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ABSTRACT
Client-server networks are pervasive, fundamental, and
include such key networks as the Internet, power grids,
and road networks. In a client-server network, clients
obtain a service by connecting to one of a redundant
set of servers. These networks are vulnerable to node
and link failures, causing some clients to become dis-
connected from the servers. We develop algorithms that
quantify and bound the inherent vulnerability of a client-
server network using semidefinite programming (SDP)
and branch-and-cut techniques. Further, we develop a
divide-and-conquer algorithm that solves the problem for
large graphs. We use these techniques to show that: for
the Philippine Power Grid removing just over 6% of the
transmission lines will disconnect at least 20% but not
more than 50% of the substations from all generators; on
a large wireless mesh network disrupting 5% of wireless
links between relays removes Internet access for half the
relays; even after any 16% of Tier 2 ASes are removed,
more than 50% of the remaining Tier 2 ASes will be con-
nected to the Tier 1 backbone; when 300 roadblocks are
erected in Michigan, it’s possible to disconnect 28–43%
of the population from all airports.

1. INTRODUCTION
A client-server network consists of clients and servers

where each client obtains a critical service by connecting
over the network to a server chosen from a redundant
set. The key aspects of several real-world networks can
be modeled as client-server networks, with suitable defi-
nitions for clients and servers. For instance, a wireless
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mesh consists of mobile users (clients) accessing the
wired Internet by connecting to one of the gateways
(servers). In the Internet context, Tier-2 autonomous
systems (clients) connect to the Internet backbone by
peering with one of the Tier-1 autonomous systems
(servers). In a power grid, each substation (client) con-
nects to one of the power generators (servers) to obtain
electricity. And, people (clients) travel to airports and
other critical service infrastructure (servers) using the
road network.

Client-server networks are vulnerable to node and link
failures, and clients that are unable to connect to no
server at all are denied service. Failures may be caused
by both genuine malfunction and intentionally targeted
attacks. Even though servers are typically deployed
in a distributed and redundant fashion to enhance ser-
vice availability, a targeted set of failures can cause
serious denial of service to clients. Network attacks
and failures are common in a wide variety of networks.
Wireless networks are susceptible to numerous attacks
including DOS, spoofing attacks, and physical tamper-
ing [21, 24, 32,33]. In wired networks, fiber optic cables
and other media are conspicuously susceptible to inten-
tional or inadvertent destruction [8, 16, 25]. Internet
Autonomous Systems (ASes) are vulnerable to BGP pro-
tocol exploits that have been documented by numerous
researchers for years [20, 23]. Power grids are crucial to
modern infrastructure as illustrated by the major black-
out in North America in 2003 and many point out tar-
geted (terrorist) attacks are a significant concern [6,7,30].
The industry consensus is a need to identify attack and
failure scenarios before they happen [6, 26]. Finally,
there is significant concern for the national highway sys-
tem. A recent study identified eight unrelated suspicious
events that seemed to indicate terrorist attention to ma-
jor pieces of domestic highway infrastructure [19] via
roadside or vehicle-borne improvised explosive devices
(IEDs). To address these concerns, the U.S. Government
Accountability Office calls for individual vulnerability
assessments on the nationally critical Tier-2 structures
list [9].
All of the above examples of real-world client-server
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networks underscore the importance of studying the ef-
fect of failures and attacks on service availability for
clients. Our specific goal is to assess the intrinsic vul-
nerability of a client-server network by computing a
quantitative relationship between the number of com-
promised or failed network resources and the number of
clients who are denied service.

1.1 Problem Statement
A client-server network can be modeled as a graph

G = (S ∪ C,E), where S is a set of server vertices, C is
a set of client vertices, and E is the set of edges. Each
server is equally capable of providing the required service
and each client accesses the service by connecting to any
one of the servers in S. Taking the power grid as an
example, the set S consists of generator nodes that serve
electricity and the set C consists of substation nodes that
receive and distribute it to customers. If any substation
is disconnected from all generators, then it and all of
its customers will lose power. Wireless mesh networks
can also be modeled as client-server graphs where set
S is the small number of gateways that are directly
connected to the Internet, while the set C consists of the
large number of relays that connect to gateways or other
relays. Internet connectivity is established for any given
relay only when there exists some path to a gateway.
Our problem can be formally defined as follows. We

define a service path for a client vertex v as any path
in G that begins at v and ends at some server vertex.
Client v is said to be serviceable if and only if it has a
service path. Let Conn(G) be the number of serviceable
clients in G. Let G"R be the graph G with elements
R ⊆ S ∪ C ∪ E removed; i.e., G " R is the graph that
results when the vertices and edges in R fail1. We focus
on solving the following problem in the context of real
networks.

PROBLEM: MinConn(G,n,m)

• Given: client-server graph G = (S ∪ C,E) and
n,m ∈ R.

• Find: minimum value of Conn(G"(A∪B)), over all
A,B, where A ⊆ C, |A| = n, and B ⊆ E, |B| = m.

Note that MinConn(G,n,m) is simply the number of
serviceable clients in G in the worst scenario of n client
vertex failures and m edge failures.

We also solve a weighted version of the above problem
that we call WeightedMinConn(G,n,m) where each v ∈
C is assigned a weight w[v]. The objective is to minimize
the weighted sum of the serviceable clients in G" (A ∪
B), where A ⊆ C and B ⊆ E, with

∑
v∈A w[v] ≤ n

and |B| = m. The weighted variant of the problem is
1We assume that failed vertices and links cannot be used for
any purpose, and hence may be removed.

useful in our road network analysis where each vertex
represents a geographical area and is weighted by its
population density.

1.2 Our Results
Our main contributions are as follows. We formalize

the notion of vulnerability in client-server networks by
defining the MinConn problem and its weighted vari-
ant. Since solving the MinConn problem exactly is
NP-Hard (see Bissias et al. [10]), we develop algorithms
that derive upper and lower bounds. We provide the
first efficient algorithms for bounding MinConn for both
edge and client vertex removal (separate or combined)
using semidefinite programming and a branch-and-cut
technique. Further, we extend these techniques to large
graphs using a divide-and-conquer technique. Finally,
we demonstrate the wide applicability of our techniques
on real-world data sets, providing quantitative results.

Our real-world analysis includes (i) a residential wire-
less mesh network, (ii) the power grid of the Philippines,
(iii) the Internet AS level graph, and (iv) the highway
systems in Iowa and Michigan. We chose these datasets
for their importance, diversity, and size. In particular,
the AS and highway system graphs are large at over
5,000 and 1,500 vertices, respectively.
For the mesh network, roughly half the relays are

disconnected from all gateways after removing less than
5% of the links, while removing less than 18% of the
relays can disconnect more than 70% of the remaining
relays. For the power grid, removing just over 6% of the
transmission lines will disconnect at least 20% but not
more than 50% of the substations from all generators,
while almost 50% of the substations can be disconnected
from all generators after removing a certain 5% of the
other substations. In the AS graph, even when greater
than 16% of the Tier-2 nodes are removed, more than
half the Internet remains connected. For airport con-
nectivity, after 200 roadblocks are erected it is possible
to disconnect 15% to 50% of the population from ev-
ery airport in Iowa. In Michigan, only 28% to 43% of
the population will maintain airport connectivity after
erecting 300 road blocks.

1.3 Related Work
A traditional approach to studying the vulnerabil-

ity of a complex network is to use graph partitioning
techniques such as finding graph separators of small
width [28]. An α-separator of a graph G = (V,E) is
a collection of either edges or vertices whose removal
separates a graph into two disconnected subgraphs, each
having size at most &(1− α)|V |(. The number of edges
or vertices in the cut is called the separation width. Find-
ing either an α-edge-separator or α-vertex-separator
of minimum width is NP-hard. Bui and Jones have
shown it is NP-hard even to find a good approxima-



tion to the α-separator problem [11]. The objective of
graph separation is to completely partition the graph
into appropriately-sized pieces by removing vertices and
edges. In contrast, our goal is not to partition the graph
completely, but to study the manner in which service
availability degrades as a function of the number of failed
components.
Even though standard graph partitioning does not

appear to be directly applicable, some of the techniques
developed in that context have been key to our approach.
Specifically, Wolkowicz and Zhao [31] developed tech-
niques for using semidefinite programming for graph
partitioning. We utilize some of those ideas in our algo-
rithm, specifically the notion of a lift matrix to represent
our block decomposition of the client-server graph.

Numerous works experimentally evaluate the vulnera-
bility of specific networks or graph families. However,
they do not consider a client-server formulation with a
focus on service availability as we do here. Neither do
they develop algorithms that analyze worst-case failure
scenarios as in our work. Ding et al. [14] used spectral
techniques to decompose the web graph. Magoni and
Zhou et al. [22, 34] independently analyzed the Internet
AS graph and showed that by removing approximately
3% of the ASes (including Tier-1’s and Tier-2’s) the
size of the largest connected component decreases by
a factor of 3. Guillaume et al. [17] evaluated the vul-
nerability of scale free and Erdos-Renyi (ER) graphs
subjected to a randomized link attack. In this context,
they found that scale free graphs have approximately the
same robustness as the ER graphs. Flaxman et al. [15]
provided a framework for strengthening existing graphs
by supplementing them with regular subgraphs. Cohen
et al. [12] provided a modification to classical percolation
theory in order to study the effects of removing vertices
with highest degree, and demonstrated that even though
scale-free graphs are robust to random failure they are
highly sensitive to targeted attack.

1.4 Roadmap
In Section 2, we provide an algorithm that uses semidef-

inite programming (SDP) and branch-and-cut techniques
to bound the values of MinConn(G,n,m) for arbitrary
client-server networks. Further, we apply these tech-
niques to assess the vulnerability of two real-world net-
works: a wireless mesh network and the power grid of
the Philippines. In Section 3, we extend the SDP-based
approach to larger graphs by using a divide-and-conquer
heuristic. Further, we apply this approach to two larger
real-world networks: the Internet AS graph, and the
road networks of Iowa and Michigan. Finally, in Sec-
tion 4, we offer concluding remarks.

2. AN SDP-BASED ALGORITHM
The goal of this section is to derive upper and lower

Block 1: servers 
and clients with 
paths to servers

Block 2:
Clients in com-
ponents with no 
paths to servers.

Block 3:
Clients removed 
from the graph

Figure 1: Separating a Client-Server Graph into blocks

bounds on MinConn(G,n,m) by means of a semidefi-
nite program (SDP). For clarity, the SDP is translated
from a conceptually simple, but numerically unstable,
Quadratically Constrained Quadratic Program (QCQP)
formulation. Fundamental to our approach is a block
representation for G that separates serviceable, non-
serviceable, and entirely removed clients.

2.1 QCQP Formulation
Let A be the adjacency matrix of G = (S ∪ C,E),

and for convenience label V ≡ S ∪ C. Further, for any
V ′ ⊆ V , let G(V ′) denote the induced subgraph of G
whose vertex set is V ′ and whose edge set is the subset
of E consisting of those edges with both ends in V ′.
A block B is any (possibly empty) subset of V such
that G(B) is disconnected from G(V \B), but neither
subgraph G(B) nor G(V \B) are necessarily connected
individually. We designate three blocks B1, B2, and B3,
with |Bi| = bi. The block indicator matrix for G is a
|V |× 3 matrix X, where

X(i, j) =

{
1, node i ∈ Bj

0, otherwise
. (1)

It follows that
∑

i X(i, :) = 1 and
∑

j X(:, j) = bj , where
“:” denotes any cell along that dimension (as in Matlab).

We next seek to frame the MinConn problem in terms
of the three blocks we have created above, illustrated in
Fig. 1. These blocks will correspond to a segmentation
of serviceable, non-serviceable, and removed clients in
G. Specifically, the first block is the server block, to
which all server vertices are fixed, and clients with paths
to these servers are placed. Clients without paths to
servers are placed in the second block. Finally, the third
block is the null block, which is where clients that have
been removed from the graph are placed. The set of
removed vertices and edges are called the vertex and
edge cuts, and they are labeled CV and CE respectively.
We have the following QCQP formulation.

• Given: client-server graph G = (S ∪ C,E) and
n,m ∈ R.

• Find: minimum ‖ X(:, 1) ‖ such that,



(1) X(i, 1) = 1, ∀i ∈ S. (All servers in Block 1)

(2)
∑|V |

i=1

∑3
j=1 X(i, j) ≤ |V |. (Vertex Count)

(3) |CV | ≤ n. (Vertex Cut Size)

(4) |CE | ≤ m. (Edge Cut Size)

(5) X(i, j) ∈ {0, 1} (0–1 property)

Note that CV ≡ B3 so

|CV | =
|V |∑

i=1

X(:, 3). (2)

Finding an expression for |CE | is just a bit more compli-
cated. We begin with a short digression. Vector X(:, j)
indicates the vertex membership of block j. That is
to say, X(i, j) = 1 if vertex i is in block j and is 0
otherwise. For an arbitrary matrix M , the quantity
X(:, j)TMX(:, j) gives the sum of entries in the sub-
matrix indicated by X(:, j). Define D to be the matrix
with row sums of adjacency matrix A along its diagonal,
and further define the Laplacian matrix L = D−A. The
quantity X(:, j)TDX(:, j) gives twice the total number
of edges incident to vertices indicated by X(:, j), and
X(:, j)TAX(:, j) gives twice the number of edges fully
contained in block j. It follows that X(:, j)TLX(:, j)
gives twice the number of edges incident to, but not
fully contained in, block j.
To quantify |CE |, we seek to bound the number of

edges between blocks 1 and 2, that is, all edges connect-
ing the two blocks. This quantity is captured by

|CE | =
1

2

2∑

j=1

X(:, j)TLX(:, j)− 1

2
X(:, 3)TLX(:, 3). (3)

The first term gives the total number of edges that
lie between any of the three blocks. The second term
subtracts the number of edges that pass between the
null block and the others.

2.2 SDP Formulation
The QCQP formulation cannot be solved directly

because there is no mechanism to enforce orthogonality
between block vectors; hence there is no way to force
each vertex into a single partition. Directly enforcing
orthogonality is not possible in a QCQP. Therefore, we
must graduate to a richer language, that of semidefinite
programming. Every semidefinite program with an N ×
N constraint matrix can be solved in time O(N3) [18].
A semidefinite program is any problem of the form

Minimize C • Z subject to A • Z = b and Z - 0,

where A •B = trace(ATB) =
∑

ij AijBij is the Frobe-
nius inner product and Z - 0 indicates that Z is positive
semidefinite.
The Frobenius inner product gives the component-

wise product of two matrices. So, for example, the ijth

entry of A•Z is equal to the product of the ijth entry of
A and the ijth entry of Z. Our goal is to implement each
of the constraints in the QCQP formulation in terms
of a semidefinite optimization variable. To that end,
let vec(X) be the vector formed by concatenating the
columns of X. Furthermore, let

y =

[
1

vec(X)

]
. (4)

Define the lift matrix associated with X as Y = yyT .
Wolcowicz and Zhao [31] were the first to use this repre-
sentation in the context of graph decomposition. First
order terms are found along the first row and column,
while second order terms are easily extracted from the
remainder of the matrix. For notational simplicity, we
number the rows and columns of Y beginning with index
zero. We will also use the function φ(i, j) = i+|V |(j−1),
which maps the entry X(i, j) to its corresponding entry
in vec(X(i, j)). The matrix Y comprises all pairwise
products of block indices of the form X(i1, j1)X(i2, j2),
as well as single indices X(i, j). Term X(i1, j1)X(i2, j2)
indicates that vertex i1 appears in block j1 and vertex
i2 appears in block j2. We have,

Y (φ(i1, j1),φ(i2, j2)) = X(i1, j1)X(i2, j2),

while

Y (0,φ(i1, j1)) = Y (φ(i1, j1), 0) = X(i1, j1).

Now suppose that B(φ(i1, j1),φ(i2, j2)) = β for some
matrix B, then the term βX(i1, j1)X(i2, j2) will appear
in row φ(i1, j1) and column φ(i2, j2) of matrix B • Y .
Constraints can thus be built as scaled single and pair-
wise products of block indices.

THEOREM: There exists an SDP whose solution is
at most the solution of our QCQP formulation.

PROOF: It will suffice to rewrite the objective and
each of the constraints of our QCQP formulation as an
SDP in terms of the lift matrix Y , where Y is relaxed
to the space of all semidefinite matrices. To that end
let ν ≡ |V |, and define 1i×j and 0i×j to be the matrices
of all ones and zeros, respectively, and having size i× j.
The operator diag is defined as in Matlab so that it either
extracts the diagonal of a matrix or forms a diagonal
matrix from a vector. Also, let Ii×i be the identity
matrix of size i × i and the symbol “⊗” denote the
Kronecker Product of two matrices. The following is an
SDP formulation.

PROGRAM: MinConnSDP(G,n,m)
• Given: graph G = (S ∪ C,E) and n,m ∈ R.
• Find: minimum O • Y such that,



(1) Fi1 • Y = 1, ∀i ∈ S. (Servers in Block 1)

(2) S • Y = ν. (Vertex Count)

(3) V • Y = n. (Vertex Cut Size)

(4) E • Y = m. (Edge Cut Size)

(5) Aij • Y = 1, ∀i, j. (0–1 property)

(6) U • Y = 1. (Upper Left Equal 1)

(7) Zi • Y = 1, ∀i. (Sum Vertex Values is 1)

where
- O = diag(

[
0 11×ν 01×2ν

]
)

- S = diag(1|y|×|y|) except that S(0, 0) = 0

- V = diag(
[
0 01×2ν 11×ν

]
)

- E =




0 01×2ν 01×ν

02ν×1
1
2I2×2 ⊗ L 02ν×ν

0ν×ν 0ν×2ν − 1
2L





- Aij = 0|y|×|y| except that Aij(φ(i, j), 0) = 1 and
Aij(φ(i, j),φ(i, j)) = −1

- Fij = 0|y|×|y| except that Fij(φ(i, j),φ(i, j)) = 1

- U = diag(1|y|×|y|) except that U(0, 0) = 1

- Zi = 0|y|×|y| except that Zi(φ(i, j),φ(i, j)) = 1 for
all j ∈ {1, 2, 3}

Constraints for the edge cut and the 0-1 property
were first introduced by Wolcowicz and Zhao [31], but
we have modified the edge cut constraint to subtract
the number of edges passing to the null block. The
last two constraints, in bold, have been introduced for
the purposes of numerical stability: if Y is drawn from
the outer product space of y (from equation 4), then
it should always be the case that Y (0, 0) = 1, and if Y
represents a valid partition, then the sum of diagonal
entries corresponding to the placement of vertex i in
each block should add to 1. Note that when translating
constraints for mathematical programs, it is often nec-
essary to use decompositions that involve simpler and
sometimes redundant (in the space of binary vectors)
constraints. !

2.3 Solving the SDP Formulation
Semidefinite Programs can be solved by standard soft-

ware suites. We use SDPT3 for MATLAB. This yields
a tight lower bound for very small graphs. However, as
the size of the input graph increases, the solver fails to
assign each vertex to a single block. Instead, vertices
are fractionally assigned to all blocks. We address this
issue by fixing a small number of vertices to a single
block as part of a branch-and-cut algorithm. Our entire
solution procedure is as follows.

PROCEDURE: MinConnBC (G,n,m)
• Solve ProgramMinConnSDP(G,n,m) using SDPT3.

• Use branch-and-cut procedure to find a lower bound.

• Derive Upper bound by rounding.

The next section provides the details of this approach.

2.3.1 Lower Bound via Branch and Cut
Let S be the value of the semidefinite programming

solution from Section 2.2. S offers a lower bound on the
optimal solution to MinConn(G,n,m). This bound can
be strengthened by fixing a small set of vertices T , each
to one of the three blocks. In doing so, we move the
semidefinite variable Y closer to being a binary matrix,
which shrinks the search space and ultimately leads to
a tighter bound. On the other hand, we cannot be
certain that the resulting solution is optimal because it’s
possible that the optimal solution does not admit the
placement we have chosen. However, if we evaluate all
|Y |3 possible permutations of vertices T , then we can
be certain that the lowest solution among them is no
greater than optimal.
We choose the vertices of T one-by-one. The first

vertex, v0, is chosen to be that whose placement is most
ambivalent in S — that is, closet to one-third in each
block. For each branch on v0, the next vertex, v1, is
chosen as the most ambivalent vertex assignment in the
given branch. This process is continued until the entire
set T is formed. Any given vertex i is fixed to block j
by adding the constraint Fij • Y = 1 to the SDP. To
stem the exponential growth of solution branches, we
can eliminate any branch that places more than m pairs
of connected vertices in different blocks (not including
the null block).

2.3.2 Upper Bound via Rounding
Our goal is to round some solution matrix Y ∗ from the

solution tree formed via branch-and-cut into a concrete
solution to Problem MinConn(G,n,m). In principle,
any partial solution from the tree is a valid candidate,
but in practice we find it difficult to round most solutions
while simultaneously keeping the objective value low and
satisfying the edge cut constraint. So we try multiple
solution matrices and choose the best rounded solution
among them. The best candidates are those matrices
Y ∗ that are nearly binary, and for small graphs these
are readily found in the solution tree. However, for large
graphs, a binary solution does not emerge immediately,
so we choose the best branches at the last level of the
solution tree and follow them exclusively until a nearly
binary matrix Y ∗ is found.

We now proceed under the assumption that a suitable
matrix Y ∗ has been identified. Given Y ∗, define Z∗ to
be the block matrix formed by extracting the diagonal
of Y ∗ and being fashioned in a manner analogous to
the block matrix X. Matrix Z∗ is therefore an |V |× 3
matrix with each row corresponding to a single vertex
and possessing net weight 1. Entry Z∗(i, b) indicates the
presence of vertex i in block b, which may be fractional.



Rounding Z∗ means rounding each row so that a single
column in that row is equal to 1. This constitutes an
unambiguous assignment for each vertex.
Finally, we apply the Kernighan-Lin Algorithm [28]

to reduce the number of edges in the cut. The the
Kernighan-Lin Algorithm is an iterative procedure that
begins by swapping every possible pair of vertices (v0, v1)
one-at-a-time where v1 is in block 1 and v2 is in block 2.
The pair that lowers the edge cut by the most is chosen
and the vertices in the pair are fixed to their respective
blocks. This procedure is repeated until there are no
unfixed vertices remaining in one or both blocks. This
procedure is attractive because it preserves the objective
value and is known to produce small edge cuts when
the initial partition is a good one. If we branch deeply
enough with Procedure MinConnBC, then we will have
a good initial partition. Unfortunately, it’s difficult to
discover a priori the necessary branch depth.

2.4 Empirical Evaluation
We compared the lower and upper bounds found by

executing Procedure MinConnBC (G,n,m) in two differ-
ent real world networks: a wireless mesh network from
the Net Equality Project and the Philippine Power Grid.

2.4.1 Net Equality Wireless Mesh Network
In the context of a wireless mesh network, vertex re-

moval implies that a relay has been disabled while link
removal implies that the connection between two nodes
has been disrupted. Here, a relay node is a client and
gateway node a server; our trace had no information
about the number of users (laptops, desktops, etc.) con-
nected to clients. We investigated how the number of
serviceable clients decreases as other clients and links
are removed from the network.

The Net Equality Project [3] works to provide Internet
access to low-income communities where residents live
in dwellings within close proximity, such as apartment
complexes. They deploy a small number of gateway
nodes that provide direct access to the Internet and
relatively inexpensive Meraki Mini access points (relays)
around the community, where most relays are multiple
hops from gateways. A resident has access to the Internet
wherever he/she is in range of either a gateway or a relay
that is ultimately connected to a gateway. We analyzed
a snapshot of the Hacienda CDC housing development
taken in 2007. At the time, 69 relays and 2 gateways
were connected by 279 links serving approximately 1,200
residents. We studied the removal of up to 18 clients
and 20 links in the Net Equality Network.

Figure 2 shows the degradation of client serviceability
in the network as links are removed. The blue triangles
give a lower bound on the number of relays connected
to the Internet after the indicated number links have
been removed. Circles in red provide a complimentary
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Figure 2: Wireless mesh connectivity (link removal)

0 5 10 15 200

10

20

30

40

50

60

70

Clients RemovedCl
ie

nt
s 

Co
nn

ec
te

d 
to
 S
er
ve
r 7% 14% 22%

14%

29%

43%

58%

72%

87%

Figure 3: Wireless mesh connectivity (relay removal)

upper bound on the number of serviceable clients. These
values correspond to partial (lower bound) and complete
(upper bound) block assignments for each vertex. Two
major features dominate Figure 2, the first is a severe
drop in client serviceability after allowing 12 links to be
removed. The second is another drop when 19 links can
be removed. These points coincide with events where
large subgraphs are finally disconnected from both gate-
ways. This behavior provides valuable insight into the
fault tolerance and attack vulnerability of the Net Equal-
ity graph. Communication difficulties between a handful
of relays will not usually cause a major disruption, but
degradation is not smooth, in general.

Figure 3 offers a view of client removal. Again, trian-
gles in blue indicate a lower bound on the number of
remaining clients that are serviceable when the given
number of clients have been removed. Circles in red
offer a complimentary upper bound. In contrast to the
link removal problem, client removal exhibits a much
more uniform decline in serviceability. However, while
the rate of deterioration is roughly uniform, it is much
more severe for the same number clients removed as
links. For example, removing 8 clients can disconnect
as many as 39 clients from all servers, while removing 8
links will disconnect no more than 10 clients.
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Figure 4: Power Grid connectivity (link removal)

2.4.2 Philippine Power Grid
We also analyzed a network representing the Power

Grid of the Philippines from 2006 [4]. The Grid com-
prised 44 power generators and 360 substations con-
nected by 796 transmission lines. We modeled the
Grid as a client-server graph with power generators
corresponding to servers, substations corresponding to
clients, and transmission lines corresponding to edges.
We studied, independently, the effect of removing up to
50 transmission lines (links) or 50 substations (clients).
Figure 4 shows how power service degrades as the

number of links removed increases. The lower bound
departs somewhat from the upper, but does serve to
establish that removing as many as 50 of transmission
lines will not disconnect more than 50% of the substa-
tions. On the other hand, the plot also indicates that it
is possible to disconnect roughly 20% of the substations
after removing some 50 transmission lines.

Figure 5 shows client serviceability degradation with
client removal. The most noticeable feature is the greater
impact client removal has on client serviceability com-
pared with link removal. The bounds also depart from
each other more gradually than in the case of link re-
moval. Almost 50% of the substations can be discon-
nected by strategically removing just 20 other substa-
tions ; i.e., removing fewer than 5% of the substations
can leave half the remaining grid without service.

2.5 Topological Influence on Serviceability
Removing one client is always at least a damaging to

serviceability as removing one link, so it makes sense
that client removal is more damaging than link removal
in both the Wireless Mesh and Power Grid networks.
But the Wireless Mesh Network exhibits profound ro-
bustness even after a relatively large quantity of links
have been removed while the Power Grid does not. Upon
examination we find that clients in the former have a
much more rich degree distribution than clients in the
later. Even though the Wireless Mesh Network has just
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20% of the clients as the Power grid, more than half the
clients in the Wireless Mesh network share a link with at
least eight other nodes. In contrast, more than half the
nodes in the Power Grid share four or fewer links with
adjacent nodes. We believe that this dramatic difference
in degree distribution between the two networks is what
develops the significant difference in robustness.

3. AN ALGORITHM FOR LARGE GRAPHS
For large graphs, even the branch-and-cut procedure

MinConnBC will fail because the main component Min-
ConnSDP itself either fails to converge or returns an
extremely weak bound. In this section, we provide an
additional solution to bound MinConn(G,n, 0) that in-
stead uses MinConnSDP as a subroutine in a divide-and-
conquer algorithm. Our approach is the first capable of
providing both upper and lower bounds on connectivity
after vertex removal in graphs with thousands of vertices.
The limitation of this extension is that our analysis does
not apply to edge cuts and it will not work well for every
graph. Success is very topologically dependent.

3.1 A Divide-and-Conquer Solution for Client
Removal

Let G be a client-server graph. Our strategy is to
solve MinConn(G,n, 0) by breaking G into subgraphs
G1, . . . by groups of clients that act as gateways for
other clients. The connectivity properties of subgraph
Gi can be found by solving a series of subproblems of
the form MinConnBC (Gi, ni, 0). Once the connectivity
properties of each subgraph Gi have been quantified, the
solution to MinConn(G,n, 0) is formed by judiciously
choosing those subproblems that render the lowest client-
server connectivity.
Our objective is to count the minimum number of

clients that remain connected to at least one server after
the removal of some fixed number of clients. Therefore,
we seek to count the minimum number of clients that
retain a service path after the removal of some fixed



number of other clients. Generally, the serviceability of
a client can depend on the serviceability of every other
client; but in real world networks, this is rarely the case.
We begin by describing how to isolate the serviceability
of a subgraph in an arbitrary client-server graph.

For arbitrary G = (S∪C,E) define the set of gateways,
Y ⊆ C, as those clients that are adjacent to at least one
server in S. The remaining clients are labeled children
are placed in the child set L. A subset of children, L′,
are said to be siblings when they form a single connected
component after all gateways are removed. For each
set of siblings L′, there is a corresponding subset of
gateways, Y ′ that are adjacent to the children in that
set. We call such a subset Y ′ the gateways of siblings
L′ and conversely, we call siblings L′ the children of
gateways Y ′. Together, the set Y ′ ∪L′ is called a family.
The serviceability of the children in a family depends
entirely on their connectivity to the gateways of that
family.

OBSERVATION: If F is a family in G and c is a child
in F , then c is serviceable iff there is a path from c to
some gateway in F .

According to the above observation, we can decouple
the serviceability of clients in different families. This
leaves us with a divide-and-conquer strategy for solving
MinConn(G,n, 0) as Knapsack Problem.

PROCEDURE: MinConnDC (G,n, 0)
Let G be a client-server graph. Bound the solution to

Problem MinConn(G,n, 0) as follows.
• Form an exhaustive and disjoint decomposition of
G into families F = F1, F2, . . .

• Form the following knapsack-like subproblem. To
each family Fi = (Yi, Li), assign a maximum weight
Wi = |Yi| and unit value multiplier Ui so that for
any quantity, x, of removed clients in Fi, the value
xUi bounds from below the number of clients that
are not serviceable.

• Solve the subproblem for maximum aggregate weight
n where item i corresponds to family Fi, with weight
x ∈ [0,Wi] and value xUi. An upper bound is read-
ily available by means of greedy choice according
to highest unit value. The lower bound is furnished
by Linear Program SelectLP(W,U, n).

PROGRAM: SelectLP(W,U,w)
• Given: weight and value multiplier vectors W and
V , and maximum aggregate weight w.

• Find: maximum
∑
i
X(i) U(i) such that

(1)
∑
i
X(i) ≤ w.

(2) X(i) U(i)−W (i) ≤ 0, ∀i.
(3) X(i) ∈ {0,W (i)}, ∀i.

Next, we derive the maximum weight and unit value
multiplier functions for an arbitrary client-server graph
G. The first step is to decompose G into exhaustive and
disjoint families. We begin by identifying all families in
G, then independently measure how their serviceability
is affected by client removal, and finally combine the
results for each family. Algorithm 1 addresses the first
task for client-server graph G = (S ∪ C,E). In this
algorithm, subroutine NEIGHBORS(G, c) returns the
set of vertices in G that share an edge in E with vertex
c. Subroutine COMPONENTS(G) returns a set of sets
of vertices, with each set of vertices corresponding to a
connected component of G. Subroutine CLOSURE(F)
returns the transitive closure of the union operation
on each set F ∈ F — i.e., subroutine CLOSURE(F)
combines overlapping sets in F until all families in F
are pair-wise disjoint.

Algorithm 1 FAMILIES(G)

1: Y ← ∅ (gateways)
2: for s ∈ S do
3: Y ← Y ∪NEIGHBORS(G, s)
4: end for
5: L ← C \Y (children)
6: B ← COMPONENTS(G(L)) (siblings)
7: F ← ∅ (families)
8: for B ∈ B do
9: F ← ∅

10: for b ∈ B do
11: F ← F ∪NEIGHBORS(G(L ∪ Y ), b) ∪ {b}
12: end for
13: F ← F ∪ {F}
14: end for
15: return CLOSURE(F)

Lines 1–4 are devoted to delineating two sets Y and L,
which contain all gateways and children respectively. In
line 6, families of G are initially formed as the connected
components of the subgraph of G induced by the set of
all children L. In lines 8–14, each family is enlarged to
include the gateways for each set of siblings. Finally, in
line 15, we combine families that share common gateways
so that each family is disjoint from every other family.

Let F be the set of all families in G as constructed by
Algorithm 1. We next seek to characterize the service-
ability of each family F ∈ F by a pair of numbers: the
maximum weight and the unit value multiplier, which
we label W (F ) and U(F ) respectively. The maximum
weight will be equal to the number of clients that must
be removed in order to completely disconnect F from
every server, and the unit value multiplier will be for-
mulated so that x U(F ) bounds from above the number
of non-serviceable clients in F after the removal of any
x clients. The maximum weight of family F is always
equal to the number of gateways in F because on the one



Algorithm 2 MULTIPLIER(Y, L)

1: if L ≡ ∅ or |Y | ≡ 1 then
2: return |Y ∪ L| / |Y |
3: end if
4: x ← |Y |, y ← |L|, U ← y/x (best initial guess)
5: P ← POWER(Y)
6: for P ∈ P do
7: for i = 1 to |Y |− |P | do
8: r ← MinnConnSDP(G(Y ∪ L)" P, i, 0)
9: y∗ ← y − r (clients out of service)

10: x∗ ← i+ |P | (clients removed)
11: if x∗ ∗ U < y∗ then
12: U ← y∗/x∗ (choose highest ratio)
13: end if
14: end for
15: end for
16: return U

hand, there is no way to indirectly disconnect a gateway
from all servers (which bounds W (F ) from below), and
on the other hand, every child in F must ultimately con-
tain at least one gateway on every service path (which
bounds W (F ) from above). Constructing the unit value
multiplier is more difficult because there are many ways
to remove clients in F and we must take care to find
the most damaging combination for each quantity on
the interval [1, . . . ,W (F )]. Algorithm 2 shows how to
construct U(F ) for an arbitrary F and according to
our requirement that U(F ) yield an upper bound on
non-serviceability. The subroutine POWER(Y ) returns
the power set of set Y .
Algorithm 2 begins by testing for trivial cases where

we can immediately identify the unit value multiplier.
For all other cases (line 4), we begin by setting the mul-
tiplier to the most obvious ratio where all gateways are
removed. It is possible that a better solution exists, and
by iterating on all possible subproblems of this family,
we progressively refine this choice of unit value multi-
plier. Line 8 finds the solution to each subproblem by
running it through MinConnSDP(G,n, 0). Note that
in Section 2, we worked with relatively large graphs
that did not immediately yield a strong solution to the
semidefinite program, and therefore required Procedure
MinConnBC for strengthening the result. For the sub-
problems in Algorithm 2, however, we find that the
problems are small enough that further analysis is not
necessary. The solution to MinConnSDP(G,n, 0) gives
a lower bound on the number of clients that remain ser-
viceable after removing some n clients. For y∗, however,
we require an upper bound on the total number of clients
that are removed from service after removing n clients.
Line 9 reverses the output from MinConnSDP from
number of clients connected to number disconnected.
The remaining lines replace the old multiplier value only

if the new value is greater.

3.1.1 Managing Subproblem Size
Algorithm 2 iterates over the power set of Y . This

set becomes quite large for even small sets, so we aim
to keep the number of gateways at 5 or fewer. However,
we continue to require that families remain pair-wise
disjoint, so we must find a way to split families with
large gateway sets. For the purpose of creating a lower
bound on MinConn(G,n, 0), it’s clear that removing
edges will only lower the value of the solution and will
not jeopardize the bound. So, we judiciously choose
edges to remove so that there are 5 or fewer gateways
corresponding to each family in the new graph. Since
we are dealing with relatively small subgraphs, a simple
spectral approach will suffice.
Ding et. al [14] showed how to use the eigenvector

corresponding to the second smallest eigenvalue of the
Laplacian Matrix of a graph to find nearly-disconnected
components of that graph. Consider the graph H =
G(F ) for any family F . The spectrum of the Laplacian
of H has one eigenvalue equal to 0 for each connected
component in H. In this case, zero-valued eigenvalues
are the smallest because the Laplacian is always real and
symmetric so its eigenvalues are always non-negative.
Any eigenvector belonging to a 0 eigenvalue will have
the same value for all indices that correspond to vertices
in the same connected component. Matrix perturbation
theory predicts that graphs that have nearly discon-
nected components will show similar eigenvector values
between indices corresponding to vertices in each compo-
nent when considering the eigenvector corresponding to
the second smallest eigenvalue. The following procedure
outlines the steps that we took to to break families with
large gateway sets into groups of families with no more
than 5 gateways.
Let F = (Y, L) be a family in client-server graph

G and define subroutine EIGENVECTOR(H) to be a
function that returns the eigenvector corresponding to
the second smallest eigenvalue of the Laplacian of H . If
|Y | > 5, it can be disassembled with the following steps.

• Compute x ← EIGENVECTOR(G(F ))

• Let k =
⌈
|Y |/5

⌉
, and break Y into k subsets labeled

Y1, . . . , Yk where |Yi| = 5 for i < k and |Yk| =
|Y |− 5(k − 1).

• Assign clients of Y to one of the subsets so that
clients in the same subset have similar entries in
eigenvector x.

• Create k new families F1, . . . , Fk so that family Fi

has set Yi as its gateways, and create child sets Li

for each family Fi with Li initially empty.

• Assign each child in L to the family Fi whose av-
erage eigenvector entry matches closest to its own
eigenvector entry.
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Figure 6: AS graph connectivity

3.2 Evaluation on the Internet AS Graph
Our first evaluation is on a snapshot of the Internet

at the Autonomous Systems (AS) level taken by the
CAIDA project in April 2005 [13]. Their taxonomy
identifies inferred Tier-1 and Tier-2 ASes. We create
a client-server graph with Tier-1 and Tier-2 ASes la-
beled as servers and clients, respectively, and with an
edge set derived from the corresponding list of peering
relationships. We assume that the Tier-1 AS Internet
backbone remains fully intact, but that Tier-2 ASes are
vulnerable to removal due to attack or administrative-
level disenfranchisement. We don’t claim that this is
the most likely attack on the Internet; we present it as
a means of understanding how node removal at the edge
of the Internet influences overall connectivity.

Let G denote the client-server graph that models the
AS graph. We use MinConnDC to compute upper and
lower bounds on MinConn(G,n, 0) for various values
of n. Figure 6 shows the results where the number of
clients removed (n) varies from 0 to 2,500 in increments
of 50. The blue curve in triangles is the lower bound
delivered as the solution to our knapsack problem. The
red curve in circles is an upper bound developed by
actually removing from G those client vertices identified
by the knapsack solution.

In contrast to the performance ofMinConnBC (G,n, 0)
from Section 2, the Knapsack solution has somewhat
weak performance for small values of n, but tightens
considerably for larger values. The initial weaker per-
formance can be attributed to the error introduced by
splitting families with large gateway sets. Algorithm 1
returned 2,759 families total, and among those there
were 9 that had more than 5 gateways vertices. The
largest set was found in one family that had 292 gate-
ways. The rest had fewer than 30 gateways. By splitting
the largest gateway set almost 60 times we introduced
error. Unfortunately, it’s difficult to predicta priori how
much error will be introduced by splitting families with
large gateway sets.

The lower bound makes it seem easier to disconnect
service paths to a larger number of clients than is actually
possible. However, once n is large enough that this large
gateway set can actually be removed, the upper bound
settles close to the lower. We believe that this type of
tradeoff will be typical when applying MinConnDC to
any client-server graph with such a hierarchical structure.
Accuracy will largely depend on the extent to which the
graph can be decomposed into families with the small
gateway sets.
In our analysis we identified a small handful of fami-

lies responsible for almost all of the complexity in the
graph. They had large gateways sets and large sets of
children. The remaining families had small gateway sets
and small sets of children. They appear as commodi-
ties to the knapsack algorithm. Overall, the AS graph
exhibits strong serviceability in the face of significant
deterioration of Tier-2 clients. Even when 900 (> 16%)
Tier-2 clients are removed, better than half the Internet
remains in service. This result appears in sharp contrast
to research outlined in Section 1.3 where both Tier 1 and
Tier 2 nodes can be removed. There, far fewer than 50%
of all nodes remain in the connected component even
when only 3% of the nodes have been removed [22,34].

3.3 Evaluation on Airport Connectivity
We next consider airport connectivity in the states of

Iowa and Michigan. To do so, we began by obtaining
U.S. highway information from the Oak Ridge National
Laboratory [2]. These were found in a single large file
composed of more than 200K different routes in North
America. Each route was delineated by a sequence
of coordinates. We call these coordinates waypoints.
From the Socioeconomic Data and Applications Center
(SEDAC) [1], we obtained population density estimates
from the 2000 Census that are accurate to within several
hundred meters. We chose airports as only an example
of critical infrastructure, and as in our above cases, there
are limitations to our analysis. We make the simplifying
assumption that each airport is equally resourceful. We
also do not claim this is the most effective attack on
infrastructure, but it does server to bound the severity of
a particular kind of coordinated attack on a very import
piece of national infrastructure.
For each state, we extracted the routes and corre-

sponding waypoints that fall within the bounding box
containing that state. A graph representing the highway
connectivity of each state was then generated by creat-
ing a client vertex for each waypoint and an edge for
any two adjacent waypoints in a given route. Because
one route will often end at the beginning of another, we
consolidated waypoints that were within 100 meters of
each other into a single vertex. Our next step was to
create a server vertex for each airport, which we linked
to all waypoints within a (roughly) six-mile radius. The
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coordinates for airports in these states were found at
the data warehouse site socrata.com [5]. The final step
in graph construction was to assign a value to each way-
point corresponding to the estimated population density
near that point using the SEDAC data. Since people
might arrive at an initial waypoint near their place of
residence by means other than automobile, we averaged
the measured population density between all waypoints
within approximately 15 miles of each other and assigned
each waypoint a value corresponding to this population
density. This means that the sum of all waypoint values
in a given state is approximately equal to the population
of that state. Figure 7 shows all the routes used for each
state as well as the available airports.
Our construction yielded a client-server graph with

clients corresponding to waypoints in the given state and
whose value was approximately equal to the portion of
the state’s population residing near the waypoint. Our
objective was to bound the quantity of people who main-
tain highway access to any airport after the removal
of some fixed number of waypoints. We imagine that
the waypoints are removed by either natural disaster of
coordinated attack. We constructed a solution to the
WeightedMinConn Problem for this scenario by modi-
fying MinConnDC as follows: i) client values were in-
corporated by first modifying Algorithm MULTIPLIER
to return the highest ratio of client values to gateways
removed, ii) the objective function of Program Min-
ConnSDP was altered to minimize the aggregate value
of connected clients.

3.3.1 Iowa
To apply our WeightedMinConn solution, we con-

structed a client-server graph corresponding to the state
of Iowa. The boundary of the state was delineated by the
coordinates (-104.3701,42.6738) and (-96.2842,46.1566).
In total there were 1947 waypoints and 272 airports.
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Figure 8: Airport connectivity in Iowa

Algorithm FAMILIES returned 493 families total with
just three families having more than 5 gateways. They
had gateway sizes 8, 19, and 501. Breaking the family
with 501 gateways into 101 subfamilies was the main
source of error. It causes the lower bound to retreat sub-
stantially from the upper for small numbers of removed
waypoints.

Figure 8 shows that despite the somewhat loose agree-
ment between upper and lower bounds, we can still
draw interesting conclusions about how airport access
degrades with waypoint removal. For example, when
just 200 waypoints (approximately 10%) are blocked,
it is possible to disconnect at least 500K (15%) people
from every airport, but no more than 1.7M (50%) can
possibly be disconnected. There is also a sudden drop in
the upper bound after approximately 575 waypoints are
removed. This is the point when the largest family (the
one that began with 501 gateways) is finally completely
disconnected. It’s a critical point where the number of
people connected drops by about 500K.

3.3.2 Michigan
We performed similar analysis for the state of Michi-

gan where the corresponding client-server graph con-
tained 2207 waypoints and 285 airports. We chose
to focus on the lower peninsula of Michigan (the mit-
ten) bounded by the coordinates (-87.4072,41.5327) and
(-82.2656,45.7593). After applying Algorithm FAMI-
LIES, there were 806 families total with 15 having more
than 5 gateway vertices. The three largest gateway sets
were 129, 112, and 53. All other families had fewer than
25 gateways. Figure 9 shows how airport connectivity
degraded with waypoint removal. Again, the families
with large gateway sets were the major source of error
in the lower bound. They forced a large gap between up-
per and lower bounds for up to 300 removed waypoints.
Subsequently, the bounds tightened significantly.

From the plot we can see that no more than 4.3 million
people (43%) will maintain airport connectivity after 300
waypoints have been removed, and it’s possible that as
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few as 2.8 million (28%) will maintain connectivity. In
other words, at least half the residents of Michigan will
lose airport access if fewer than 14% of the waypoints
are removed.

4. CONCLUSION
We have introduced an intuitive model, the client-

server graph, that is capable of describing many real-
world networks more richly than its predecessors. We
have also introduced the Problem MinConn, which at-
tempts to quantify the minimum number of client ver-
tices connected to a server after either edge or client
removal. Our framing of, and solution to, this problem
is preferable to existing techniques, such as localized
heuristics and graph separators, because it offers con-
crete bounds for edge, vertex and mixed edge-vertex re-
moval in any graph, and it also differentiates between re-
source providers (servers) and consumers (clients). Our
methods are also easily extended to find the minimum
aggregate weight of serviceable clients after weighted
client removal. Finally, our solution leverages a graph’s
topology to provide bounds for large graphs, a domain
where other techniques often fall short.

We used our solution to MinConn to demonstrate
how client serviceability degrades in various real-world
networks. This analysis enabled us to see that the sparse
connectivity of the Philippine Power Grid makes it much
more susceptible to link attack than the relatively dense
Net Equality Wireless Mesh Network. We also saw
that the Internet AS level graph is reasonably robust to
attacks on the edge of the network. Lastly, we showed
that coordinated attacks on the highway systems in Iowa
and Michigan could impose large-scale limitations on
personal mobility.
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