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Abstract—Content delivery networks (CDNs) employ hun-
dreds of data centers that are distributed across various ge-
ographical locations. These data centers consume a significant
amount of energy to power and cool their servers. This paper
investigates the joint effectiveness of using two new cooling
technologies - open air cooling (OAC) and thermal energy storage
(TES) - in CDNs to reduce their dependence on traditional chiller-
based cooling and minimize its energy costs. Our Lyapunov-based
online algorithm optimally distributes workload to data centers
leveraging price and weather variations. We conduct a trace based
simulation using weather data from NOAA and workload data
from a global CDN. Our results show that CDNs can achieve
at least 64% and 98% cooling energy savings during summer
and winter respectively. Further, CDNs can significantly reduce
their cooling energy footprint by switching to renewable open
air cooling. We also empirically evaluate our approach and show
that it performs optimally.

Keywords—Content delivery networks; cooling energy

I. INTRODUCTION

Modern content delivery networks (CDNs) allow content
providers of web-based services to efficiently deliver their
content to end-users through a global network of servers. From
an architectural standpoint, servers of a CDN are organized
into clusters that are housed in a distributed set of data centers
across the globe. Given their immense sizes, the data centers
of a CDN consume significant amounts of energy, and as a
result, the design of green CDNs that reduce the energy usage
has gained recent research attention [6].

CDNs, and data centers in general, consume significant
amounts of energy to power their servers and cool them.
While techniques for reducing the energy consumed by data
center servers have received significant attention [3], [13],
techniques for reducing the energy spent in cooling servers
of a CDN are less well studied. The topic is nevertheless
important since cooling energy represents a significant portion
of the total energy usage within data centers—in some cases,
up to a watt of cooling energy is needed for each watt
consumed by the servers [8]. In an effort to reduce their cooling
energy, companies such as Facebook have made remarkable
progress by switching to renewable sources for their cooling
energy needs. By using renewable cooling sources, rather than
expensive chillers, they have significantly reduced the energy
needed to cool their data center servers and achieved Power
Usage Effectiveness (PUE) as low as 1.07 [1].

Based on these emerging trends, in this paper, we focus
on using alternate technologies, including renewables, for

cooling servers in distributed data centers of a CDN to achieve
reductions in cooling energy usage as well as energy costs.
We study two complementary cooling technologies: renewable
open air cooling (OAC) and thermal energy storage (TES)
to achieve these goals. In case of renewable OAC, outside
air is directly used to cool the servers of the data center,
instead of relying on traditional chiller-based techniques. Since
open air cooling is largely “free”, it can achieve significant
reductions in energy cooling costs. However the effectiveness
of the approach depends on outside weather conditions—
the outside temperature and humidity must permit its use
and it may not be feasible to employ OAC during extreme
weather conditions such as very hot or humid summer days.
Thermal energy storage (TES) is a complementary cooling
technology where thermal energy is stored by the data center
in chilled water or chilled ice tanks, and this stored energy
is used to cool data center servers when needed—e.g., when
OAC becomes infeasible. While TES has not seen much use
in data center scenarios, they are common in other settings
such as manufacturing plants [14]. The use of thermal energy
storage as a failover option to OAC is similar to the use
of UPS batteries—a form of chemical energy storage—as a
failover option to power servers when grid power becomes
unavailable. Thermal energy storage techniques can also be
used to optimize cooling energy costs by storing energy when
electricity prices are low and using stored thermal energy
during peak hours when prices are high.

Thus, OAC and TES are complementary technologies and
both have the potential to significantly reduce the reliance on
expensive chiller-based cooling technologies in data centers
and CDNs. A CDN has significant flexibility at its disposal
in exploiting these technologies. Typically CDN content is
replicated at multiple data centers for reasons of availability
and performance. In such a scenario, the CDN routes user
requests to the nearest data center that has the requested con-
tent to optimize user-perceived performance. In the presence
of OAC and TES, the decision on which data centers to use
for servicing user requests can be made based on both energy
and performance considerations. When the weather permits the
use of OAC, requests continue to be served by the nearest
data center like before. When the weather does not permit the
use of OAC at a particular CDN data center, the CDN can
dynamically decide between one of two options: it can switch
over to the use of TES at such sites or it can redirect request
to another data center in the region where the local weather
allows for the use of OAC. Further, if a data center is low on
stored thermal energy and none of the nearby data centers can
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employ OAC, the CDN can also choose to redirect requests to
nearby data centers that have available TES capacity. Clearly
the decision on which CDN data center to use for incoming
requests and whether to use OAC or TES must be made online
and dynamically in an autonomous fashion. To do so, we need
an online adaptive approach that determines how to best use
OAC and TES at various CDN data centers while ensuring that
users perceived performance guarantees.

Our contributions: In this paper, we propose a new Lya-
punov optimization-based distributed algorithm that integrates
the use of OAC and TES for cooling servers of a CDN. Our
approach makes online decisions on how to adaptively route
requests to maximize the use of OAC and intelligently uses
TES when OAC is infeasible within a region; the algorithm
also makes intelligent decisions on when to charge the TES
and when to use the stored thermal energy based on variable
electricity pricing schemes. While Lyapunov-based approaches
have previously been proposed for using batteries to optimize
server power usage [3], its use in TES settings for cooling
servers and the integration of OAC with TES has not been stud-
ied previously. We evaluate our algorithm using real workload
traces from Akamai’s CDN and use real weather and electricity
pricing data from various locations. Our results show that
CDNs can achieve at least 64% and 98% cooling energy
savings during summer and winter respectively (Figure 1).
Further, we show that load redirection can be restricted to min-
imally impact performance. We provide theoretical bounds on
our algorithm’s performance (Theorem 4.1), and empirically
compare its performance with the offline optimal (Figure 2).

II. BACKGROUND

A. Content Delivery Network

A content delivery network (CDN) comprises thousands
of servers, organized into a distributed network of data centers
spread across the globe. A CDN can leverage its proximity to
end users to deliver content while minimizing latency and loss.
Architecturally, a CDN employs a two level load balancing
algorithm that first maps incoming requests to a particular
data center and then maps each request to a particular server
within that data center. The first-level load balancer, which is
referred to as the global load balancer, will typically choose
a data center that is closest to the end-user to optimize user-
perceived performance. Our work enhances the global load
balancer to make it energy aware, specifically to take advantage
of new cooling technologies when determining how to map
requests to data centers, while continuing to optimize user
performance. Further, we note that while some CDNs may not
have control over the cooling technologies used in their data
centers, we assume that a future shift towards modular self-
contained data centers may provide CDNs greater flexibility
in adopting these advanced cooling technologies, even in co-
located (colo) facilities.

B. Cooling energy model

To model server power consumption, we use a well-
known linear model for computing the power consumed by
a server [2]. The power consumed by a server (in Watts)
can be modeled as a function of its workload i.e. Pidle +
(Ppeak − Pidle)λ, where Pidle is the power consumed by an

idle server, Ppeak is the power consumed during peak load and
λ is the normalized workload equivalent to the load served by
the server as a fraction of its capacity. In order to calculate the
server energy consumed in a data center, we further assume
that the server load can be dynamically consolidated and idle
servers in a cluster can be turned off to save energy [5] .

Given the energy consumed by a server using the above
model, we can then derive a simple model to compute the en-
ergy needed to cool server. Basically, we transform the server
energy to cooling energy using Power Usage Effectiveness
(PUE), an energy efficiency metric for data centers, which is a
ratio between the total energy consumed in a data center and
the total energy consumed by the servers. Given the data center
PUE and the sever energy consumption, we can calculate the
cooling energy.1 Recent surveys have shown that the average
PUE of a data center is 1.8 [8], which is the value assumed
in our experiments when estimating cooling energy.

C. Cooling technologies

Open air cooling: Data centers can be equipped with OAC
and can use one of the two OAC technologies: air-side or
water-side economizer. In an air-side economizer, hot air is
flushed outside the data center and cool air is drawn into the
data center. Water-side economizer, on the other hand, uses
water as a medium to cool, and uses cooler towers to enable
“free cooling”. Typically, a water-side economizer is used in
data centers as it can be easily integrated with water-cooled
chillers. However, depending on the existing infrastructure
either of the technologies can be integrated to avail “free”
cooling. The American Society of Heating, Refrigeration, and
Air conditioning Engineers (ASHRAE) defines the permissi-
ble temperature and humidity for operating IT equipments.
We assume that whenever the outside dry-bulb temperature,
dew-point temperature and humidity are below the ASHRAE
recommended maximum, a data center at that location can rely
on outside air to cool its server [12]. Modern server hardware
have been built to withstand significantly higher temperature
and humidity levels. For example, an ASHRAE class A1 data
center is engineered to withstand temperatures of up to 32◦C
and humidity levels of 80%. More recent ASHRAE class A4
data centers hardware can withstand temperatures of up to
45◦C and humidity levels of 90%, making it feasible to use
OAC even in locations with warm or humid climates [12]. We
assume class A1 data centers in our experiments.

Thermal Energy Storage: TES allows cooling energy to
be stored in a medium (ice, water etc.) providing flexibility
in drawing power from grid. Most facilities uses TES for
load shifting. By storing energy when prices are cheap and
discharging when prices are high, load is shifted in time to
minimize the total energy cost. Our work assumes that TES is
provisioned to meet peak demand of the data center.

Chillers: Most HVAC systems use water as a medium to
cool the data center. Using chillers, heat is removed from the
water and recycled back to HVAC. Since removing heat from
liquid consume a lot of power, it is not surprising that chillers
consume one-third power in the data center [10]. Thus, limiting

1PUE = Total Power / IT Power and Total Power = (IT Power + Cooling
Power); Given the PUE and Server Power, we can compute cooling power.
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the use of chiller can bring substantial cost benefits in a data
center.

III. PROBLEM STATEMENT: AN OFFLINE LP
FORMULATION

We formulate the problem addressed in our work as an
optimal offline linear program (LP). The linear program takes
as input complete knowledge of the (future) workload at
each data center, future electricity prices and weather data
to compute which data center services what portion of the
workload and how each data center is cooled while minimizing
total cooling energy cost. Intuitively the approach uses “free”
OAC locally when possible or redirects load to other nearby
data centers where OAC is feasible if it is infeasible locally.
When OAC is not possible locally or at other nearby locations,
local (or remote) TES is used; chiller-based cooling may be
used if it is cheaper or when TES capacity is depleted. Our
optimal offline LP, while impractical in practice, provides a
baseline for comparison with an online approach.

Note that we are interested in minimizing the sum total
cooling power cost across multiple data centers by making
use of OAC and TES in an optimal manner. This problem
requires global decisions about routing of workloads across
multiple data centers as well as local decisions about charg-
ing/discharging of TES and servicing the workload using
a combination of OAC, TES and power drawn from the
grid. Note that at each data center, the incoming workload,
availability of OAC, and the electricity price vary over time,
thereby making this a challenging control problem. The LP
formulation we present below highlights the control decisions
and constraints involved in this problem.

We begin by defining our model. We assume there are
N data centers and that time is slotted. In each slot t, we
denote the original workload intended for data center i by
λi(t). For each data center i, let Ki denote the set of data
centers where this workload can be routed. As an example,
this could be based on a distance metric that ensures that the
resulting routing delay is tolerable. Note that ∀i, i ∈ Ki.

Next, the amount of workload routed from data center i to
j is denoted by λij(t). These λij(t) must satisfy the following
conservation constraint:∑

j∈Ki

λij(t) = λi(t) ∀i (1)

Next, the total incoming workload to data center i (after
routing) is given by

∑
j λji(t). We must have that

∑
j

λji(t) ≤ μi ∀i (2)

where μi is the capacity of data center i. This workload results
in a cooling power demand according to the model described
earlier and must be satisfied using a combination of OAC, TES
and power drawn from the grid.

The availability of OAC at data center i in slot t is denoted
by a 0/1 variable Oi(t) i.e. 1 (resp. 0) denotes OAC is
available (resp. unavailable). Since OAC use incurs no power
cost, without loss of generality we assume that all available
OAC is first used to satisfy the cooling power demand and

that any remaining demand is served using TES and power
drawn from the grid. We denote the remaining demand (after
OAC) at data center i by Wi(t). Thus when Oi(t) = 1, then all
cooling power demand can be satisfied using OAC alone, and
Wi(t) = 0. However, our formulation can easily be extended
to consider the case where only part of the cooling power
demand can be satisfied using OAC alone.

Next, we denote the TES recharge and discharge amounts
at data center i by Ri(t) and Di(t) respectively. Also denote
the total power drawn from the grid by Pi(t). Then the
following equality must be satisfied for all i, t

Wi(t) = Pi(t)−Ri(t) +Di(t) ∀i, t (3)

We assume that the Ri(t), Di(t) and Pi(t) are upper
bounded by Rmax

i , Dmax
i and Pmax

i respectively.

Finally, the recharge and discharge decisions affect the
stored energy in the TES as follows. Let Yi(t) denote the
amount of stored energy in the TES of data center i in slot t.
Denoting its efficiency by 0 < α ≤ 1, we have:

Yi(t+ 1) = Yi(t) + αRi(t)−Di(t) ∀i, t (4)

We assume that the TES has a maximum capacity of Y max
i .

Since the stored energy cannot be negative, we have:

0 ≤ Yi(t) ≤ Y max
i ∀i, t (5)

Let Ci(t) denote the unit electricity price at data center
i in slot t. Also, let Cmin

i , Cmax
i denote the minimum and

maximum values taken by Ci(t). Then the sum total power
cost over an interval [0, T ] is given by

T∑
t=1

N∑
i=1

Pi(t)Ci(t) (6)

The LP formulation seeks to minimize the objective in (6)
subject to all the constraints discussed so far. This is a linear
program since the objectives as well as all the constraints are
linear. However, it should be noted that the complexity of this
LP increases with both N and T and it becomes infeasible to
solve it for large instances. Further, solving this LP requires
full knowledge of the entire workloads, prices as well as OAC
availability. In the next section, we present an online solution
to this problem that overcomes both of these limitations.

IV. ONLINE ALGORITHM

In this section, we present an online control algorithm
for the power cost minimization problem presented in Sec.
III. This algorithm is based on the technique of Lyapunov
optimization [9] and is similar in spirit to the algorithm
presented in [13] for the problem of power cost optimization
in a single data center using batteries. Here, we extend this
algorithm to consider multiple data centers along with the
availability of OAC.

The online control algorithm operates as follows. First, we
define a shifted version Xi(t) of stored energy level Yi(t) for
each data center i as follows

Xi(t) = Yi(t)− V Cmax
i

θi
−Dmax

i (7)
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where the parameters V and θi are constants defined as

V = min
i

(Y max
i −Rmax

i −Dmax
i

Cmax
i − Cmin

i /α

)
(8)

θi = V
( Cmax

i − Cmin
i /α

Y max
i −Rmax

i −Dmax
i

)
(9)

and where we assume that V ≥ 0. Given the collection of
Xi(t), the algorithm makes joint decisions about routing of
workloads as well as charging/discharging TES by solving the
following optimization problem every slot.

max

N∑
i=1

Di(t)
(
θiXi(t) + V Ci(t)

)− V
N∑
i=1

Wi(t)Ci(t)

+
N∑
i=1

Ri(t)
(− αθiXi(t)− V Ci(t)

)
(10)

This optimization is subject to constraints (1), (2), (3) as well
as the upper bounds on Ri(t), Di(t) and Pi(t). It should be
noted that this results in a much simpler LP compared to the
offline formulation presented earlier. In fact, we can further
simplify this LP by observing the following two structural
properties of its optimal solution:

• If θiXi(t) + V Ci(t) < 0, then Di(t) = 0, i.e., there
is no discharge for TES of data center i in slot t.

• If αθiXi(t) + V Ci(t) > 0, then Ri(t) = 0, i.e., there
is no recharge for TES of data center i in slot t.

The above properties follow by noting that their corre-
sponding terms in the objective are maximized by choosing the
Di(t)/Ri(t) values to be 0. After implementing the output of
this optimization, the online algorithm proceeds by updating
the values of Xi(t) and repeats this procedure.

We make the following observations about this algorithm.
First, it is online, requiring no knowledge of future prices,
workloads or OAC availability. Second, this algorithm is easy
to implement, requiring solving a simple (and much smaller)
LP in each slot. Further, we show both theoretically and
empirically that the cost achieved by our online technique
is within a bounded additive term of the solution generated
by the LP. This additive term can be made arbitrarily small
by scaling the TES capacity. This is formally shown by the
following theorem.

Theorem 4.1: Suppose the online algorithm given by (10)
is implemented over T slots with a control parameter V as
defined in (8). Then, the following hold:

1) Each queue Xi(t) is deterministically upper and
lower bounded for all t as follows:

−V Cmax
i

θi
−Dmax

i ≤ Xi(t) ≤

Y max
i − V Cmax

i

θi
−Dmax

i (11)

2) The TES energy level Yi(t) satisfies for all i, t:

0 ≤ Yi(t) ≤ Y max
i (12)

3) Suppose the processes Ci(t), Oi(t) and λi(t) are i.i.d.
over slots. Then the expected per slot cost under the

online algorithm is within B/V of the optimal offline
value. i.e.,

1

T

T∑
t=1

E
{
P online
i (t)Ci(t)

}

≤ 1

T

T∑
t=1

E

{
P lp
i Ci(t)

}
+

∑
i Bi

V
(13)

where Bi is a constant (independent of V ) defined as

Bi =
(Dmax

i )2 + (Rmax
i )2

2
(14)

Proof: The proof is based on the technique of Lyapunov
optimization [9] and is presented in the tech report [4].

The performance bound (13) shows that increasing V can
reduce the gap between the offline LP cost and the online
cost.

V. EXPERIMENTAL EVALUATION

In this section, we first describe our experimental method-
ology and then present our results.

A. Experimental Methodology

We use a trace-based simulation to analyze the poten-
tial benefits using the Lyapunov-based algorithm discussed
in Section IV. Our extensive traces contain a month-long
workload traces collected from Akamai CDN, a year-long
weather trace provided by National Oceanic and Atmospheric
Administration (NOAA) and a year-long real-time pricing
trace (RTP) shown in Table I. The workload trace contains
load information, total capacity, number of servers deployed,
location information such as city, latitude and longitude etc.
The load information is captured at a granularity level of 5
minutes. On the whole, the trace contains 390 US locations,
including a total of 63045 servers spread across all locations.
For the purpose of our evaluation, we selected six US data
center locations as our representative sample. Unless stated
otherwise, all of our experiments use all six locations. The
weather trace contains hourly dew-point, dry-bulb temperature,
humidity, location information for the year 2012. Finally, our
pricing data contains hourly pricing information for the year
2011 and 2013.

To determine OAC feasibility for all locations at a given
time, we first identify the weather stations closest to these
locations. Since, the location of data centers and the weather
stations are known, we could map each data center to its
closest weather station. Next, we use the dry-bulb temperature
and dew point to determine whether the conditions are within
the ASHRAE standards for OAC. Unlike the five minutes
granularity of the workload information, the weather data is
hourly. Hence, we assume the weather to remain the same
for a given hour. This assumption is reasonably correct since
the weather doesn’t change rapidly over short time intervals.
Given that we had only a month-long workload trace, we
repeat our workload pattern for each month of the year and use
the weather data to create a combined trace containing OAC
feasibility information for each location for the entire year.
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ISO Locations Duration

California ISO San Jose Jan - Dec, 2011

ERCOT ISO Houston Jan - Dec, 2013

Midcontinent ISO Chicago Jan - Dec, 2013

NEMassBOST Boston Jan - Dec, 2013

New York ISO New York Jan - Dec, 2013

PJM ISO Philadelphia Jan - Dec, 2013

TABLE I: Real-time pricing dataset

Next, we compute the server and cooling energy required
in each data center using the combined trace containing OAC
feasibility information. The approach to compute the server
and energy is described in Section II. Finally, we compute the
reduction in energy cost using our dynamic price history for
various TES capacities and distances of radius r. The radius r
parameter imposes a load redirection constraint on each data
center, and restricts the movement of load to data centers that
are within the radius r. Such restrictions on load movement
is useful for requests that are sensitive to latency. For all our
simulations, we assume TES starts with full capacity and its
efficiency α = 1.

B. Empirical Results

1) Cooling energy cost savings using OAC and TES: We
analyze the ability of OAC and TES to minimize the total
cooling energy cost. We ran our Lyapunov-based algorithm
for the entire year with varying TES capacity and radius r.
Note that the energy cost reduction is either from free OAC, or
due to using TES, or by redirecting to cheaper price locations.
Thus, to evaluate the potential energy cost savings, we compare
it against a baseline where no OAC or TES technology or
any load redirection mechanism to cheaper electricity price
location is available. For each data center and time slot t,
the algorithm decides whether to service the load locally or
remotely, charging/discharging TES based on the workload,
price, OAC feasibility, and TES capacity.

Since OAC is “scarce” during summer months, we plot
the energy cost savings for the month of July with r =
5000kms (see Figure 1 (a)). Note that an increase in TES
capacity increases the overall energy cost savings. In particular,
the overall energy cost savings increase from 63% to 95%.
However, the cost savings see diminishing returns after TES
capacity of 30 minutes. While increasing TES does not add
additional cost savings, a large TES capacity allows peak-
demand shaving and is useful in a peak-based pricing scheme.
In addition, it can store renewable energy from intermittent
sources such as solar or wind, reducing its dependency on
brown energy. Interestingly, the individual cost savings of
some cities may decrease with increase in TES capacity.
However, the overall cost savings increases with increase
in TES capacity. Specifically, the cost savings for Chicago
decreases from 48% to 47% with increase in TES capacity
from 20 to 25 minutes. Such a behavior is observed when
servicing a load remotely is cheaper than servicing locally,
decreasing the savings of the data center but increasing the
overall savings.

Figure 1 (b) shows the overall energy cost savings for all
six US locations with radius r = 5000 and r = 500kms and
TES capacity of 45 minutes. Note that at least 98% and 100%
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Fig. 1: Energy cost savings across six US locations
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Fig. 2: Performance comparison between offline LP and online
Lyapunov for the month of July

cost savings is achieved during winter months with r = 500
and r = 5000 respectively. Since OAC is “free”, the additional
savings in r = 5000 kms is achieved due to load redirected to a
distant datacenter where OAC is feasible and cooling capacity
is available.

2) Convergence of our Lyapunov approach: We validate
the convergence of our algorithm stated in Theorem 4.1 by
comparing it against an offline LP described in Section III.
To compare the offline LP with online Lyapunov algorithm,
we compute the cost savings using both approaches. We also
compare the cost savings against a baseline OAC – cost
savings from using only OAC – and calculated using a greedy
approach. In this greedy approach, load is redirected from no
OAC available data centers to OAC available data centers.
subject to the distance and capacity constraints i.e. load is
redirected only to a data center is within a radius r and does not
exceed the data center’s cooling capacity. Figure 2 (a) and (b)
shows the result for r = 500 and r = 5000 kms respectively.
Note that the gap between the offline LP and online algorithm
reduces with the increase in TES capacity. In fact, with TES
capacity as little as 30 minutes our approach reaches close to
the offline algorithm.

3) Load balancing and its impact on performance: To
study our online algorithm’s impact on performance due to
load redirection, we ran our algorithm on all 390 US locations
to better understand the algorithm’s behavior in a more com-
prehensive dataset. We assign each data center a pricing trace
from Table I in a round-robin manner. While the algorithm
doesn’t account for redirection cost to a remote datacenter,
we impose a redirection constraint using the radius parameter.
Note that we use distance as a proxy for latency i.e. load
see a higher latency if moved further away from the assigned
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Fig. 3: Average load movement with r = 5000 kms and TES
capacity of 5 hours.

location. We selected two months – January and July – as
representative months to study the effect of load redirection
due to OAC.

Figure 3 (a) and (b) shows the percentage of load redirected
with TES capacity of 5 hours and r = 500 and r = 5000 kms.
We observe that 6% and 21% load is serviced locally with
r = 5000 kms in January and July respectively. We note that
although OAC may be abundant locally, our algorithm may
redirect the load to another OAC feasible data center within
the radius r parameter, or to a cheaper price location such
that the energy cost is minimized. As our approach doesn’t
consider routing cost, with r = 5000 a higher redirection is
expected. Indeed, redirecting load impacts performance and
increases latency. However, delay-tolerant workloads such as
batch jobs can be redirected to a remote data center to leverage
OAC or cheaper electricity price.

To avoid redirection when local OAC is available, we ran
a modified Lyapunov algorithm wherein we ensure all cooling
energy OAC is provided locally and if OAC is infeasible
locally, load is greedily redirected to a data center where OAC
is feasible subject to the radius constraint. Finally, the residual
load not satisfied by OAC is provided as input to our Lyapunov
approach. We notice a 91% increase in load serviced locally
in January, and a 36% increase in July. Thus, the modified
algorithm minimally reroutes data as most of the cooling needs
are provided locally. We omit results for r = 500 kms as all
the load is serviced within 500 kms distance, and performance
is minimally impacted. We note that the energy cost savings,
not shown here, for the modified Lyapunov approach are also
similar [4].

VI. RELATED WORK

Prior work on energy cost optimization focussed on lever-
aging price differential across various locations [11]. Other
studies involved shutting down CDN servers to reduce server
energy costs [7] [5]. Liu et. al. investigated the benefits of
using renewable energy to reduce electricity cost and minimize
use of brown energy [6]. In the context of thermal energy
storage, researchers studied the use of thermal storage to
reduce electricity cost in data centers [14]. Our Lyapunov-
based technique is inspired by the approach used in Urgaonkar
et. al. and Guo et. al. [3], [13] [9]. While Urgaonkar et. al.
used Lyapunov optimization to reduce server energy cost for
a single data center, Guo et. al. focussed on reducing energy
cost for multiple data centers. Unlike their work, which is in

the context of reducing server energy cost in data centers, our
work focus on minimizing energy cost using OAC and TES.
To the best of our knowledge, an integrated optimization of
OAC with TES using a Lyapunov-based approach has not been
studied previously.

VII. CONCLUSIONS

In this paper, we focussed on minimizing the cooling en-
ergy cost in CDNs by integrating OAC with TES. We provided
a Lyapunov optimization-based online approach that optimally
distributed load across geographically locations to maximize
the use of OAC and optimally use TES. We empirically
evaluated our approach using extensive traces and showed that
our results are optimal. Our results showed that at least 64%
and 98% cooling energy savings can be achieved in CDNs
during summer and winter respectively. Also, we showed that
CDNs can reduce its cooling energy footprint by at least 57%
by switching to OAC.
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