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Abstract

In thispaperwestudyrandomizedalgorithmsfor circuit switching
on multistagenetworks relatedto the butterfly. We devise algo-
rithms that routemessagesby constructingcircuits (or paths)for
themessageswith smallcongestion,dilation,andsetuptime. Our
algorithmsarebasedon theideaof having eachmessagechoosea
routefrom two possibilities,a techniquethathaspreviouslyproven
successfulin simplerloadbalancingsettings.As anapplicationof
our techniques,weproposeanovel designfor adataserver.

1 Introduction

In thispaper, wedevisealgorithmsfor routingmessagesin circuit-
switchingnetworkswhereeachmessagechoosesfromtwopossible
routes,anideathathasbeenappliedwith greatsuccessin otherload
balancingsituations[12, 17,26,27].

Underlyingevery parallelcomputeris a network that delivers
messagesbetweenprocessorsor betweenprocessorsandmemory
modules. Similar networks are found in the switchesthat route
telephonecalls and internettraffic. Typically, a messageis sent
from its input node(source)to its outputnode(destination)via a
pathin thenetwork. Methodsfor routingmessagesincludecircuit-
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switching,store-and-forwardrouting,andwormholerouting.With
circuit switching,eachmessagemustfirst lock down (i.e., reserve)
a path(i.e.,circuit) in thenetwork from its inputnodeto its output
node. The path is thenusedto transmitthe messagethroughthe
network. In contrast,with store-and-forward routing andworm-
holeroutingpathsarenot reservedbeforetransmission.

Circuit-switchinghasenjoyed widespreadpopularitysinceits
early usein telephony andsubsequentlyin the designof parallel
computers.Recenttrendsin network designemphasizethe need
for providing quality of service(QoS)guaranteesfor communica-
tion. To provide guaranteesasopposedto just best-effort service,
network resourcesmustbereservedbeforecommunicationbegins.
Consequently, severalmodernhigh-speedmultimediaswitchesand
ATMs reservea(virtual) circuit throughthenetwork for eachcom-
municationrequest[37, 38].

1.1 Circuit routing algorithms and their performance

In a circuit-switchednetwork, a messagearrivesrequestinga path
from its sourceto its destination.A routingalgorithmdetermines
whichof many possiblepathsis lockeddown for eachmessage.We
measurethe performanceof a routingalgorithmin termsof three
parameters:congestion,dilation,andsetuptime.

Congestionanddilationarepropertiesof thepathslockeddown
for themessagesby theroutingalgorithm.Thecongestionof a set
of pathsis definedto be the maximumnumberof pathsthat pass
throughany link in the network. Congestionis a measureof the
maximumnumberof pathsthatmustbesimultaneouslysupported
by a link of thenetwork, andhencedeterminesthebandwidththat
a link shouldpossess.The dilation of a setof pathsis definedto
bethemaximumlengthof a pathin theset. Dilation is a measure
of maximumdistance(in links) thatamessagemusttravel to reach
its destination.Finally, thesetuptime is thetimetakenby therout-
ing algorithmto allocatepathsthroughthe network. This is the
timeoverheadinvolvedin pathselectionbeforetheactualmessage
transmissionsbegin.

Thegoalof thispaperis to deviseroutingalgorithmswith small
congestion,dilation,andsetuptime.

1.2 Network and problem definitions

Theresultsin thispaperapplyto variantsof apopulartypeof multi-
stageinterconnectionnetwork calledthebutterflynetwork. Butter-
fly networksandits variantshavebeenwidely usedfor packet rout-
ing in a numberof commercialandexperimentalnetworks[7, 15,
28, 29]. More recently, severalproposeddesignsfor theswitching
fabric of scalablehigh-speedATM networksusethebutterfly and
its variantsfor routingvirtual circuits[37, 38].

We defineann-input butterflynetworkBn asfollows. An n-
inputbutterflyhasn(log n + 1) nodesarrangedin log n + 1 levels
of n nodeseach.1 An exampleof an n-input butterfly (n = 8)
with depthlog n (log n = 3) is show in Figure1. Eachnodehasa
distinctlabel〈w, i〉 wherei is thelevel of thenode(0 ≤ i ≤ log n)

1Throughoutthispaperweuselog n to denotelog2 n.
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Figure1: An 8-inputbutterflynetwork.

andw = w1w2 . . . wlog n is a log n-bit binarynumberthatdenotes
the row of thenode.All nodesof theform 〈w, i〉, 0 ≤ i ≤ log n,
are said to belongto row w. Two nodes〈w, i〉 and 〈w′, i′〉 are
linkedby anedgeif i′ = i + 1 andeitherw andw′ areidenticalor
w andw′ differ only in thebit in positioni′. (Thebit positionsare
numbered1 throughlog n.) Wecall thefirst typeof edgeastraight
edge andtheseconda crossedge. Thenodeson level 0 arecalled
the inputsof the network, andthe nodeson level log n arecalled
the outputs. Sometimesthe level 0 nodein eachrow is identified
with thelevel log n nodein thesamerow. In thiscase,thebutterfly
Bn is saidto wraparound.

We definea randomly-wired butterfly RBn as follows. Net-
work RBn hasthe sameset of nodesand edgesas Bn, except
that the crossedgesincidenton the input nodesof RBn areper-
mutedrandomlyaccordingto the following rule. Let d = log n
Eachnode〈w1 . . . wd, 0〉 of RBn is connectedby a crossedgeto
node〈w′1 . . . w′d, 1〉 if andonly if w1 6= w′1 andσw1(w2 . . . wd) =
w′2 . . . w′d, whereσ0 andσ1 arerandompermutationsof thesetof
(log n− 1)-bit numbers.

We definea two-foldbutterflyBBn asfollows. Network BBn

consistsof two copiesof Bn placedoneafter the othersuchthat
eachoutputnodein thefirst copy is identifiedwith thecorrespond-
ing inputnodeof thesecondcopy with thesamerow number. Note
thatBBn is amultistagenetwork with n rowsand2 log n + 1 lev-
els.Thenodesin level 0 arecalledtheinputsof BBn andthenodes
in level 2 log n arecalledtheoutputsof BBn. Also, observe thata
routingalgorithmonBBn canbesimulatedby makingtwo passes
throughabutterflyBn thatwrapsaround.

It is importantto contrasttheBBn network with anothercom-
monvariantof thebutterfly, theBeněs network. An n-nodeBeněs
network consistsof two copiesof Bn placed“back-to-back”such
thateachoutputnodeof thefirst copy is identifiedwith thecorre-
spondingoutputnodeof thesecondcopy.

In thispaper, westudya canonicalcircuit routingproblemthat
is known as the permutationrouting problem. In a permutation
routing problemat mostonemessageoriginatesat eachinput of
thenetwork andatmostonemessageis destinedfor eachoutputof
thenetwork.

Wedistinguishtwokindsof permutationroutingproblems:static
anddynamic. In a staticproblem, all themessagesthatconstitute
a permutationrouting problemare presentat time 0, beforethe
routing begins. The routingalgorithmconstructspathsfor all the
messagesin a “batch” mode. All the messagesare deliveredto
their respective destinationsbeforetheroutingof thenext batchof
messagesbegins. In contrast,in a dynamicproblem, messagesare
injectedor deletedoneby one.Theroutingalgorithmroutesapath
for eachinjectedmessagein anon-linefashionwith noknowledge

of future messagearrivals. We assumethat at any time, the mes-
sagesbeingroutedform a partial permutation;that is, eachinput
andoutputnodecorrespondto atmostoneroutedmessage.

1.3 Previous work

Thereareseveral differentsub-areasof researchthat relateto our
work. Weprovideasummaryof themostrelevant.
Routing in Butterfly Networks. Thereis avastliteratureonrout-
ing in butterfly networks[20, 21]. Much of theearlywork focuses
on store-and-forward routing[1, 23, 24, 31, 35, 39, 41, 42]. More
recently, therehasbeenprogressin analyzingwormholerouting
algorithms[10, 11, 13, 36]. Sincewe presentno new resultsin
thesetwo routingmethods,we focusonly on thebutterfly circuit-
switchingliterature.

In two earlypapers,Beizer[8] andBeněs [9] showedthatany
staticpermutationroutingproblemcanbe routedwith congestion
1 anddilation2 log n on ann-inputBeněs network. Subsequently,
Waksman[43] providedanelegantalgorithmthattakesO(n log n)
time to determineall the paths,but requiresglobal knowledgeof
thesourceanddestinationof all themessages.Later, Nassimiand
Sahni[30] showedhow to implementWaksman’salgorithmin par-
allel on theBeněs andrelatednetworks in time O(log4 n). How-
ever, theiralgorithmis complex andrequirestheBeněs network to
emulatea completenetwork by executinga seriesof sortingrou-
tines.

Although the Beněs network andtheBBn arecloselyrelated
in structure,whetheror not it is possibleto routeanarbitraryper-
mutationrouting problemin an offline fashionwith congestion1
on theBBn is a long-standingopenproblem.

In this paper, we devise routingalgorithmsthatminimizecon-
gestion. A complementaryapproachaimsto maximizethroughput.
Previouswork hasstudiedthemodelwhereeachlink cansupportat
mostq paths,andthegoalis to maximizethenumberof messages
thatlock down paths.KruskalandSnir [19] showedthatif eachin-
putin abutterflynetworkBn sendsamessageto arandomlychosen
output,andat mostonemessagecanuseany edgeof thenetwork
(i.e.,q = 1), thentheexpectednumberof messagesthatsucceedin
lockingdown pathsto theirdestinationsis Θ(n/ log n). Koch[18]
generalizedtheresultof KruskalandSnir by showing that if each
edgecansupportq messages,q ≥ 1, then the expectedfraction
of messagesthatsucceedin lockingdown pathsis Θ(n/ log1/q n).
MaggsandSitaraman[24] generalizedtheprevioustwo resultsby
showing that,by makingtwo passesthroughabutterfly, it is possi-
ble to routeanΩ(n/ log1/q n) fractionof any permutation(rather
thanonly a randompermutation),with highprobability.
Use of Randomness. An early exampleof the useof random-
ization for circuit-switchingin butterfly networks is the work of
Valiant[41,42]. Valiantshowedthatany permutationroutingprob-
lem canbetransformedinto two randomproblemsby first routing
a pathfor eachmessageto a randomintermediatedestination,and
thenon to its truedestination.This impliesthatwecanroutepaths
for a (static or dynamic)permutationrouting problemon a two-
fold butterflyBBn with congestionΘ(log n/ log log n), anddila-
tion 2 log n. Note that the pathsfor eachmessagecanbe setup
independentlywithout completeknowledgeof the permutationin
O(log n) time. Weshow how to userandomizationto routepermu-
tationswith substantiallysmallercongestionandthesamedilation.

Ranade[34] observed thata smalleramountof randomnessis
sufficient to implementValiant’s algorithm. Notethateachswitch
hastwo input links andtwo output links. Ranadenotedthat it is
sufficient thateachswitchin thefirst log n levelsof BBn shuntsa
messagefrom eachinput link to a random(anddistinct)outgoing
link. Thus,messagesaresentto randombut not independentdes-
tinationsusingonerandombit perswitch. Thefirst log n levelsof
sucha BBn constitutea flip network. A flip network wassubse-



quentlyusedin [24] in thecontext of circuit routing. We useflip
networksin our routingalgorithmsin Section2.

Randomnesscan be usedin constructingthe network itself.
The useof randomnessto designmultistagenetworks datesback
to Ikeno[16], and Bassalygoand Pinsker [5]. Networks suchas
therandomly-wiredmultibutterflyareknown to have goodrouting
andfault toleranceproperties[40, 22]. Recentresultsprovide al-
gorithmsfor routingcircuits for any permutationroutingproblem
with congestion1 in multibutterflyandmulti-Beněs networkswith
set-uptimeO(log n) [2, 32]. Unlike thesenetworks,our resultsin
Section2 applyto commonly-usednetworkslikeBn andBBn that
requireneitherrandomwiring nor expanders.
Balls-and-binsproblem. Our approachto circuit routingis influ-
encedby recentadvancesin the classicalballs-and-binsproblem.
It is well known thatif n ballsaretossedrandomlyinto n bins,the
maximumnumberof balls in any bin will beΘ(logn/ log log n)
with high probability. Azar et al [4] considerthe following dy-
namicprotocolfor throwing n ballsinto n bins: for eachball pick
two binsindependentlyanduniformlyatrandom,andplacetheball
in thebinwith thesmallerloadatthetimeof placement.They show
thatafterall ballsareplacedin bins,themaximumloadof any bin
is Θ(log log n), with highprobability.

Staticprotocolsfor theballs-and-binsproblemweredeveloped
in [17], [12], and[27] andappliedto PRAMsimulations.They con-
sidervariantsof thefollowing process.Initially, eachball chooses
two randombins. In a round,eachball not yet allocatedaccesses
its two bins. Eachbin with at mostc accessingballs acceptsall
of them. The otherballs try againin the next round. This proto-
col guaranteesmaximumloadc. Evenfor constantc, theprotocol
allocatesall balls, with high probability, usingonly O(log log n)
rounds.

We apply similar “two-choice” algorithmsto circuit routing.
Note that this is a morecomplex situation.Thinking of eachmes-
sageasa ball andeachnetwork edgeasa bin, we seethatfinding
a path for eachmessagecorrespondsto placingeachball in sev-
eraldependentbins.Thesedependenciessubstantiallyincreasethe
difficulty of theanalysis.
Cir cuit routing in generaltopology networks. Dynamiccircuit-
switchinghasbeenextensively studiedin an on-line competitive
framework for arbitrarynetwork topologies. (See[33] for a sur-
vey). Resultsareknown for minimizingcongestion[3] andfor the
maximizingthroughput[14]. Thisframeworkcanincorporatemore
generalparameterssuchasthecircuit bandwidthandcircuit hold-
ing time. However, theseresultsdo not yield routing algorithms
with congestionsmallerthanΘ(logn) for theregularly-structured
muti-stagenetworksthatarethefocusof thispaper.

1.4 Our results

We introducetwo new protocolsfor circuit-routing: the collision
protocolandtheminimumprotocol. In contrastto Valiant’s algo-
rithm, which picksonerandompathfor eachmessage,thesepro-
tocolschoosetwo random(but not independent)pathsp andp′ for
eachmessageM . The collision protocol usesa suitablychosen
thresholdc, andallocateseitherp or p′ to messageM , provided
the congestionof the allocatedpathis at mostc. In contrast,the
minimumprotocolallocatesto M thepathwith thesmallerconges-
tion. As mentionedpreviously, protocolsof this flavor have been
utilized andanalyzedin simplersettings. We extend thesetech-
niquesto circuit-routing.
Static Permutation Routing. In Section2.1,weshow thecollision
algorithmroutesany permutationon the two-fold butterfly BBn

with congestionO(log log n/ log log log n), with highprobability,
anddilation2 log n. ThesetuptimeisO(log n log log n/ log log log n).
Our routingalgorithmachievesa substantiallysmallercongestion
boundthanValiant’s algorithm. Comparingour resultwith Waks-

man’salgorithm,whichachievescongestion1 onaBeněsnetwork,
werequiresubstantiallysmallersetuptime. Furthermore,wedonot
requirecompleteknowledgeaboutthe permutationbeing routed
andour routing algorithmcanbe implementedon the network it-
self. Comparingour resultto thealgorithmof NassimiandSahni
[30], ouralgorithmis muchsimplerandfaster, althoughtheiralgo-
rithm achievessmallercongestion.
Dynamic Permutation Routing. In Section2.2, we analyzethe
minimum algorithmfor routing any dynamicpermutationrouting
problemon network BBn. The congestionis O(log log n) with
highprobability, thedilation is 2 log n, andthesetuptime for each
new messageis O(log n). Prior to this work, every known algo-
rithm for thedynamicpermutationroutingproblemonthebutterfly
andrelatednetworksrequiredΩ(log n/ log log n) congestion.Our
algorithm is optimal in that any routing algorithm on BBn that
considersonly a constantnumberof alternatepathsper message
mustincurΩ(log log n) congestion[4].
Data Server Ar chitecture. As an applicationof our techniques,
in Section3, we presenta proposalfor the architectureof a data
server. The dataserver utilizes network RBn to connectn users
to n disks. Eachuseris associatedwith a distinct input nodeand
eachdiskis associatedwith adistinctoutputnodeof RBn. Objects
(typically large,e.g.movies)aredistributedamongthedisks.

A canonicaltaskperformedby thedataserver is thefollowing.
Given n requeststo objects,oneper user, theserequestsmustbe
satisfiedby providing a pathfrom eachuserto a disk thatcontains
their requestedobject. The congestionof the pathsmustbe min-
imized. Besidescongestion,anotherimportantperformancemet-
ric is disk contention,which is oftena bottleneck.We definedisk
contentionto be the maximumnumberof simultaneousrequests
thatany disk mustsatisfy. In Section3, we devisealgorithmsthat
achieve bothsmallcongestionandsmalldiskcontention.

Thestandardtechniqueof storingtheobjectsby independently
and randomlydistributing them to the n disks yields congestion
anddisk contentionΘ(log n/ log log n), with highprobability. To
achieve lowercongestionanddiskcontention,westoretwo copies
of thesameobjecton two disks.

2 Routing in the two-fold butterfly

2.1 Static routing in BBn

We describea simple,efficient algorithmfor routingpermutations
on the two-fold butterfly BBn. Recall that the two-fold butter-
fly BBn hasn inputsat level 0 andn outputsat level 2d, where
d = log n. Givena permutationπ, our routingalgorithmconnects
eachinputnodei to thecorrespondingoutputnodeπ(i); eachpair
(i, π(i)) of inputandoutputnodesis calledarequest. Ourrandom-
izedalgorithmroutespathssuchthat themaximumcongestionon
anedgeis Θ(log log n/ log log log n), with high probability. Fur-
thermore,thetime requiredby thealgorithmto setup all thepaths
is atmostΘ(log n log log n/ log log log n), with highprobability.
The c-collisionalgorithm. Weusethecollisionprotocoldescribed
below to perform the routing. The c-collision protocol initially
choosesat randomtwo possiblepathsfor eachrequest.Eventually
oneof thesepathswill serveastherequiredconnection.

The two randompathsfor eachrequestarechosenasfollows.
Thenodeson levels0, . . . , d/2 − 1 andd + d/2 + 1, . . . , 2d are
flipped randomly. In particular, eachinput andoutputnodemaps
thefirst pathp of a requestto its straightedgeandits secondpath
p′ to its crossedgewith probability 1

2
,andwith probability 1

2
the

order is reversed. Similarly, eachnodeon levels 1, . . . , d/2 − 1
andd + d/2 + 1, . . . , 2d− 1 with probability 1

2 connectsits input
straightedgewith its outputstraightedgeandits input crossedge
with its outputcrossedge,andwith probability 1

2 theconnections
arereversed.Notethattheserandomchoicescompletelydetermine



the two pathsp andp′ of eachrequest,becausethereis exactly
onepathconnectinga nodeon level d/2 with a nodeon level d +
d/2 in a BBn network. For a pathp, theotherpathp′ connecting
the sameinput and output nodesis called the buddy of p. The
randomswitchingensuresthat any edgeon the levels 1, . . . , d/2
andd+d/2+1, . . . , 2d is traversedby atmostoneof therandomly-
generatedpaths. However, eachedgeon the interior levels, i.e.,
onewith “top” nodeon oneof the levels d/2 + 1, . . . , d + d/2,
is potentially traversedby several of thesepaths. We call these
edgescollisionedges, andwesaythattwo pathsthatcrossthesame
collisionedgecollide.

The c-collision algorithmproceedsin roundsto selecta path
for eachrequestas follows. Initially all pathsareactiveandnot
selected. A pathp is eligible to be selectedif for eachedgee ∈
p the numberof active pathstraversinge is at most c. If p and
its buddy p′ areboth eligible to be selected,only one is selected
arbitrarily. A pathp ceasesto beactive in aroundif p is selectedor
thebuddyof p is selectedin thatround. Thealgorithmterminates
whentherearenomoreactive paths.

Eachround of the c-collision algorithm can be implemented
usingastore-and-forwardalgorithmasasubroutine:in afirst pass,
for eachactive path,a packet is sentalongthepathfrom level 0 to
level 2d. During this pass,for eachedge,the numberof packets
traversingtheedgeis counted.Then,in a secondpass,all packets
areroutedbackward alongtheir respective pathsfrom level 2d to
level 0. During this passthe congestionfor eachactive path is
computed.Notethat,in thismodel,whencomputingthesetuptime
thepacketsandedgesof thenetwork canactin parallel,andhence
a roundmaycompletein o(n) time.

The c-collision algorithm selectsa pathp in a round only if
p collideswith no more than c − 1 otheractive pathson any of
the edgesin p. This implies that any edgethat is includedin at
leastoneselectedpathis includedin at mostc − 1 otherselected
or active paths. As a consequence,the congestionof all selected
pathsis atmostc. Notethatthealgorithmasdescribedis notguar-
anteedto terminate.However, in Theorem2.1, we show that if c
is sufficiently large, the algorithm will terminatewith maximum
congestionat most c, after a small numberof rounds,with high
probability. In practice,wemayterminatethealgorithmaftersome
fixednumberof rounds;all requeststhatstill have two activepaths
at theterminationpointmaychooseonearbitrarily, andin thiscase
we fail to guaranteecongestionc.

Theorem2.1 For anyconstantε > 0 andc such that c! = (1 +
ε) · log n, the probability that the c-collision algorithm on BBn

takesmore thant = Θ(log log n/ log log log n) roundsto selecta
pathfor everyrequestis at mostn−c/4+1+o(1). Furthermore, each
roundcanbecomputedin timeO(log n), with highprobability.

Proof. First,weshow thatif thealgorithmdoesnotterminateafter
t rounds,we canconstructa “witnesstree”. Next, we show how
the witnesstreecanbe prunedto avoid stochasticdependencies.
Finally, weshow by enumerationthattheprobabilityof occurrence
of aprunedwitnesstreeis at mostn−c/4+1+o(1).
Constructing awitnesstr ee.Fix apermutationπ to berouted,and
thesettingsof therandomly-flippedswitchesonthelevels0, . . . , d/2−
1 andd + d/2 + 1, . . . , 2d. Thisdeterminesthetwo pathschosen
for eachrequest.Assumethat thereis a requestwith pathsp and
p′, andneitherpathhasbeenselectedby roundt, wheretheproper
valueof t is to bedeterminedlater. Thenp collideswith at leastc
pathsof otherrequestsin roundt at someedgee. Let p1, . . . , pc

denotethe c pathsthatcollide with p in roundt at e. The root of
thewitnesstreeis therequestcorrespondingto p andtherequests
correspondingto p1, . . . , pc areits children. Thepathsp1, . . . , pc

andtheir buddiesp′1, . . . , p
′
c werenotselectedat roundt− 1. Ap-

plying the argumentrecursively to p′1, . . . , p
′
c we canconstructa

completec-ary treeof heightt. This treeis calledthewitnesstree.

Eachnodev in the witnesstreecorrespondsto a requestwith
two associatedpaths,oneof which collideswith oneof the paths
associatedwith eachsibling and the parentof v (unlessv is the
root),andtheotherof whichcollideswith oneof thepathsassoci-
atedwith eachof thechildrenof v (unlessv is a leaf). We call the
first paththe up pathof v andthe otherpaththe downpath of v.
Theuppathof therootandthedown pathsof theleavesaredefined
to beemptypaths.Notethatby theterm“collision representedby
nodev” we meanthe collision of the down pathof v with the up
pathsof thechildrenof v in thewitnesstree. Finally, to give each
treeauniquerepresentation,weassumethatchildrenof anodeare
listedin increasingorderfrom left to right basedon theinputnode
numberof thecorrespondingrequest.

The requestscorrespondingto the nodesof a witnesstreeare
not necessarilypairwisedistinct. Furthermore,the up anddown
pathsof distinctrequestsmayoverlapin therandomly-flippedlev-
els,sothata randomly-flippedswitchcanbeincludedin morethan
oneof thesepaths. Hence,the collision eventsrepresentedby a
witnesstreearenot necessarilystochasticallyindependent.Note
that,if they werestochasticallyindependent,it wouldberelatively
straightforwardto arguethetheorem.
Pruning the witnesstr ee.Theintuitive reasonwhy thedependen-
ciesdonotaffectthefinal conclusionis thatthereareonlyO(log n)
nodesin thewitnesstree,hencethedependenciesare“rare”. In or-
der to handledependencies,we prunenodesfrom thewitnesstree
asnecessary. This pruningis doneby a traversalthroughthe tree
visiting the internalnodesin breadth-first-searchorderstartingat
theroot. Whena nodev is visitedduringthis traversal,thedepen-
denciesbetweenthe collision representedby v andthe collisions
representedby nodesvisited beforev arechecked. If the depen-
denciessignificantlyaffect our calculations,thenodesbelow v are
pruned,andtheseprunednodesareexcludedfrom thesubsequent
traversal.

Thedetailedpruningrulesfollow. For a nodev visitedduring
thetraversal,let B(v) denotethesetof nodesvisitedbeforev. Fur-
thermore,let Γ(v) denotethesetof nodesthatarechildrenof the
nodesin B(v), thatarenot prunedbeforev is visited,andthatare
not in B(v) themselves. For the root r of the witnesstree,B(r)
andΓ(r) areemptysinceour traversalstartsat r. We distinguish
two pruningrules:

1. If a pathassociatedwith oneof v’s non-prunedchildrentra-
versesa randomly-flippedswitch that is alsotraversedby a
pathassociatedwith a nodeu from Γ(v) thenthec subtrees
rootedat thechildrenof v areremovedfrom thetree,andthe
c subtreesrootedat thechildrenof u arealsoremovedfrom
the tree. The nodev is calleda pruningnode. The nodeu
thatcausedthepruningis calledtheconflictingnodeof v.

2. If a pathassociatedwith oneof v’s non-prunedchildrentra-
versesa randomly-flippedswitch that is alsotraversedby a
pathassociatedwith anodeu from B(v) thenthec subtrees
rootedat the childrenof v areremoved from the tree. The
nodesv andu areagaincalledpruningandconflictingnodes
respectively.

When thereis more thanonechoicefor a conflicting nodefor a
certainpruningnodewe make the choicearbitrarily, so that each
pruningnodecanbeassociatedwith exactly oneconflictingnode.
Furthermore,thesecondpruningrule is consideredonly if thecon-
ditionsfor thefirst pruningrulearenotmet.

Notethatthepruningrulesensurethat,for everynodev visited
aftertherootr, thesubgraphinducedby B(v)∪Γ(v) is connected;
that is, B(v) ∪ Γ(v) inducesa subtreeof thefull witnesstreewith
root r. Also, whena nodev is visited,up to 2c subtreesof max-
imum heightt − 2 couldbeprunedfrom thetree. Thesesubtrees
do not includeany nodefrom B(v) ∪ Γ(v). Hence,the subtree
inducedby thissetonly growsduringthetraversal.



We continuethe pruningprocesstill eitherthereareno more
nodesto visit or thereareκ = dc/2e pruningnodes.In the latter
case,we apply a final pruning. If v is the κth pruningnode,we
remove from thetreeall nodesnot includedin B(v) ∪ Γ(v). This
effectively stopsthepruningprocessat theκth pruningnode.

Thewitnesstreeprunedin this fashionis calledtheprunedwit-
nesstree. Let m denotethenumberof internalnodesin this tree,
andm′ ≤ κ denotethenumberof pruningnodes.Let v1, . . . , vm

denotetheinternalnodesandw1, . . . , wm′ thepruningnodesin or-
derof visitation,respectively. Furthermore,let ui denotethecon-
flicting nodeof wi, for 1 ≤ i ≤ m′. Theprunedtreepossessesthe
following properties.

1) Any internalnodev representsa collision of thedown path
of v andthec up pathsof thechildrenof v.

2) For any internalnodev, thepruningensuresthattheuppaths
of the childrenof v do not sharea randomly-flippedswitch
with apathassociatedwith anodein B(v)∪Γ(v) exceptfor
thedown pathof v. (As a consequence,all nodesof thetree
correspondto distinctrequests.)

3) Thedown pathof apruningnodev eithercollideswith apath
p thatis associatedwith theconflictingnodeu, or it collides
with apathp suchthatp or its buddysharesarandomswitch
with a path associatedwith u. This pathp is denotedthe
conflictingpathof v.

4) The down pathof a pruningnodewi is not the conflicting
pathof a pruningnodewk with k < i. (This canbeproved
as follows. For contradiction,assumethe opposite. Then
wi = uk andwi ∈ Γ(wk). Hence,thesubtreebelow wi is
removedwhenwk is visited.Thismeansthatwi hasnonon-
prunedchildrenwhenwi is visitedandconsequently, wi is
notapruningnode.)

5) For eachpruningnodewi, the down pathp of wi sharesat
most5c randomlyflippedswitcheswith up anddown paths
associatedwith any othernodeandconflictingpathsassoci-
atedwith the pruningnodesw1, . . . , wi. (This is because,
accordingto Properties2 and4, the down pathof wi is not
equivalentto any suchup,down,or conflictingpath.Further-
more,accordingto Property2, thedown pathof wi doesnot
sharea randomswitchwith any otherup or down path,ex-
ceptfor theup anddown pathsof thesiblingsof wi, andthe
uppathof wi. With eachof these2c−1 paths,thedownpaths
overlapsat mosttwice in the randomizationlevels, oncein
eachof thebutterfliesin BBn. Thesameholdsfor thei con-
flicting pathsassociatedwith w1, . . . , wi. Thus,thereareat
most4c− 2 + 2κ ≤ 5c overlappingswith thesepathsin the
randomizationlevels.)

Bounding the probability of occurrenceof a pruned witness
tr ee. We boundtheprobabilityof occurrenceof a prunedwitness
treevia enumeration.Definethe treeshapeto bea descriptionof
the topologyof the treeincluding the pruningandthe conflicting
nodes.Defineanadmissiblewitnesstreeconfiguration to bea tree
shapewith associatedrequests,upanddown paths,andconflicting
pathswhicheventually, i.e., for somesettingof therandomswitch-
ing, matchesto aprunedwitnesstree.In particular, any admissible
witnesstreeconfigurationhasto fulfill the5 propertiesabove.

LetT denotethesetof treeshapescorrespondingto atleastone
admissiblewitnesstreeconfiguration,andletKT denotethesetof
all admissiblewitnesstreeconfigurationswith treeshapeT ∈ T .
An admissibleconfigurationK is saidto beactive if theoutcome
of therandomswitchingcorrespondsto all pathsof theconfigura-
tion. Hence,eachadmissibleconfigurationK hasa probability to
becomeactive, which is just 2−ρ(K) with ρ(K) denotingthetotal

numberof randomlyflipped switchescoveredby all pathsof K.
As aconsequence,theprobabilitythatthec-collisionprocesstakes
morethant roundscanbeboundedby∑

T∈T

∑
K∈KT

2−ρ(K)

︸ ︷︷ ︸
=: E(T ) .

Weaimto giveanupperboundonE(T ), for afixedtreeshape
T ∈ T . E(T ) is equalto the expectednumberof activewitness
treeconfigurationswith treeshapeT . Note that the treeshapeT
only restrictsthe numberof admissibleconfigurations,that is, it
definesthesetKT , butdoesnotinfluencetheprobabilityfor agiven
configurationK ∈ KT to becomeactive. Thisprobabilitydepends
only on ρ(K), and,hence,on the overlappingof the pathsin the
randomizationlevels.

In thefollowing, we utilize Properties2 and5 thatgovernhow
pathsmayoverlapto computeE(T ). Insteadof summingover all
admissibleconfigurationsin KT andmultiplying eachindividual
configurationwith its probability, weconsiderthenodesof thewit-
nesstreeoneby oneandcalculateanupperboundon theexpected
numberof configurationsfor eachindividual node. In particular,
weconsiderfirst all theinternaltreenodesandthenall thepruning
nodes;bothsetsof nodesareconsideredin theorderof visitation.

Definetheconfigurationof an internalnodevi to consistof the
down pathof vi andtheuppathsof thechildrenof vi, for 1 ≤ i ≤
m. Furthermore,definetheconfiguration of a pruningnodewi to
bethedown pathof wi andthetwo pathsbelongingto thecolliding
requestof wi, for 1 ≤ i ≤ m′. A collectionof nodeconfigurations
is saidto be admissible,if they area subsetof an admissibletree
configuration.Note thata collectionof admissibleconfigurations
for all internalandall pruningnodes(in conjunctionwith the tree
shape)completelydefinestheconfigurationof thewitnesstree.

For an internalnodevi anda collectionK of configurations
for the nodesv1, . . . , vi−1, let Ecoll(vi, K) denotethe expected
numberof active configurationsfor vi underthe assumptionthat
the configurationsin K areactive. Note thatK alreadyspecifies
therequestassociatedwith vi. (For theroot v1 we assumethatK
specifiesonly this request.)Let Ecoll(vi) bethemaximumoverall
configurationsK of Ecoll(vi, K).

Lemma 2.2 Ecoll(vi) ≤ log n/c! .

Proof. Weboundtheexpectednumberof activeconfigurationsfor
vi by choosingthedown pathp of vi arbitrarily andthenderiving
an upperboundon the expectednumberof choicesof active up
pathsp1, . . . , pc of thechildrenof vi thatfulfill Properties1 and2.

The expectednumberof active down pathsp is at mostone.
This is because,thereareseveraldifferentpathsin BBn thatcon-
nectthetwo inputandoutputnodeswhicharegivenby theconfig-
urationK. However, at mosttwo of themareactive, andthecon-
figurationK determineswhichof themis theuppathandwhich is
thedown pathof vi.

Givenpathp, thereared = log n possiblechoicesfor thecol-
lision edgeat which thedown pathcollideswith p1, . . . , pc. Let e
denotethis edgeand` the level of this edge.W.l.o.g.,we assume
thatd/2 + 1 ≤ ` ≤ d.

Wecalculateanupperboundon theexpectednumberof active
up pathsp1, . . . , pc traversinge andfulfilling Property2. Property
2 ensuresthat p1, . . . , pc useonly unrevealedrandomswitches.
Therefore,we assumefor the following that all switchesareun-
revealed.Notethat this doesnot decreasethenumberof admissi-
ble configurations,and,hence,not decreasethe expectednumber
of active configurationsfor p1, . . . , pc. Themain problemin cal-
culating the numberof active configurationsfor p1, . . . , pc is to



handleoverlappingsamongthesepathsandoverlappingbetween
thesepathsandthedown pathp in therandomizationlevels.

The numberof nodeson level 0 from which e canbe reached
is 2`−1. We selectan input nodefor eachof the pi’s from these
nodes. The numberof possibleways to choosethesec nodesis(
2`−1

c

)
becausetherequestsassociatedwith thechildrenof a node

areorderedaccordingto theID’sof theinputnodes.Let s1, . . . , sc

denotethe sourcenodesof the pathsp1, . . . , pc on level 0 and
d1 = π(s1), . . . , dc = π(sc) thedestinationnodesof thesepaths
on level 2d.

Next wechooseanintermediatedestinationd′i for eachpathpi

onnodelevel d+`. Foreverypi, thereare(eventually)severalpos-
sibilities to choosetheseintermediatedestination.However, inde-
pendentfrom theotherpathsof theconfigurationof vi, thenumber
of active destinationsis at mostone. Hence,theexpectednumber
of active intermediatedestinationsis atmostone.

Now assumethe intermediatedestinationsarefixed. Notethat
this alsofixesthepathfrom level d + ` to level 2d. It remainsto
considerthenumberof active configurationsof c pathsp′1, . . . , p

′
k

suchthatp′i connectssi andd′i andtraversese. Pathsp′1, . . . , p
′
k

andp donotoverlapin therandomizationlevels.Thiscanbeshown
asfollows. If two pathssharea randomswitchs thenthesepaths
arrive andleave s on differentedges.Furthermore,thesepathsdo
not overlapat any otherswitchwith distancelessthand + 1 from
s. Hence,two pathsthattraverseedgee cannothaveusedarandom
switchwith distancelessthand+1 from thetwo switchesadjacent
to e, andconsequently, they cannotmeetonarandomswitchonthe
levels0, . . . , d/2− 1 or thelevelsd + d/2 + 1, . . . , d + `.

Thenumberof differentpathsconnectingsi with d′i andtravers-
ing e is one.Thus,thenumberof admissibleconfigurationfor the
p′i’s is atmostone.All pathsin theadmissibleconfigurationdonot
sharearandomlyflippedswitchwith anotherpathfrom theconfig-
urationof vi. Hence,the numberof unrevealedrandomswitches
traversedby eachof thesepathsis d/2 + (d + `)− (d + d/2) = `.
Exceptfor theswitchon level 0, all of theseswitchesmustcorre-
spondto thecourseof therespective path.Theprobabilityfor this
eventis 2−(`−1). As aconsequence,theprobabilitythatall k paths
areactive is atmost2−c·(`−1).

Puttingit all together, theexpectednumberof activeconfigura-
tionsfor vi is

d ·
(

2`−1

c

)
· 2−c·(`−1) ≤ d

c!
,

whichcompletestheproofof Lemma2.2.

Now we give an upperboundon the expectednumberof the
active configurationsfor the pruningnodes. For a pruning node
wi anda collectionK of configurationsfor all internalnodesand
thepruningnodesw1, . . . , wi−1, let Eprune(wi, K) denotetheex-
pectednumberof activeconfigurationsfor wi undertheassumption
thatall configurationsin K areactive. Let Eprune(wi) bethemax-
imumover all configurationsK of Eprune(wi, K).

Lemma 2.3 Eprune(wi) ≤ 25c+3 · (log n + 1)/
√

n .

Proof. The conflictingpathp of pruningnodewi is eitherasso-
ciatedwith theconflictingnodeui or p or its buddysharesa ran-
domly flippedswitchwith a pathassociatedto ui. Thetreeshape
specifiesui, andthe configurationK fixesthe requestassociated
with ui. For any consistentsettingof the randomswitches,the
numberof pathssharinga randomlyflipped switch with the two
pathsbelongingto this requestis at most2 · (log n + 1) (inclu-
sive the two pathsthemselves). Consequently, for any settingof
theswitches,thenumberof candidatesfor thecollision requestis
at most2 · (log n + 1), and,hence,thenumberof candidatesfor
thecollisionpathis at most4 · (log n + 1).

Now supposethecollision pathis fixed. Thedown pathof wi

collides with this path. First, we assumethat the collision is in
level `, with d/2+1 ≤ ` ≤ d. Let e denotetherespectivecollision
edge.Thereis at mostoneadmissiblecoursefor thedown pathof
wi from its sourcenodeon level 0, which is determinedby K, to
thecollisionedgee.

The courseof the down path from level 0 to level ` is deter-
minedby the randomlyflipped switches.Property5 ensuresthat
at most5c of the switchestraversedby the down pathareshared
with other pathsin K. Hence,at least` − 5c of the randomly
flipped switchesdeterminingthe courseof the path from level 0
to level ` are independentof K, andconsequently, the probabil-
ity that the down pathof wi is equivalent to the only admissible
path in theselevels is 2−`+5c. Summingover all collision levels
`, with d/2 + 1 ≤ ` ≤ d, yieldsanupperboundon theprobabil-
ity that the switchesalongthe collision patharesetappropriately
of 2−d/2+5c. Sincethesameboundholdsalsofor collisionswhen
d + 1 ≤ ` ≤ 3d/2, theprobabilitythatthedown pathis equivalent
to the only admissiblepath is at most2−d/2+5c+1. As a conse-
quence,the expectednumberof active configurationsfor wi is at
most2−d/2+5c+1 · 4 · (log n + 1) = 25c+3 · (log n + 1)/

√
n.

Theboundfor Ecoll(vi) on theexpectednumberof activecon-
figurationsfor aninternalnodevi is independentof theconfigura-
tions of the internalnodesv1, . . . , vi−1. Furthermore,the bound
for Eprune(wi) on the expectednumberof active configurations
for a pruningnodewi is independentof the configurationson all
internalnodesandthepruningnodesw1, . . . wi−1. Consequently,
theseboundsare independentestimationsof expectedvaluesand
canbe multiplied in orderto get an upperboundon the expected
numberof all configurations.Sincethenumberof choicesfor the
initial configurationK in E(v1, K) specifyingtherequestassoci-
atedwith the root is n, we get the following upperboundon the
expectednumberof activewitnesstreeconfigurations.

∑
T∈T

E(T ) ≤
∑
T∈T

n ·
m∏

i=1

Ecoll(vi)

m′∏
j=1

Eprune(wj)

(1)

≤ n ·
∑
T∈T

(
log n

c!

)m
(

25c+3 · (logn + 1)√
n

)m′

(2)

≤ n ·
∑
T∈T

(
25c+3 · (log n + 1)√

n

)κ

(3)

≤ n · c2κt+κ ·
(

25c+3 · (log n + 1)√
n

)κ

≤ n−c/4+1+o(1) ,

for κ = dc/2e = Θ(log log n/ log log log n) anda suitablylarge
t = Θ (log log n/ log log log n).

Equation1 is an immediateconsequenceof Lemma2.2 and
Lemma2.3.

Equation2 is basedontherelationshipbetweenm andm′: The
full witnesstreeincludesc disjoint subtreesof heightt − 1. For
eachof the m′ pruningnodes,somenodesfrom at most two of
thesesubtreesareremoved. Consequently, at leastc − 2m′ of the
subtreesremainuntouched. Sinceeachof them include at least
ct−2 internalnodes,weget

m ≥ (c− 2m′) · ct−2 ≥ (κ−m′) · ct−2 .

Applying thisequationandsubstitutingc! = (1 + ε) · log n yields(
log n

c!

)m

≤ (1 + ε)−ct−2·(κ−m′)



≤
(

25c+3 · (log n + 1)√
n

)κ−m′

,

for t ≥ logc log1+ε n + 2 = Θ(log log n/ log log log n).
Equation3 resultsfrom aboundonthenumberof differenttree

shapes.In particular, thereareat most

κ∑
j=0

(
(ct − 1)/(c− 1)

j

)
≤ cκt

possiblechoicesfor theat mostκ pruningnodesamongthe(ct −
1)/(c− 1) internalnodesof thewitnesstree,andatmost(

ct+1 − 1

c− 1

)m′

≤ cκ(t+1)

possibilitiesto choosethem′ conflictingnodesamongthe(ct+1−
1)/(c + 1) ≤ ct+1 nodesof thefull witnesstree.Sincespecifying
thesenodescompletelydeterminestheshapeof the tree,the total
numberof differenttreeshapesis atmostcκt + cκ(t+1) ≤ c2κt+κ.

Wehavealreadyshown that
∑

T∈T E(T ) is anupperboundon
theprobabilitythatthec-collisionprocesstakesmorethant rounds.
Hence,thisprobabilityis atmostn−c/4+1+o(1). It remainsto show
that determiningwhich pathsbecomeinactive eachroundcanbe
donein time O(log n), with high probability. Recall that, in our
model,thiscomputationis accomplishedby sendingapacket back
andforth alongeachactivepaththroughthenetwork usingastore-
and-forwardalgorithm.Accordingto [23], suchacomputationcan
be donein time O(congestion+ dilation), with high probability,
usingonly constantsizebuffers at eachedge. Note herethat the
congestionwe wish to boundis the congestioncausedusingthis
store-and-forward scheme,not the congestionunderthe collision
algorithm. However, this congestionis easilybounded.Let C de-
notethecongestionof all 2n paths.

Lemma 2.4 C ≤ α · log n/ log log n , with probabilityn−α+O(1).

Proof. Thecongestionin therandomizationlevels is 1. Therfore,
we only have to considerthecollision levels. Theprobability that
a fixed collision edgeis traversedby at leastC pathsis at most
1/C!. Thisboundfollowsanalogouslyto theproofof Lemma2.2.
Hence,theprobability thatoneof the2 · n · log n collision edges
hascongestionC is at most

2 · n · log n · 1/C! ≤ n−α+O(1) ,

for C > α · log n/ log log n.

Applying Lemma2.4 yields that eachroundcanbe computedin
time O(log n), with high probability. This completestheproof of
Theorem2.1.

2.2 Dynamic routing in BBn

Wenow describeasimplealgorithmthatroutespathsdynamically
in thenetwork BBn, wherethedynamicmodelis specifiedasfol-
lows. As before,a requestis an input-outputpair. An oblivious
adversaryspecifiesaninfinite sequenceσ1, σ2, . . . of requests.The
requestσi mustbe handledat time stepi. If at time i neitherthe
input nor the output of σi is alreadylocked, then the algorithm
must establishand lock a path in the network betweenthe input
andoutputof σi: This is anarrival. If a locked pathbetweenthe
input-outputpair alreadyexists, thenthe pathis released:This is
a departure. In all othercasesthe requestmay be ignored. That

is, thealgorithmonly connectsaninput-outputpair if neitheris al-
readyinvolvedin aconnection.Without lossof generalitywemay
assumethatthesequenceof requestsincludesonly valid arrival and
departureevents.An input-outputpair is saidto exist at eachtime
k betweenits arrival anddeparture.
The minimum algorithm. To solve thedynamicroutingproblem
on the two-fold butterfly BBn, we initialize BBn as in Section
2.1. Let si denotean arrival event. A pathfor the corresponding
requestri is chosenasfollows. Foranedgee in thecollisionlevels,
definec(e) to bethenumberof pathsthattraversee at time i. The
algorithmexaminesthe two pathsp andp′ that connectthe input
to the outputof ri. The congestionc(p) of a pathp is definedto
bemaxe∈p(c(e)). If c(p) ≤ c(p′), pathp is chosenfor requestri;
otherwise,pathp′ is chosen.

Theorem2.5 At any time t, theprobability that thecongestionis
greaterthanΘ(log log n) is at mostn−Θ(log log n).

Proof. Theproof is similar to thatof Theorem2.1.
Constructing awitnesstr ee.First,wefix thesettingsof therandomly-
flippedswitches.Thisdeterminestwo choicesof pathsfor eachre-
quest.Assumethat thereis anedgee with congestionlarger than
4c at sometime t, wherec = dlog log ne. Let p denotethe last
pathmappedto edgee on or beforetime t. Whenp wasmapped
to e therewere already4c other pathspresentat this edge. Let
p1, . . . , p4c denotethesepathssuchthat pi was mappedto e at
time stepti with ti < ti+1. The root of the tree is the request
correspondingto p andthe requestscorrespondingto p1, . . . , p4c

areits children.Now weconsiderthebuddiesp′1, . . . , p
′
4c of these

paths. Pathp′i traversesan edgewith congestionat leasti − 1 at
timestepti, becausethecongestionof pi is not largerthanthecon-
gestionof p′i at time i, andwhenpi wasmappedto e therewere
alreadyi − 1 otherpathspresentat this edge.As a consequence,
wecanconstructatreeby applyingtheargumentaboverecursively
to p′2, . . . , p

′
4c.

Thetreeconstructedabove is irregularin thatnodeshavevary-
ing degrees.However, it containsac-arytreeof heightc, whichwe
call thewitnesstree,with thefollowing properties.

• The nodeon level 0, i.e., the root, hasc children that are
internalnodes.

• Eachinternalnodeon levels 1, . . . , c − 2 hastwo children
that are internal nodesand c − 2 children that are leaves,
andeachinternalnodeon level c − 1 hasc childrenthatare
leaves.

Pruning the witnesstr ee. Thepruningis doneby a breadth-first
traversalof thetree.Weusethesamedefinitionsfor B(v) andΓ(v)
asin Section2.1. However, thepruningrulesareslightly different.
Whenanodev is visited,thefollowing rulesareapplied.

1. If a pathassociatedwith oneof v’s non-prunedchildrentra-
versesa randomly-flippedswitch that is alsotraversedby a
path associatedwith a nodeu from B(v) ∪ Γ(v) then all
nodesbelow v arepruned.Nodeu is denotedtheconflicting
nodeof v. Notethatthedown pathof v eithersharesacolli-
sionedgewith a pathp thatis associatedwith u, or it shares
acollisionedgewith apathp suchthatp or its buddyshares
a randomswitchwith a pathassociatedwith u. This pathp
is denotedtheconflictingpathof v.

2. Dependingontheconflictingpathp weapplyafurtherprun-
ing. For eachnodeu ∈ Γ(v) suchthat eitherthe input or
outputnodeof u coincideswith the input or outputnodeof
pathp, wepruneall thenodesbelow u. Thefirst pruningrule
ensuresthat thereis at mostonerequestin B(v) ∪ Γ(v) in-
cidenton eachinputandoutputof thenetwork, eventhough



therequestsin B(v)∪Γ(v) exist atpossiblynon-overlapping
times. Thus, at most two nodes,call them u and u′, get
pruneddue to an applicationof this rule. Nodesu andu′

aredefinedto be the conflicting nodesof v. (For simplic-
ity, we pretendthateachpruningnodev hastwo conflicting
nodesu andu′; if this is not thecasewesimplysetu andu′

to bethesamenode.)Thesecondpruningrule ensuresthat
Properties4 and5 asstatedin Section2.1holdfor thepruned
witnesstree– specifically, thedown pathof a pruningnode
cannotsharemorethantwo randomly-flippedswitcheswith
agivenconflictingpath.

We continuethe pruningprocesstill eitherthereareno more
nodesto visit or thereareκ = dc/3e pruningnodes.In the latter
case,we apply a final pruning. If v is the κth pruningnode,we
remove from thetreeall nodesnot includedin B(v) ∪ Γ(v). The
remainingtreeis calledtheprunedwitnesstree.
Bounding the probability of occurrenceof a pruned witness
tr ee. The termstreeshape, admissibleconfiguration, andactive
configuration aredefinedasin Section2.1.Let T denotethesetof
all tree shapes,and, for T ∈ T , let E(T ) denotethe expected
numberof active witnesstree configurationswith tree shapeT .
Let v1, . . . , vm be the m internal nodesof T . Furthermore,for
a collectionK of configurationsfor the nodesv1, . . . , vi−1, let
Ecoll(vi, K) denotethe expectednumberof active configurations
for vi undertheassumptionthatK is active, andlet Ecoll(vi) de-
notethemaximumover all configurationsK of Ecoll(vi, K).

Lemma 2.6 Ecoll(vi) ≤ log n/c! .

Proof. The proof is identical to that of Lemma2.2, sincethe
prunedwitnessconstructedherefulfills Properties1 and2 asstated
in Section2.1.

Let w1, . . . , wm′ denotethem′ pruningnodesof T , andlet ui

andu′i denotetheconflictingnodesassociatedwith wi. For a col-
lectionK of configurationsfor thenodesv1, . . . , vm andw1, . . . , wi−1,
let Eprune(wi, K) denotethe expectednumberof active configu-
rationsfor wi undertheassumptionthatK is active. Furthermore,
let Ecoll(wi) denotethe maximumover all configurationsK of
Ecoll(vi, K).

Lemma 2.7 Eprune(wi) ≤ 25c+3 · (log n + 1)/
√

n .

Proof. Theprunedwitnesstreedescribedabove fulfills Properties
3, 4 and5 statedin Section2.1. Hence,theproof of Lemma2.3,
which is basedonly on thesethreeproperties,holdsalsofor this
lemma.

The probability that the congestionexceeds4c is at most the
probabilitythata prunedwitnesstreeexists. Thelatterprobability
is atmost

∑
T∈T

E(T ) ≤
∑
T∈T

n ·
m∏

i=1

Ecoll(vi)

m′∏
j=1

Eprune(wj)

≤ n ·
∑
T∈T

(
log n

c!

)m

·
(

25c+3 · (log n + 1)√
n

)m′

(1)

≤ n ·
∑
T∈T

(
25c+3 · (log n + 1)√

n

)κ

(2)

≤ n · c5κ · 23cκ ·
(

25c+3 · (log n + 1)√
n

)κ

≤ n−c/6+1+o(1) ,

whereκ = d c
3
e = Θ (log log n).

Equation1 follows from the relationshipbetweenm andm′:
Eachof thec childrenof therootof thefull witnesstreeis arootof
asubtreewith 2c−1− 1 internalnodes.For eachof them′ pruning
nodes,nodesfromatmost3 of thesesubtreesareremoved.Thus,at
leastc−3m′ of thesubtreesremainuntouched.As aconsequence,

m ≥ (c− 3m′) · (2c−1 − 1) ≥ (κ−m′) · (2c−1 − 1) .

Applying thisequationandsubstitutingc = dlog log ne yields(
log n

c!

)m

≤ 2−(2c−1−1)·(κ−m′) ≤
(

25c+3 · (log n + 1)√
n

)κ−m′

,

for sufficiently largen.
Equation2 resultsfrom aboundonthenumberof differenttree

shapes.In particular, thereareatmost

κ∑
j=0

(
c · 2c−1

j

)
≤ 2 · cκ · 2(c−1)·κ

possiblewaysof chooosingtheatmostκ pruningnodesfrom theat
mostc · 2c−1 internalnodesof thewitnesstree.Furthermore,there
areat most (

c2 · 2c−1
)2m′ ≤ c4κ · 2(c−1)·2κ

possibilitiesto choosethe2m′ conflictingnodesfrom theat most
c2 · 2c−1 nodesof the full witnesstree. Multiplying the bounds
yieldsthatthetotal numberof differenttreeshapesis at mostc5κ ·
23cκ.

Thiscompletestheproofof Theorem2.5.

3 A proposal for a data server

Wepresentanapplicationof ourtechniquesto thedataserverarchi-
tectureproposedin the introduction.For eachinput nodei, let oi

betheobjectrequestedby theuserat inputnodei of therandomly-
wired butterfly RBn. We assumethat oi 6= oj for i 6= j. Each
object is storedon two disks: the first disk is chosenuniformly
and randomlyfrom the first n/2 disks,while the seconddisk is
chosenuniformly andrandomlyfrom the lastn/2 disks. We call
the two instancesof objectoi the copiesof oi. For an objectoi,
let d1(oi) andd2(oi) be the disksstoringthe copiesof oi. As in
Section2, we definetwo pathsp andp′ startingat input nodei: p
connectsinput nodei with outputnoded1(oi), andp′ connectsi
with d2(oi). Sincethe copiesof objectoi arelocatedin different
sub-butterflies,p andp′ areedgedisjoint paths.Unlike Section2,
we mustminimizenot only congestion,but alsothecontentionat
the outputnodes,i.e., the maximumnumberof requestsany disk
hasto serve.

3.1 Static routing

For the staticselectionof pathswe usea modifiedversionof the
collision protocolof Section2. Initially, all pathsareactiveand
not selected. For apathp connectinginputnodei andoutputnode
dk(oi), k ∈ {1, 2}, let ∆(p) be thedestinationof p. A pathp is
selectedif for eachedgee ∈ p thenumberof active pathsplusthe
numberof selectedpathstraversinge is at mostc, and thenumber
of active pathsplus thenumberof selectedpathswith destination
∆(p) is at most c̄. If p and its buddy p′ are both eligible to be
selected,oneis chosenarbitrarily. A pathp ceasesto beactive in a
roundif p is selectedor thebuddyof p, p′, is selectedin thatround.
Thealgorithmterminateswhentherearenomoreactivepaths.



Theorem3.1 For any c̄ ≥ 5 andc! ≥ 2 log n, theprobability that
thecollisionalgorithmonRBn takesmorethant = logc̄ log(n/ log n)

roundsto selecta pathfor everyrequestis at mostn−c̄/2+1+o(1).

Proof. Theproof is similar to thatof Theorem2.1in Section2.1.
Constructing a witness tr ee. For eachinput node i fix its re-
questedobjectoi. Fix therandompermutationsπ0 andπ1 usedto
definetherandomly-wiredbutterflyRBn, andfix therandomdisks
d1(oi) andd2(oi), for i = 0, . . . , n− 1. For eachrequest,thisde-
terminestwo paths. We saythat two pathsp and p̂ edge-collide,
if p andp̂ both traverseanedgee. They aresaidto disk-collideif
p and p̂ have the samedestinationnodeon the outputlevel. Two
pathsthateitheredge-or disk-collidearesaidto simplycollide.

Assumethat thereis a requestwith pathsp andp′, and nei-
ther path hasbeenselectedby round t, wherethe value of t is
to be determinedlater. Thenp eitheredge-collidedwith c other
pathsp1, . . . , pc in round t or p disk-collidedwith c̄ otherpaths
p1, . . . , pc̄ in roundt. If p is involved in an edge-collision(resp.,
disk-collision), the root of the witnesstree is the requestcorre-
spondingto p andtherequestscorrespondingto p1, . . . , pc (resp.,
p1, . . . , pc̄) are the children. Now p1, . . . , pc (resp.,p1, . . . , pc̄)
andtheirbuddiesp′1, . . . , p

′
c (resp.,p′1, . . . , p

′
c̄) musthavebeenac-

tive in round t − 1. Applying the sameargumentrecursively to
p′1, . . . , p

′
c (resp.,p′1, . . . , p

′
c̄) we canconstructa treeof heightt.

This treeis calledwitnesstree.
Eachnodein the witnesstree is a requestwith two paths,a

down pathandanuppath.Somenodesin thetreecorrespondingto
disk collisionshave degreec̄, while otherscorrespondingto edge
collisionshave degreec ≥ c̄. The rightmostc − c̄ childrenof a
noderepresentinganedgecollisionarecalledsuperfluousnodes. In
orderto boundthenumberof nodesin thewitnesstree,all subtrees
rootedat a child of a superfluousnodeareremoved. (We will not
refer to this as “pruning’ in the sequel.) Note that a superfluous
nodedoesnot representacollision.
Pruning the witnesstr ee.As in Section2.1,thenodesof awitness
treedo not necessarilycorrespondto distinct requests.However,
the situationhereis lesscomplex becausethereareno randomly-
flippedswitchesthatcouldbesharedby differentpaths.Thus,it is
sufficient to ensurethat therequestsin theprunedwitnesstreeare
distinct.

The pruningis doneby a breadth-firsttraversalof the witness
tree.Let B(v) andΓ(v) bedefinedasin Section2. Whenanodev
is visited,weusethefollowing pruningrules:

1. If a pathassociatedwith oneof v’s non-prunedchildrenis
alsoassociatedwith anodeu in Γ(v), thenthesubtreesrooted
at thechildrenof v areremoved from the tree,andthesub-
treesrootedat the childrenof u arealsoremoved from the
tree. The nodev is calleda pruning node. The nodeu is
denotedtheconflictingnodeof v.

2. If a pathassociatedwith oneof v’s non-prunedchildrenis
associatedwith anodeu from B(v) thenthesubtreesrooted
at thechildrenof v areremovedfrom thetree.Thenodev is
calledapruningnode. Thenodeu is denotedtheconflicting
nodeof v.

We continuethe pruningprocesstill eitherthereareno more
nodesto visit or thereareκ = d c̄

2
e pruningnodes. In the latter

case,we apply a final pruning. If v is the κth pruningnode,we
remove from thetreeall nodesnot includedin B(v) ∪ Γ(v). This
effectively stopsthepruningprocessat theκth pruningnode.The
remainingtreeis calledtheprunedwitnesstree.

Let v1, . . . , vm be the m internalnodesand let w1, . . . , wm′

be them′ pruningnodesin theorderof visitation. Further, let ui

denotethe conflicting nodeof wi, for 1 ≤ i ≤ m′. The pruned
witnesstreepossessesthefollowing properties:

1. Any internalnodev representsacollisionof thedown pathof
v with theup pathsof thechildrenof v. Thedown pathof a
pruningnodew collideswith apathp thatis associatedwith
its conflicting nodeu. The pathp is called the conflicting
pathof w.

2. All nodesof thetreecorrespondto differentrequests.In par-
ticular, pruningnodewi doesnot representthesamerequest
asaconflictingnodeuj , 1 ≤ j ≤ i.

Bounding the probability of occurrenceof a pruned witness
tr ee. We definethe treeshapeto bea descriptionof the topology
of theprunedtreeincludingthedegree(c or c̄) of theinnernodes,
thepruningandtheconflictingnodes.An admissiblewitnesstree
configuration is a treeshapewith associatedrequests,upanddown
paths,and conflicting paths,which eventually, i.e. for someset-
ting of therandompermutationsdefiningtheRBn andtherandom
choicesfor thed1(oi), d2(oi), 0 ≤ i ≤ n − 1, matchesa pruned
witnesstree. In particulareachadmissiblewitnesstreeconfigura-
tion hasto fulfill the two propertiesstatedabove. An admissible
configurationis activeif theoutcomeof therandomchoicescorre-
spondsto all pathsin theconfiguration.

Thesetof treeshapescorrespondingto at leastoneadmissible
witnesstreeconfigurationis denotedby T . As in Section2.1,we
boundthe expectednumberof active witnesstreeconfigurations
E(T ), for anarbitraryT ∈ T . Let Ecoll andEprune beasdefined
in Section2.1.

Lemma 3.2 Ecoll(vi) ≤ max{ log n
c!

, 2c̄

c̄!
}.

Proof. We first boundthe expectednumberof active configura-
tions for vi representingan edgecollision. In this casevi hasc
children.Fix therandompermutationπ0 andπ1 usedto definethe
randomly-wiredbutterfly.

Theexpectednumberof activedown pathsfor vi is atmostone.
Givenpathp, thereared = log n possibilitiesto choseanedgee
at which p collides with the up pathsp1, . . . , pc of the children
of vi. Let ` be the level of e. Sinceπ0 andπ1 are fixed, there
areat most

(
2`−1

c

)
possibilitiesto chosec pathspossiblyattaining

e. Dependingon therandomchoicesof thedestinationseachsuch
pathattainse with probability2−(`−1). Thus,theexpectednumber
of activeconfigurationsfor vi is

d ·
(

2`−1

c

)
· 2−c(`−1) ≤ d

c!

Similarly, theexpectednumberof active configurationsfor vi rep-
resentingadiskcollision(vi hasc̄ children)is boundedby(

n

c̄

)
·
(

2

n

)c̄

≤ 2c̄

c̄!
,

sincetherearen pathspossiblyhaving thesamedestinationasthe
down pathof vi andeachsuchpathactuallyhasthis destination
with probability2/n.

Lemma 3.3 Eprune(wi) ≤ d/n.

Proof. Let ui be the conflicting nodeof wi. Assumethat wi

representsan edgecollision. Sinceui is associatedwith 2 paths,
thereare2d possibilitiesto choosetheedgee onwhichthecollision
takesplace.We distinguishtwo cases.If theup pathp of wi uses
a crossedgein level 0, thenits buddyp′ startsby usinga straight
edgein level 0. Thusthe level 1 nodeattainedby p′ is a random
node.If p usesa straightedgein level 0, thenp′ usesa crossedge
in level 0, andthusattainsa randomnodein level 1.



In the levels subsequentto level 1, the courseof the down
pathp′ of wi dependsonly on the randomchoiceof its destina-
tion ∆(p′), henceat every level p′ attainsa randomedgeandthus
the probability for p′ to collide with edgee is 1/(2n). As a con-
sequencetheexpectednumberof active configurationsat pruning
nodewi is atmost2d · 1

2n
Now, assumethatwi representsadiskcollision. Thenlet ∆(p)

bethedestinationof thedown pathp of wi. Theprobabilityfor the
pathsassociatedto ui to have destination∆(p) is 1/n. Thusthe
expectednumberof active configurationsat wi is at most2/n ≤
d/n, if d ≥ 2.

As in Section2.1weproceedby boundingtheexpectednumber
of activewitnesstreeconfigurations.

∑
T∈T

E(T ) ≤
∑
T∈T

n ·
m∏

i=1

Ecoll(vi) ·
m′∏
j=1

Eprune(wi)

≤ n ·
∑
T∈T

max

{
log n

c!
,
2c̄

c̄!

}m (
d

n

)m′

(1)
≤ n ·

∑
T∈T

(
d

n

)κ

(2)
≤ n · c̄2κtc 2(c̄t) ·

(
d

n

)κ

(3)
≤ n−c̄/2+1+o(1) .

Equation1 follows from aboundrelatingm andm′. Equation2 is
obtainedby boundingthenumberof treesin T , takinginto account
the facteachinternaltreenodecaneitherrepresentanedgecolli-
sionor adiskcollision. Bothof theseboundsarederivedin a fash-
ion similar to their counterpartsin Section2.1. Equation3 follows
from thefactthatt = logc̄ log(n/d) andmax{ log n

c!
, 2c̄

c̄!
} ≤ 1/2.

3.2 Dynamic routing

Model description. The modelis similar to the adversarymodel
usedin Section2.2. An oblivious adversaryconstructsan infinite
sequenceof events,whereeachevent is eitheran input requesting
an objector an input releasingan object. At any given time each
objectis accessedby at mostoneinput,andeachinput accessesat
mostoneobject.
The minimum algorithm. Let a request(i, o) arrive at time t,
wherei is aninput nodeando is theobjectrequestedby i. For an
edgee, definec(e) to bethenumberof pathsthattraversee at time
t, and ĉ(i) to be the numberof pathswith destinationi at time t.
(We leave thet implicit asthemeaningwill beclear.) Theconges-
tion c(p) of apathp isdefinedtobemax{maxe∈p(c(e)), ĉ(∆(p))},
where∆(p) is thedestinationof p. Thealgorithmexaminesthetwo
pathsp andp′ thatconnectinput nodei with thetwo outputnodes
d1(o) andd2(o) thatstoreobjecto. Therequestis fulfilled by p if
c(p) ≤ c(p′), otherwisetherequestis fulfilled by p′.

Theorem3.4 At anytimet, theprobability that thecongestionex-
ceedsΘ(log log n) is at mostn−Θ(log log n).

Proof. As in Section3.1, we constructa witnesstree obeying
themodificationsmadein Section2.2 to thewitnesstreeconstruc-
tion of Section2.1. We prunethe treeusingthe rules in Section
3.1 (modifiedasin Section2.2) usingat mostκ = dc/3e pruning
nodes.Theproofsof thefollowing lemmasaresimilarto theproofs
of thecorrespondinglemmasin Section3.1.

Lemma 3.5 Ecoll(vi) ≤ log n/c!.

Lemma 3.6 Eprune(wi) ≤ d · 1
n .

Finally, we boundthe probability that the congestionexceeds4c,
wherec = Θ(log log n), by boundingtheprobabilitythatapruned
witnesstreeexists.∑

T∈T

E(T ) ≤
∑
T∈T

n ·
m∏

i=1

Ecoll(vi) ·
m′∏
j=1

Eprune(wi)

≤ n ·
∑
T∈T

(
log n

c!

)m

·
(

d

n

)m′

(1)
≤ n ·

∑
T∈T

(
d

n

)κ

(2)
≤ n · c4κ · 22cκ ·

(
d

n

)κ

≤ n−c/3+1+o(1) ,

whereEquations1 and2 arejustifiedasin Section2.2.
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