2009 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops

Cluster-Swap : A Distributed K-median Algorithm for Sensor Networks

Yoonheui Kim Victor Lesser

Deepak Ganesan

Ramesh Sitaraman

Computer Science Dept.
University of Massachusetts,Amherst
Ambherst, MA 01002

Abstract

In building practical sensor networks, it is often benefi-
cial to use only a subset of sensors to take measurements be-
cause of computational, communication, and power limita-
tions. Thus, selecting a subset of nodes to perform measure-
ments whose results will closely mirror the results of having
all the nodes perform measurements is an important prob-
lem. This node selection problem, depending on the charac-
ter of the function that integrates measurements and the type
of measurements, can be mapped into a more general prob-
lem called the k-median problem. In the k-median problem
we select a centroid set - a subset of nodes - that minimizes
the function, that is the sum of the minimal costs between
each node and a node in the centroid set. The set of se-
lected nodes is called “centroids” or “leader nodes”, where
the cluster of a leader node is defined by the set of nodes
closest to the leader node. We develop an approximate k-
median distributed algorithm called Cluster-Swap, which
does not require significant computational power, and does
not require every node to know its exact position in the n-
dimensional space but only its relative location in relation
to a subset of nodes. In addition, Cluster-Swap limits com-
munication costs and is flexible to network changes. The
locally optimal solution reached by our algorithm is an ap-
proximation whose error is bounded by the maximum cost
and number of nodes in the cluster. The error bound gives
a tighter bound than other similar algorithms, given that
the random initial solution is within a described reasonable
range. We empirically show that the solution given by our
distributed algorithm is close to both the approximate solu-
tion generated by the cited Local search heuristics and also
the globally optimal solution while using fewer resources.

1. Introduction

Many interesting problems in sensor networks and tra-
ditional routing networks can be reduced to classic algo-
rithmic problems such as the Traveling Salesman Problem
(TSP), k-median, or k-center problem [5, 13, 12]. For ex-
ample, Meliou et al. solve a data collection problem by re-
ducing it to a TSP [12]. Das et al. solve the problem of ag-

978-0-7695-3801-3/09 $26.00 © 2009 IEEE
DOI 10.1109/WI-IAT.2009.178

363

gregating sensor measurements by reducing it to a k-median
or k-center problem [5]. The gateway placement problem is
solved by also reducing it to a k-median problem [13] .

In sensor networks, there are many problems that can be
reduced to the k-median problem, such as the subset selec-
tion problem [6, 9, 14] and the sensor measurement aggre-
gation problem [2, 5], where a subset of size k& that opti-
mizes a certain cost function should be obtained. In [5],
the error of the measurements is bounded by the k-median
problem’s cost function when only k& sensors take measure-
ments, assuming the measurements are correlated with dis-
tance. The error in the average value of measurements is
bounded by %Eigsc(i, S), where S is the selected subset
of size k, ¢(i,5) is the distance between sensor ¢ and set
S therefore reducing the problem of minimizing the worst
case error to a k-median problem.

However, the k-median algorithms developed so far have
been focused on solving problems with large data sets that
need to be clustered. These algorithms do not accommo-
date domains where there is a much smaller set of data
points, limited computation power, and a lack of informa-
tion about the absolute locations of data points. For exam-
ple, in these settings each node may only know the relative
location of nearby nodes. Furthermore, even for relatively
small sets, exhaustively computing the optimal answer for
the k-medain problem is not practical and thus requires ap-
proximation. Additionally, in a sensor network, it is often
not feasible to send necessary information to a central lo-
cation to solve. We develop a fully distributed k-median
algorithm called Cluster-Swap that satisfies the constraints
of this particular environment. The algorithm does not re-
quire extensive computing power, reduces communication
load, and adjusts easily the solution when a node fails.

The Cluster-Swap algorithm presented here is based on
the Local search heuristics [1] that only uses swap opera-
tions, where a swap is defined as switching the role between
a centroid and a non-centroid node. Local search heuristics
can be simply adapted to a distributed environment since
the swap operation is very simple and can be done in a local
manner. However, swapping two nodes in a distributed en-
vironment can have high communication cost if they are far
apart. Therefore, we have created Cluster-Swap where the
swap operations are performed in a limited context involv-

IEEE
computer
psoaety

ing only the subsets of nodes that are relatively close. Also,
using a similar approach to bound the error as in [1], we
bound the error with quantities calculated from the solution
of the algorithm, and show that the algorithm gives a reason-
able bound that is confirmed in the experimental section. In
addition, in the experimental section, we compare our algo-
rithm with the Local search heuristics and Neighbor-Swap
algorithm, which only swaps with directly connected neigh-
bors. We provide experimental results showing that the so-
lution quality of Cluster-Swap is close to that of the Lo-
cal search heuristics with a 5-approximate solution without
requiring significantly more resources than the Neighbor-
Swap algorithm.

The paper is organized as follows. We first provide a for-
mal description of the k-median problem and some known
algorithms for its solution. We then provide a detailed de-
scription of the Cluster-Swap algorithm, the proof of an er-
ror bound, and implementation details. Finally, we show ex-
perimental results comparing Cluster-Swap to Local search
heuristics and Neighbor-Swap to show the validity and effi-
ciency of our approach.

1.1. Problem Description

Our goal is to solve the k-median problem without know-
ing the full structure of a network and without sending all
network information to a central location. We consider the
general case where there is a graph G=(E,V) and the cost
function C' : £ — R on each edge. Since each edge is
Euclidean, the triangle inequality holds. Within this setting,
we search for a set of centroid nodes 7' C V where the sum
of the cost function between each node and closest ¢ € T is
minimized:

T= argminT(Z minterc(v,t))
veV

We assume that each agent has the knowledge of the
edges shared with direct neighbor nodes and can directly
communicate at least with them. Given this problem de-
scription, we now present our algorithm and its performance
bound.

(€]

1.2. Related Work

K-median clustering is a common technique used in the
machine learning community to analyze data. It is known
that the problem is NP-hard, and thus many approximation
algorithms have been developed. Traditionally, research has
been focused on how to solve k-medians for a very large
number of points. Recently, there has been a growing in-
terest in reducing problems to k-median problems. How-
ever, the algorithms developed so far do not suit the growing
needs of those domains.

There is recent research in selecting a subset of input
points to compute the k-median [8]. Unfortunately, the
number of points needs to be very large to benefit from
this approach, which mitigates its use for most sensor net-
works. Other relevant work includes k-median clustering

364

for large data streams where it is impractical to store the
whole stream before initiating processing. The k-median
algorithms on streams [3, 7] are relevant to our study in that
they work in a sequential order on the input stream and do
not use much space. However the algorithms only guaran-
tee O(1) or higher approximation whose constant factors
are not as small as desired. Additionally, some well studied
linear programming algorithms are also not suitable as they
require extensive computation, which is generally assumed
to not be available [4].

There are also distributed versions of the k-median al-
gorithm focused on data sets that are too large to store in
one place. The goal of these distributed algorithms is to
achieve a result close to the case when the data is central-
ized, and the algorithms focus on selecting a subset of data
points in each location in order to efficiently aggregate the
distributed partial results. There also is a centralized al-
gorithm only applied to the Euclidean plane that achieves a
1+e-approximate solution in O (nkn®(/¢) log n) time [11].
This is a known best optimal guarantee but the fact that it
only holds on a 2-dimensional space, it requires exhaustive
computation power, and it assumes that the exact location
of each point is known, make this approach inappropriate
for our problem domain.

One of the simple and good approximation algorithms is
based on Local search heuristics [1], and is known to guar-
antee a S-approximate solution. Since this approach is sim-
ple, has a reasonable bound, and is easily applicable to a
distributed environment, our algorithm is built based on this
work.

2. The Cluster-Swap algorithm

N(t)__ N(o)

For each point x in 0

N(t), calculate c(t')-
¢(t) and return this
value to t where t
is a cluster that x
will be assigned
when t is swapped
out.

For each point y in N(o),
calculate c(t’)-c(o) and
return this value to t if
c(t')-c(o) 2 0 and
forward to its neighbor
where t'is the currently
assigned centroid

Figure 1. The range of swap(t, o) and cost change
based on the location of nodes. The node ¢ is swapped
out and the node o is inserted where N(t) are the mem-
bers of the cluster ¢ before the swap and N(o) are the
members of the cluster who are assigned to o after the
swap, and c(x) is cost of a node z.

As described in the previous section, we seek to solve
the k-median problem in a decentralized manner by swap
operations as in the Local search heuristics, but limit the
target to swap to only the non-centroids in the same cluster.
The Cluster-Swap algorithm determines the k centroids that
minimize the sum of the distances to the closest centroid
where k, the number of centroids, is given as a parameter.
This initial set of centroids is given as a parameter to reduce

the difficulty of getting the consensus in the network on the
centroids and can be determined randomly.

We designed our algorithm based on the following as-
sumptions. First, we assume that each node knows the cost
function for each of its directly connected neighbors. This
cost can be either the distance or another measure that satis-
fies the triangular inequality. Additionally, we assume that
the initial set of centroids is pre-determined.

Given the assumptions, each node performs the same lo-
cal algorithm on each cycle depending on whether it is a
centroid or a non-centroid. At each cycle, the current k cen-
troid nodes try to improve the solution quality by communi-
cating with non-centroid nodes within the same cluster until
no centroid can improve its cost through swaps, thus there
is no change in centroid nodes.

The swap operation is taken in two steps, fest-swap(t,0)
and swap(t,0). test-swap(t,0) tests the cost benefit of the
swap and swap(t,0) actually performs the swap to take out
t and insert o in the centroid set. Both operations between
centroid ¢ and non-centroid o are performed locally, involv-
ing both the members of the cluster of ¢ and the neighbors
of o as pictured in Figure 1. The group affected by each
swap includes the cluster of ¢, which will be assigned to a
new centroid because their centroid ¢ is removed and the
neighbors of o which will be re-assigned to o because of the
cost reduction.

The set of members involved in fest-swap and swap are
largely overlapping for different swap targets and this fact
is used to save resources by combining multiple fest-swaps.
Since there are fewer members per cluster in our domain,
this combined message does not get very large. Addition-
ally, multiple swaps can occur simultaneously only when
the nodes affected by the swaps do overlap. If there are mul-
tiple overlapping swaps, the conflict will be resolved and
only one swap will be selected.

After a finite number of swaps, the algorithm reaches a
local optimum and terminates. Since we consider all nodes
affected by the swap in and out of the cluster, the algorithm
always calculates the exact change in the cost improving
the cost each swap. Thus, it is guaranteed to terminate.
The solution that this algorithm gives is different from Lo-
cal search heuristics as the swap operation only occurs be-
tween the members of a cluster. Figure 2 provides an exam-
ple showing how a sub-optimal solution will be found when
only swaps within the cluster are done.

The Cluster-Swap algorithm has the benefit that the so-
Iution can be easily updated in a local manner after the
addition of new nodes or the deletion of nodes in the net-
work. This is because the addition and deletion impact can
be determined locally by performing another iteration of
test-swaps. If it is found that this will result in changes,
the impact is then propagated by changing the centroids, re-
sulting in the centroids in the neighborhood detecting the
change and performing fest-swap. Therefore, the propaga-
tion of impact is selective, making the update easier than
other approaches where the impact always has to be consid-

365

ered globally.
O—O—@—O—O—O—®
22 1 g 13 13

Figure 2. Example where Cluster-Swap does not lead
to the same solution as Local search heuristics. The
initial configuration is with two clusters of centroid C(Member
A,C, D, E), and G(Member F). The cost of the initial con-
figuration is 68(C:c(A,C)+c(B,C)+c(C,D)+c(C,E), G:c(F,G)).
swap(G,A) improves the current solution, which is not per-
formed by the Cluster-Swap. The cost benefit of swap (G,A)
for A is 25 as it becomes a new centroid and cost is 0. For
node G, the benefit is -34 as the new cost is 34, and cost
before swapping is 0. The sum of the benefit from the swap
=254+19+0+40—8—34 > 0. Therefore Local search
heuristics performs this swap and improves the cost.

2.1. Determining the error bound of

Cluster-Swap

For the proof of an error bound, we use an approach sim-

ilar to the one described for the Local search heuristics [1],
applying k swaps between the centroid set 7" and the opti-
mal solution O. We provide some terminology for proving
the bound. Let C'(X) be the sum of the costs of all nodes
on the graph given the centroid set X. C(x) is the cost of
x given the centroid set 7" and ¢(z, y) is the cost between x
and y. The proof is achieved in the following steps:
1. We create a mapping M : 1" — O, from the solution 7’
of the Cluster-Swap algorithm to optimal solution O. Such
mapping leads to an element o € O appearing exactly once.
To each 0 € O, we map ¢t € T such that o € Np(t) where
Np(t) is the set of members of the cluster of a centroid ¢
given the centroid set 7'.

We cannot create a mapping M : T'— O as in the paper
of Local search heuristics. The mapping S — O is from
the Local Search Heuristics solution s € .S to optimal so-
lution o € O that satisfies the constraint that s € S does
not capture any element in O or capture only o € O. This
mapping is built based on the swap(s,0) on S which in-
creases the solution. However, the solution of Cluster-Swap
algorithm does not guarantee this condition on the solution
and may improve the cost in our solution. This fact violates
the purpose of this mapping for proving the bound. For our
purpose, any o should be mapped from the centroid t where
o € Np(t). However, this mapping does not hold the same
constraint of capturing.

2. O(T —t+o0) > C(T) where 0 = M~L(t) as o is
a member of Np(t), and swapping with a member of the
cluster would not improve the solution.

3. Now we assign all members in N (t) U No(o) to o.
Consider the possible upper bound of the cost increase of
each swap on Np(t) U No(o).

For Nr(t) — No(o), since the closest centroid we can
locate for Np(t) after the swap is o, we provide the up-
per bound of cost increase by assigning the members in

Nr(t) — No(o) to o. The new cost for member x in N (¢)
is bounded by c(z,t) +c(t,0) = cr(x) +¢(t, 0) as this cost
does not exceed ¢(x, 0) by triangular inequality. Therefore,
for each member in Nr(t) — No(o), the cost increase is
bounded by ¢(t, 0).

For members in No(0), the cost of the node = before
the swap(t, 0) is Cr(x). The cost after swap when they are
assigned to o is ¢o (). For each member, the cost change is
OT(JC) - C’O (JC)

4. For each swap, the cost increase is summarized as:

EeeNr(t)-No(0)C(t; 0) + Xpeng (0)Co(z) — Cr ()
=c(t,0) * [Nz (t) = No(o)| + Zeeng (0)Co(z) — Cr(x)
>0

5. For k swaps,

Evoco,t=11-1(0)(¢(t,0) ¥ [N () = N(0)|) + Co = Cr > 0
Cr < Co + Byoeo,t=m—1(0) (c(t, 0) * N1 (t) — No(o)])

However, we do not know the number of members of
Nr(t); No(o); or c(t,0) since we do not know o. There-
fore, we calculate the maximum possible value that is
max[c(t,0) x |[N(t)—N(o)]|]. Since o a is member of N (t),
we can bound this value to max(cmaz () X [N (t)]) for each
t where ¢;,q,(t) is the maximum cost between the centroid
and non-centroid nodes within the cluster of t. Therefore,
we can relate our solution using the maximum cost value
multiplied by the number of members assuming each cluster
does not contain more than a certain number of centroids in
the optimal solution. Let K (t) be the number of centroids
in the optimal solution O, contained by the cluster of cen-
troid ¢. We can bound our solution using mazer (Ko (t))
and represent the equation as follows:

Cr < Co 4+ mazxier(Ko(t)) X mazier(Cmaz(t) * [N (1)])

Our solution is bounded in relation to the maximum
number of centroids of optimal solution in each cluster.
Any cluster centroid ¢ can be used in these swaps at most &k
times. The total sum for k& swaps is bounded by k(| N (¢)| x
mar e n) c(t, r)), which is at least maximum value of the
cost of the entire graph making the bound useless. We can
reason that max (Ko (t)) will remain lower than &, although
we do not have a theoretical bound on maxicr (Ko (t)).
This is because we are swapping with a node in the clus-
ter, and thus there is a high chance that the swap with this
centroid would result in a benefit unless the input nodes are
extremely skewed and the algorithm starts from a poor ran-
dom initial point. The experimental result also shows that
max(Ko(t)) is much smaller than & in most cases.

2.2. Algorithm Details

The overview of the algorithm for a centroid is given in
Algorithm 1.
[Initiation] The first step in the algorithm is to construct the
initial clusters created by pre-determined or randomly cho-
sen k centroid nodes that declare themselves as centroids by
broadcasting the message to their neighbors. The message

members «— nil {member of its cluster}
tried < nil {the members tried rest-swap on}
if not initialized then
send declare message to neighbors
wait ¢ X size { wait for the members to reply for time proportional to the size
of the network }
end if
while type == centroid { until it becomes a non-centroid } do
wait < random(c X size)
while wait >= 0 do
process received messages
if the benefit of rest-swap is greater than O then
send new centroid message to swap target
send swap message to its neighbors
type «— non — centroid
end if
wait «— wait — 1
end whiletest-swap(tried, members)
if not waiting for the replies, send test-swap message to its neighbors
end while

Algorithm 1: Function : Cluster-Swap(k, type, neighborinfo)
for the centroid

of centroid declaration has a format <declare-centroid, cen-
troid id, cost>.

Non-centroid nodes determine their membership in a
cluster by selecting the known closest one upon receipt of
these declaration messages, then notify their centroids by
a message <notify-membership, id> and forward the dec-
laration messages to their neighbors only when the source
of this message becomes their own centroid. By forwarding
the messages only from their own centroids, most nodes re-
ceive these declaration messages from only their centroids.

If any closer centroid is found by another declaration
message, the receiver updates its membership and notifies
the previous and new centroid nodes of its new membership
by sending <notify-membership-change, id> and <notify-
membership, id> .

For example, in Figure 2 node E registers itself as a
member upon receiving <declare-centroid, G, 26>, then
it sends to node G <notify-membership, E>. If later node
E receives another declaration message <declare-centroid,
C, 8> then node E changes the membership because there
is a cost reduction from 26 < 8. It notifies the membership
update by sending <notify-membership-change, E> to cen-
troid G and <notify-membership, E> to centroid C. There-
fore, each node eventually becomes a member of the cluster
of the closest centroid.

the number of messages may be reduced by waiting for
an interval to get centroid declaration messages from neigh-
bors, although this will increase the time for initialization.

if Yo €members is in tried then

state «—< stable > return
else

starget < arandomly selected non-centroid member in members not in tried
end if
state «—< testswap >
swapcost = —cost(sre, starget) {cost change due to swap for the centroid }
for all i € neighbor do

send a message < testswap, src, starget, neighborcentroids, id >
end for

Algorithm 2: Function : test-swap(tried, members) :
function by centroid to start test-swap

[Test-Swap] test-swap is a message that is sent by centroids

newcentroid < centroid with lowest cost among starget, neighborcentroids
if myswapsrc srcand swapid! = id
{same centroid sends again with new swap. It means the previous test-swap returned
negative result} then
myswapid < id {update the swap id }
swapbene fit = cost — cost(newcentroid)

if centroid == src||swapbenefit > 0 {if this node is a member of src}
then

send a message <test-swap-response, id, swapbenefit>
end if

for all i € neighbor do
send a message <testswap, src, starget, neighborcentroids, id>
end for
else if id < myswapid then
send a message < suppress, starget, src,id > {suppress the swap}
else if myswapid < id then
send a message <suppress, starget, myswapsrc , swapid> {suppress the old
swap }
send a message <fest-swap-response, id, swapbenefit>
end if

Algorithm 3: Function: process-test-swap(msg :<src,
starget, neighborcentroids, id>, myswapid, myswapsrc) : a func-
tion to process test-swap where myswapid, myswapsrc
is info from a test-swap the nodes previously responded
to

if Response received from all of its neighbors then
if testresult > 0 then
for all ¢ € neighbor do
send a message < swap, src, starget, id >
end for
else
reset the timer to start test-swap
end if
else
testresult «— testresult + swapbenefit
end if

Algorithm 4: Function: process-test-swap-response
(msg :<test-swap-response, id, swapbenefit>)

to calculate the cost of a potential swap. The format of zesz-
swap is <test-swap, swap id, source, target, [centroids in
the neighborhood]>.

If a centroid is contained in a cluster with at least one
non-centroid node, the centroid chooses one of its members
within the cluster and starts zest-swap with a random inter-
val [0, range] by sending messages to the all of their neigh-
bors. This interval is in order to avoid conflicts between
multiple swaps happening at the same time, where range is
proportional to the number of nodes in the network.

Each test-swap message is forwarded while the potential
swap affects the cost of the non-centroid node. The fest-
swap(t,0) is forwarded to N (¢) U N(o)+ direct neighbors
of N(t) U N(0). Upon receiving the test-swap message,
each non-centroid node calculates the benefit of swap, and
determines whether to reply immediately or forward. The
recipients of this message in N (¢) calculate the cost and for-
ward the message to their neighbors regardless of the cost.
The message will eventually reach the nodes outside N ()
and they will return the messages with cost 0. On the other
hand, the recipients of this message in N (o) calculate the
cost change and forward this message to its neighbors only
if there is a cost decrease. If the swap only increases the
cost, then it returns the message with 0 cost to the forwarder.
If the forwarder gets replies from all of the neighbors, then
it sends back the replies to its forwarder and eventually the

367

centroid who started swap-test message will get the replies
from all of its neighbors, and calculate the benefit by sum-
ming the results.

For example, as in Figure 2 suppose a node D who is a
member of node C’s cluster receives <test-swap, 3456, C,
B, [G]>. Because the test message is from its own centroid,
the node D must participate in the test, records the message,
and forwards the message to its neighbors. It records the
message to resolve the conflict between multiple swap mes-
sages which is explained later. When all replies for the test
are returned to node D(here only from E), it calculates its
own benefit, bene fit = ¢(C, D)—min(c(D, B),¢(D, Q)),
combines the result from all of its neighbors, and returns
<test-swap-response, 3456, C, D, Zmpﬁm and its own ETESIE>
to the message’s forwarder (the direct neighbor who sent it).
Here, the benefit of Eis ¢(C, E)—c¢(E, G) = 8—26 = —18.
The benefit of D is -22 thus D sends a reply <test-swap-
response, 3456, C, B, -40> to the node C. A slightly dif-
ferent action is taken when a node E who is not a member
of node G receives a test-swap (G,F) message from G. Be-
cause benefit <= 0, it simply returns the response with 0
value and does not forward this message to a neighbor.

[Neighborhood Centroid Information] After a swap, the
swap source is no longer a centroid. Thus, during fest-swap
the non-centroids calculate the cost based on the potential
centroid set, and the centroid provides neighbor centroid in-
formation for cost calculation consistency. Additionally, if
there is a change on the information during test-swap, the
test-swap is terminated without any further effect.

[Collision] Also, there is a possibility of a conflict between
multiple fest-swap messages from different centroids, these
conflicts must be resolved to avoid an incorrect test result.
As stated before, the centroids try fest-swap with some ran-
dom interval in order to avoid these conflicts as much as
possible, although having the interval does not eliminate
the chance of conflicts. The collision inevitably happens
because the centroids do not coordinate the time to start the
swap. Instead, whenever a collision occurs, the swap with
higher id (that is randomly generated for each test-swap) is
chosen, and the other one is suppressed.

For example, from the previous example of a fest-swap,
the message from C will be forwarded to E as E is a mem-
ber of the cluster. If the node E receives another fest-swap
message with swap-id 2487 from a different centroid G then
it suppresses the fest-swap with id 2487 since 2487 < 3456
by directly sending the forwarder of test-swap a suppress
message if the scheme is to suppress the smaller id. Since
the source never swaps unless it gets all the replies from all
of neighbors this suppress message will be delivered to its
source before the swap happens.

[Combining test-swap| As in Figure 1, fest-swap involves
the members in the cluster and the nodes around the swap
target. Therefore, large numbers of nodes on fest-swap op-
erations within the same cluster overlap and this fact is used
to combine multiple fest-swap operations to save commu-
nication resources. Multiple fest-swaps can be done by in-

cluding multiple swap targets in one message and getting
the calculated benefits from participating nodes in the zest-
swap. Each recipient of the combined message calculates
the cost of each targets and returns the result on all targets
in the message. Since multiple targets have different neigh-
bors, the messages are propagated to slightly more nodes.
[Swap] If the centroid calculates the cost and there is a re-
duction, it determines to swap, and sends a swap message
to its neighbors and swap target. This message is forwarded
to all affected nodes, as in Figure 1. When a new centroid
is elected by receiving a new-centroid message, it updates
its type and copies the neighborhood centroid information,
then forwards the swap message to its neighbors as well.
The recipients of this message will notify the appropriate
nodes of their membership change, if any.

[Termination] The algorithm terminates when no centroid
can update its solution by swapping with other nodes in the
same cluster. Once a node has tried every possible member
of the cluster to swap, it stops test-swaps. The global ter-
mination point for the algorithm is when all the centroids
agree to terminate because they stop generatingtest-swaps.
There is no global termination mechanism implemented in
our algorithm, however this decision problem is a common
problem in the distributed environment for reaching a con-
sensus, and there is ample literature on how to reach a con-
sensus among k nodes in the network. Thus, the details are
not provided in this work.

3. Empirical Evaluation

We present an empirical evaluation on synthetic data ran-
domly created on an n-dimensional space with a size of 100
for each dimension. We focus on relatively small examples
when compared to usual clustering domains since we model
each node as a sensor or processor unit.

Table 1. Comparison between three algorithms used
in the experimental section

[Neighbor-Swap | Cluster-Swap | Local Search Heuristics |
| Target of swap [direct neighbor | members of cluster | any non-centroids |

We compare the Cluster-Swap algorithm with the Local
search heuristics and the Neighbor-Swap algorithm, and for
a limited number of cases an exhaustive search algorithm
with the optimal solution. The difference among these al-
gorithms is also provided in Table 1. We vary the num-
ber of points, centroids, and data dimensions. We assume
the graph is not fully connected and the cost function is the
distance between any two points(euclidean distance of any
dimension). This assumption can be easily loosened by set-
ting the cost function differently such as to the sum of the
path to reflect the actual travel distance in the graph, or any
other measure that also retains the triangular inequality. Our
cost function is chosen for convenience.

The Cluster-Swap algorithm is also implemented in the
distributed simulation environment Farm [10]. By imple-
menting the Cluster-Swap algorithm in a distributed envi-
ronment, we investigate additional measures: the number of

368

communication messages, and time for convergence. In the
Farm environment, “pulse” is used as the time unit and each
action takes one pulse. Such actions include sending mes-
sages, receiving messages, and processing messages. Com-
munication with any node in the network is sent within one
pulse without any message loss.

3.1. Performance by Solution Quality

Tables 2 shows the maximum and average ratio of so-
lution cost from Cluster-Swap and Local search heuristics.
The results show that the solution by Cluster-Swap is close
to the solution of Local search heuristics even though the
search space of Cluster-Swap is more limited than Local
search heuristics. In comparison to Neighbor-Swap, the
Cluster-Swap algorithm performs closer to Local search
heuristics than Neighbor-Swap algorithm. On some worst
cases, the solution of Neighbor-Swap is 3 times larger than
Local search heuristics, but the worst case ratio of Cluster-
Swap is 1.49.

Table 3. Maximum Ratio of the solution of the
Neighbor-Swap, Cluster-Swap and Local search heuris-
tics compared to the optimal solution on 3 dimensions
for 100 data points

Number of Centroids | Neighbor-Swap | Cluster-Swap | Local Search
4 3.104 1.081 1.000
8 3.414 1.000 1.000
12 2.587 1.829 1.412
16 4.203 1.636 1.636

Table 3 shows worst case ratio of the solution cost of the
algorithms to the optimal solution on 3 dimensional data.
The result shows that the Neighbor-Swap can lead to a poor
local optimum and that the Cluster-Swap and Local search
heuristics are both close to optimal even in the worst case.

3.2. Efficiency by Number of Swaps

We present efficiency results by considering the cost for
swap and test-swap operations. The number of operations
indicates how many times these routines are called, and the
number of participants how much each operation costs in
terms of both time and messages. The number of partici-
pants determines the runtime and the number of messages
of each call since it indicates how much the information has
to be propagated. Since swap and fest-swap are dominant
routines, the runtime and number of messages are propor-
tional to the the number of operations and number of partic-
ipants.

Table 4 shows the number of fest-swap operations(The
number of swap operations are dominated by fest-swap by
more than 10 times). The Local search heuristics requires
the most operations as each centroid must fest-swap with
every node in the network, which leads to an explosion. For
an uncombined test-swap, Neighbor-Swap remains much
lower than Cluster-Swap. However, when the fest-swap is
combined for the members in the cluster, the two algorithms
require a similar number of operations.

Because with test-swap messages combined the num-
ber of operations are similar both in Neighbor-Swap and

Table 2.

Maximum and Average Ratio between the solution cost of Cluster-Swap(CS) and Local search heuris-

tics(LSH) and Maximum Ration between the solution cost of Neighbor-Swap(NS) and Local search heuristics(LSH)

Maximum/Average Ratio between CS and LSH Maximum/Average Ratio between NS and LSH
2 dimensions 3 dimensions 2 dimensions 3 dimensions
centroids 100 200 300 100 200 300 100 200 300 100 200 300
4 1.137/1.029 1.072/1.017 1.010/1.001 [1.073/1.010 1.378/1.061 1.151/1.023 | 1.745/1.197 3.007/1.326 2.378/1.261 | 1.336/1.124 1.545/1.155 1.602/1.155
8 1.125/1.043 1.236/1.045 1.068/1.009 | 1.107/1.026 1.058/1.008 1.078/1.029 | 1.372/1.154 2.408/1.496 1.759/1.412 | 1.276/1.157 1.702/1.352 2.130/1.381
12 1.293/1.064 1.052/1.022 1.076/1.014 | 1.183/1.063 1.081/1.032 1.123/1.027 | 1.616/1.233 1.973/1.310 1.725/1.406 | 1.904/1.402 1.461/1.298 1.648/1.453
16 1.163/1.069 1.094/1.045 1.072/1.039 | 1.486/1.134 1.067/1.033 1.052/1.021 | 2.411/1.267 2.194/1.367 1.874/1.307 | 2.000/1.376 2.253/1.570 1.957/1.394

Table 4. Efficiency of Algorithms:

number of rest-swap operations until the algorithms reach the local optima on 3

dimension, number of resr-swap operations if combined in one message, and number of participants on each combined

test-swap
number of test-swap if not combined number of test-swap if combined number of participants if combined
Neighbor-Swap Cluster-Swap Local Search Heuristics | Neighbor-Swap Cluster-Swap Neighbor-Swap | Cluster-Swap

centroids| 100 200 300 | 100 200 300 100 200 300 100 200 300 [100 200 300 [100 200 300[100 200 300

4 83.6 132.7 102.0(363.7 647.2 1062.3[1064.2 2507.8 3892.4 | 342 61.4 451|312 31.6 34.0 [32.0 61.7 95.4[55.1 132.3 236.8

8 171.7 241.2 255.0(438.9 1031.4 1708.3|2087.8 4725.7 7131.5 | 76.4 106.9 119.9| 60.8 80.9 91.3 [16.1 34.5 60.7|28.2 73.1 128.5

12 194.2 281.8 256.8|517.6 1058.8 1786.2|2842.0 7409.5 10002.9| 87.2 126.5 116.0| 94.2 1049 125.0|11.7 24.2 38.6|18.2 46.3 86.1

16 248.9 332.7 318.8|406.5 1485.1 1988.8|4369.9 9939.0 15424.5(119.0 151.1 148.7|147.9 178.4 168.4|9.8 19.2 27.2{12.8 33.0 63.5

Cluster-Swap, the number of participants determines the
total cost. On each combined fest-swap of Cluster-Swap,
less than or similar to twice the number of participants of
Neighbor-Swap participates. Considering that Neighbor-
Swap quickly reaches a sub-optimum and terminates, the ef-
ficiency of Cluster-Swap is reasonable. Although the mes-
sage size in Cluster-Swap is bigger, it only contains an array
of size of a cluster(around 6 — 75 in our experiments on aver-
age). Additionally, the messages travel only one hop to only
nodes’ direct neighbors. We thus expect the message costs
in both algorithms to be similar. Therefore, Cluster-Swap
has a comparable efficiency in the runtime and communica-
tion load with Neighbor-Swap.

3.3. Solution Quality in terms of Error
Bound

Table 5. Average of maximum cluster value for the
cost bound for 3 dimensional data on 100 data points
and average of maximum K where K is the number of
centroids from the optimal solution within a cluster

Number of centroids 4 8 12 16
Maximum cost 4965.0 1921.3 12335 845.4
Optimal cost (5850.2) (2836.9) (1915.3) (1262.4)
max K 2.2 2.7 3.1 34

The Cluster-Swap algorithm’s performance bound de-
pends on the maxc of a cluster where we define maxc as
max(|N(t)| X mazyen@c(t,z)). maxc. The solution
bound is calculated as maxc multiplied by max; (Ko(t)) =
K pnaz Where Ko(t) is the number of centroids from the
optimal solution O in cluster of the centroid t. As shown in
Table 5, K4, 1s On average is around 3 in our experimen-
tal result and the bound for Cluster-Swap is therefore less
than triple the optimal cost(making it 3-approximate). Al-
though maximum K (t) can be very large for the extreme
cases when Cluster-Swap’s solution is very different from
the optimal solution due to the poor initial centroid sets, the
error bound is expected to be held in a more common cases.
This error bound is good, considering that the centralized
k-median algorithm such as in Local search heuristics is

369

only 5-approximate and other streaming or distributed al-
gorithms are not better than 5-approximate.

3.4. Communication and Convergence

Table 6. Average number of received messages and
pulse taken to converge by Cluster-Swap with 50 nodes
in the network

Number of centroids 4 8 12 16
messages 5022.2 2689.6 2064.4 1567.6
pulse 2849.8 1194 1250.8 1136.4

In Table 6, we measure the number of messages needed
to complete the task of Cluster-Swap with uncombined zest-
swap in the network with 50 nodes. Since we assume no
message loss, the number of sent message is identical. On
average each node communicate 60 — 200 messages. When
the centroid set is smaller the cluster gets bigger, requir-
ing more messages. Most messages are fest-swap and swap
messages between a node and its direct neighbors so their
cost is minimal. Considering the number of fest-swap op-
eration each node is involved in, other control messages do
not change the communication cost much.

Table 6 also shows the result of pulse required for con-
vergence. Since each fest-swap and swap operation takes
twice the maximum length of path in a cluster, consider-
ing the number of these two operations, the algorithm does
not lose too much efficiency because of the suppressed zest-
swaps.

Figure 3 shows the change of cost during several runs
of Cluster-Swap algorithm with 50 nodes. It shows that the
time to reach the cost closest to the local optima is pretty
small in comparison to the total time until convergence and
it is not necessary to wait until the algorithm actually con-
verges. After a short time, the solution stops significantly
improving. Additionally, when there are fewer members in
the cluster, convergence detection is faster and it terminates
quickly as in the case with 16 centroids.

4. Conclusion

In this paper, we provide a mechanism to solve the k-
median algorithm in a distributed environment where the

a
=3
<3

5000% 240005%
s | s |
[¢] X (<] H
< 4000 < 3000] |
S § ;
L E

2 3

@ @ 20007

1000 2000 3000 4000 5000
Time(pulse)

500 1000 1500
Time(pulse)

(a) 4 centroids (b) 8 centroids

1200}

1000

Solution Quality

7

@
8
Py
%

40()0

1000 1500
Time(pulse)

500 2000 500 1000 1500 2000 2500

Time(pulse)

(c) 12 centroids (d) 16 centroids

Figure 3. The change of cost during Cluster-Swap al-
gorithm performed on 50 nodes with 4,8,12 and 16 cen-
troids

exact locations of nodes are not known. The Cluster-Swap
algorithm, which only uses a swap operation between a cen-
troid and a non-centroid node within the same cluster, can
be more efficient in comparison to Neighbor-Swap and Lo-
cal search heuristics.

The algorithm has a performance bound proportional to
the maximum cost of a member in a cluster and the num-
ber of members in the same cluster given the assumption
on Koz Kmae 18 @ measure of the maximum number of
centroids from the optimal solution within one cluster in the
solution from Cluster-Swap, and it is experimentally shown
that if the initial centroid set is not extremely skewed, it re-
mains much lower than k - the number of centroids.

Experimental results show that Cluster-Swap achieves a
good quality solution with moderate efficiency. Neighbor-
Swap reaches a suboptimal solution quickly only requiring
a small number of messages since the search space is very
limited. However, Cluster-Swap converges to a solution as
good as the Local search heuristics with less than or similar
to twice the messages of Neighbor-Swap.

As future work, to explore more about the actual commu-
nication cost considering the size and number of messages
and the effect of suppressed swap operations due to conflicts
on overall efficiency of the algorithm would be interesting
to compare the algorithms in more detail.

Acknowledgement

This work was supported in part by the Engineering Re-
search Centers Program of the National Science Founda-
tion under NSF Cooperative Agreement No. EEC-0313747.
Any Opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect those of the National Science
Foundation.

370

References

[1] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Muna-
gala, and V. Pandit. Local search heuristic for k-median and
facility location problems. In STOC "01: Proceedings of the
thirty-third annual ACM symposium on Theory of comput-
ing, pages 21-29, New York, NY, USA, 2001. ACM.

B. Babcock and C. Olston. Distributed top-k monitoring. In
SIGMOD Conference, pages 28-39, 2003.

M. Charikar. Better streaming algorithms for clustering
problems. In In Proc. of 35th ACM Symposium on Theory of
Computing (STOC, pages 30-39, 2003.

M. Charikar, S. Guha, E. Tardos, and D. B. Shmoys. A
constant-factor approximation algorithm for the k-median
problem. In In Proceedings of the 31st Annual ACM Sympo-
sium on Theory of Computing, pages 1-10, 1999.

A. Das and D. Kempe. Sensor selection for minimizing
worst-case prediction error. In IPSN ’08: Proceedings of
the 7th international conference on Information processing
in sensor networks, pages 97-108, Washington, DC, USA,
2008. IEEE Computer Society.

A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor net-
works. In International Conference on Very Large Data
Bases, pages 588-599, 2004.

S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering data streams: Theory and prac-
tice. In IEEE Transactions on Knowledge and Data En-
gineering, volume 15, pages 515-528, Los Alamitos, CA,
USA, 2003. IEEE Computer Society.

S. Har-Peled and S. Mazumdar. Coresets for k-means and
k-median clustering and their applications. In STOC, pages
291-300, 2004.

T. He, S. Krishnamurthy, J. A. Stankovic, T. Abdelzaher,
L. Luo, R. Stoleru, T. Yan, L. Gu, J. Hui, and B. Krogh.
Energy-efficient surveillance system using wireless sensor
networks. In MobiSys '04: Proceedings of the 2nd inter-
national conference on Mobile systems, applications, and
services, pages 270-283, New York, NY, USA, 2004. ACM.
B. Horling, R. Mailler, and V. Lesser. Farm: A Scalable
Environment for Multi-Agent Development and Evaluation.
In A. G. C. Lucena, J. C. A. Romanovsky, and P. Alencar,
editors, Advances in Software Engineering for Multi-Agent
Systems, pages 220-237. Springer-Verlag, Berlin, February
2004.

S. G. Kolliopoulos and S. Rao. A nearly linear-time ap-
proximation scheme for the euclidean k-median problem. In
SIAM J. Comput., volume 37, pages 757-782, Philadelphia,
PA, USA, 2007. Society for Industrial and Applied Mathe-
matics.

A.Meliou, D. Chu, J. Hellerstein, C. Guestrin, and W. Hong.
Data gathering tours in sensor networks. In /PSN '06: Pro-
ceedings of the 5th international conference on Information
processing in sensor networks, pages 43-50, New York, NY,
USA, 2006. ACM.

J. Robinson, M. Uysal, R. Swaminathan, and E. W. Knightly.
Adding capacity points to a wireless mesh network using
local search. In INFOCOM, pages 1247-1255, 2008.

J. L. Williams, J. W. Fisher, and A. S. Willsky. Approximate
dynamic programming for communication-constrained sen-
sor network management. Signal Processing, IEEE Trans-
actions on, 55(8):4300-4311, 2007.

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

