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ABSTRACT
Accurate estimation of information retrieval evaluation met-
rics such as average precision require large sets of relevance
judgments. Building sets large enough for evaluation of real-
world implementations is at best inefficient, at worst infea-
sible. In this work we link evaluation with test collection
construction to gain an understanding of the minimal judg-
ing effort that must be done to have high confidence in the
outcome of an evaluation. A new way of looking at av-
erage precision leads to a natural algorithm for selecting
documents to judge and allows us to estimate the degree
of confidence by defining a distribution over possible docu-
ment judgments. A study with annotators shows that this
method can be used by a small group of researchers to rank
a set of systems in under three hours with 95% confidence.

Categories and Subject Descriptors: H.3 Information
Storage and Retrieval; H.3.4 Systems and Software: Perfor-
mance Evaluation

General Terms: Algorithms, Measurement, Experimenta-
tion, Theory

Keywords: information retrieval, evaluation, test collec-
tions, algorithms, theory

1. INTRODUCTION
Information retrieval system evaluation requires test col-

lections: corpora of documents, sets of topics, and relevance
judgments indicating which documents are relevant to which
topics [15]. Ideal measures of retrieval performance should
reward systems that rank relevant documents highly (pre-
cision) and that retrieve many relevant documents (recall).
Stable, fine-grained evaluation metrics take both of these
into account, but they require large sets of judgments to
accurately measure system performance.

The TREC conferences were set up by NIST with several
goals. Most relevant to this work is the goal of building
test collections that could be used by information retrieval
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practitioners to build and evaluate their retrieval systems.
The test collections need to be reusable; that is, they need to
not only provide accurate evaluation of the set of retrieval
systems submitted to TREC, but also to evaluate future
retrieval systems that may be developed. To that end, NIST
uses a process of pooling to build sets of relevance judgments:
top results from many system runs on the same topics are
pooled, and the entire pool is judged [11]. This gives a large
set of judgments that are sufficient for future use [16].

Reusability is not always a major concern. For example,
someone setting up a search engine for a collection simply
wants to know which retrieval system is best for the types
of queries he expects. TREC-style topics and judgments
may not suit his purpose, and he may have neither the time
nor money to collect the thousands of relevance judgments
necessary to do a TREC-style evaluation on his own topics.

Another case is a researcher performing a user study or
a preliminary investigating a new retrieval task. She wants
her retrieval system to be the best possible, but she has
no relevance judgments for her topics. Reusability is not a
concern; she just wants to do the minimum set of judgments
to tell her which system is best.

A third example is a large, highly dynamic collection such
as the web. From month to month, topics and documents
become obsolete; new documents enter the collection; col-
lection statistics change. Meanwhile new algorithms must
constantly be evaluated. A comparison of algorithms one
month may result in a set of judgments that are not usable
the next month simply because too many documents have
disappeared or become less relevant as new documents and
topics have appeared [9].

For any of these tasks, building a database of tens of thou-
sands of relevance judgments is quite inefficient.

Our goal in this work is to show that it is possible and not
difficult to evaluate a set of retrieval systems with high con-
fidence with a minimal set of judgments. We present a novel
perspective on average precision that leads to a natural al-
gorithm for building a test collection. We show that average
precision (AP) is normally distributed over possible sets of
relevance judgments, allowing us to estimate our confidence
in AP. This is used as a probabilistic stopping condition for
our algorithm. In this way, evaluation and test collection
construction are explicitly linked.

We then implement the algorithm and run a study with
annotators. With only 15 hours of annotator time and under
three hours real time we can achieve a ranking that is correct
and that we have 95% confidence in. Simulation experiments
test further aspects of our algorithm.



2. PREVIOUS WORK
The method used by NIST to build test collections for

TREC is pooling [11]. At TREC (Text REtrieval Confer-
ence) each year, sites submit retrieval runs on a corpora
without relevance judgments. The top N documents from
each submitted system are pooled and judged, and that set
of relevance judgments is used to evaluate all systems. The
pooling method has been shown to be sufficient for research
purposes [16, 13].

Work building on the pooling method shows how sets of
TREC judgments can be obtained more efficiently. Cormack
et al. and Zobel independently investigated dynamic order-
ings of documents such that systems that have yielded more
relevant documents are given greater priority in a pool [4,
16]. Soboroff et al. investigated random assignment of rel-
evance to documents in a pool and found that this could
actually give a decent ranking of systems [10]. More re-
cently, Sanderson and Joho found that systems could be
ranked reliably from a set of judgments obtained from a sin-
gle system or from iterating relevance feedback runs [7], and
Carterette and Allan proposed an algorithm based on paired
comparisons of systems that was able to achieve high rank
correlation with a very small set of judgments [3].

All of these works have focused on building collections
from TREC systems. In this work we move away from the
TREC environment to a smaller experimental environment
that a research lab might find itself in.

3. INTUITION AND THEORY
Precision is the ratio of relevant documents retrieved to

documents retrieved at a given rank. Average precision is
the average of precisions at the ranks of relevant documents.
For a set R of relevant documents,

AP =
1
|R|

∑

d∈R

prec@rank(d) (1)

Average precision is a standard information retrieval eval-
uation metric. It has been shown to be stable [1]; that is,
it reliably identifies a difference between two systems when
one exists.

Let xi be a Boolean indicator of the relevance of document
i. Numbering documents in the order they were retrieved,
we can rewrite AP as a sum over ranks 1 to n, the total
number of documents in the corpus:

AP =
1
|R|

n∑

r=1

xr

r∑

i=1

xi

r
=

1
|R|

n∑

r=1

r∑

i=1

1
r
xrxi

If we order documents arbitrarily, we replace the 1
r with

coefficient aij :

AP =
1
|R|

n∑

i=1

∑

j≥i

aijxixj

aij =
1

max{rank(i), rank(j)}
To see why this is true, consider a toy example: a list of 3
documents with relevant documents x2, x3 at ranks 1 and 3.
Average precision will be 1

2 ( 1
1x2

2 + 1
2x2x1 + 1

3x2x3 + 1
2x2

1 +
1
3x1x3 + 1

3x2
3) = 1

2 (1 + 2
3 ) because x1 = 0, x2 = 1, x3 = 1.

The difference in average precision between two systems
is then

∆AP = AP1 −AP2 =
1
|R|

n∑

i=1

∑

j≥i

cijxixj (2)

cij = aij − bij

Suppose we believe that ∆AP > 0 and we wish to find
the set of documents that would prove it. Intuitively, a doc-
ument that supports ∆AP > 0 is relevant and has positive
“weight”, that is,

∑
cijxixj > 0. A document that supports

the opposite hypothesis ∆AP < 0 has negative weight. If we
can show that the sum of the weights of relevant documents
is greater than the maximum possible sum of the weights of
negative documents, we can conclude that ∆AP > 0.

Let S be the set of judged relevant documents and T be
the set of unjudged documents. The following inequality is
a sufficient stopping condition:

∑

i,j∈S

cij >
∑

i,j∈T or
i∈S,j∈T
and cij<0

|cij | ⇒ ∆AP > 0 (3)

The left-hand side (LHS) is ∆AP calculated over judged rel-
evant documents only. The right-hand side (RHS) is an up-
per bound on the amount ∆AP would decrease if unjudged
documents were judged relevant.

Before any documents have been judged, the LHS is 0
and the RHS is the sum of all negative coefficients. It is
intuitively clear that we want to increase the LHS by find-
ing relevant documents and decrease the RHS by finding
nonrelevant documents.

3.1 An Optimal Algorithm
The stopping condition of Eq. 3 suggests an algorithm: se-

lect documents to maximize the left-hand side and minimize
the right-hand side.

Suppose we have no relevance judgments. If we were to
judge document i relevant, we would add cii (the difference
in reciprocal ranks of i) to the LHS. If i were nonrelevant, we
would subtract ci1 +ci2 + · · ·+ciN =

∑
cij from the RHS. It

seems intuitively clear that we want to pick the document
that will have the greatest expected effect on either side.
Give each document a “relevant weight” wR

i (the amount
it would add to the LHS if relevant) and a “nonrelevant
weight” wN

i (the amount it would subtract from the RHS if
nonrelevant), and the document to judge should be the one
that maximizes max{piw

R
i , (1− pi)w

N
i }, pi = P (xi = 1).

This algorithm is optimal for our stopping condition. We
sketch part of a proof in the appendix.

3.2 AP is Normally Distributed
Let pi = P (xi = 1). Let qi = 1− pi. Then

E[AP ] =
1∑
pi

n∑

i

(
aiipi +

∑

j>i

aijpipj

)
+ ε (4)

V ar[AP ] =
1

(
∑

pi)
2

(
n∑

i

a2
iipiqi +

∑

j>i

a2
ijpipj(1− pipj)

+
∑

i#=j

2aiiaijpipjqi +
∑

k>j #=i

2aijaikpipjpkqi

)
+ ε
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Figure 1: Average Precision is normally distributed.
We simulated two ranked lists of 100 documents.
Setting pi = .5, we randomly generated 5000 sets of
relevance judgments and calculated ∆AP for each
set. The histogram conforms to a standard normal
distribution. The Anderson-Darling goodness of fit
test [12] concludes that we cannot reject the hypoth-
esis that the sample came from a normal distribu-
tion.

The error term ε = O(c−n) for some c > 1, so we may safely
ignore it.1

As n→∞,

AP − E[AP ]√
V ar[AP ]

! N(0, 1)

This means that with any incomplete test collection, AP
is distributed normally over all possible assignments of rel-
evance to all unjudged documents. We have shown this by
simulation (Fig. 1), and have sketched a formal proof us-
ing martingale limit theory. Eq. 4 is normally distributed
independent of how aij is defined, so ∆AP is distributed
normally as well.

Given a set of relevance judgments, we use the normal
cumulative density function (cdf) to find P (∆AP ≤ 0). If
P (∆AP ≤ 0) < .05, at least 95% of the possible assignments
of relevance would conclude that ∆AP > 0 and we can
conclude that ∆AP > 0 with 95% confidence. Our previous
stopping condition is replaced by the probabilistic stopping
condition P (∆AP ≤ 0) < 1− α OR P (∆AP ≤ 0) > α.

Note that we must make some assumption about pi. We
make the “neutral” assumption that if i is unjudged, pi =
0.5.Using prior information about rates of relevance or ranks
at which documents were retrieved could give better results,
but we do not explore that here.

3.3 Application to MAP
Mean average precision is the average of APs computed

1E[AP ] and V ar[AP ] are actually sums over exponentially
many terms. These approximations are intuitive, and the
error is negligible.

for a set of topics T . Because topics are independent,

EMAP =
1
|T |

∑

t∈T

E[APt]

V ar[MAP ] =
1

|T |2
∑

t∈T

V ar[APt]

Then if AP ! N(0, 1), MAP ! N(0, 1) as well.
The algorithm for determining a difference ∆MAP follows

directly from the algorithm for average precision. We treat
each (topic, document) pair as a unique “document” and
proceed exactly the same way.

4. EXPERIMENTAL EVALUATION
Having developed the algorithm from first principles, we

wish to show that it can be used in a research setting on a
new corpus. Previous work has shown simulated results of
efficient judging algorithms on TREC ad hoc collections [3,
4, 7, 10, 16]; rather than repeat those experiments, we will
evaluate the algorithm as it might be used in a research or
industrial environment.

The outline of our experiment is as follows: we ran eight
retrieval systems on a set of baseline topics for which we had
full sets of judgments. We asked six annotators to develop
new topics; these were run on the same eight systems. The
same six annotators then judged documents selected by the
algorithm.

4.1 Baseline Topics
The baseline topics were used to estimate the system per-

formance. It is generally assumed in Information Retrieval
that 50 topics are a sufficient sample for reliable compari-
son of retrieval systems. This has been shown recently by
Sanderson and Zobel [8] and earlier by Zobel [16]. We ex-
pect, therefore, that performance of systems on our new
topics will track performance on the baseline topics.

The baseline topics were the 2005 Robust/HARD track
topics [14] and ad hoc topics 301 through 450. We used
only topic titles for queries.

4.2 Corpora
We indexed two different corpora: one was the Aquaint

corpus consisting of about 1 million articles from the New
York Times News Service, Associated Press Worldstream
News Service, and Xinhua News Service from 1996 through
2000. The second was TREC disks 4 and 5, with about
500,000 documents from the Financial Times, Federal Reg-
ister, LA Times, and Foreign Broadcast Information Service,
covering 1989 through 1996. We ran the Robust queries on
the Aquaint corpus and the ad hoc queries on the TREC
corpus, so even though some topics were duplicated, the re-
trieved results are different.

4.3 Retrieval Systems
We used six freely-available retrieval systems: Indri, Lemur,

Lucene, mg, SMART, and Zettair2. With these six systems

2Respectively available at:
http://www.lemurproject.org/indri
http://www.lemurproject.org
http://lucene.apache.org
http://www.cs.mu.oz.au/mg
ftp://ftp.cs.cornell.edu/pub/smart
http://www.seg.rmit.edu.au/zettair



Topics
System All 200 Robust 05 301-350 351-400 401-450 60 New 60 New-norm

1 .109 .103 .129 .093 .112 .162±.007 .118
2 .123 .110 .148 .108 .124 .158±.007 .100
3 .168 .144 .174 .165 .189 .174±.008 .187
4 .169 .162 .179 .150 .184 .175±.008 .192
5 .172 .141 .166 .174 .208 .179±.008 .218
6 .213 .194 .233 .177 .249 .185±.008 .246
7 .215 .203 .231 .182 .244 .187±.008 .260
8 .296 .321 .300 .262 .301 .194±.008 .300

Table 1: True MAPs of eight systems over 200 topics; broken out into four sets of 50 topics; and expected
MAP, with 95% confidence intervals, over 60 new topics. The final column is expected MAP rescaled to the
range [.1, .3] for easy comparison to performance on other topic sets. Horizontal lines indicate “bin” divisions
determined by statistical significance.

we obtained eight retrieval runs on all 200 baseline queries.
The runs use different retrieval models (Okapi weighting,
TFIDF weighting, language modeling), different stemmers
(Krovetz, Porter), and different stop lists. One run used
pseudo-relevance feedback.

Since we did not tune the systems, we want to avoid iden-
tifiable claims about relative performance. We number the
systems 1 through 8, with 1 having lowest mean average
precision on all 200 baseline topics and 8 having highest.

Results of the eight retrieval runs are shown in Table 1.
The table shows that the ranking can vary some by topic
sets, though the bins the systems fall into remain the same.
Significant differences between pairs of systems are always
preserved.

4.4 Query Formulation
Six volunteer annotators were given an interface to query

and browse the Aquaint corpus and asked to come up with
10 topics each. They were asked to provide a title query and
a description of what should and should not be considered
relevant. They were asked to create topics that were not too
easy (too many relevant documents found in the browsing
interface), but not too hard (no relevant documents).

We wanted to minimize drift in annotators’ definitions of
relevance. We kept the time between defining topics and
judging documents as short as possible so that annotators
would not forget what they were thinking. All judging was
done in a 3-hour block with a break for lunch so that defi-
nitions of relevance would be unlikely to change drastically.
Our annotators were experienced in the field of information
retrieval; we hoped their greater understanding of the defini-
tion of relevance would also help keep drift down. Finally, by
asking annotators to explicitly state what should be consid-
ered relevant and displaying that to them while they judged
documents, we hoped to reduce drift further.

Some of the topics (along with number of judgments made
and number of relevant documents found) are shown in Ta-
ble 2. Apart from two topics about “intelligent design”, all
topics were unique.

4.5 Algorithm Implementation
The algorithm was implemented in R [5]. Using vector

arithmetic, weights could be calculated in linear time; the
complexity of the algorithm is O(S2n2). We used only the
top 100 documents retrieved by each system, partially for
computational reasons, but also because this is the usual

No. title query judged rel
6 environmental conservation policies 39 25
13 journalistic plagiarism 31 10
24 sea piracy 55 29
31 intelligent design 43 16
36 indian nuclear tests and visas 49 7
44 africa aids orphans 92 75
54 environmental impact of US army 27 2
59 aquifer water levels 12 0

Table 2: Selected topics developed by annotators.

cutoff for collecting judgments for TREC. If a document
was not ranked in the top 100 by a system, its reciprocal
rank for that system was defined to be 0.

When comparing pairs of systems, we used the document
with max weight in the pair. To extend that to ranking a
set of systems, we use the document with the max weight in
all pairs of systems.

The implementation was very fast. There was no perceiv-
able lag between an annotator submitting a judgment and
receiving the next document.

Strictly speaking, the algorithm requires that judgments
be made one at a time in the determined order. This would
require that annotators spend a lot of time idle, waiting for
a document from one of their topics to be served. Instead,
we separated the topics into six sets of ten and ran the al-
gorithm independently on each set. This may give slightly
suboptimal performance, but it is a better use of annotator
time.

4.6 Experimental Process
The 60 topics developed were run on the same eight re-

trieval systems against the Aquaint corpus. A server was
set up to feed documents to annotators for judging. They
used a web interface to judge documents. Each annotator
judged documents from their own 10 topics. They spent
about 2.5 hours judging (15 total hours of annotator time),
with a break for lunch after the first hour.

5. RESULTS
In 2.5 hours we obtained 2200 relevance judgments, about

4.5 per system per topic on average, about 2.5 per minute
per annotator, and about 14.7 per minute. The TREC pool-



ing approach with a depth of 100 would have yielded 18,537
documents for judgment. NIST annotators spent a total
of 280.5 hours judging the 37,798 documents in the pool for
Robust/HARD systems, a rate of 2.2 judgments per minute.

Of the documents judged, 38.5% were relevant. Judg-
ments by annotators on the first 271 documents were com-
pared to judgments by one of the authors of this paper;
annotator agreement was 88%.

The fastest annotator judged twice as many documents
as the slowest. Some topics were more difficult to interpret
than others, and some topics retrieved documents that were
longer on average; that affected the number of documents
an annotator could judge. In section 6 we simulate a single
annotator judging all topics.

We rank systems by expected value of MAP

EMAP =
∑

t

E[APt] =
∑

t

1∑
pi

∑

i

(
ciipi +

∑

j>i

cijpipj

)

where pi = 1 if document i has been judged relevant, 0 if
nonrelevant, and .5 otherwise.

EMAP ranges from 0 to 1. A ranking by EMAP is di-
rectly comparable to a ranking by MAP, though EMAP has
compressed range compared to MAP. EMAP is shown in
Table 1 with the MAPs on the baseline topics for compari-
son. The ranking is within the range of normal variation we
would expect from performance on different topic sets. In
fact, apart from the inversion of the first two systems, the
ranking is identical to the canonical ranking. Table 1 also
shows EMAP rescaled to the range [0.1, 0.3] for comparison
to the other topics.

Using the normal cdf, we calculate the confidence that
∆MAP > 0 for each pair of systems. We estimate the
confidence in the ranking as the average of the confidences
in each pair. With no judgments, confidence is .5; with
a full set of judgments, confidence would be 1. This can
be interpreted as the expected confidence in ∆MAP if any
two systems are selected from the set at random. By that
measure, our algorithm has 96% confidence that this is the
correct ranking.

Figure 2 shows how confidence increases as more judg-
ments are made. A correct ranking is found very fast: after
only 50 judgments, the systems are binned correctly; after
250 judgments, the systems are ranked correctly. Confidence
after 250 judgments is only 71%, but after 1000 judgments,
the systems are ranked correctly with 90% confidence. It
took about one hour real time (6 hours of annotator time)
to reach that point.

6. DISCUSSION
Here we present some results of simulations of our algo-

rithm to attempt to evaluate its performance in general set-
tings. The simulation is done by running the client/server
setup described previously, but using judgments from the
qrels produced by NIST instead of judging manually. Docu-
ments not judged by NIST were assumed nonrelevant. Ta-
ble 3 shows true ∆MAP and P (∆EMAP ≤ 0) for a simu-
lation using the Robust 2005 topics.

Some questions we explore are:

• To what degree are the results dependent on the algo-
rithm rather than the evaluation metric?

• How many judgments are required to differentiate a
single pair of ranked lists with 95% confidence?
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Figure 2: Confidence increases as more judgments
are made.

2 3 4 5 6 7 8
1 .007 .040 .059 .037 .090 .100 .217

.480 0 0 0 0 0 0
2 — .034 .052 .031 .084 .093 .211

0 0 0 0 0 0

3 — .018 .003 .050 .060 .177
.061 .144 .002 0 0

4 — -.021 .032 .041 .159
.793 .073 .029 0

5 — .053 .063 .180
.018 .003 0

6 — .010 .127
.185 0

7 — .117
0

Table 3: Each cell shows difference in true MAP
and P (∆MAP ≤ 0) for each pair of systems after
2200 judgments for the Robust 2005 topics. Pairs in
which we have 95% confidence that additional judg-
ments will not change the outcome are bolded.

• How does confidence vary as more judgments are made?
• Are test collections produced by our algorithm reusable?

6.1 Comparing EMAP and MAP
The main advantage of EMAP over standard MAP is that

it takes advantage of information provided by nonrelevance.
MAP is calculated using only relevant documents, and thus
it only helps to find relevant documents (except insofar as a
nonrelevant judgment indicates that the document has been
judged and does not need to be judged again). More value
is extracted from each judgment.

Another advantage is that EMAP is normally distributed.
This provides all the power that the normal distribution
provides. The caveat is that we must make an assumption
about the probability of a document’s relevance.

We ran the following simulation: after several documents
had been judged, we calculated both EMAP and MAP on
all systems, ranked them, and compared the ranking to the
“true” ranking by MAP computed using all relevance judg-
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Figure 3: As the number of judgments increases,
Kendall’s tau correlation to the true ranking in-
creases. Correlation between Expected MAP and
true MAP increases faster than correlation between
MAP and true MAP.

ments. We did this after 1, 2, 4, 8, ..., 1024 judgments.
To compare rankings we use a rank correlation measure

called Kendall’s tau [6]. Kendall’s tau is calculated using
pairwise inversions between elements in two lists. It ranges
from -1 to 1, with -1 indicating that the two lists are re-
versed, 0 that half the pairs of elements are inverted, and 1
that the two lists are identical. Since we have only 8 systems,
the range of values is limited.

The result is shown in Figure 3. We see that the correla-
tion between EMAP and true MAP increases very fast; after
only 32 judgments it is about .85. It takes regular MAP 256
judgments to get to the same point.

The bpref metric also uses nonrelevance information [2].
This result tracks with bpref.

6.2 How Many Judgments?
The number of judgments that must be made in compar-

ing two systems or a set of systems depends on how similar
the systems are. “Similarity” could be measured by true dif-
ference in average precision, or by a ranking distance metric.

Figure 4 shows absolute difference in true AP for Robust
2005 topics vs. number of judgments to 95% confidence
for pairs of ranked lists for individual topics. As the figure
shows, if difference in AP is greater than .25, it will gen-
erally take fewer than 25 judgments to distinguish perfor-
mance. But as difference in AP gets closer to 0, the number
of judgments rises fast. The axes can be flipped: if many
documents have been judged but 95% confidence is not in
sight, the lists must be very similar. The correlation be-
tween difference in AP and number of judgments to 95%
confidence is −0.509.

A simple distance measure is the sum over all documents
of absolute difference in reciprocal rank, i.e. d =

∑
| 1
ri
− 1

r′i
|.

The correlation between distance and number of judgments
is 0.218.

Difference in AP and our distance metric have a correla-
tion of 0.219, indicating that an increase in distance leads
to an increase in difference in AP.
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6.3 Confidence over Time
Figure 5 shows a long simulation of a single annotator

judging documents for the Robust/HARD queries. Confi-
dence reaches .95 very rapidly, about as fast as it did in Fig-
ure 2, and after that continues to approach 1, the point at
which the ranking would not change with more judgments.
It takes 16,000 judgments to reach 1, less than half the num-
ber in the Robust 2005 qrels. The curve from Figure 2 is
included for comparison.

Figure 6 shows a comparison to a pooling method that
we will call “incremental pooling”. In this method all doc-
uments in a pool of depth k will be judged. Since the order
in which they are judged affects the estimated confidence,
we must impose an ordering on the pool. We judge them in
rank order. This could be seen as a weaker version of our
algorithm, which will tend to judge high-ranked documents
unless they are found at a similar position in every list.

The pool of depth 10 for our Robust/HARD runs con-
tains 2228 documents. There were 569 documents in the
pooled set that were not in our algorithmic set (and vice
versa). This means that our algorithm tends to pick doc-
uments from the top of the ranked lists, which is expected
since those have the greatest effect on MAP. It also shows
that high confidence can be achieved more rapidly by draw-
ing documents from outside the pool.

6.4 Reusability of Test Collection
We showed above that EMAP can produce a good ranking

with a very small set of judgments. This suggests that a test
collection created by this algorithm may be able to evaluate
new systems that were not used in the creation of the test
collection.

To test this, we removed one system from our set of eight
and simulated our algorithm to build test collections of 500,
1000, 1500, and 2000 judgments from the remaining seven.
Then we replaced the eighth system and ranked all eight by
EMAP, setting pi to be the ratio of relevant documents in
the test collection.

Table 4 shows rank confidence averaged over eight trials,
removing a different system for each trial. Confidence ac-
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Figure 5: A long simulation showing confidence ap-
proaching 1. The original experiment is shown for
comparison.
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Figure 6: Comparison between our algorithm and
incremental pooling. We have more confidence in
the rankings by the algorithm’s documents than by
pooling’s.

tually increases when adding the 8th system back in, likely
because of the better estimate of pi. Furthermore, the 8th
system is always placed in the correct spot in the ranking or
swapped with the next (statistically indistinguishable) sys-
tem. This suggests that the test collections can be reused
reliably in at least some cases. In general it depends on how
many documents in the new system have been judged and
the estimates of pi.

7. CONCLUSION
A new perspective on average precision leads to an al-

gorithm for selecting documents that should be judged to
evaluate retrieval systems in minimal time. Using actual
annotators, we implemented the algorithm and showed that
it can be used to rank retrieval systems with a high degree of
confidence and a minimal number of judgments. After only
six hours of annotation time, we had a achieved a rank-
ing with 90% confidence. This is applicable to a variety of
retrieval environments when little relevance information is
available.

no. Rank confidence
judgments 7 systems 8 systems

500 .863 .881
1000 .921 .930
1500 .945 .954
2000 .955 .969

Table 4: Reusability of test collections. Judgments
are collected from seven systems, then all eight are
ranked using those judgments. Rank confidence in-
creases when the eighth is replaced.

A clear direction for future work is extending the analysis
to other evaluation metrics for different tasks. Some initial
exploration in this direction suggests that it would be very
easy to analyze precision, for instance. Another direction is
estimating probabilities of relevance. Uniformly using the
same value is not optimal; better estimates based on ranks
provide better results.
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APPENDIX
In Section 2 we stated a sufficient stopping condition (Eq. 3)
that would allow us to conclude ∆AP > 0. Here we present
an algorithm for maximizing the expected value of part of
the stopping condition and prove its optimality. This is
only part of the algorithm we actually use in the paper; a
complete algorithm and proof are forthcoming.

∑

i,j∈S

cijxixj >
∑

i/∈S or j /∈S;cij<0

|cij | ⇒ ∆AP > 0 (5)

This is a restatement of the stopping condition Eq. 3: S
is a set of documents that have been judged. Intuitively,
we want to show that our algorithm will select documents
that maximize the expected value of the left-hand side and
minimize the expected value of the right-hand side. We
claim Algorithm 1 maximizes the expected value of the LHS
when pi = pj = p for all i, j.

Algorithm 1 Select k documents to be judged.

1: while |S| < k do
2: for all i /∈ S do
3: wi ← ciip +

∑
j∈S cijp

2

4: end for
5: j ← argmaxiwi

6: S ← S + {j}
7: end while

Theorem 1. If pi = p for all i, the set S maximizes
E[

∑
i,j∈S cijxixj ].

To prove this, we will need to show that the weight of S is
greater than the weight of any other set of the same size.

We begin with two lemmas:

Lemma 1. For two documents i and j,

cii ≥ cij ≥ cjj

or cjj ≥ cij ≥ cii

Proof. The proof is by a simple analysis of cases. There
are four possible relative orderings of i and j in two systems,
and in every case one of the above inequalities is true.

Lemma 2. At iteration i of the algorithm, cijp
2 ≥ cjjp

2

for j ≥ i.

Proof. By induction on i. The base case, c1j ≥ cjj ,
follows because c11 ≥ cjj by lines 3 & 5 of Alg. 1, and
c11 ≥ c1j ≥ cjj by Lemma 1.

Assume the induction hypothesis: ci−1,j ≥ cjj for arbi-
trary i − 1. The proof continues by contradiction. Sup-
pose cjj > cij . If this is true, then anywhere we place
an arbitrary document k we have that cjk ≥ cik (this can
be shown by enumeration of nine cases, some of which are
impossible because they violate the induction hypothesis).
This means that cjjp +

∑
k cjkp2 > ciip +

∑
k cikp2. But

this is a contradiction: we selected document i because
ciip +

∑
k cikp ≥ cjjp +

∑
k cjkp for all j > i (lines 3 &

5 in Alg. 1). Therefore we must conclude that cij ≥ cjj .

Now we are ready to prove the theorem. The proof is
fairly technical, but the intuition is that, given an arbitrary
set U and the set S produced by Algorithm 1, we show that
the expected weight of S is greater than the expected weight
of a set S′ that contains a particular document in U instead
of the kth document in S, and that the expected weight of
S′ is greater than the expected weight of U .

Proof. By induction on k.
The base case is trivial: c11p ≥ ciip by construction.
Let Sk be a set of k documents. Let Uk be an arbitrary

set of k documents such that Uk )= Sk. We shall number
documents in the order they would be added to S, so Uk

will contain documents with indices greater than k, but Sk

will not. For conciseness, the expected weight of a set S
E[

∑
i,j∈S cijxixj ] shall be denoted

∑
S. Let us make the

induction hypothesis that
∑

Sk−1 ≥
∑

Uk−1. We wish to
show that

∑
Sk ≥

∑
Uk.

Note that Sk−1 ⊂ Sk. Therefore
∑

Sk =
∑

Sk−1 +ckkp+∑
j∈Sk−1

cjkp2. Let # be the document in Uk such that # ≥ k

and # has greater difference in reciprocal ranks than any
other document u ≥ k, i.e. c!! ≥ cuu for all u ≥ k. Lemma
1 ensures # exists by imposing an ordering on the differences
in reciprocal ranks cii for all i. Lemma 2 states that cj!p

2 ≥
c!!p

2 for j < #. Then it follows that cj!p
2 ≥ c!!p

2 ≥ cu!p
2 ≥

cuup2 ≥ cuvp2 ≥ cvvp2....
Let S′k be the set obtained by replacing document k with

document # defined above, i.e. S′k = Sk − k + #.
∑

Sk ≥∑
S′k by construction. If we remove # from both S′k and

Uk, we have S′k − # =
∑

Sk−1 ≥ Uk − # by the induction
hypothesis. It remains to be shown that

∑
j∈Sk−1

cj!p
2 ≥

∑
u∈Uk−! cu!p

2. Let j be an arbitrary document in Sk−1. If

there is a u ∈ Uk − # such that j = u, then cj!p
2 = cu!p

2.
Otherwise, cj!p

2 ≥ c!!p
2 ≥ cu!p

2.
Then

∑
Sk ≥

∑
S′k =

∑
Sk−1 + c!!p +

∑

j∈Sk−1

cj!p
2

≥
∑

(Uk − #) + c!!p +
∑

u∈Uk−!

cu!p
2 =

∑
Uk

and the proof is complete.

A similar algorithm is used to pick nonrelevant documents
to decrease the right hand side of Eq. 5. Instead of wi =
ciip +

∑
j∈S cijp

2, it sets wi = cii(1 − p) +
∑

cij(1 − p)2.
Similar reasoning proves that the set selected has minimal
expected weight.


