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ABSTRACT
The widespread adoption and popularity of Internet-scale Dis-

tributed Networks (IDNs) has led to an explosive growth in the

infrastructure of these networks. Unfortunately, this growth has

also led to a rapid increase in energy consumption with its accom-

panying environmental impact. Therefore, energy efficiency is a

key consideration in operating and designing these power-hungry

networks. In this paper, we study the greening potential of com-

bining two contrasting sources of renewable energy, namely solar

energy and Open Air Cooling (OAC). OAC involves the use of out-

side air to cool data centers if the weather outside is cold and dry

enough. Therefore OAC is likely to be abundant in colder weather

and at night-time. In contrast, solar energy is correlated with sunny

weather and day-time. Given their contrasting natures, we study

whether synthesizing these two renewable sources of energy can

yield complementary benefits. Given the intermittent nature of

renewable energy, we use batteries and load shifting to facilitate

the use of green energy and study trade-offs in brown energy re-

duction based on key parameters like battery size, number of solar

panels, and radius of load movement. We do a detailed cost analysis,

including amortized cost savings as well as a break-even analysis

for different energy prices. Our results look encouraging and we

find that we can significantly reduce brown energy consumption

by about 55% to 59% just by combining the two technologies. We

can increase our savings further to between 60% to 65% by adding

load movement within a radius of 5000kms, and to between 73% to

89% by adding batteries.

CCS CONCEPTS
•Computer systems organization→Cloud computing; •Hard-
ware → Power and energy; Renewable energy.

KEYWORDS
internet-scale distributed networks, energy-efficient data centers,
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1 INTRODUCTION
Internet-scale Distributed Networks (IDNs) are massive geograph-

ically distributed networks of inter-connected data centers hous-

ing hundreds of thousands of servers. Content Delivery Networks

(CDNs) are examples of such networks, and they deliver most of

the Internet traffic content today, e.g. streaming media, web appli-

cations, social networking content, web objects and other down-

loadable content. Given the immense size of these networks, they

consume massive amounts of energy incurring energy bills that run

into tens of millions of dollars annually [41]. Growth in data cen-

ter electricity usage slowed down from 2005 to 2010 as compared

to the previous five years from 2000 to 2005 due to the economic

slowdown, virtualization, and other efficient data center practices

[28]. However, regardless of that, electricity usage of data centers

in the US still grew by 36% from 2005 to 2010 totaling about 2% of

total US electricity use in 2010 [28].

Given the energy costs and its environmental impact, major

IT companies like Google, Facebook, Apple have all committed to

greener practices and renewable sources of energy. Google matched

100% of the 2017 electricity consumption of their global operations

with renewable energy purchases [23]. Facebook has committed

to reducing its greenhouse gas emissions by 75% and powering its

global operations with 100% renewable energy by the end of 2020

[18]. In a 2018 press release Apple has stated that they are globally

powered by 100% renewable energy [3].

Significant research has been done onmaking data centers energy-

efficient. Part of this work is focused on reducing energy consump-

tion itself [30] [33] [11] [43]. Other work has focused on utilizing

renewable energy via local load scheduling, geographical load bal-

ancing and data center provisioning and site selection [21] [20] [32]

[31] [19] [6]. However, although cooling energy is a major portion

of the energy consumed by a data center, efficiency in data center

cooling has received much less attention in comparison. In this

paper, we take a more comprehensive view of energy consumption

in a data center and consider not only energy to power servers, but

also energy used for cooling. We study the greening potential of

synthesizing two contrasting sources of renewable energy: solar

energy and a renewable form of cooling known as open air cooling

(OAC). We note that solar energy is more abundant in sunny loca-

tions and during day-time. In contrast, OAC is available when the
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weather outside is cold and dry enough. Therefore, OAC is avail-

able in colder locations and during night-time. We evaluate if the

contrasting nature of these two technologies yields complementary

benefits. Given renewables are intermittent in general, and the re-

newables we have chosen to study are complementary in time and

space, we use batteries and load shifting for smoothing the supply

of green energy. We study the greening potential of combining

these two technologies against two yardsticks: reduction in brown

energy and cost effectiveness. To realistically evaluate the greening

potential, we use an extensive real-world load trace from Akamai,

one of the leading CDN providers in the world [38].

Our work is most applicable to IDNs like CDNs that have a global

deployment of servers and replication of services and content. CDNs

have an extensive network of servers scattered all over the globe so

they can be proximal to their end-users. In addition, their content

is replicated widely so that it can be served reliably and with low

latency to end-users. We take advantage of both these defining

CDN features in designing our solution as they allow us to move

load between data centers. This load movement can affect latency,

and so in our solution we consider different radii of load movement

and incorporate it as a variable parameter into our analysis.

Contributions: To the best of our knowledge, our solution is

novel as it synthesizes two renewable technologies, solar energy

and OAC, and evaluates their greening potential in the context of

an IDN, with large-scale real-world load traces. Specifically, our

contributions include:

• Synthesizing solar energy and OAC as contrasting and comple-
mentary technologies: Motivated by the contrasting and comple-

mentary nature of solar energy and OAC, we use a simple greedy

algorithm that enables us to use solar energy and OAC efficiently.

A net-zero year (nzy) data center produces as much energy from

renewables in a year as it needs to entirely offset its brown energy

consumption in that year. Just by introducing OAC alone to the

mix of half the number of panels it takes to be net-zero year, we

show that we can go from 34% reduction to about 54.9% brown

energy reduction. With panels needed to be net-zero year, we can

go from 41.5% to about 59.4% savings. We see even higher savings

by employing both batteries and load movement. We incorporate

several key parameters that can be used to model trade-offs while

evaluating energy efficiency. Some of these parameters include ra-

dius of load movement, battery capacity, number of solar panels

installed, battery cost and lifetime, solar panel cost and lifetime,

and energy prices.

• Evaluation using an extensive real-world trace: We evaluate the

greening potential of solar energy and OAC extensive load traces

from Akamai [38]. The traces consist of information on from 724

global data center locations including 100,592 servers deployed all

over the world. We also use year-long weather data for OAC from

over 650 locations. In addition, we use a year’s worth of PVWatts

solar data. Using this data, we simulate our solution for a whole

year, parallelizing our runs by week to reduce the time of running.

We then evaluate our solution against several metrics measuring

total brown energy reduction, peak reduction, cost savings and a

break-even analysis. We vary battery capacity as a function of the

average day’s load in a data center.

• Brown energy reduction evaluation: We evaluated how well the

mix of solar energy and OAC reduces brown energy consumption.

Energy companies often charge their customers for both the energy

consumed and the peak energy drawn. As part of this analysis, we

studied two metrics: 1) total brown energy reduction and 2) peak

energy reduction. For brown energy reduction, we studied how our

results vary with addition of OAC to solar energy, with the addition

of load movement, and also with the addition of batteries.

Allowing a radius of 5000kms with the combination of solar

energy and OAC, we can increase our savings to 60.3% or panels0.5

and to about 65% with net-zero year panels. Our results show that

with a battery capacity of half the average day’s load at each data

center, we can significantly increase the reduction in brown en-

ergy to over 73% for panels0.5 and over 89% with net-zero year

panels, without moving any load. For percentage peak reduction,

we see a reduction between 10% and up to 40% depending upon

the number of panels installed, the battery capacity and radius of

load movement. Fixing the radius of load movement to 1000kms,

and varying battery capacity and panels as shown above, we can

achieve a reduction of about 11% in the worst case to about 26%

with greater battery capacity and larger number of panels.

• Amortized cost analysis: We evaluated the cost saving poten-

tial of our solution given investment in different combinations of

battery capacities and number of panels. We calculated yearly cost

savings based on yearly savings in brown energy consumption

costs and yearly amortized expenditure for batteries and panels. We

find significant cost savings for moderate and high energy prices,

ranging from 9.9% all the way to 60.3% based on different parameter

values. Even for low price for energy, if we do not use batteries and

have 0.5nzy panels, we see cost savings from 22% to 41%. However,

with 0.5avgdayload batteries and 0.5nzy panels, savings drop to

between 3% to about 8.4%, and for other combinations of panels and

batteries we incur a loss in the case of low price of energy. With the

prices of batteries and solar panels on the decline, we believe the

results for lower energy prices should also improve in the future.

• Break-even analysis: With a higher price of energy, for half

the panels it takes to be nzy, we see break-even periods as low

as 6 years. For a moderate and low energy prices, we can achieve

break-even periods of 8.9 years and between 14.9 years respectively.

Again, with the cost of solar panels and batteries declining, these

numbers should improve in the future.

• Cost Analysis based on future projections: Given the price of

solar panels and batteries is falling, and the price of energy over the

long run is increasing, we evaluated our solution using projected

prices of batteries, panels, and energy. We found dramatic increases

in brown energy reduction and break-even periods even for the

projected lower end price of energy. Even for the low price of

energy, for which we incurred a loss in certain cases with current

prices, we see cost savings of 23.9% to 55.9%.

Roadmap: We present the background in Section 2 and our

algorithm in Section 3. We present our experimental methodology

and empirical results in Sections 4 and 5 respectively. We end with

related work and conclusions in Sections 6 and 7 respectively.

2 BACKGROUND
Internet-Scale Distributed Networks: An IDN provides modern

Internet services via its network of servers housed in a large number

of data centers spread all over the globe. An example of an IDN is
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a Content Delivery Network (CDN) that serves content to clients

on the web reliably and with low latency. The three main entities

in a CDN system include the content providers, the CDN provider,

and the end users [9]. Content providers interested in distributing

their content to end-users contract with CDN providers so they

can use the CDN’s infrastructure to help distribute their content

transparently, reliably, and in a timely fashion. Content is replicated

by the CDN’s distribution systems to edge servers located in a

diverse set of geographically distributed locations. On receiving

a user request, the request routing system assigns the user to the

appropriate nearby server to ensure low response times. Therefore,

the two defining characteristics of a CDN are global deployment
of servers and replication of services. Both these features work in

conjunction with each other to provide services that are proximal

to end-users. We use these two features to enable us to move load

between data centers, although with a possible increase in latency.

We move load in a constrained manner by restricting the radius of

load movement, and study the greening potential of solar energy

and OAC with radius of load movement as a variable parameter.

Data centers require massive amounts of energy to run and

maintain servers and other supporting equipment. The bulk of the

energy consumed by a data center comes from powering its servers

and for cooling them. About 56% energy is used to power servers

and about 30% is used for cooling and the rest 14% is used for power

conditioning and networking equipment [40]. In this paper, we

refer to the energy used to power servers as ‘server energy’ and the

energy used for cooling as ‘cooling energy’.
Open Air Cooling (OAC): Data centers need cooling to keep

server and other equipment at recommended operating temper-

atures. Depending upon weather conditions existing in the data

center location, air from outside can be brought into the data center

to cool servers. Stated simply, OAC involves the use of outside air

to cool data centers. Broadly, there are two flavors of OAC: air-side

and water-side. Air-side uses outside air for cooling, and water-side

use water as a cooling medium circulating through cooling tow-

ers. Another version of air-side free cooling is evaporative cooling

where outside air in conjunction with evaporating water is used

for cooling. Given cooling energy accounts for a significant por-

tion of the energy consumption, renewable cooling using outside

air can be considered to be virtually ‘free’ in comparison to using

HVAC chillers - and is therefore sometimes also referred to as ‘free

cooling’. Given OAC uses outside air for cooling, the availability of

OAC depends on the temperature and humidity conditions existing

outside. The American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE) has defined different classes of

data centers based on the temperature and humidity ranges that

they can tolerate [26]. Classes are labeled A1 through A4, with most

restrictive to least restrictive. We assume our data centers belong to

the A1 class, which requires the smallest range for temperature and

humidity, and represents more commonly deployed basic equip-

ment today. We use the existing weather conditions outside and the

ASHRAE requirements for A1 class of data centers to determine

whether OAC is available or not. Using the most restrictive class

also gives us the ability to do the worst case analysis with respect

to OAC availability. A1 ranges for temperature and humidity are

listed in Table 1.

Class Dry-Bulb Humidity Max Dew

Temp (
◦
C) Range Point (

◦
C)

A1 15 to 32 20% to 80% 17

Table 1: ASHRAE’s allowable ranges for temperature andhu-
midity for A1 class of data centers.

Modeling Server and Cooling Energy: The main source of

energy consumption in a data center is the energy used to power

and cool servers. To model server energy, we use the linear model

of energy consumption [5]. Energy to power servers is determined

using normalized load λ (where 0 ≤ λ ≤ 1), where λ is the load

on the server as a fraction of server capacity. Idle servers also

consume approximately 60% of energy. Hence, we use λ equals

Pidle +(Ppeak −Pidle )λ, as the power consumed by a server serving

normalized load λ, where Pidle is the power consumed by an idle

server, and Ppeak is the power consumed by the server under peak

load. To determine the total energy consumed by the cluster of

servers in a data center, we assume that we can consolidate load

between servers, and shutdown the remaining servers that are idle

to conserve energy [30]. Power Usage Effectiveness (PUE) is the

measure of how efficiently a data center uses energy. It is the ratio

of the total energy used by the data center (including energy used

by the IT equipment, cooling energy, and other overhead) and the

amount of energy used by the IT equipment. We use the average

PUE of 1.8 [34] when determining cooling energy consumed by the

data center.

Geographical Variations in Solar Energy and OAC Avail-
ability:We see variations in solar output and OAC based on factors

like temperature, season, time of day, northern or southern hemi-

sphere location, climate, weather conditions [24] [25]. Therefore,

using renewables efficiently involves handling the variations in and

availability of renewable output. In this paper, we use a combina-

tion of load movement and battery storage to mitigate the problem

of intermittent availability of solar energy and OAC. Given the ge-

ographical diversity of data center locations and replicated content

and services, we use load shifting to take advantage of renewables.

We vary radii of load movement to control latency. To enable us to

store excess solar energy, we assume that batteries are available at

all data center locations. We vary battery capacity installed at a data

center location as a function of the average day’s load for that data

center. Our analysis can also be modified to include net-metering.

However, given net-metering is not consistently available globally,

we make a simplifying assumption that all data center locations

employ batteries to store excess solar energy.

Net-zero Data center: A ‘net-zero energy’ data center is de-

signed and managed in a manner that uses on-site renewables to

entirely offset the use of any non-renewable energy from the grid

[4]. Therefore, given a period of time, a net-zero data center pro-

duces at least as much on-site renewable energy as it consumes.

With this definition, a ‘net-zero year’ data center is net-zero over

the period of a year. For a data center, we define the net-zero year
solar panels as the number of solar panels needed by the data center

to be net-zero year. For our experiments, we vary the number of

solar panels installed at a data center as a function of its net-zero
year solar panels.
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Variable and Value Notation
battery capacity = x*(avg day’s load) bcapx

num solar panels = x*(net-zero year number of panels) panelsx or xnzy

radius of load movement = xkms r=x

Table 2: Parameters values and related notation used to refer
to them in the paper

Metrics for evaluating proposed solution: To evaluate the

combined greening potential of solar energy and OAC, we measure

reductions in both energy consumption and cost. We use reduction

in total brown energy consumption and reduction in peak energy

drawn from the grid to determine how effective the combination

of solar energy and OAC is in greening IDNs. We use amortized

cost savings and a break-even analysis to evaluate how effective

the algorithm is with respect to cost.

Parameter Values and Related Notation: In this paper, we

study our algorithm by varying parameters like battery capacity

and number of solar panels. We vary battery capacity installed at

a data center as a function of the average day’s load for that data

center. We consider three different fractions: 0, 0.5*(average day’s

load), and 1*(average day load). We vary the number of solar panels

as a function of the net-zero number of panels for a data center. We

consider two fractions: 0.5*(net-zero year number of panels), and

1*(net-zero year number of panels). In addition to these, we also

vary the radius of load movement and use a notation r=x to mean

that a maximum radius of load movement of x kms was used in

our simulation. It is cumbersome to refer these cases using their

full descriptive text for battery capacity and panels as listed above.

Therefore, we use a shorter notation and list the mapping of the

full text to its notation in Table 2. For example, to refer to a case

in which we employ a battery capacity of 0.5*(average day’s load)

and install 0.5*(net-zero year number of panels), in our plots and

empirical results we use a notation bcap0.5 and panels0.5 (or 0.5nzy).
ProblemStatement: IDNs consumemassive amounts of energy.

The bulk of the energy consumed by data centers consists of energy

used to power servers and to cool them [40]. One way IDNs can be

made greener is by replacing brown energy consumption by energy

generated from renewable sources. Solar energy is correlated with

sunny weather and day-time. In contrast, OAC is more abundant in

colder weather and night-time. In this paper, we study the potential

of using two contrasting and complementary sources of renewable

energy (namely solar energy and OAC) in their ability to reduce

brown energy consumption in IDNs in a cost effective fashion.

Given the intermittent nature of renewable energy, in general, and

the complementary nature of these two specific sources, we use

batteries and load movement as facilitators for smoothing supply of

green energy. Specifically, in this paper we try to study two aspects:

• The potential for replacing brown energy with a combination
of solar energy and OAC in IDNs.
• The cost effectiveness of combining these two contrasting sources
of renewable energy in our IDN setting.

3 ENERGY-AWARE LOAD SCHEDULING
ALGORITHM

We describe our greedy heuristic algorithm in the following para-

graphs. We assume that we have the ability to cool load using OAC

Parameter Value
Loss % 14

System Capacity 0.275 kW

Module Type Standard

Timeframe Hourly

Azimuth 180 deg for northern hemisphere and 0 for southern

Tilt Absolute value of latitude

Dataset ‘TMY2’ for US Locations and ‘Intl’ for others

Table 3: Parameters for PVWatts Data

as long as the weather conditions outside permit us to do so. We

also assume we have the on-site solar panels at each data center

location. Further, we assume that we have batteries available locally

to store excess solar energy. Finally, we assume we can leverage re-

dundancy and data replication in IDNs by moving load to locations

where there is more renewable energy available.

Our algorithm works as follows. If OAC is available, we use that

for cooling data centers. If solar energy is being generated by locally

installed solar panels, we use that to meet local energy demand,

including cooling energy if OAC is not available. For remaining

server and cooling load, we use locally installed batteries. If any

load is left over, we try to shift it to other locations with surplus

green energy, constrained by a maximum radius of load movement.

We do load shifting in two iterations. In the first iteration, we move

load to locations that have both surplus solar energy and OAC. In

the second iteration, we move load to locations that have surplus

solar energy and no OAC. This allows us to use solar energy from

data centers that did not get selected in the first iteration. For

both iterations, load shifting is constrained to remain within a

maximum radius of load movement to control latency. Finally, for

any remaining load, we draw energy from the grid. We store any

unused solar energy in batteries for future use. The pseudo-code

for the algorithm is listed in Appendix A.

4 EXPERIMENTAL METHODOLOGY
We performed our experiments on a month-long Akamai trace.

This extensive trace has a granularity of 5 minutes and consists of

information on 100,592 servers in 724 global data center locations

from around the world. The data set consists of information for

fields like load, requests, bytes, number of servers, server capacity,

latitude, longitude, city, state, and country.

Our solar data set was acquired from the PVWatts [37] website.

It consists of a year-long dataset for solar energy generation at

a granularity of one hour. We assume that the power rating of a

solar panel ranges from 200 watts to 350 watts [14] and take an

average value of 275 watts as the power rating per panel. We list

values of parameters used for PVWatts solar data in Table 5. For

any other required parameters, we used the default values listed in

the PVWatts version 5 manual [12].

For determining OAC availability we used a year-long weather

dataset for the year 2012 from the National Oceanic and Atmo-

spheric Administration (NOAA). This global dataset contains sev-

eral metrics, including hourly dry-bulb temperature and dew point.

Given that the location of our data centers, we mapped which

weather station was closest and used its weather data as being

representative of the weather at the data center location. Given the
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NOAA has a vast network of weather stations, we could map most

of our data centers to weather stations within 10kms. For most of

the remaining data centers, we could map a weather station within

40kms.

Weather data used for OAC and solar data had a granularity of

one hour. However, the load trace has a granularity of 5 minutes.

We therefore assumed that the weather and solar output do not

change much during the hour, and use the hours value for each

of the 5-minute timeslots that fall within the hour. Additionally,

our weather data and solar energy data was year-long, however,

the Akamai load trace was month-long. To simplify, we assumed

that the load trace pattern repeats throughout the year. However,

our algorithm does not fundamentally depend upon or exploit the

fact that the load pattern repeats throughout the year. Therefore, it

would also be applicable to a yearly load trace in which the load

pattern is different for each month.

We analyzed our metrics by varying several parameters. For a

given data center, we varied battery capacity as a function of the

average day’s load, and considered battery capacities of zero, half of

the average day’s load, and a full average day’s load. For each data

center, we determined the number of solar panels we need to be

net-zero year i.e the number of panels needed to produce enough

solar energy to cover the total energy needs of the data center

for a year. For our experiments, we varied the number of panels

from half of the net-zero year number of panels to a full net-zero

year number of panels. Given the size of our datasets, running our

algorithm sequentially would have been computationally expensive.

Therefore, we parallelized our algorithm by week and in order to

do a worst case analysis, we assumed a starting battery charge of

zero at the beginning of each week.

5 EMPIRICAL RESULTS
We evaluated the greening potential of solar energy and OAC in

the context of both brown energy reduction and cost effectiveness.

We analyzed several metrics, namely brown energy reduction, peak

reduction, cost savings, and break-even points. We describe our

findings related to these metrics in the paragraphs below.

5.1 Brown Energy Reduction
Brown energy reduction is calculated by taking the average of

percentage reduction in brown energy across all the data centers

of the IDN for the year. Our results show the following:

• Combining solar energy and OAC yields significant benefits:
Figure 1 shows the brown energy reduction we can achieve with

the combination of solar energy and OAC by different months of

the year. Solar energy output is higher in the summer months when

there is plenty of sunshine. Therefore, we see the reduction in brown

energy peak in the summer months when we use solar energy alone.

In contrast, OAC is more abundant when the outside weather is

cold and dry enough. Therefore savings from OAC are higher in the

winter months and dip in the summer months. Combining these

two technologies, we can achieve a much higher savings of between

49.7% to about 60% throughout all the months of the year as shown

by the green line. Figure 2 shows how our yearly average percent

savings increase when we combine solar energy with OAC. As

seen by comparing the left two bars of Figure 2 (a) and (b), just by
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Figure 1: Plot shows how solar energy and OAC combine to
yield higher savings across various months of the year for
panels0.5 and r=0.

introducing OAC alone to the mix of 0.5nzy panels, we can go from

34% reduction to about 55% average brown energy reduction. With

nzy panels, we can go from 41.5% to about 59.4% savings.

• Load movement leads to more savings: As seen in Figure 2 (a

and b), savings increase with increasing r. For r=5000kms, we can

increase our average reduction from 54.9% to 60% for panels=0.5nzy

and from 59.4% to 65% for nzy panels.

• Batteries help significantly: As seen by the leftmost bars in

Figure 2 (c and d), in the absence of batteries, doubling the number

of solar panels increases savings from 34% to 41.5% for the solar

energy only scenario and from 54.9% to only about 59.4% for the

combination for solar energy and OAC. Without batteries, instanta-

neous solar energy produced is wasted. However, as shown by the

bars to the right in Figure 2 (c), by employing batteries with bcap0.5,

we can significantly increase the reduction in brown energy to over

48% for panels0.5 and over 74.9% for nzy panels with solar energy

alone. For the combination of solar and OAC in Figure 2 (d), we can

increase savings to 73% for 0.5 net-zero year panels and over 89%

with net-zero year number of panels.

• Diminishing returns with increase in battery capacity: Reduction
in brown energy increases with larger battery capacity, however,

we see diminishing returns. Figure 2 (d) shows the jump in savings

from 0 battery capacity to 0.5 is dramatic – from 54% to 73% for

0.5nzy panels. However the jump from 0.5 to 1 is not that large

– 73.2% to 73.7%. For a larger number of solar panels (shown by

the red bars in Figure 2 (d)), the same diminishing returns with

batteries are observed and we see a jump in reduction from 59% to

89% to 91% as we increase the battery capacity from 0 to 0.5 to 1.

This trend is also preserved for the solar energy only scenario as

we can see from Figure 2 (c).

• Application-specific parameter values:We can achieve similar

gains in brown energy reduction with different sets of parameter

values. These parameter values could be chosen based on the spe-

cific needs of applications, e.g. we may choose to not move load for

latency sensitive applications, whereas for latency tolerant applica-

tions, we may choose to move load and save on battery costs. As

an example, suppose we would like to achieve approximately 70%

reduction in brown energy consumption. We can achieve this in
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(a) Solar energy only (bcap0) (b) Solar energy + OAC (bcap0) (c) Solar energy only (r=0) (d) Solar energy + OAC (r=0)

Figure 2: We see a significant increase in brown energy reduction as we move from solar energy only (a & c) to solar energy +
OAC (b & d). Increasing r (a & b) yields larger savings. Increasing battery capacity (c & d) helps but shows diminishing returns.

two different ways using different combinations of load movement,

battery capacity, and solar panels. The two ways from the above

plots are: From from Figure 2 (b), bcap0 panels0.5 and r=10,000 and

from Figure 2 (d), panels0.5 bcap0.5 with r=0. The former scenario

is better suited for applications that can tolerate latency, where as

the latter can be employed in case of latency-sensitive applications

though with an added expenditure for batteries.
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(a) Anchorage for r=1000kms
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(b) Las Vegas for r=1000kms

Figure 3: Figure showing reduction in brown energy across
different months for Anchorage and Las Vegas
• Location Based Results: Trade-offs for specific locations vary

significantly depending on the local availability of solar energy and

OAC and their interplay. For a place like Anchorage (see lowest

blue line corresponding to panels0.5 bcap0 in Figure 3(a)), where

OAC is available for most of the year, the shape of the curve de-

pends on the availability of solar energy, which peak in the summer

months. However, for a place like Las Vegas (see lowest blue line

corresponding to panels0.5 bcap0 in Figure 3(b)), where solar en-

ergy is available for most of the year, we get a curve that dips in

the summer months, when OAC is not as abundant. These shapes

change with the addition of load movement and batteries to the

mix, as both of those alter the basic assumptions about locational

variations of OAC and solar. Also, locations that are mostly high

in solar energy output (e.g. Las Vegas which is ranked as the third

highest city in the United States based on percentage annual sun-

shine [35]), have an advantage over locations that are excellent for

OAC year round (e.g. Anchorage where the highest average year

round temperature is 19 °C and the average dew point is -2 °C [47]).

Solar output can be used for meeting both server energy demand,

as well as for cooling purposes. However, OAC can only be used

for cooling. From the plots, with sufficiently high number of solar

panels and battery size, we can nearly see a high reduction in brown

energy consumption year round. For Anchorage, however, in the

summer months we see a dip in brown energy reduction due to

lesser solar energy availability. The curves also show diminishing

returns when battery capacity is increased successively from zero,

to half of the average day’s load, to a full average day’s load.

5.2 Peak Reduction
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Figure 4: Plot showing significant gains in peak reduction.
Increasing solar panels, battery capacity and r result in
higher reductions.

This metric measures the average percentage peak reduction for

peak energy drawn from the grid for the year. We first determine
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Resource Parameter Value
Battery Price/kWh | lifetime $190/kWh | 10 yrs

Solar Panels Price/Wac | lifetime $2.1/Wac | 25 yrs

Table 4: Price and lifetime for batteries and solar panels.
Cost for commercial solar panels and lithium-ion batteries
was used.

the maximum energy drawn for a data center for the year for

the original load trace. We then determine the maximum energy

drawn for the new load incorporating solar panels, OAC and load

movement (for r > 0) under the greedy heuristic algorithm. We then

calculate the percentage reduction for each data center based on

the above values and finally average them. Our results are shown

in Figure 4.

• Significant reduction in peak energy: As shown in Figure 4, we

can see an overall reduction between 10% and up to 40% depending

upon the number of panels installed, the battery capacity and radius

of load movement. Fixing the radius of load movement to 1000kms,

and varying battery capacity and panels as shown above, we can

achieve a reduction of about 11% in the worst case to about 26%

with greater battery capacity and larger number of panels. With

a larger radius of load movement, we can see significantly higher

percentages of reduction. As an example, with a r=10,000kms we

can see a decrease of over 35% with bcap1 and nzy panels.

5.3 Cost Analysis
In this section, we evaluate how well the combination of solar

energy and OAC performs with respect to cost savings. To this

end, we consider the following aspects: 1) Yearly amortized cost

savings and 2) Break-even analysis. We describe these in detail in

the following paragraphs.

With the battery and solar cost and lifetime parameters [7] [44]

[36] [13] listed in Table 4, we studied cost savings and break-even

periods under three different prices of energy from low, to moderate,

to high. The following three scenarios were analyzed:

• Low Price - 7¢/kWh: This is closer to the industrial price
of electricity in the US [1] and is the lower end price for our

analysis.

• Moderate Price - 12¢/kWh: This is based on a blended

value of 12¢/kWh midway between our low and high cost

values of 7¢/kWh and 17¢/kWh.

• High Price -17¢/kWh: This in on the higher end of the

non-household energy prices found in countries in Europe

[17].

5.3.1 Yearly Amortized Cost Savings. We calculate original
yearly cost of brown energy drawn from the grid for the origi-

nal trace. We then calculate the new yearly cost of brown energy

for the new reduced load after incorporating solar panels, OAC

and load movement (for r > 0) under the greedy heuristic algo-

rithm. To account for the yearly cost of panels and batteries, we

calculate expense for panels and batteries and amortize the price

over their lifetime to determine the yearly amortized cost for these
investments. We then add the yearly amortized cost to to the new
yearly cost. Finally, we find the percentage reduction in cost using

the original yearly cost and new yearly cost calculated above. The

results for the metric are discussed below.

• Cost savings are directly proportional to the price of energy:
From Figure 5 we see higher savings in cost as we move from a

low to a moderate to a high energy price. With a higher per unit

energy price, every unit of brown energy drawn from the grid that

is replaced with green energy reduces a larger amount from the

operational cost.

• Significant cost savings for moderate and high energy prices:
As seen in Figure 5, significant cost savings can be achieved for

moderate and high energy prices (plots b and c). Savings range from

9.9% to 60.3% based on different parameter values. With moderate

energy prices, for bcap0.5 and panels0.5, we can see a savings of

about 32% without any load movement. For the higher price and

same battery size and panels, savings are much higher at 44.4%.

• Savings in some cases with low energy prices: From Figure 5 (a),

we see that with lower energy prices, we can yield cost savings if

we employ fewer number of panels (0.5nzy) coupled with either

no batteries or batteries with a smaller capacity of bcap0.5. With

panels0.5 and bcap0, we see savings ranging from 22% to 41% de-

pending on r. With panels0.5 and bcap0.5, we see a savings of 3% to

about 8.4% depending on r. For other combinations of panels and

battery capacities, we incur a loss. However, with prices of solar

panel installation and batteries on the decline, we expect these cost

savings in this case to improve going forward.

• Middle ground provisioning: As seen from the green line in

subplots of Figure 5, bcap0.5 and panels0.5 yields no losses for

the low energy price and yields significant savings for the higher

energy price. This coupled with the fact that bcap0.5 and panels0.5

yields significant average percent brown energy reduction, (73% for

0.5 net-zero year panels and over 89% with net-zero year number of

panels), makes it a goodmiddle ground for achieving both objectives

of reducing brown energy consumption and saving on cost.

• Sensitivity of metric in inversely proportional to energy price:
Generally speaking, this metric is more sensitive to change in pa-

rameters (i.e. battery capacity and number of panels) with lower

energy prices, as compared to higher energy prices. Observing

Figure 5, we see that the the lines successively span out less as

we go from low to moderate to high prices. For the lower energy

price for r=0, the savings range from 22% to -48%. For the moderate

energy price, savings range from about 35.8% to about 10%. Finally,

for the higher energy price, savings range from 46% to about 29%.

Therefore, decisions to switch between different battery capacities

and number of panels have a greater effect on cost savings when

prices are low, as compared to when they are higher.

5.3.2 Break-even Analysis. In this section, we look at the num-

ber of years it takes to break even on the expenditure made towards

batteries and solar panels. We determine brown energy cost for the

year for the original trace and for the new trace after our algorithm

has been run. We calculate the difference of these two to get cost

savings for the year. We then find the capital expenditure incurred

on batteries and solar panels across the IDN, and divide it by the

savings for the year to get the number of years it would take to

recover the cost.

Figure 7 gives an idea of the break-even period across different

combinations of battery capacity and panels. Figure 6 focuses on
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Figure 5: Plots show significant amortized savings for moderate and high energy prices. For the lower energy price, we see
losses for higher battery capacity and larger number of panels. However, even for the lower energy price, we see significant
savings without batteries, and we can see some savings with bcap0.5.
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Figure 6: Plot shows a decrease in the number of years to
break even as the price of energy goes up (for r=0).

r=0 and the combination of panels and battery capacity for which

the number of break-even years are the lowest:

• Break-even period is inversely proportional to energy price: Figure
6 shows that for half the nzy panels and a low energy price, we see a

break-even period of about 14.9 years. This falls to 8.7 years for the

moderate price, and 6 years for the higher price of energy. The same

trend is observed for all combinations of panels and capacities as

seen in Figure 7. Therefore, the higher the price of energy, the lower

the number of years to break even. This is because for every unit

of brown energy reduced, we get larger savings when we multiply

it with the higher unit cost of energy versus a lower unit cost of

energy.

• Finding a middle ground: The break-even period is very similar

for 1) bcap0 and panels0.5; and 2) bcap0.5 and panels0.5. For the

higher energy price and with bcap0 and panels0.5, it takes between

about 4.6 to 6.1 years to break even depending upon the values of

r. With bcap0.5 and panels0.5, it takes about the same number of

years (between 6.7 to 6.3) to break-even. This trend is also observed

for lower and moderate energy prices as well. Therefore, from a

overall solution standpoint considering bcap0.5 is useful in brown

Parameter Cost
(constant 2017 dollars)

Lower Electricity Cost Projection (¢/kWh) 7.98

Moderate Electricity Cost Projection (¢/kWh) 13.67

Higher Electricity Cost Projection (¢/kWh) 19.36

Solar Panel Cost ($/Wac) 1.30

Battery Cost ($/kWh) 70

Table 5: Projected Electricity, Solar Panel and Battery Costs

energy reduction and cost savings, bcap0.5 and panels0.5 emerges

as the preferred option between 1 and 2.

5.4 Cost Analysis with Future Projections
Given the price of solar panels and batteries is on the decline, and

the price of energy is on the rise, we evaluated our algorithm for

2030 price projections of electricity, solar panels, and batteries. For

electricity prices, we used the projected average US electricity price

in 2030 [15], we then calculated the current ratio of the average price

across all sectors to the current industrial price of electricity [1] to

determine the industrial electricity price for 2030. We then used the

percentage increase in price to scale up our low, moderate and high

prices used in the paper. We used the SunShot study targets for

installed solar panel cost in $/Watt in the beyond 2020 [16] as well as

their 2030 targets [45], in conjunction with the current commercial

solar panel per watt rates [36] to determine the installed cost of

commercial panels in 2030. We used the Bloomberg New Energy

Finance (BNEF) projection for the lithium-ion battery cost in 2030

[7]. Table 5 shows the projected values we used (in constant 2017

dollars). As a simplifying assumption we assumed that the lifetime

of batteries and solar panels remains the same as the current values

uses. If the lifetime were to increase in the future, that would yield

even higher cost savings.

With the projected values of parameters discussed above, we

re-looked at how well the algorithm performs with respect to: 1)

yearly amortized cost savings for our algorithm and 2) break-even

analysis. Our findings are discussed below:
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Figure 7: The break even period is inversely proportional to the price of energy. With a moderate amount of battery capacity
and panels, we can achieve close to the lowest break even periods compared to others.

5.4.1 Yearly Amortized Cost Savings with Future Cost Pro-
jections: The results for this metric are discussed below.

• Dramatic increase in cost savings: As seen in Figure 8, cost

savings showed a dramatic increase across the board for all combi-

nations of parameters. Figure 8 (a) shows that for the lower price

of energy, range from 23.9% to 55.9%. None of the combinations of

parameters result in a loss, like we saw with current prices. From

Figure 8 (b) shows that with moderate energy prices, we can see

savings of 38.6% to 68.9%. With the future higher energy price, we

see even higher savings ranging from 44.7% to 77.06%.

5.4.2 Break-evenAnalysiswith FutureCost Projections: The
results for this metric are discussed below:

• Dramatic decrease in number of years to break even:We see a

huge decrease in the number of years it takes to break even with

the projected prices. From Figures 6 and 9, we can see that for

bcap0, panels0.5 and r=0, for the new low price, the number of

years it takes to break even falls from 14.9 years to 8.08 years. For

the moderate price it falls from 8.7 to 4.71, and from 6.1 to 3.33 for

the high price. We see the similar trend for bcap0.5, panels0.5 and

r=0 where the number of years are reduced by approximately half

between the current and projected costs. In addition, we see from

Figure 9, that the break even years with bcap0.5 are marginally less

than without batteries. Given the decrease in the prices of batteries

and solar panels, and the higher energy cost, for 0.5nzy panels in

the future it would in fact take marginally less time break even if

we employ a battery capacity of bcap0.5, than if we do not have

any batteries at all.

5.5 Discussion
Our analysis shows that combining solar energy andOAC can signif-

icantly reduce brown energy consumption in IDNs. Load movement

and batteries can yield further savings. We find that savings due to

load movement are most pronounced over larger distances where

the the night-day difference is apparent. Therefore applications

that are not latency sensitive have the most to gain from load move-

ment. Batteries with a capacity of half of the average day’s load

can significantly increase savings. We also see that batteries not

only increase savings, but are also cost effective with moderate and

high energy prices. Therefore in locations where energy prices are

moderate to high, deploying batteries with solar panels is beneficial.

With lower energy prices we can achieve cost savings in certain

cases. With future projected prices of solar panels, batteries and

energy, we find dramatic increases in cost savings and break even

periods for all prices.

6 RELATEDWORK
Given energy efficiency is important for sustainability, significant

work has been done in the area of data centers energy management.

Part of this work has focused on reducing energy at the server

level. Work includes shutting off servers during off-peak times and

switching between high and low power states to prevent wear

and tear [43] [30] [33] [11]. Allocation of energy between user

applications taking into account user priorities and the lifetime of

the battery has also been studied [48]. Prior work has also looked

at OS level power management by real-time monitoring of the CPU

to keep it utilized to a certain percentage [39].

Separately, another part of prior work has focused on energy-

efficiency at the data center level. Job scheduling to maximize solar

energy usage without violating user deadlines has been studied [21]

[22]. Prior work has looked at using solar energy and wind energy

prediction to increase green energy usage and cut down canceled

jobs [2]. There has been work on job migration between two sets of

servers (one powered by energy from the grid and another by wind

energy) with the goal of maximizing wind energy usage [29]. Prior

work has also looked at energy capacity planning finding the best

ratio of renewables given a location and workload or given carbon

footprint goals [8] [42]. Given cooling accounts for a large portion

of data center energy consumption, work has also been done on

use of cooling technologies in modular data centers [27] and on

unified management of data centers depending upon renewable

availability, cooling efficiency, workload fluctuations, and price of

energy [10]. Although the above work provides excellent solutions

for data center energy management, it is not targeted towards a

network-level setting, which is the focus of this paper.

There has been significant prior on network-level energy man-

agement as well. Studies have investigated the use of load balancing

using the ‘follow the renewables’ approach to almost entirely power

their data centers using a renewable mix of wind and solar energy
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Figure 8: Future projection plots show dramatic increases in amortized savings for moderate and high energy prices. For
the lower energy price scenario for r=0, we see a savings of 23.9% to 55.9% with no losses for any combination. This is an
improvement from the current price scenario.
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Figure 9: Plot shows a significant decrease in the number of
years to break-even with future cost projections (for r=0).

[31] [32]. Prior work has also studied user request routing for green-

ing data centers [46]. Solutions have been proposed for dispatching

requests to data centers in a way that maximizes renewable energy

and stays within a budget [49] . Work has been done to assign users

to data centers based on the three-way mix of latency, price of elec-

tricity, and carbon footprint [19]. Prior work has also looked into

site selection for green data centers using a follow-the-renewables

approach [6]. However, none of these studies explicitly consider a

combination of solar energy and open air cooling as part of their

renewable mix. Most of them do not evaluate their solution on as

extensive real-world, global trace as we have done in our paper.

These studies also do not explicitly consider the impact of varying

storage capacities on their outcomes. Efficient provisioning of so-

lar panels for net-zero IDNs based on geographical solar energy

availability has been previously studied [25]. However, this work

is for offline panel provisioning, In contrast, we do not focus on

solar panel provisioning, and instead we assume that solar panels

are installed at every data center location. Existing work has also

looked at geographical load movement to study the potential of

open air cooling for serving the cooling energy needs of IDNs [24].

However, in this paper, we study the combined potential of solar

energy and OAC for net-zero IDNs, considering both server energy
and cooling energy while determining data center energy demand.

7 CONCLUSIONS
In this paper, we studied the greening potential of solar energy

in conjunction with OAC given their contrasting natures. To that

end, we implemented a simple greedy heuristic and evaluated it

on an extensive Akamai load trace. We considered several metrics

broadly analyzing brown energy reduction and cost effectiveness

of employing a combination of solar energy and OAC in IDNs. We

found that just by introducing OAC alone to the mix of 0.5nzy

panels, brown energy reduction increases from 34% to about 54.9%.

With nzy panels, we can go from 41.5% to about 59.4% savings. We

can increase our savings further to between 60% to 65% by adding

load movement within a radius of 5000kms. With batteries and r=0,

we are able to significantly reduce brown energy consumption by

73% (for 0.5nzy panels) and over 89% (for nzy panels). We could also

achieve peak energy reduction of about 10% to 40%. Therefore the

combination of solar energy and OAC enables significant brown en-

ergy savings. Our cost analysis showed that for moderate to higher

prices of energy we can achieve significant cost savings from 9.9%

to 60.3%. For low energy prices, we found that we can still achieve

between 22% to 41% savings with panels0.5 and bcap0. For bcap0.5

panels0.5, we see small savings of between 3% to 8.4%. In other cases

with a low energy price, we incurred a loss. With a higher price

of energy, we could observe break-even periods as low as 6 to 8.7

years. With energy prices on the rise and solar and battery prices

declining, we re-looked at the potential under projected prices. We

saw dramatic increases in cost savings, with with savings between

23.9% to 55.9% even for the lower projected energy price. With

r=0 and panels0.5, the number of break-even years reduced signifi-

cantly by roughly 45% for bcap0 and by roughly 50% for bcap0.5.

Overall, we showed that the combination of solar energy and OAC

has significant greening potential for IDNs.
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Appendix A GREEDY ALGORITHM
PSEUDOCODE

Algorithm 1 Greedy Algorithm Pseudocode

1: function greenheuristic( )

2: dcs ← [1, 2, ...,m] ▷ datacenters

3: sortedpeers ← [p1,p2, ....,pm ] ▷ sorted list of dc peer dcs

in increasing order of dist

4: time ← [1, 2, ...,n] ▷ time periods

5: r = max radius of load movement

6: b ← [b1,b2, ...,bm ] ▷ battery charge

7: for i in time do
8: sload ← [l11, l12, ..., lmn ] ▷ server load for time period

9: cload ← [c11, c12, ..., cmn ] ▷ cooling load for time

period

10: oac ← [o11,o12, ...,omn ] ▷ oac available y/n?

11: solarenerдy ← [s11, s12, ..., smn ] ▷ local solar energy

12: surpluslist ← [] ▷ to store dcs with surplus solar

energy

13: de f icitlist ← [] ▷ to store dcs using brown energy

14: for j in dcs do
15: if oi j = y then
16: ci j ← 0 ▷ if there is OAC, cooling load is zero

17: excessSolari j ← si j + bj − (li j + ci j ) ▷ determine

excess solar

18: if li j + ci j > si j then
19: bj ← bj − (li j + ci j − si j ) ▷ use battery if solar

energy falls short

20: if excessSolari j > 0 then
21: surpluslist ← surpluslist ∪ [j] ▷ add dc to

surplus list

22: else if excessSolari j < 0 then
23: de f icitlist ← de f icitlist ∪ [j] ▷ add dc to

deficit list

24: for j ∈ de f icitlist do ▷ first iteration

25: for p ∈ sortedpeers do
26: if p ∈ surpluslist∧oip = y∧dist(j,p) ≤ r then
27: move load to p and adjust variable values

28: for j in de f icitlist do ▷ second iteration

29: for p ∈ sortedpeers do
30: if p ∈ surpluslist∧oip = n∧dist(j,p) ≤ r then
31: move load to p and adjust variable values
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