volume of a flow coming in must equal
that going out at each node other than the source or the
sink. Constraint (6) specifies that the total flow on a link is
at most ↵ times capacity. Constraint (7) specifies that the
total size of all content stored at a node must be less than
its disk capacity. Constraint (8) specifies that all content is
placed at the virtual origin node o. Constraints (9) and (10)
specify that at least one copy of content k is placed within
the network if z

k

= 1, otherwise z

k

= 0 and no copies of k
are placed at any node. Constraint (11) specifies that the
flow from a source to a sink for some content should be zero
if the content is not placed at the source (i.e., when x

jk

= 0),
and the flow should be at most the demand if the content
is placed at the source (i.e., when x

jk

= 1). Constraint (12)
specifies that if some content is placed within the network,
the tra�c from the origin for that content must be zero.

Updating the content placement itself generates tra�c
and impacts the link utilization in the network. For ease
of exposition, we have deferred a formal description of the
corresponding constraints to our tech report [32]. Finally,
a simple extension to this MIP presented in the tech report
[32] jointly optimizes routing given a TTM as well a CM. We
have presented a CM-only formulation here as our findings
(in §5) show that a joint optimization of the CM and TTM
is not useful for NCDNs.

3.4 Computational Hardness
Opt-NCDN is the decision version of the NCDN problem.

The proofs for these theorems are presented in Appendix A.

Theorem 1. Opt-NCDN is NP-Complete even in the spe-
cial case where all objects have unit size, and all demands,
link capacities, and storage capacities have binary values.

Corollary 1. Opt-NCDN is inapproximable to within a
constant factor unless P = NP.

3.5 Approximation Techniques for MIP
As solving the MIP for very large problem scenarios is

computationally infeasible, we use two approximation tech-
niques to tackle such scenarios.

The first is a two-step local search technique. In the first
step, we “relax” the MIP by allowing the integral variables
x

jk

and z

k

to take fractional values between 0 and 1. This
converts an MIP into an LP that is more easily solvable.
Note also that the optimal solution of the relaxed LP is a
lower bound on the optimal solution of the MIP. However,
the LP solution may contain fractional placement of some
of the content with the corresponding x

jk

variables set to
fractional values between 0 and 1. However, in our exper-
iments only about 20% of the variables in the optimal LP
solution were set to fractional values between 0 or 1, and the
rest took integral values of 0 or 1. In the second step, we
search for a valid solution for the MIP in the local vicinity
of the LP solution by substituting the values for variables
that were set to 0 or 1 in the LP solution, and re-solving
the MIP for the remaining variables. Since the number of
integer variables in the second MIP is much smaller, it can
be solved more e�ciently than the original MIP.

The second approximation technique reduces the number
of unique content in the optimization problem using two
strategies. First, we discard the tail of unpopular content
prior to optimization. The discarded portion accounts for
only 1% of all requests, but reduces the number of content
by 50% or more in our traces. Second, we sample 25% of the
content from the trace and, in our experiments, select trace
entries corresponding only to the sampled content. These
approximations reduce the number of content from tens of
thousands to under 5000. An MIP of this size can be solved
using local search in an hour by a standard LP solver [20] for
the ISP topologies in our experiments.To check for any un-
toward bias introduced by the sampling, we also performed
a small number of experiments with the complete trace and
verified that our findings remain qualitatively unchanged.

4. AKAMAI CDN TRACES
To conduct a realistic simulation of end-users accessing

content on an NCDN, we collected extensive traces of video
and download tra�c from Akamai as described below.
Video traces. Videos are the primary source of tra�c

on a CDN and are growing at a rapid rate [27, 11]. Our
video trace consists of actual end-users accessing on-demand
videos on the Akamai network over multiple days. To make
the traces as representative as possible, we chose content
providers with a whole range of business models, including
major television networks, news outlets, and movie portals.
The videos in our traces include a range of video types from
short-duration video (less than 10 mins) such as news clips
to longer duration (30 min to 120 min) entertainment videos
representing TV shows and movies. In all, our anonymized
traces represent a nontrivial fraction of the overall tra�c
on Akamai’s media network and accounted for a total of
27 million playbacks of over 85000 videos, 738 TBytes of
tra�c, served to 6.59 million unique end-users around the
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Figure 5: News and entertainment have a significant fraction of requests for new content on all days. Down-
loads has a small fraction of requests for new content on all days, except one.

US. Since we only had US-based network topologies with
accurate link capacity information, we restricted ourselves
to US-based tra�c.

We collect two sets of anonymized video traces called news
trace and entertainment trace respectively. The news trace
was collected from a leading news outlet for an 11-day pe-
riod in Sept 2011, and consists mostly of news video clips,
but also includes a small fraction of news TV shows. The
entertainment trace was collected for a 6 day period in Jan-
uary 2012, and includes a variety of videos including TV
shows, clips of TV shows, movies and movie trailers from
three major content providers.

The trace collection mechanism utilized a plugin embed-
ded in the media player that is capable of reporting (anonymized)
video playback information. Our traces include a single log
entry for each playback and provides time of access, user
id, the location of the user (unique id, city, state, country,
latitude, and longitude), the url of the content, the content
provider, the total length of the video (in time and bytes),
the number of bytes actually downloaded, the playback du-
ration, and the average bitrate over the playback session.

Downloads traces. Downloads of large files over HTTP
is also a large large contributor of tra�c in a CDN. These
include software and security updates, e.g., Microsoft’s Win-
dows or Symantec’s security updates, as well as music, books,
movies, etc.. The large file downloads at Akamai typically
use a client-side software called the download manager [28].
We collect extensive and anonymized access data reported
from the download manager using Akamai’s NetSession in-
terface [4] for a large fraction of content providers for a pe-
riod of a month (December 2010). Our traces represent a
nontrivial fraction of the overall US-based tra�c on Aka-
mai’s downloads network and accounted for a total of 1.2
million downloads, 717 TBytes of tra�c, served to 0.62 mil-
lion unique end-users around the US. Our traces provide
a single log entry for each download and provide time of
access, user id, location of the user (city, state, country,
latitude, and longitude), the url identifier of the content,
content provider, bytes downloaded, and file size.

Figure 5 shows the fraction of requests for new content
published each day relative to the previous day for news,
entertainment, and downloads traces. The news trace has
up to 63% requests due to new content because the latest
news clips generated each day are the most popular videos
on the website. The entertainment trace also has up to 31%
requests each day due to new content such as new episodes
of TV shows, and the previews of upcoming TV shows. The
downloads trace has only 2-3% requests due to new content
on a typical day. However, on the 9th day of the trace major
software updates were released, which were downloaded on
the same day by a large number of users. Hence, nearly 20%

requests on that day were for new content. The fraction of
requests for new content impacts the performance of planned
placement strategies as we show §5.

5. EXPERIMENTAL EVALUATION
We conduct trace-driven experiments to compare di↵er-

ent NCDN-management strategies. Our high-level goal is to
identify a simple strategy that performs well for a variety of
workloads. In addition, we seek to assess the relative value
of optimizing content placement versus routing; the value
of being planned versus being unplanned and the value of
future knowledge about demand.

5.1 Trace-driven Experimental Methodology
To realistically simulate end-users accessing content on

an NCDN, we combine the CDN traces (in §4) with ISP
topologies as follows. We map each content request entry
in the Akamai trace to the geographically closest PoP in
the ISP topology in the experiment (irrespective of the real
ISP that originated the request). Each PoP has a content
server as shown in Figure 2, and the request is served locally,
redirected to the nearest (by hop-count) PoP with a copy,
or to the origin as needed.

ISP topologies. We experimented with network topol-
ogy maps from two US-based ISPs. First is the actual ISP
topology obtained from a large tier-1 ISP in the US (referred
to as US-ISP). Second is the Abilene ISP’s topology [33].

MLU computation. We compute the tra�c that flow
through each link periodically. To serve a requested piece
of content from a PoP s to t, we update the tra�c induced
along all edges on the path(s) from s to t as determined by
the routing protocol using the bytes-downloaded informa-
tion in the trace. To compute the MLU, we partition simu-
lation time into 5-minute intervals and compute the average
utilization of each link in each 5-minute interval. We discard
the values of the first day of the trace in order to warm up
the caches, as we are interested in steady-state behavior. We
then compute our primary metric, which is the 99-percentile
MLU, as the 99th percentile of the link utilization over all
links and all 5-minute time periods. We use 99-percentile
instead of the maximum as the former is good proxy for the
latter but with less experimental noise. Finally, for ease of
visualization, we scale the 99-percentile MLU values in all
graphs so that the maximum 99-percentile MLU across all
schemes in each graph is equal to 1. We call this scaled MLU
the normalized MLU. Note that only the relative ratios of the
MLUs for the di↵erent schemes matter and scaling up the
MLU uniformly across all schemes is equivalent to uniformly
scaling down the network resources or uniformly scaling up
the tra�c in the CDN traces.

Latency cost computation. Our latency cost metric,
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which models user-perceived latencies, is a sum of the la-
tency on ISP backbone links and the the latency from user
to its nearest PoP. Tra�c served from origin incurs an ad-
ditional latency from origin to the exit locations in the net-
work. We assume origin servers to be located close to exit
locations so that latency from exit locations to origin servers
is a small fraction of the overall end user latency. The la-
tency cost of a link e for a interval of a second when tra�c
(in bits/sec) on link e is V

e

and link utilization is u
e

, is calcu-
lated as V

e

⇥L

e

(u
e

), where L
e

is the latency function defined
in §3. The aggregate latency cost of a link is calculated by
summing the latency costs for all 1 sec intervals during the
experiment (excluding the first day). The user-to-nearest
PoP latency cost is calculated by summing the tra�c (in
bits) requested by a user times the propagation delay to its
nearest PoP for all users.

Storage. We assume that storage is provisioned uni-
formly across PoPs except in §5.6 where we analyze het-
erogenous storage distributions. We repeat each simulation
with di↵erent levels of provisioned storage. Since the appro-
priate amount of storage depends on the size of the working
set of the content being served, we use as a metric of storage
the storage ratio, or the ratio of total storage at all PoPs in
the network to the average storage footprint of all content
accessed in a day for the trace. The total storage across all
nodes for a storage ratio of 1 is 228 GB, 250 GB, and 895
GB for news, entertainment and downloads respectively.

5.2 Schemes Evaluated
Each evaluated scheme has a content placement compo-

nent and a routing component.
InvCap-LRU uses LRU as the cache replacement strategy

and InverseCap (with ECMP) as the routing strategy. Inver-
seCap is a static, shortest-path routing scheme where link
weights are set to the inverse of the link capacity. This
scheme requires no information of either the content de-
mand or the tra�c matrix. If content is available at multiple
PoPs, we choose the PoP with least hop count distance while
breaking ties randomly among PoPs with same hop count
distance.

We added a straightforward optimization to LRU where if
a user terminates the request before 10% of the video (file)
is viewed (downloaded), the content is not cached (and the
rest of the file is not fetched); otherwise the entire file is
downloaded and cached. This optimization is used since
we observe in our traces that a user watching a video very
often stops watching it after watching the initial period. A
similar phenomenon is observed for large file downloads, but
less frequently than video.

OptR-LRU uses an unplanned placement, LRU, but it
uses an planned, optimized routing that is updated every
three hours. The routing is computed by solving a multi-
commodity flow problem identical to the traditional traf-
fic engineering problem [16]. We assume that the NCDN
measures the tra�c matrix over the preceding three hours
and computes routes that optimize the MLU for that ma-
trix. The matrix incorporates the e↵ect of the unplanned
placement and the implicit assumption is that the content
demand and unplanned placement result in a tra�c matrix
that does not change dramatically from one monitoring in-
terval to the next—an assumption that also underlies tra�c
engineering as practiced by ISPs today.

OptRP computes a joint optimization of placement and
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Figure 7: [Videos, Abilene] OptRP serves 50% and
21% of news and entertainment requests respec-
tively from the origin. InvCap-LRU and OptRP-Future
serve at most 2% from the origin.

routing once a day based on the previous day’s content ma-
trix using the MIP formulation of §3.3. OptRP-Future has
oracular knowledge of the content matrix for the next day
and uses it to calculate a joint optimization of placement,
redirection and routing. OptRP and OptRP-Future are iden-
tical in all respects except that the former uses the content
matrix of the past day while the latter has perfect future
knowledge. These two schemes help us understand the value
of future knowledge. In practice, it may be possible for an
NCDN to obtain partial future knowledge placing it some-
where between the two extremes. For instance, an NCDN is
likely to be informed beforehand of a major software release
the next day (e.g., new version of the Windows) but may
not be able to anticipate a viral video that suddenly gets
“hot”.

To determine the value of optimizing routing alone, we
study the InvCap-OptP-Future scheme. This is a variant of
OptRP-Future where InverseCap routing is used and content
placement is optimized, rather than jointly optimizing both.
This scheme is computed using the MIP formulation in §3.3
but with an additional constraint modification that ensures
that InvCap routing is implemented.

We add a su�x -L to the names of a scheme if it is opti-
mizing for latency cost instead of MLU, e.g. OptRP-L.
For all schemes that generate a new placement each day,

we implement the new placement during the low-tra�c pe-
riod from 4 AM to 7 AM EST. This ensures that the traf-
fic generated due to changing the content placement occurs
when the links are underutilized. For these schemes, the
routing is updated each day at 7 AM EST once the place-
ment update is finished.

5.3 Comparison of Network Cost

5.3.1 Analysis of Video & Downloads Traffic

Figure 6 shows the results for the news, entertainment
and downloads traces on Abilene and US-ISP. Our first ob-
servation is that a realistic planned placement and routing
scheme, OptRP, performs significantly worse than a com-
pletely unplanned scheme, InvCap-LRU. OptRP has 2.2⇥ to
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Figure 6: Planned OptRP performs much worse than unplanned InvCap-LRU. OptRP-Future performs moderately
better than InvCap-LRU primarily at small storage ratios.
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Figure 8: [Downloads, US-ISP] OptRP incurs a very
high MLU on one “peak load” day.

17⇥ higher MLU than InvCap-LRU even at the maximum
storage ratio in each graph. OptRP has a high MLU be-
cause it optimizes routing and placement based on the pre-
vious day’s content demand while a significant fraction of
requests are for new content not accessed the previous day
(see Figure 5). Due to new content, the incoming tra�c from
origin servers is significant, so the utilization of links near
the exit nodes connecting to the origin servers is extremely
high.

The fraction of requests served from the origin is much
higher for OptRP compared to InvCap-LRU and OptRP-Future
on the news and the entertainment traces. Figure 7 shows
that OptRP serves 50% and 21% of requests from the ori-
gin for news and entertainment respectively. In comparison,
InvCap-LRU and OptRP-Future serve less than 2% of requests
from the origin. Therefore, OptRP has a much higher MLU
than both InvCap-LRU and OptRP-Future on the two traces.

The downloads trace di↵ers from other traces in that, ex-
cept for one day, the tra�c is quite predictable based on the
previous day’s history. This is reflected in the performance
of OptRP that performs nearly the same as OptRP-Future on
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Figure 9: [All traces] Optimizing routing yields little
improvement to MLU of either InvCap-LRU or InvCap-
OptP-Future

all days except the ninth day of the trace (see Figure 8). The
surge in MLU for OptRP on the ninth day is because nearly
20% of requests on this day is for new content consisting of
highly popular software update releases (see Figure 5). The
surge in MLU on this one day is mainly responsible for the
poor performance of OptRP on the downloads trace.

Next, we observe that InvCap-LRU does underperform com-
pared to OptRP-Future that has knowledge of future content
demand. However, InvCap-LRU improves with respect to
OptRP-Future as the storage ratio increases. The maximum
di↵erence between the two schemes is for the experiment
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ISP] Content chunking helps
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 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4

Storage Ratio

N
o

rm
a

liz
e

d
 M

L
U OptRP-Hybrid

InvCap-LRU

Figure 11: [Entertainment, Abi-
lene] Hybrid placement schemes
perform at best as well as InvCap-
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Figure 12: [Entertainment, US-
ISP] OptRP does not outperform
InvCap-LRU despite engineering 8
times a day.

with entertainment trace on US-ISP topology. In this case,
at a storage ratio of 1, InvCap-LRU has twice the MLU of
the OptRP-Future scheme; the di↵erence reduces to 1.6⇥ at
a storage ratio of 4. This shows that when storage is scarce,
planned placement with future knowledge can significantly
help by using knowledge of the global demand to maximize
the utility of the storage. However, if storage is plentiful,
the relative advantage of OptRP-Future is smaller. An im-
portant implication of our results is that an NCDN should
attempt to do planned placement only if the future demand
can be accurately known or estimated. Otherwise, a simpler
unplanned scheme such as LRU su�ces.

How are the above conclusions impacted if InvCap-LRU
were to optimize routing or OptRP-Future were to use In-
verseCap routing? To answer this question, we analyze
the maximum reduction in MLU by using OptR-LRU over
InvCap-LRU across all storage ratios in Figure 9. We sim-
ilarly compare OptRP-Future and InvCap-OptP-Future. We
find that OptR-LRU improves the MLU over InvCap-LRU by
at most 10% across all traces suggesting that optimizing
routing is of little value for an unplanned placement scheme.
OptRP-Future reduces the network cost by at most 13% com-
pared to InvCap-OptP-Future. As we consider OptRP-Future
to be the “ideal” scheme with full future knowledge, these
results show that the best MLU can be achieved by optimiz-
ing content placement alone; optimizing routing adds little
additional value.

Why do InvCap-LRU and OptR-LRU have nearly the same
network costs? While LRU does greatly reduce tra�c due
to a high percentage of cache hits, but this is not enough to
explain why InvCap achieves nearly the same MLU as opti-
mized routing for the residual tra�c, however small. Tra�c
engineering gives little additional value either because tra�c
matrices are unpredictable and/or because the NCDN traf-
fic matrices and ISP topologies that we consider do not give
much scope for an optimized routing to reduce the MLU
over InverseCap routing.

Somewhat counterintuitively, the MLU sometimes increases
with a higher storage ratio for the OptRP scheme. There are
three reasons that explain this. First, the optimization for-
mulation optimizes for the content matrix assuming that the
demand is uniformly spread across the entire day, however
the requests may actually arrive in a bursty manner. So
it may be sub-optimal compared to a scheme that is ex-
plicitly optimized for a known sequence of requests. Sec-
ond, the optimization formulation optimizes the MLU for
the “smoothed”matrix, but the set of objects placed by the
optimal strategy with more storage may not necessarily be

a superset of the objects placed by the strategy with lesser
storage at any given PoP. Third, and most importantly, the
actual content matrix for the next day may di↵er signifi-
cantly from that of the previous day. All of these reasons
make the so-called“optimal”OptRP strategy suboptimal and
in combination are responsible for the nonmonotonicity ob-
served in the experiments.

5.3.2 Content Chunking

Content chunking is widely used today to improve con-
tent delivery and common protocols such as HTTP [30] and
Apple HLS [5] support content chunking. This experiment
analyzes the e↵ect of content chunking on our findings. In
these experiments, we split videos into chunks of 5 minute
duration. The size of a video chunk depends on the video bi-
trate. For the downloads trace, we split content into chunks
of size 50 MB.

Our results show that although chunking improves per-
formance of both InvCap-LRU and OptRP-Future, it signif-
icantly improves the performance of InvCap-LRU relative
to OptRP-Future (see Figure 10). Due to chunking, the
maximum di↵erence between the MLU of InvCap-LRU and
OptRP-Future reduces from 2.5⇥ to 1.4⇥. At the maximum
storage ratio, InvCap-LRU is at most 18% worse compared to
OptRP-Future. Our experiments on other traces and topolo-
gies (omitted for brevity) show that InvCap-LRU has at most
4% higher network cost than OptRP-Future at the maximum
storage ratio. An exception is the news trace, where chunk-
ing makes a small di↵erence as more than 95% content is of
duration less than our chunk size. Hence, chunking strength-
ens our conclusion that InvCap-LRU achieves close to the best
possible network cost for an NCDN. Even with chunking,
OptRP has up to 7⇥ higher MLU compared to InvCap-LRU
(not shown in Figure 10). This is because chunking does not
help OptRP’s primary problem of not being able to adapt ef-
fectively to new content, so it continues to incur a high cost.

5.3.3 Alternative Planned Schemes

The experiments so far suggest that a planned scheme that
engineers placement and routing once a day based on the
previous day’s demand performs poorly compared to an un-
planned scheme, InvCap-LRU. Hence, in this section, we eval-
uate the performance of two alternative planned schemes.

First, we evaluate a hybrid placement scheme, which splits
the storage at each node into two parts - one for a planned
placement based on the previous day’s content demand (80%
of storage) and the other for placing the content in a un-
planned LRUmanner (20% of storage). We find that InvCap-
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Figure 13: A realistic planned scheme, OptRP-L causes excessively high latency costs in some cases. InvCap-LRU
achieves latency costs close to ideal planned scheme, OptRP-Future-L, at higher storage ratios.

LRU performs either as well or better than the hybrid scheme.
Assigning a greater fraction of storage to unplanned place-
ment does not change the above conclusions (graph omitted
for brevity). Of course, a carefully designed hybrid scheme
by definition should perform at least as well as the un-
planned and planned schemes, both of which are extreme
cases of a hybrid strategy. However, we were unable to de-
sign simple hybrid strategies that consistently outperformed
fully unplanned placement and routing.

Next, we analyze the performance of planned schemes that
engineer placement and routing multiple times each day at
equal intervals - twice/day, 4 times/day, and 8 times/day. In
all cases, we engineer using the content demand in the past
24 hours. As Figure 12 shows, OptRP needs to engineer
8 times/day to match the performance of the InvCap-LRU
scheme. In all other cases, InvCap-LRU performs better. In
fact, the experiment shown here represents the best case for
OptRP. Typically, OptRP performs worse even when engi-
neering is done 8 times/day, e.g., on the news trace, we find
OptRP incurs up to 4.5⇥ higher MLU compared to InvCap-
LRU even on engineering 8 times/day.

Executing a planned placement requires considerable e↵ort—
measuring content matrix, solving a computationally inten-
sive optimization, and moving content to new locations.
Further, a planned placement needs to be executed 8 times
a day (or possibly more) even to match the cost achieved by
an unplanned strategy. Our position is that NCDNs are bet-
ter served by opting for a much simpler unplanned strategy
and provisioning more storage, in which case, an unplanned
strategy already obtains a network cost close to the best a
planned strategy can possibly achieve.

5.4 Comparison of Latency Cost
We compare InvCap-LRU scheme, which is a completely

unplanned scheme, against OptRP-L and OptRP-Future-L,
which optimize latency cost based on previous day’s content
matrix and based on next day’s content matrix respectively.

We experiment with ISP topologies in which links are
scaled down uniformly. We needed to scale down the links
as our traces did not generate enough tra�c to fill even 5%
of the capacity of the links during the experiment; ISP net-
works are unlikely to operate at such small link utilizations.
The network topology is scaled such that the 99-percentile
MLU for results is 75% link utilization for the InvCap-LRU
scheme. This ensures that network has su�cient capacity to
support content demand at all storage ratios and network
links are not heavily under-utilized.

We present the results of our comparison on the US-ISP
topology in Figure 13. Experiments on the Abilene topol-

ogy show qualitatively similar conclusions (graph omitted
for brevity). We find that on the news and entertainment
traces, OptRP-L scheme results in an order of magnitude
higher latency costs. OptRP-L scheme is similar to OptRP
scheme except it optimizes latency instead of network cost.
Like the OptRP scheme, OptRP-L is unable to predict the
popularity of new content resulting in high volume of tra�c
from origin servers and high link utilization values. OptRP-L
either exceeds link capacities or operates close to link capac-
ity for some links which results in very high latencies.

The latency cost of InvCap-LRU relative to OptRP-Future-
L improves with an increase in storage ratio. At the smallest
storage ratio, InvCap-LRU has 70-110% higher latency cost
than OptRP-Future-L. The di↵erence reduces to 14-34% at
the maximum storage ratio. Higher storage ratio translate
to higher cache hit rates, which reduces propagation delay
of transfers and lowers link utilizations. Both these factors
contribute to a smaller latency cost for InvCap-LRU. This
finding shows that NCDNs can achieve close to best latency
costs with an unplanned scheme InvCap-LRU and provision-
ing moderate amounts of storage.

The performance of OptRP-L on the downloads trace is
much closer to OptRP-Future-L than on the other two traces.
Unlike other traces, content popularity is highly predictable
on the downloads trace based on yesterday’s demand, except
for a day on which multiple new software releases were done.
On all days except one, OptRP-L has nearly optimal latency
cost and it incurs a higher latency cost on one day of the
trace. As a result, OptRP-L’s aggregate latency cost summed
over all days is only moderately higher than that of OptRP-
Future-L.

5.5 Effect of NCDN Traffic on Network Cost
This experiment, unlike previous experiments, considers a

network consisting of both ISP and NCDN tra�c. Our goal
is to evaluate how network costs change as the fraction of
NCDN tra�c increases in the network. Second, we seek to
examine the benefit of optimizing routing over an unplanned
routing scheme, InverseCap. To this end, we compare the
performance of InvCap-LRU and OptR-LRU schemes. The
latter scheme optimizes routing for the combined tra�c ma-
trix due to NCDN tra�c and ISP transit tra�c. In order to
estimate the best gains achievable with an optimized rout-
ing, we provide to the OptR-LRU scheme knowledge of fu-
ture ISP tra�c matrices. OptR-LRU cannot be provided the
knowledge of future NCDN tra�c matrices because NCDN
tra�c matrices can only be measured from experiment itself
and we do not know them beforehand. We optimize rout-
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Figure 14: [News, US-ISP] Network costs at varying
fractions of NCDN tra�c in an ISP network.

ing once a day in this experiment. Varying the frequency of
routing update did not improve OptR-LRU’s performance.

We experiment with hourly transit tra�c matrices span-
ning 7 days from the same Tier-1 ISP — US-ISP. These
matrices were collected in February, 2005. Since ISP traf-
fic volumes are much higher than NCDN tra�c volumes, at
first, we performed this experiment by scaling down the ISP
tra�c matrices, so that ISP and NCDN tra�c have com-
parable volumes. Of the total NCDN tra�c, less than 10%
reaches the backbone links, rest is served locally by PoPs.
For equal volumes of NCDN and ISP tra�c we expected the
MLU of a network with ISP tra�c only to be much higher
than MLU for the network with only NCDN tra�c. Our ex-
periment showed that MLU for ISP tra�c and NCDN tra�c
are nearly the same.

We found that this was because the NCDN tra�c showed
highly variable link utilization even over the course of a few
minutes: the maximum link utilization di↵ered by up to 3⇥
in the course of 15 minutes. The hourly ISP tra�c matrix
that we experimented with retained the same, smoothed uti-
lization level for an hour. As a result, 99-percentile MLU’s
for NCDN tra�c are the same as that for ISP even though
its aggregate backbone tra�c was much lesser.

To make the variability of NCDN tra�c comparable to
ISP tra�c, we scaled up the volume of NCDN tra�c. The
scaling is done by introducing new content similar to a ran-
domly chosen content in the original trace. Each new con-
tent is of the same size, and same video bit rate as the origi-
nal content. All requests for the new content are made from
the same locations, at approximately the same times (within
an 1-hour window of the request of the original content), and
are of the same durations as the requests for the original
content. Our scaling preserves the popularity distribution
of objects and the geographic and temporal distribution of
requests. We scaled our trace to the maximum level so as
to not exceed the memory available (8 GB) in our machine.

We present the results of our experiments on the news
trace in Figure 14. We vary the fraction of NCDN to ISP
tra�c, and report MLUs normalized by the total volume of
ISP and NCDN tra�c. Our results are not independent of
the scale of simulations: a larger or a smaller scaling of CDN
trace may give quantitatively di↵erent conclusions. Hence,
we only make qualitative conclusions from this experiment.
First, we find that as the fraction of NCDN tra�c increases,
MLU decreases for both schemes. This is intuitive since a
large fraction of NCDN tra�c is served from caches located
at PoPs. Second, as NCDN tra�c increases optimizing rout-
ing (OptR-LRU) gives lesser benefits compared to InverseCap
routing. In a network dominated by NCDN tra�c, optimiz-
ing routing gives almost no benefits over InvCap-LRU. We

find these results to be consistent with our earlier experi-
ments with NCDN tra�c only.

5.6 Other Results and Implications
We summarize our main conclusions from the rest of our

experiments here and refer the reader to our tech report [32]
for a complete description of these experiments:

Link-utilization aware redirection: We evaluate a re-
quest redirection strategy for InvCap-LRU that periodically
measures link utilizations in the network and prefers less
loaded paths while redirecting requests. Our evaluation
shows that such a redirection gives small benefits in terms of
network cost (7%�13%) and gives almost no benefits on la-
tency costs. This implies that sophisticated network-aware
redirection strategies may be of little value for an NCDN.

Request redirection to neighbors: If each PoP redi-
rects requests only to its one-hop neighbor PoPs before redi-
recting to the origin, InvCap-LRU incurs only a moderate
(6%-27%) increase in the MLU. However, if a PoP redirects
to no other PoPs but redirects only to the origin, the MLU
for InvCap-LRU increases significantly (25%-100%). Thus,
request redirection to other PoPs helps reduce network cost,
but most of this reduction can be had by redirecting only to
neighboring PoPs.

Heterogenous storage: Heterogenous storage at PoPs
(storage proportional to the number of requests at a PoP
in a trace, and other simple heuristics) increases the MLU
compared to homogenous storage for both InvCap-LRU and
OptRP-Future, and makes InvCap-LRUmore sub-optimal com-
pared to OptRP-Future. This leads us to conclude that our
results above with homogeneous storage are more relevant
to practical settings.

Number of caches: If caches are deployed on all PoPs,
MLU is significantly lower compared to scenarios when caches
are deployed only at a fraction of PoPs; the total storage
across PoPs is same in all scenarios. This suggests that
NCDNs should deploy caches at all PoPs to minimize MLU.

OptR-LRU parameters: Whether OptR-LRU updates rout-
ing at faster timescales (every 15 minutes, or 30 minutes) or
slower timescales (6 hours, or 24 hours) than the default up-
date interval of 3 hours, its performance is nearly the same.
Further, whether OptR-LRU optimizes routing using traf-
fic matrix measured over the immediately preceding three
hours (default) or using tra�c matrices measured the pre-
vious day, its network cost remains nearly unchanged. This
reinforces our finding that optimizing routing gives minimal
improvement over InvCap-LRU.

Number of exit nodes: When the number of network
exit nodes is increased to five or decreased to one, our find-
ings in §5.3.1 remain qualitatively unchanged.

Link failures: The worst-case network cost across all
single link failures for InvCap-LRU as well as OptRP-Future
is approximately twice compared to their network costs dur-
ing a failure-free scenario. Comparing the failure-free sce-
nario and link failure scenarios, the relative sub-optimality
of InvCap-LRU with respect to OptRP-Future remains the
same at small storage ratios but reduces at higher ratios.

6. LIMITATIONS AND FUTURE WORK
Our experimental methodology su↵ers from some short-

comings. First, we assume that servers deployed at each
PoP have enough resources to serve users requests for locally
cached content. In cases when server resources are inade-
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quate, e.g., due to flash crowds, a simple redirection strat-
egy, e.g., redirection to the closest hop-count server used by
InvCap-LRU, may result in poor user-perceived performance.
In practice, NCDNs should adopt a redirection strategy that
takes server load into account to handle variability of user
demands. Second, we measure latency using a utility-based
cost function that can be e�ciently computed using flow-
level simulations. An evaluation of end-user perceived met-
rics, e.g., TCP throughput, would be more convincing, but
requires a measurement-based evaluation or a packet-level
simulation. A measurement-based evaluation requires net-
work and server infrastructure similar to an NCDN, which is
beyond our resources. Even packet-level simulations become
extremely time consuming at the scale of an ISP network,
which we observed in an earlier work [31]. Third, the latency
comparison is done for large, static objects and is not gen-
eralizable to dynamic content and small objects. We defer
addressing these concerns to future work.

Another open question is whether our conclusions are gen-
eralizable for other topologies and workloads. For instance,
our preliminary analysis with a synthetic workload trace (in-
cluded in [32]) suggests that the InvCap-LRU scheme may not
give the close to optimal costs in all scenarios. An evaluation
of relative performance of schemes for general topologies and
workloads would be considered in our future work.

7. RELATED WORK
Tra�c engineering and content distribution have both seen

an enormous body of work over more than a decade. To our
knowledge, our work is the first to consider the NCDN prob-
lem, wherein a single entity seeks to address both concerns,
and empirically evaluate di↵erent placement, routing, and
redirection strategies.

Joint optimization: Recent work has explored the joint
optimization of tra�c engineering and “content distribu-
tion”, where the latter term refers to the server selection
problem. P4P (Xie et al. [38]) shows that P2P applica-
tions can improve their performance and ISPs can reduce
the MLU and interdomain costs, if P2P applications adapt
their behavior based on hints supplied by ISPs. Jiang et al.
[21] and DiPalantino et al. [14] both study the value of joint
optimization of tra�c engineering and content distribution
versus independent optimization of each. CaTE (Frank at
al. [18]), like P4P, shows that a joint optimization can help
both ISPs and content providers improve their performance.
Valancius et al. [34] propose a system which helps online ser-
vice providers choose the best server replica for each client
considering multiple server replicas and multiple network
paths to each replica. Further, they quantify the benefit
of this “joint routing” approach over “content routing”, i.e.,
choosing best replica with only a single path to each replica,
and over “network routing”, i.e., choosing best path to an
unreplicated server among multiple paths. Xu et al. [39]
study a similar problem. These works equate content dis-
tribution to server selection (or request redirection in our
parlance), while the NCDN problem additionally considers
content placement itself as a degree of freedom. We find
that the freedom to place content is powerful enough that
even unplanned placement and routing strategies su�ce to
achieve close to best latency and network costs for NCDNs,
making joint optimization of content distribution and tra�c
engineering unnecessary.

Placement optimization: In the context of CDNs, many

variants of content or service placement problems have been
studied [29, 25, 12, 23]. A recent work is that of Applegate
et al. [6], who study the content placement problem for a
VoD system that seeks to minimize the aggregate network
bandwidth consumed. However, they assume a fixed routing
in the network, while one of our contributions is to assess
the relative importance of optimizing routing and optimizing
placement in an NCDN.

Furthermore, they find that an optimized, planned place-
ment with a small local cache (similar to our “hybrid” strat-
egy in §5.3.3) outperforms LRU. In contrast, our experi-
ments suggest otherwise. There are three explanations for
this disparity. First, their workload seems to be predictable
even at weekly time scales, whereas the Akamai CDN traces
that we use show significant daily churn. Second, their
scheme has some benefit of future knowledge and is hence
somewhat comparable to our OptRP-Future. For a large
NCDN, obtaining knowledge about future demand may not
be practical for all types of content, e.g., breakout news
videos. Finally, our analysis suggests that LRU performs
sub-optimally only at small storage ratios, and the di↵er-
ence between LRU and OptRP-Future reduces considerably
at higher storage ratios (not considered in [6]).

Tra�c engineering: Several classes of tra�c engineer-
ing schemes such as OSPF link-weight optimization [16],
MPLS flow splitting [15], optimizing routing for multiple
tra�c matrices [37, 40], online engineering [22, 15], and
oblivious routing [7, 9], have been studied. All of these
schemes assume that the demand tra�c is a given to which
routing must adapt. However, we find that an NCDN is in
a powerful position to change the demand tra�c matrix, so
much so that even a naive scheme like InverseCap, i.e., no
engineering at all, su�ces in conjunction with a judicious
placement strategy and optimizing routing further adds lit-
tle value. In this respect, our findings are comparable in
spirit to Sharma et al. [31]. However, they focus on the im-
pact of location diversity, and show that even a small, fixed
number of randomly placed replicas of each content su�ce to
blur di↵erences between di↵erent engineering schemes with
respect to a capacity metric (incomparable to MLU), but
find that engineering schemes still outperform InverseCap.

8. CONCLUSIONS
We posed and studied the NCDN-mangament problem

where content distribution and tra�c engineering decisions
can be optimized jointly by a single entity. Our trace-driven
experiments using extensive access logs from the world’s
largest CDN and real ISP topologies resulted in the fol-
lowing key conclusions. First, simple unplanned schemes
for routing and placement of NCDN content, such as In-
verseCap and LRU, outperform sophisticated, joint-optimal
placement and routing schemes based on recent historic de-
mand. Second, NCDN tra�c demand can be “shaped” by
e↵ective content placement to the extent that the value of
engineering routes for NCDN tra�c is small. Third, we stud-
ied the value of the future knowledge of demand for place-
ment and routing decisions. While future knowledge helps,
what is perhaps surprising is that a small amount of addi-
tional storage allows simple, unplanned schemes to perform
as well as planned ones with future knowledge. Finally, with
a mix of NCDN and transit tra�c, the benefit of traditional
tra�c engineering is commensurate to the fraction of tra�c
that is transit tra�c, i.e., ISPs dominated by NCDN tra�c
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can simply make do with static routing schemes. Overall,
our findings suggest that content placement is a powerful
degree of freedom that NCDNs can leverage to simplify and
enhance traditional tra�c engineering.
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APPENDIX
A. COMPLEXITY OF NCDN PROBLEM

Opt-NCDN is the decision version of the NCDN problem
(§3). Opt-NCDN asks if the MLU of the network can be ↵

while satisfying the constraints of the problem.
Theorem 1 Opt-NCDN is NP-Complete even in the spe-

cial case where all objects have unit size, all demands, and
link and storage capacities have binary values.

Proof: We show a reduction from the well known SetCover
problem defined as follows. SetCover: Let S = {1, 2, ..., n}
be a set of n elements. Let X = {S1, ..., Sm

} where S

i

✓

S, 1  i  m. Let k be an integer. SetCover asks if there
exists Y = {Y1, ..., Yk

}, where Y

k

2 X and Y1 [ ...[ Y

k

= S.
Set Y is called a set cover of size k.

The reduction from SetCover to Opt-NCDN is described
using the network in Figure 15. Set V1 = {1, ...,m} refers
to nodes in the top row. Each node i 2 V1 maps to the set
S

i

⇢ S. Set V2 = {1, ..., n} refers to nodes in the bottom
row excluding node s. Each node i 2 V2 maps to element
i 2 S. Node s is called a special node.

Directed links (i, j) exist from all nodes i 2 V1 to all nodes
j 2 V2. The capacity of (i, j) is 1 unit if i 2 S

j

, otherwise
capacity is zero. Node s has incoming links (i, s) from all
nodes i 2 V1 such that the capacity of all incoming links is 1
unit. All nodes in the top row V1 have unit storage whereas
nodes in the bottom row V2 [ {s} have zero storage.
The set of objects is {o, 1, 2, ..., (m � k)} and all objects

have unit size. Object o is a special object that has unit
demand at nodes in set V2 = {1, ..., n} and zero demand at
all other nodes. Objects 1, 2, .. (m� k) have unit demand
at special node s and zero demand at all other nodes.

Claim: There is a set cover of size k if and only if the
above network can achieve MLU  1.

If there is a set cover of size k, then the network can
achieve MLU of 1. Store the special object o at the k set
cover locations in the top row and satisfy demand for o at
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from all top nodes to 

all bottom nodes.

Special node

1
1

1
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Figure 15: Reduction from SetCover to Opt-NCDN

nodes V2 = {1, ..., n} in the bottom row from these locations
with MLU = 1. The remaining (m�k) nodes in the top can
be used for objects {1, 2, ..., (m� k)} to satisfy the demand
at special node s with MLU of 1.

If there is no set cover of size k, then the network must
have a MLU > 1. Objects must be placed in some (m� k)
nodes in the node V1 = {1, ...,m} in the top row to satisfy
the demand for special node s. Thus, at most k nodes are
available for placing special object o. Since there is no set
cover of size k, some bottom node i 2 V2 must satisfy its
demand for special object o using an edge whose capacity is
zero resulting in MLU = 1 on that edge.

It is easy to show that Opt-NCDN 2 NP. Hence, Opt-
NCDN is NP-Complete.

Theorem 2 Opt-NCDN is inapproximable within a factor
� for any � > 1 unless P = NP.

The proof of Theorem 1 shows that if there is a set cover
of size k, MLU = 1 and MLU = 1 otherwise. Thus, if we
find a solution for which MLU is finite, it implies that MLU
= 1, which immediately gives a solution to the corresponding
SetCover instance.

Lets assume a �-approximation (� > 1) exists for Opt-
NCDN. Then, we can solve SetCover in polynomial time
by mapping SetCover instance to Opt-NCDN instance, and
checking if MLU � (which implies MLU = 1). As SetCover
2 NP-Complete, therefore, no ��approximation for Opt-
NCDN exists unless P = NP.
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