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Abstract. This paper proves tight bounds on the bisection width and expansion of
butterfly networks with and without wraparound. We show that the bisection width
of ann-input butterfly network is 2(

√
2−1)n+o(n) ≈ 0.82n without wraparound,

andn with wraparound. The former result is surprising, since it contradicts the prior
“folklore” belief that the bisection width isn. We also show that every set ofk nodes
has at least(k/(2 logk))(1−o(1)) neighbors in a butterfly without wraparound, and
at least(k/ logk)(1− o(1)) neighbors in a butterfly with wraparound, ifk is o(

√
n)

ando(n), respectively.
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1. Introduction

This paper analyzes the bisection width and expansion of a network called abutterfly.
This network has been studied extensively and it, or one of its variants, has served as the
routing network in several parallel computers and ATM switches. Surprisingly, however,
the precise values of the butterfly’s bisection width and expansion were not previously
known. This paper proves upper and lower bounds on these parameters that are tight up
to low-order additive terms.

1.1. The Butterfly and Cube-Connected Cycles Networks

Throughout this paper we use the following terminology to describe butterfly networks.
The(logn)-dimensional butterflyBn hasN = n(logn+ 1) nodes arranged in logn+ 1
levels ofn nodes each. (All logarithms in this paper are base 2.) Each node has a distinct
label〈w, i 〉 wherei is the level of the node (0≤ i ≤ logn) andw is a(logn)-bit binary
number drawn from{0,1}logn that denotes thecolumnof the node. All nodes of the form
〈w, i 〉, 0≤ i ≤ logn, are said to belong to columnw. Similarly, thei th levelLi consists
of all of the nodes〈w, i 〉, wherew ranges over all(logn)-bit binary numbers. For the
purposes of this paper, the edges in the network are undirected. Two nodes〈w, i 〉 and
〈w′, i ′〉 are linked by an undirected edge ifi ′ = i +1 and eitherw andw′ are identical or
w andw′ differ only in the bit in positioni ′. (The bit positions are numbered 1 through
logn, the most significant bit being numbered 1.) The nodes on level 0 are called theinput
nodesor just inputsof the network, and the nodes on level logn are called theoutput
nodesor justoutputs. The 32-node butterfly networkB8 (N = 32,n = 8, logn = 3) is
shown in Figure 1.

Sometimes the level 0 and logn nodes in each column are assumed to be the same
node. In this case the butterfly is said towrap aroundor to havewraparound. We useWn

to denote the(logn)-dimensional butterfly with wraparound. This network hasn logn
nodes.
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Fig. 1. The 32-node butterfly networkB8.
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A number of properties of butterfly networks were known prior to our work. For
example, it is not difficult to show that the diameter ofBn is 2 logn, and the diameter of
Wn is b(3 logn)/2c, where thediameterof a network is the maximum, over all pairs of
nodesu andv, of the length, in edges, of the shortest path betweenu andv. Also, the VLSI
layout area ofBn is (1± o(1))n2 [3] and the layout area ofWn is2(n2). (The leading
constant in the layout area ofWn is not known). Furthermore, the three-dimensional
layout volumes ofBn andWn are2(n3/2) [16].

A network closely related to the butterfly is thecube-connected cycles[24]. A logn-
dimensional cube-connected cycles networkCCCn consists ofn cycles, each containing
logn nodes. Each cycle has a distinct(logn)-bit label, and within a cycle each node is
labeled with its position, a number between 1 and logn, inclusive. Taken together, these
labels give each node a distinct label〈w, i 〉, wherew is the label of its cycle, andi is its
position in the cycle. Two nodes in different cycles are connected by an edge if and only
if they share the same positioni within their respective cycles, and their cycle labels
differ only in the bit in positioni . That is, two nodes〈w, i 〉 and〈w′, i 〉 are connected if
w andw′ differ in bit positioni .

1.2. Bisection Width

The bisection widthof an N-node networkG = (V, E) is defined as follows. Acut
(S, S̄) of G is a partition of its nodes into two setsS and S̄, whereS̄= V − S. While
this definition of a cut is given in terms of the nodes ofG rather than its edges, it is often
helpful to think of the cut(S, S̄) as the set of all (undirected) edges with one endpoint
in S and the other in̄S. We call these thecut edgesand say that theycrossthe cut. The
capacityof a cut,C(S, S̄), is the number of cut edges. We also say that the removal of
the cut edges partitionsG into S andS̄, meaning that in the network that remains after
these edges are removed fromG, no edge connects a node inS to a node inS̄. It is
important to note, however, that two distinct cuts may have the same set of cut edges, so
the two notions of a cut are not always equivalent. (As an example, in a network with
k > 1 connected components, 2k distinct cuts share the empty set as their set of cut
edges.) Hence some care is required when viewing a cut as a set of edges and vice versa.
A bisectionof a network is a cut(S, S̄) such that|S| ≤ dN/2e and|S̄| ≤ dN/2e. The
bisection width BW(G) is the minimum, over all bisections(S, S̄), of C(S, S̄). In other
words, the bisection width is the minimum number of edges that must be removed from
the network in order to partition its nodes into two equal-sized sets (to within one node).

The bisection width of a network is an important indicator of its power as a com-
munications network. As an example, suppose that anN-node networkG is used to
route messages between the processors in a general-purpose parallel computer, with one
processor attached to each node. If each processor sends a message to another processor
chosen uniformly at random, then the expected number of messages that cross the bisec-
tion, in each direction, isN/4. Assuming that each edge of the network can transmit one
message (in each direction) in one time step, the time required by the network to route
the messages is at leastN/(4BW(G)). Hence, the smaller the bisection width, the longer
it will take to route the messages. Along these lines, in [7], [13], and [14], a network’s
bandwidth(also calledcapacity) is defined in terms of its ability to route messages with
random destinations. We omit the precise definition of bandwidth here. In [13] the exact
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bandwidth of then-input butterfly is shown to be 2n, while in [7] tight bounds on the
bandwidths of various other networks are proved. Using an argument similar to the one
above, both of these papers prove that the bandwidth of a network cannot exceed four
times its bisection width, although the definition of the bisection width of the butterfly
given in [13] differs slightly from the definition given here in two respects. First, in [13]
every edge connecting a node on leveli with a node on leveli + 1 (for any i ≥ 0) is
directedfrom leveli to leveli +1, whereas here all edges are undirected. Second, in [13]
the bisection width is defined as the minimum, over all cuts(S, S̄) such thatScontains
at leastn/2 inputs andS̄ contains at leastn/2 outputs, of the number of directed edges
from S to S̄. Thus, the upper bound on bandwidth in terms of bisection width combined
with the exact bandwidth of the butterfly yields a lower bound ofn/2 on the bisection
width, i.e., the number of directed edges needed to separaten/2 inputs fromn/2 outputs.
Furthermore, the cut{S, S̄} in which S is the set of nodes whose column numbers begin
with 0 achieves this bound. This result in similar in spirit to our Lemma 3.1.

In addition to the routing example, there are a large number of problems for which
it is possible to prove some lower bound,I , on the number of messages that must cross
any bisection of a parallel machine in order to solve the problem [28]. In each case,
I /(BW(G)) is a lower bound on the time,T , to solve the problem.

The bisection width of a network also gives a lower bound on the VLSI layout area,
A, of a networkG. In particular, Thompson proved thatA ≥ (BW(G))2 [28]. Combining
this inequality with the inequalityT2 ≥ (I /BW(G))2 for any particular problem yields
the so-called “AT2” boundAT2 ≥ Ä(I 2). (See [28].)

1.3. Expansion

The expansionof a networkG is defined as follows. Theedge expansionof a set of
nodes,S, is C(S, S̄), i.e., the number of edges in the cut that separatesS from the rest
of the network. We define theedge-expansion function EE(G, k) of the network to be

EE(G, k) = min
S: |S|=k

C(S, S̄)

for 1 ≤ k ≤ N. In other words, the edge expansion function specifies, for eachk, the
minimum number of edges that must be removed to isolate a set ofk nodes from the rest
of the network.

The set of neighborsN (S) of a setS are the nodes in̄S that are adjacent to nodes
in S, i.e.,

N (S) = {v ∈ S̄ | ∃u ∈ S, (u, v) ∈ E}.
Thenode expansionof a setS is |N (S)|. We say that a networkG hasnode-expansion
function NE(G, k) if, for 1 ≤ k ≤ N,

NE(G, k) = min
S: |S|=k

|N (S)|.

In other words, the node expansion function specifies, for eachk, the smallest number
of neighbors possessed by any set ofk nodes.

The expansion of a networkG is an indicator of the speed at which information
can be disseminated inG. In particular, if each node in a set ofk nodes holds a small
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piece of information, they can increase the number of nodes holding the information
to k + NE(G, k) in a single step. Several load-balancing algorithms exploiting this
property are reported in [8]. The expansion function can also be used to compare the
computational powers of different networks. In particular, a difference in the expansion
functions of a guest network and a host network has been used to prove lower bounds
on the inefficiency of any emulation of the guest by the host [12], [25]. Finally, we
observe that the onlyN-node bounded-degree networks known to be capable of routing
and sorting deterministically inO(log N) time are those that incorporate some form of
expansion (i.e., expansion functions of the formNE(G, k) ≥ (1+ ε)k, for some fixed
ε > 0) into their structures [1], [2], [17], [19], [29].

1.4. Lower Bounds Based on Embeddings

Lower bounds on the bisection width and expansion of anN-node networkH can often
be proved byembeddingthe complete graphG = KN into H . In general, an embedding
of a guestnetworkG into ahostnetworkH is a mapping of nodes ofG to nodes ofH
and edges ofG to paths inH . The load l of an embedding is the maximum number of
nodes ofG mapped to any one node ofH . Thecongestion cof the embedding is the
maximum number of paths (corresponding to edges inG) that cross any one edge of
H . Thedilation d of an embedding is the length of the longest path. In proving lower
bounds on bisection width and expansion, the chosen embedding typically has load 1,
and routes the same number of paths,c, across each edge ofH .

Given an embedding ofKN into H with load 1 and congestionc, a lower bound on
BW(H) is computed as follows. Let(A, Ā) be a bisection ofH with capacityC(A, Ā) =
BW(H). Then removing the edges fromKN whose paths cross(A, Ā) yields a bisection
of KN with capacity at mostc ·BW(H). SinceBW(KN) = N2/4, we havec ·BW(H) ≥
N2/4, and henceBW(H) ≥ N2/4c. This approach readily yieldsÄ(n) lower bounds
on the bisection widths ofBn andWn, but without tight leading constants.

The same technique can be used to prove lower bounds on the edge expansion of
a network. Suppose thatKN is embedded inH with load 1 and congestionc. Let A
be a set ofk nodes inH such thatC(A, Ā) = EE(H, k). For each of theEE(KN, k)
edges leading out of the corresponding set inKN , a path must be routed out ofA in
H . Thus, we must havec · C(A, Ā) ≥ EE(KN, k). Since the edge expansion ofKN is
EE(KN, k) = k(N − k), we haveEE(H, k) = C(A, Ā) ≥ k(N − k)/c. Fork ≤ N/2,
we haveEE(H, k) ≥ kN/2c.

Prior to our work some bounds onBW(Bn) were known, andBW(Wn) had been
analyzed exactly. It is not difficult to show thatBW(Bn) ≤ n andBW(Wn) ≤ n: partition
the columns into those whose numbers start with a 0 and those whose numbers start with
a 1. Similarly,BW(CCCn) ≤ n/2. For the cube-connected cycles network, Manabe et
al. [20] proved the converse, namelyBW(CCCn) ≥ n/2. (This paper appears only in
Japanese, however!) The same approach can be used to show thatBW(Wn) ≥ n. Hence
BW(CCCn) = n/2 andBW(Wn) = n.

It is more difficult to prove an exact bound on the bisection width of the butterfly
without wraparound,Bn, because it does not possess the same degree of symmetry as
CCCn andWn. For example, the nodes on level 0 ofBn have two neighbors while those
on level 1 have four, whereas inWn every node has four neighbors. Prior to our work,
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BW(Bn) was known to be at leastn/2. This lower bound is proved by embedding the
graph 2KN into Bn, where 2KN is a variant of the complete graph in which any two nodes
are connected bytwoparallel edges. There is an embedding of 2KN = 2Kn(logn+1) into
Bn with load 1 and congestionn(logn+1)2. SinceBW(2Kn(logn+1)) = (n(logn+1))2/2,
BW(Bn) ≥ n/2.

These embeddings also imply that the edge expansion functions ofBn andWn satisfy
EE(Bn, k) = Ä(k/ logn) andEE(Wn, k) = Ä(k/ logn), for k ≤ N/2.

1.5. Related Networks

Another network closely related to the butterfly is the Beneˇs network. A(logn)-dimen-
sional Beneˇs network consists of two back-to-back(logn)-dimensional butterfliesBn

andB′n, where thei th node on level logn of Bn is identified with thei th node on level
logn of B′n. The nodes on level 0 ofBn are called the input nodes of the Beneˇs network,
and the nodes on level 0 ofB′n are called the output nodes. Typically each input node is
viewed as having two input ports (i.e., connections for edges), and each output node is
viewed as having two output ports. The Beneˇs network is calledrearrangeablebecause
it is possible to route edge-disjoint paths between its 2n input ports and 2n output ports
in any permutation [5], [6], [30].

In addition to the cube-connected cycles and Beneˇs networks, the butterfly has
been shown to be closely related to the hypercube and other bounded-degree variants of
the hypercube, including the shuffle-exchange network and the de Bruijn network. For
example, it is not difficult to prove that anN-node butterfly network can be embedded
in anN-node hypercube with constant load, congestion, and dilation. In fact, Greenberg
et al. [10] proved that, for some sizes ofN, the butterfly network is a subgraph of
the hypercube. Also, Schwabe [12], [26] showed that anN-node butterfly network can
emulateT steps of any computation of anN-node shuffle-exchange network (or de
Bruijn network) inO(T) steps, and vice versa.

More information about the structural and algorithmic properties of butterflies can
be found in the book by Leighton [15]. Some of the parallel computers that use butterfly
networks or its variants are described in [4], [9], [21]–[23]. Many network emulations
are described in [12] and [18].

1.6. Our Results

We begin in Section 2 by proving that the bisection width of then-input butterfly network
without wraparound,Bn, is 2(

√
2−1)n+o(n). We show how to construct such a bisection

and prove that no bisection is smaller. This result is surprising, because it contradicts the
prior folklore belief that the bisection width isn. Next, in Section 3 we present an original
proof that the bisection width of the butterfly with wraparound,Wn, is n. Although this
result was proved previously by Manabe et al. [20], we include our proof because there is
no English-language proof of this result in the literature. In Section 4 we prove upper and
lower bounds on the edge- and node-expansion functions ofWn and Bn. For example,
we show that every set ofk nodes inBn has at least(k/(2 logk))(1− o(1)) neighbors,
for k = o(

√
n). Several similar results were previously known. For example, Snir [27]

proved tight bounds on the edge-expansion function for another variant of the butterfly
network, which he callsÄn, that can be derived fromBn/2 by providing each input node
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in Bn/2 with a pair of input ports and each output node with a pair of output ports. These
ports are technically not edges, as they do not connect pairs of nodes inBn/2, but for the
purposes of calculating the edge expansion function, these ports are counted as edges.
In particular,EE(Än, k) is defined as

EE(Än, k) = min
S: |S|=k

C(S, S̄)+ 2|L0 ∩ S| + 2|L(logn)−1 ∩ S|.

Let Sbe any set of nodes inÄn, and letC = C(S, S̄)+2|L0∩ S| +2|L(logn)−1∩ S| and
k = |S|. Snir showed thatC logC ≥ 4k. This translates to the lower boundEE(Än, k) ≥
(4−o(1))k/logk, which is similar to the boundEE(Wn, k) ≥ (4−o(1))k/ logk that we
prove in Section 4. Note that Snir’s bound holds for allk whereas ours holds only for
k = o(n). This is the result of counting the input and output ports in the edge expansion
function forÄn; notice thatEE(Än, |Än|) = 4n, whereasEE(Wn, |Wn|) = 0. Hong and
Kung [11] prove a bound for yet another variant ofBn. TheirFFTn graph can be derived
from Bn by adding a single input port to each input node and a single output port to
each output node. They prove that if, for a setS of k nodes, there is a (not necessarily
disjoint) setD of nodes such that every path from an input port toS passes through a
node inD, thenk ≤ 2|D| log|D|. This bound roughly corresponds to the lower bound
NE(Bn, k) ≥ ( 1

2 − o(1))k/ logk that we prove in Section 4.

2. The Bisection Width of the Butterfly

In this section we show that the bisection width of the butterfly,BW(Bn), satisfies 2(
√

2−
1)n < BW(Bn) ≤ 2(

√
2− 1)n+ o(n).

We reach this result as follows. We begin by introducing a highly symmetric network,
the mesh of stars, and an embedding of the butterfly into this network. We use the
embedding and the (as of yet unknown) bisection width of the mesh of stars to establish
tight lower and upper bounds onBW(Bn). We conclude by computing the bisection
width of the mesh of stars.

What follows is a list of properties of the butterfly that we use in our constructions;
most of these properties are well known and are given with no proof. Note thatn, the
number of inputs in a butterfly, is always a power of 2.

Lemma 2.1. There is an automorphism of Bn (i.e., an embedding of Bn into Bn with
load1, congestion1, and dilation1) that maps each level Li onto Llogn−i .

Lemma 2.2. Letv andv′ be two nodes on the same level of Bn. Then there is a level-
preserving automorphismπ of Bn such thatπ(v) = v′. Moreover, let {v,u} and{v′,u′}
be two edges of Bn such thatv andv′ are on the same level and u and u′ are on the same
level. Then there is a level-preserving automorphismπ of Bn such thatπ(v) = v′ and
π(u) = u′.

Let p be a path through the butterfly. We callp monotonicif p visits any level at
most once.
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Lemma 2.3. Letv and u be nodes of Bn, v ∈ L0 and u∈ L logn. Then there is exactly
one monotonic path linkingv and u.

For 0≤ i ≤ j ≤ logn, let Bn[i, j ] denote the subgraph ofBn induced by levels
Li , Li+1, . . . , L j .

Lemma 2.4. Let0≤ i ≤ j ≤ logn. Then Bn[i, j ] has n/2 j−i connected components;
each component is isomorphic to B2 j−i ; and the kth level of each component is a subset
of the nodes on the(i + k)th level of Bn.

Lemma 2.5. Let n> 1. Then there is a partition of L0, the first level of Bn, into two
disjoint sets, I and O, each of cardinality n/2 such that if we assign two distinct “input
ports” to each node of I and two distinct “output ports” to each node of O, then the
resulting network is rearrangeable. That is, for any bijection of the input ports to the
output ports there is a set of n edge-disjoint paths that link each input port with its image
output port.

Proof. The Beneˇs network is rearrangeable and there is an embedding of a((logn)−1)-
dimensional Beneˇs network intoBn with load 1, congestion 1, and dilation 3. This
embedding maps theI andO nodes of the Beneˇs network ontoL0.

We say that a subset of nodesU is compactin a networkG if for any given cut ofG
we can move all ofU to one side of the cut without increasing its capacity. Formally, let
G = 〈V, E〉 be a network andU ⊆ V . ThenU is compact inG if for any cutg = (A, Ā)
of G there is a cutg′ = (A′, A′) (possiblyg = g′) such that

(1) eitherU ⊆ A′ or U ⊆ A′,
(2) A∩ (V −U ) = A′ ∩ (V −U ), and
(3) C(g′) ≤ C(g).

Lemma 2.6. U is compact in G if U is compact in the subgraph of G induced by
U ∪N (U ).

Proof. Follows from the definition of compact.

Lemma 2.7. Let U be a compact set of nodes in a network G. Then every connected
component induced in G by U is also compact.

Proof. Let U1,U2, . . . ,Un be the connected components ofU in G. Assume by con-
tradiction thatU1 is not compact inG, and letg = (A, Ā) be a cut ofG that partitions
U1 so that moving all of the vertices ofU1 into eitherA or Ā increases the capacity of
the cut. SinceN (U1) does not contain any nodes inU , the partition of the remaining
connected components ofU by the cutg does not affectU1’s contribution towardC(g).
In particular, ifU −U1 is moved entirely into eitherA or Ā, we obtain a new cut whose
capacity (which might be larger than that ofg) is made larger by movingU1 entirely
into either side of the cut, and thusU is not compact, a contradiction.
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Lemma 2.8. Let G= Bn and U=⋃logn
i=1 Li . Then U is compact in G.

Proof. Let g = (A, Ā) be a cut ofBn. Define the cutg′ = (A′, A′) by A′ = A ∪ U .
Clearly,g′ satisfies requirements (1) and (2) of the definition of compact. We conclude by
showing thatC(g′) ≤ C(g). Assume, without loss of generality, that|Ā∩L0| ≤ |A∩L0|.
Let (I ,O) be the partition ofL0 given by Lemma 2.5. Then

2|Ā∩ I | = (n/2− |A∩ I |)+ (|Ā∩ L0| − |Ā∩ O|)
= (n/2− |Ā∩ O|)+ (|Ā∩ L0| − |A∩ I |)
≤ (n/2− |Ā∩ O|)+ (|A∩ L0| − |A∩ I |)
= 2|A∩ O|.

Hence|Ā ∩ I | ≤ |A ∩ O|. Also, by symmetry,|Ā ∩ O| ≤ |A ∩ I |. Pick a bijectionπ
of I onto O such thatπ(Ā ∩ I ) ⊆ A ∩ O andπ−1(Ā ∩ O) ⊆ A ∩ I . By Lemma 2.5,
there is a set of 2|Ā ∩ L0| edge-disjoint paths realizingπ such that each path has one
end inĀ∩ L0 and the other end inA∩ L0. Each of these paths must contain at least one
edge that crosses the cutg = (A, Ā). Hence,C(g) ≥ 2|Ā ∩ L0|. By our construction,
C(g′) = 2|Ā∩ L0|. Hence,C(g′) ≤ C(g).

Lemma 2.9. Each connected component of Bn[i, logn] is compact in Bn, 1 ≤ i ≤
logn.

Proof. Let B′ be a connected component ofBn[i, logn], and letB′′ be the other con-
nected component ofBn[i, logn] such thatN (B′′) = N (B′). Both B′ and B′′ are
isomorphic toBn/2i . Let G be the network induced inBn by B′ ∪ B′′ ∪ N (B′). G is
isomorphic toBn/2i−1. Thus, by Lemma 2.8,B′ ∪ B′′ is compact inG. Therefore, by
Lemma 2.6,B′ ∪ B′′ is compact inBn. Furthermore, by Lemma 2.7,B′ is separately
compact inBn.

Lemma 2.10. Let 0 ≤ i ≤ logn, 0≤ j , and k= n2 j , where i and j are integral and
n is a power of2. Then there is an embeddingπ of Bk into Bn such that:

(1) The dilation of the embedding is1.
(2) The congestion of any edge is exactly2 j .
(3) π maps Bk[0, i − 1] onto Bn[0, i − 1] with uniform load of2 j .
(4) π maps Bk[i + 1+ j, logn+ j ] onto Bn[i + 1, logn] with uniform load of2 j .
(5) For each l∈ [i, i + j ], π maps exactly2 j nodes of the lth level of Bk onto each

node of the ith level of Bn, so that the load on each node on the ith level of Bn

is ( j + 1)2 j .

Proof. We describe the embedding but do not give detailed proofs of the five properties
listed in the statement of the lemma. For anyw ∈ {0,1}k, the nodes of columnw of Bk

are all mapped to the columnw′ ∈ {0,1}n of Bn for which the firsti bit positions ofw′

match the firsti bit positions ofw, and the last logn− i bit positions ofw′ match the last
logn− i bit positions ofw. Within the columnw of Bk, for anyl ∈ [0, i − 1], the node
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with label 〈w, l 〉 is mapped to the node with label〈w′, l 〉 in Bn. For anyl ∈ [i, i + j ],
〈w, l 〉 is mapped to node〈w′, i 〉. Finally, forl ∈ [i + j +1, (logn)+ j ], 〈w, l 〉 is mapped
to 〈w′, l − j 〉.

2.1. Reducing the Butterfly to a Mesh of Stars

The j × k mesh of stars, denotedMOSj,k, is the network obtained from the complete
bipartite graphKj,k by replacing each edge with a path of length 2. This network has
three levels that we refer to asM1 (with j nodes),M2 (with jk nodes), andM3 (with k
nodes).

Let G = (V, E) be a network, letg = (A, Ā) be a cut ofG, and letU ⊆ V . We
say thatg bisects Uif |A∩U | ≤ |Ā∩U | ≤ |A∩U | + 1. TheU -bisection width of G
is defined by

BW(G,U ) = min{C(g): g is a cut ofG that bisectsU }.
In this section we show that

2BW(MOSn,n,M2)

n2
≤ BW(Bn)

n
≤ 2BW(MOSf (n), f (n),M2)

f (n)2
+ o(1)

for some functionf such that limn→∞ f (n) = ∞. Later we compute the bisection width
of the mesh of stars, which gives us lower and upper bounds onBW(Bn).

We establish both bounds onBW(Bn) via the following embedding of butterflies
into meshes of stars.

Lemma 2.11. Let j, k > 1, and suppose jk divides n. Then there is an embeddingπ
of Bn into MOSj,k such that:

(1) The dilation of the embedding is1.
(2) The congestion of any edge is exactly2n/jk.
(3) π maps the firstlogk levels of Bn onto M1 with uniform load, (n/j ) logk.
(4) π maps the lastlog j levels of Bn onto M3 with uniform load, (n/k) log j .
(5) π maps the other nodes of Bn onto M2 with uniform load, (n/jk)(log(n/jk)+1).

Moreover, if jk = n, thenπ−1({v}) is compact for any nodev of MOSj,k, and
the load of any node of M2 is 1.

Proof. We begin by introducing the following auxiliary graphG, which has three levels.
The nodes on the first level are the connected components ofBn[0, logn − log j ], the
nodes on the second level are the connected components ofBn[log k, logn− log j ], and
the nodes on the third level are the connected components ofBn[log k, logn]. Suppose
thatx is a node on the second level. Then the connected componentx of Bn is contained
in one of the connected components,w, on the first level, and also in one of the connected
components,y, on the third level. LetG have (undirected) edges fromx to bothw andy.

We now show thatG is isomorphic toMOSj,k. By Lemma 2.4, the first level hasj
nodes, the second leveljk nodes, and the third levelk nodes. As we have seen, each node
on the second level ofG has exactly one edge leading to each of the other two levels. By
Lemma 2.4, each node on the first level is a connected component ofBn[0, logn− log j ],
which is isomorphic toBn/j . This connected component contains a number of connected
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components belonging toBn[k, logn − log j ]. Applying Lemma 2.4 again, the set of
connected components ofBn[k, logn− log j ] contained in one node on the first level is
isomorphic toBn/j [k, logn−log j ], and hence there are preciselyk of these components.
For each of thesek components, there is a corresponding node on the second level ofG,
so the degree of each node on the first level ofG isk. By a similar argument, the degree of
each node on the third level ofG is j . What remains is to show that for each node on the
first level, there is a monotonic path of length 2 to each node on the third level. Consider
a pair of nodesw andy on the first and third levels ofG. By Lemma 2.3, any node on the
first level ofBn is linked to each node on the last level ofBn by a single monotonic path.
Hence, the path from any node on the first level ofw in Bn to any node on the last level
of y in Bn must pass through some connected componentx of Bn[log k, logn− log j ]
that is contained in bothw and y, which implies that there is a path fromw to x to y
in G.

We define the embeddingπ of Bn into G as follows. Letv be a node ofBn. If v is in
Bn[log k, logn− log j ], thenv is mapped to the corresponding node ofM2. Otherwise,
v belongs to either one connected component inBn[0, logn− log j ], or one connected
component inBn[log k, logn], but not both. In this casev is mapped to the corresponding
node inM1 or M3.

Since the nodes ofBn mapped byπ to M1 are drawn fromBn[0, logk− 1], and the
nodes mapped toM3 are drawn fromBn[log n− log j + 1, logn], and jk dividesn, no
node ofBn that is mapped toM1 is a neighbor inBn of a node mapped toM3. Hence,
the dilation ofπ is 1, which satisifies requirement (1).

By symmetry (Lemma 2.2), the congestion of allM1 to M2 edges ofG is equal. Since
2n edges ofBn are mapped acrossjk edges ofG, the congestion of each edge is 2n/jk.
The same holds for the other level of edges ofG; this establishes (2). (A more explicit
way to see this is that, by Lemma 2.4, a connected component inBn[0, logn − log j ]
containsk connected components ofBn[log k, logn− log j ], each of which is mapped
to a different node ofM2. Since each component ofBn[log k, logn − log j ] hasn/jk
input nodes on level logk, and there are two edges from level logk− 1 to each of these
inputs, the congestion of each edge fromM1 to M2 is 2n/jk.)

By Lemma 2.4,π satisfies (3)–(5).
Assume now thatn = jk. Then for v ∈ M2, π−1(v) is a single node by our

construction and hence is compact. Forv ∈ M3, π−1(v) is compact by Lemma 2.9.
By Lemma 2.1, the same holds forv ∈ M1.

First, we establish the lower bound on the bisection width ofBn in terms of
BW(MOSn,n,M2). The proof makes use of the following lemma.

Lemma 2.12. Let n> 1. Then:

(1) There is an i such that0≤ i ≤ logn and BW(Bn, Li ) ≤ BW(Bn).
(2) BW(Bn2, L logn)/n2 ≤ BW(Bn)/n.

Proof. To establish (1), letg = (A, Ā) be a bisection ofBn such thatC(g) = BW(Bn).
Assume, without loss of generality, that|A ∩ L0| ≤ n/2. Then there is ani such
that |A ∩ Li | ≤ n/2 ≤ |A ∩ Li+1|. Let g′ = (A′, A′) be a cut ofBn (that does not
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necessarily bisectBn) such thatC(g′) ≤ C(g), |A′ ∩ Li | ≤ n/2 ≤ |A′ ∩ Li+1|, and
|A′ ∩ Li+1|−|A′ ∩ Li | is as small as possible. We establish (1) by showing thatg′ bisects
eitherLi or Li+1. Assume otherwise. Then|A′∩Li | < n/2< |A′∩Li+1|. Since the edges
connecting nodes on leveli with nodes on leveli + 1 in a butterfly can be partitioned
into node- and edge-disjoint 4-cycles (which resemble butterflies when drawn, hence
the name “butterfly”), there must be a 4-cycle,v−u−v′−u′−v, with v, v′ ∈ Li and
u,u′ ∈ Li+1 such that|A′ ∩ {v, v′}| < |A′ ∩ {u,u′}|. Hence, either|A′ ∩ {v, v′}| = 0 or
|A′ ∩ {u,u′}| = 2. In both cases we can modifyg′ by moving a single node fromA′ to
A′ or vice versa to reduce|A′ ∩ Li+1| − |A′ ∩ Li | without increasing the capacity of the
cut, which yields a contradiction.

To prove (2), select ani that satisfiesBW(Bn, Li ) ≤ BW(Bn) (by (1) we know that
such ani exists), and letg = (A, Ā) be a cut ofBn that bisectsLi and for whichC(g) =
BW(Bn, Li ). Apply Lemma 2.10 withj = logn andk = n2. Let π be the embedding
of Bn2 into Bn given by this lemma. Define a cut ofBn2 by g′ = (π−1(A), π−1(Ā)).
Since the congestion of each edge ofBn is exactlyn, C(g) · n = C(g′), and hence
C(g′)/n2 = C(g)/n. Sinceg bisects thei th level ofBn, by property (5) of Lemma 2.10,
g′ bisects every level ofBn2[i, i + logn]. Furthermore, since logn ∈ [i, i + logn], g′

bisects the(logn)th level of Bn2. Hence,BW(Bn2, L logn)/n2 ≤ C(g′)/n2 = C(g)/n =
BW(Bn, Li ) ≤ BW(Bn)/n.

Lemma 2.13. 2BW(MOSn,n,M2)/n2 ≤ BW(Bn)/n.

Proof. This inequality clearly holds forn = 1. Assume henceforth thatn > 1. By
Lemma 2.12,BW(Bn2, L logn)/n2 ≤ BW(Bn)/n. Let g = (A, Ā) be a cut ofBn2 that
bisectsL logn such thatC(g) = BW(Bn2, L logn). Apply Lemma 2.11 onBn2 with j =
k = n, and letπ be the embedding ofBn2 into MOSn,n provided by this lemma. Note
that forv ∈ M2, π−1(v) is a singleton inBn2.

The sets{π−1(v): v ∈ M1 ∪ M3} are pairwise disjoint, compact (by Lemma 2.9),
and do not intersectL logn. Hence, we may assume, without loss of generality, that
each of these sets is a subset of eitherA or Ā. Define a cutg′ = (A′, A′) of MOSn,n

by v ∈ A′ ⇐⇒ π−1(v) ⊂ A. Sinceπ−1(v) is a singleton for anyv ∈ M2 andg bi-
sectsL logn, g′ bisectsM2. Since the congestion ofπ is exactly 2, 2C(g′) = C(g).
Hence, 2BW(MOSn,n,M2)/n2 ≤ 2C(g′)/n2 = C(g)/n2 = BW(Bn2, L logn)/n2 ≤
BW(Bn)/n.

We now establish the upper bound on the bisection width ofBn. Let G = 〈V, E〉
be a network, letg = (A, Ā) be a cut ofG, and letU ⊂ V . We say thatU is amenable
with respect to gif it is possible to shift nodes ofU from A to Ā or vice versa so that any
number of nodes inU (but not necessarily any subset ofU ) from 0 to|U | can be placed
on either side of the cut without increasing the capacity of the cut, i.e.,U is amenable
with respect tog in the networkG if for every 0≤ k ≤ |U | there is a cutg′ = (A′, A′)
such that:

(1) A′ ∩ (V −U ) = A∩ (V −U ),
(2) |A′ ∩U | = k, and
(3) C(g′) ≤ C(g).
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Lemma 2.14. Let g = (A, Ā) be a cut of G, let U be a set of nodes, and let W=
U ∪N (U ). Then U is amenable with respect to g in G iff U is amenable with respect

to g|W 4= (A∩W, Ā∩W) in the subgraph of G induced by W.

Proof. The lemma follows from the definition of “amenable.”

Lemma 2.15. Let n> 2, let U be a connected component of Bn[1, logn− 1], and let
g = (A, Ā) be a cut of Bn such that L0 ∩N (U ) ⊆ A and Llogn ∩N (U ) ⊆ Ā. Then U
is amenable with respect to g.

Proof. By Lemma 2.4, the subgraph ofBn induced byU is isomorphic toBn/4. By
Lemma 2.14, we can restrict ourselves to the subgraph ofBn induced byU ∪ N (U ).
Call this networkG, its levelsLG

0 , . . . , LG
logn, and letg′ be the cutg restricted toG.

There is a setP of n/2 monotonic edge-disjoint paths ofG leading fromLG
0 to

LG
logn and covering all the edges ofG. Each path ofP has one endpoint inA and the

other in Ā, hence,n/2≤ C(g′).
Consider a cutg′′ = (A′′, A′′) of G with the following property:

(∗) LG
0 ⊂ A′′, LG

logn ⊂ A′′, and∀i, 0< i < logn, LG
i

⋂
A′′ 6=∅ ⇒ LG

i−1 ⊂ A′′.

In other words, there is somej , 0 < j < logn, such that levels 0 throughj − 1 of G
are contained entirely inA′′ and levelsj + 1 through logn are contained entirely inA′′,
while some of the nodes on levelj may belong toA and others toA′′. Clearly, there is
a cutg′′ satisfying both(∗) and|A′′ ∩U | = k for any 0≤ k ≤ |U |. Now, if g′′ satisfies
(∗), then any path ofP contributes exactly one to the capacity ofg′′; since there are no
other edges,C(g′′) = n/2≤ C(g′).

The following lemma provides a tight upper bound on the bisection width ofBn

in terms of theM2-bisection width ofMOSj, j . The proof not only establishes the in-
equality, but also demonstrates how to find a bisection ofBn with capacity at most
2n · (BW(MOSj, j ,M2)/ j 2+2/j ), for any j such thatj 3+2 j −1≤ logn. In Section 2.2
we show that asj grows to infinity,BW(MOSj, j ,M2)/ j 2 converges to

√
2− 1. Thus,

for largen, we can choose a largej satisfying j 3 + 2 j − 1 ≤ logn, and construct a
bisection ofBn with capacity close to 2(

√
(2)− 1)n.

Lemma 2.16. BW(Bn)/n ≤ 2BW(MOSj, j ,M2)/ j 2 + 4/j for any j such that j is a
power of2 and logn ≥ j 3+ 2 j − 1.

Proof. We begin by finding a bisection ofM2 in MOSj, j with minimum capacity.
Let j > 1 be a power of 2 and letg∗ be a cut ofMOSj, j that bisectsM2 such that
C(g∗) = BW(MOSj, j ,M2). Pick two nodes,u, v ∈ M2, on different sides ofg∗, u ∈ A
andv ∈ Ā. Next, for reasons that will soon become clear, we move at most one neighbor
of u and one neighbor ofv to the other side ofg∗ to produce a cutg = (A, Ā) in which
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each ofu andv has one neighbor inA and the other inĀ. By this construction,g bisects
M2 andC(g) ≤ BW(MOSj, j ,M2) + 2 j , since the degree of the neighbors ofu andv
is j .

Next, we embedBn into MOSj, j , and use the embedding combined with the cutg
of MOS j, j to induce a cutg′ of Bn. Let k = j , n > j 2 and letπ be the embedding
of Bn into MOSj, j given by Lemma 2.11. Define a cut ofBn by g′ = (A′, A′) =
(π−1(A), π−1(Ā)). Since the congestion is 2n/j 2, we haveC(g′) = 2nC(g)/j 2. Hence,
C(g′)/n = 2C(g)/j 2. Becauseg bisectsM2, g′ bisects the nodes ofBn that are mapped
to M2, i.e., the nodes inBn[ j, logn− j ]. The remaining nodes inBn, those inBn[0, j−1]
andBn[log n− j +1], might be mapped to either side ofg′ in an arbitrary fashion. Hence,
the cutg′ does not necessarily bisectBn.

In order to transformg′ into a bisection ofBn, we move some nodes fromA′ to A′, or
vice versa. LetN = n(1+ logn) be the number of nodes ofBn. Since only the nodes in
Bn[0, j −1] are mapped toM1, and only the nodes ofBn[log n− j +1, logn] are mapped
to M3, the (absolute) difference between|A′| and|A′| can be at mostN(2 j/(1+ logn)).
Hence, forj = o(logn), the imbalance iso(N). By Lemma 2.11(5), for eachw ∈ M2,
π−1(w) is a connected component ofBn[ j, logn − j ], and hence is isomorphic to
Bn/j 2. Thus,|π−1(u)| = |π−1(v)| = |Bn/j 2| = n/j 2(1+ log(n/j 2)) = N(1− 2 j/(1+
logn))/j 2. Since each ofu andv has one neighbor inAand the other in̄A, by Lemma 2.15,
bothπ−1(u) andπ−1(v) are amenable with respect tog′. By our construction, one is
a subset ofA′ and the other ofA′. Therefore, provided that there are enough nodes in
π−1(u) andπ−1(v), we can correct the imbalance without increasing the capacity of the
cut by either moving nodes fromπ−1(u) to A′ or by moving nodes fromπ−1(v) to A′.
Moving one node (in the right direction) decreases the imbalance by 2. Hence, there will
be enough nodes to move provided that 2·N(1−2 j/(1+logn))/j 2 ≥ N(2 j/(1+logn)).
This inequality holds whenj 3+ 2 j − 1≤ logn.

Hence, for j 3 + 2 j − 1 ≤ logn, BW(Bn) ≤ C(g′) andBW(Bn)/n ≤ C(g′)/n =
2C(g)/j 2 ≤ 2BW(MOSj, j ,M2)/j 2+ 4/j .

2.2. The Bisection Width of the Mesh of Stars

In this subsection we show

√
2− 1<

BW(MOSj, j ,M2)

j 2
≤
√

2− 1+ o(1).

As the following lemma shows, the real functionf (x, y)
4= x + y −min(1,2xy),

defined on the closed domainD = {〈x, y〉: 0 ≤ x, y ≤ 1 and 1≤ x + y}, is related to
BW(MOSj, j ,M2).

Lemma 2.17. Let j be an even integer( j > 0), and let〈x, y〉 ∈ D such that xj and
yj are integers. Let B be the set of cuts(A, Ā) of MOSj, j that bisect M2 and satisfy
|A∩ M1| = xj and|A∩ M3| = yj. Then

min{C(g): g ∈ B} = f (x, y) j 2.
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Proof. Let g = (A, Ā) be a cut inB such thatC(g) is as small as possible. The
networkMOSj, j hasx(1− y) j 2 monotonic paths (of length 2) leading fromA ∩ M1

to Ā ∩ M3, and(1− x)yj2 monotonic paths leading from̄A ∩ M1 to A ∩ M3. Each of
these paths contributes one to the capacity ofg. In addition, there arexyj2 monotonic
paths fromA ∩ M1 to A ∩ M3. SinceC(g) is as small as possible, as many of the
middles nodes on these paths as possible are inA. Assume without loss of generality
that(1− x)(1− y) < xy (otherwise we can reverse the roles ofA and Ā, and examine
cut g′ = (Ā, A) instead, noting thatC(g′) = C(g)). Sinceg bisectsM2, if 1

2 < xy, then
the middle nodes of exactly(xy− 1

2) j 2 of these paths are in̄A. (Here we needj even so
that 1

2 j 2 is integral.) Each of these paths contributes two to the capacity ofg. Otherwise,
if xy ≤ 1

2, then, becauseg is minimal, the middles node of all of these paths are inA,
and the paths contribute nothing to the capacity ofg. Since(1− x)(1− y) < xy, there
are at mostj 2/2 paths fromĀ ∩ M1 to Ā ∩ M3, and hence the middle nodes on these
paths are all inĀ and the paths contribute nothing to the capacity ofg.

In summary,C(g)/j 2 = x(1− y)+ (1− x)y+ 2 max(xy− 1
2,0)= x+ y− 2xy+

max(2xy− 1,0) = x + y+max(−1,−2xy) = x + y−min(1,2xy) = f (x, y).

Lemma 2.18. The function f= x + y − min(1,2xy) is continuous in the domain

D = {〈x, y〉: 0 ≤ x, y ≤ 1 and1 ≤ x + y}, and f
(√

1
2,

√
1
2

)
= √2− 1 is a (global)

minimum of f.

Proof. Clearly, f is continuous. We havef (x, y) = x + y−min(1,2xy) = x + y−
min(1, [(x+ y)2−(x− y)2]/2). For any fixed value ofx+ y, f (x, y) is minimized when
x = y. Hence, f has a minimum on the linex = y. Consider the univariate function
f (x, x) = 2x − min(1,2x2) for 〈x, x〉 ∈ D. In this domainx ≥ 1

2. This function is

monotonic decreasing forx <
√

1
2 and monotonic increasing for

√
1
2 < x. Hence, it

reaches a minimum atx =
√

1
2.

Lemma 2.19. As a function of variable j, which is positive, even, and integral,

√
2− 1< BW(MOSj, j ,M2)/ j 2 ≤

√
2− 1+ o(1).

Proof. Let g = (A, Ā) be a cut ofMOSj, j that bisectsM2 such thatC(g) is as small
as possible. Assume, without loss of generality, thatj ≤ |A∩ (M1 ∪ M3)|. (Otherwise,
since|M1| + |M3| = 2 j , swapA and Ā.) Let x = |A ∩ M1|/j and y = |A ∩ M3|/j .
Clearly,〈x, y〉 ∈ D.

The first inequality,
√

2− 1 < BW(MOSj, j ,M2)/ j 2, follows from Lemmas 2.17
and 2.18 and the fact that

√
2− 1 is irrational whileBW(MOSj, j ,M2)/ j 2 is not.

The second inequality,BW(MOSj, j ,M2)/ j 2 ≤ √2− 1+ o(1), follows from the
same two lemmas and the fact that, asj goes to infinity, for a minimum cut,g = (A, Ā),

x = |A ∩ M1|/j becomes arbitrarily close to
√

1
2, as doesy = |A ∩ M3|/j , so that

f (x, y) converges to the minimum valuef
(√

1
2,

√
1
2

)
= √2− 1.
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Lemmas 2.13, 2.16, and 2.19 imply:

Theorem 2.20. For n > 1,

2(
√

2− 1)n < BW(Bn) ≤ 2(
√

2− 1)n+ o(n).

3. Bisection Width of Wn

In this section we prove that the bisection width ofWn is n. The proof makes use of the
following lemma.

Lemma 3.1. Any cut of the butterfly network Bn that bisects its inputs(or outputs), or
the set of inputs and outputs of the network taken together, has capacity at least n.

Proof. We prove this by embedding the complete bipartite graphKn,n in the but-
terfly network Bn. Call the sides ofKn,n left and right, respectively. The embedding
maps the nodes on the left side ofKn,n to the input nodes ofBn and the nodes on
the right side to the output nodes ofBn in a one-to-one fashion. Each edge ofKn,n

is mapped to the unique shortest path that connects the corresponding input and out-
put nodes of the butterfly, that is, the usual route used to connect those two nodes
in the butterfly network. The embedding has load 1, congestionn/2, and dilation
logn.

Now take a cut(S, S̄) of Bn that bisects its inputs. The removal of the edges ofKn,n

that are routed through any of the edges in the cut(S, S̄) results in a cut ofKn,n that has
capacity at mostC(S, S̄) · n/2. Next, take a minimum cut ofKn,n that bisects the left
side ofKn,n. Let b andn− b be the number of right nodes on each side of the cut. The
capacity of this cut is(b+n−b) ·n/2, i.e.,n2/2. Since this is a minimum cut, any other
cut of Kn,n bisecting its left side, and, in particular, the one induced inKn,n by (S, S̄)
must have capacity at leastn2/2. Thus,C(S, S̄) ≥ n. A cut bisecting the outputs of the
butterfly network is analogous.

Now consider a minimum cut that does not necessarily bisect either the left or right
sides ofKn,n, but does bisectKn,n itself. Letb be the number of nodes from the left side
in one of the partitions induced by the cut. Then this partition hasn − b nodes from
the right side ofKn,n, while the other partition hasn− b nodes from the left side andb
nodes from the right. The capacity of the cut isb2 + (n− b)2. However,b2 + (n− b)2

has its minimum value whenb = n/2, and thus the cut has capacity at leastn2/2. If
we map this cut onto the butterfly network, according to our embedding, we obtain a
cut (S, S̄) of the set of input and output nodes of the butterfly network. Again, we have
C(S, S̄) · n/2≥ n2/2, thus proving the lemma.

Lemma 3.2. The bisection width of the butterfly network with wraparound is
BW(Wn) = n.



On the Bisection Width and Expansion of Butterfly Networks 507

Proof. It is straighforward to prove thatBW(Wn) ≤ n by exhibiting a bisection with
capacityn. For example, consider the cut(S, S̄) whereS is the set of nodes in the first
n/2 columns of the butterfly network.

To show thatBW(Wn) ≥ n, we start with a cutg = (S, S̄) that bisectsWn and
is as small as possible, and show how to translateg into a cut of equal capacity that
bisects the inputs ofBn. Lemma 3.1 can then be used to provide a lower bound on
the capacity ofg. Becauseg bisectsWn, either there exists a leveli with exactlyn/2
nodes inS, or there is a leveli with more thann/2 nodes inS such that on level
i + 1(mod logn) there are more thann/2 nodes inS̄. By the symmetry of the butterfly
with wraparound, we can renumber the levels ofWn so that, without loss of general-
ity, i = 0. The cut(S, S̄) is translated to a cut ofBn by transmutingWn into Bn in
a standard fashion: each nodev on level 0 ofWn is replaced by a pair of nodes. One
of these new nodes remains on level 0 in the same column asv and inherits the edges
connectingv to its two neighbors on level 1. The other new node remains in the same
column of v but becomes part of a new level logn, and inherits the edges connect-
ing v to its neighbors on level logn − 1. The resulting network is isomorphic toBn.
Moreover, the edges in the cut(S, S̄) of Wn now also form a cut ofBn. As long as the
majority of the nodes in level 0 are inS, there must be some nodes on level 0 that is
in S and that has a neighbor on level 1 that belongs toS̄ (since anyk nodes on level
0 have at leastk neighbors on level 1). Movings from S to S̄ does not increase the
capacity of the cut. We can repeat this process until level 0 is bisected by(S, S̄). By
Lemma 3.1 this cut must have capacity at leastn. ThereforeC(S, S̄) ≥ n, and hence
BW(Wn) ≥ n.

Lemma 3.3. The bisection width of the(logn)-dimensional cube-connected cycles
network is BW(CCCn) = n/2.

Proof. A bisection that cuts one of the cube dimensions has sizen/2, and thus
BW(CCCn) ≤ n/2. To prove a matching lower bound, we embedWn in CCCn as
follows. Suppose that〈w, i 〉and〈w′, i ′〉are neighbors inWn, wherei ′ = i+1(mod logn).
If w = w′, then map the edge to the corresponding edge inCCCn. Otherwise,
map the edge to a path of length two inCCCn that passes through〈w, i ′〉, which
is connected to both〈w, i 〉 and 〈w′, i ′〉. This embedding has congestion 2, and thus
BW(CCCn) ≥ n/2.

4. Expansion ofWn and Bn

In this section we derive upper and lower bounds on the edge and node expansion ofWn

andBn.

4.1. Expansion of Wn

In this section we determine the edge-expansion functionEE(Wn, k) and the node-
expansion functionNE(Wn, k) of Wn. First, we show that, fork = o(n) (which implies
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k = o(N)), (4 − o(1))k/ logk ≤ EE(Wn, k) ≤ (4 + o(1))k/ logk, which we also
write more succinctly asEE(Wn, k) = (4 ± o(1))k/logk. The lower bound cannot
be extended to hold for all values ofk up to N/2 because, fork = N/2, the value of
the expansion function cannot exceed the bisection width ofWn, which we showed in
Section 3 to beBW(Wn) = n ≤ (1+o(1))N/log N. Hence,EE(Wn, N/2) ≤ BW(Wn) ≤
(2+o(1))(N/2)/ log(N/2), which is smaller than the lower bound that holds fork = o(n)
by a factor of about 2. For larger values ofk, however, we can use the technique of
embeddingKN into Wn, which gives a bound ofEE(Wn, k) = Ä(k/logn) for k ≤ N/2.
Fork = nε, for any fixedε > 0, this lower bound isÄ(k/logk). Hence, for allk ≤ N/2,
EE(Wn, k) = 2(k/logk). Our bounds forNE(Wn, k) are not as tight. We show that
(1− o(1))k/ logk ≤ NE(Wn, k) ≤ (3+ o(1))k/logk, for k = o(n). For larger values of
k we can again use the technique of embeddingKN into Wn, which yieldsNE(Wn, k) =
2(k/ logk) for k ≤ N/2.

Definitions. The nodes of a rooted tree can be arranged in levels in the following
manner. The root of the tree is in level 0. A node whose parent is in leveli belongs to
level i + 1. The nodes of ad-dimensional sub-butterfly ofWn or Bn can be arranged
in d + 1 levels of 2d nodes each. We refer to the nodes in level 0 (resp. leveld) of the
sub-butterfly as the inputs (resp. outputs) of the sub-butterfly. Note that the inputs and
outputs of a sub-butterfly may or may not be inputs or outputs ofWn or Bn.

Thedown-tree Tu is ann-leaf complete binary tree rooted at nodeu of Wn, where
the children of a node on leveli are located on leveli + 1(mod logn). Let nodeu be
in level i of Wn. TreeTu is a subgraph ofWn such that thej th level of Tu consists of
nodes in leveli + j (mod logn) of Wn. Note that the leaves ofTu also belong to leveli
of Wn.

Theup-tree T′u is ann-leaf complete binary tree rooted at nodeu of Wn, where the
children of a node on leveli are located on leveli −1(mod logn). Let nodeu be in level
i of Wn. TreeT ′u is a subgraph ofWn such that thej th level ofT ′u consists of nodes in
level i − j (mod logn) of Wn. Note that the leaves ofT ′u also belong to leveli of Wn.

4.1.1. Edge Expansion of Wn. In this section we determineEE(Wn, k) to within lower-
order terms by proving upper and lower bounds.

Lemma 4.1. The edge-expansion function EE(Wn, k) is at most(4+o(1))k/ logk, for
1≤ k ≤ N.

Proof. Let A be a sub-butterfly ofWn with k nodes. Each level of the sub-butterfly
A has(1+ o(1))k/ logk nodes. Each input and output node of sub-butterflyA has two
incident edges that belong to cut(A, Ā). Thus, the total number of edges in cut(A, Ā)
is (4+ o(1))k/ logk. Therefore,EE(Wn, k) ≤ (4+ o(1))k/logk.

Lemma 4.2. The edge-expansion function EE(Wn, k) is at least(4−o(1))k/ logk, for
k = o(n).

Proof. Let A beanyset ofk = o(n) nodes ofWn. To prove the lemma, we use a credit
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Node u
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Leaf of Tu

Node in A

Node not in A

Fig. 2. Nodeu passes12 unit of credit down treeTu. A fractional value next to an edge indicates the number
of units of credit retained by the edge.

distribution scheme to show thatC(A, Ā) is at least(4−o(1))k/ logk. Each nodeu ∈ A
distributes 1 unit of credit to edges in cut(A, Ā) using the following procedure. LetTu

be the down-tree rooted at nodeu. Furthermore, let the edges ofTu be directed from
root to leaf. Nodeu passes12 unit of credit down the treeTu using an iterative procedure.
Figure 2 shows a small example in which there is a path from a nodeu to a leaf ofTu

consisting entirely of nodes inA, in which all of the siblings of the nodes belowu on
the path are inĀ. First, the two outgoing edges ofu in treeTu receive1

4 unit of credit
each. Iteratively, each tree edge(v,w) does one of the following:

• If tree edge(v,w) is an edge in cut(A, Ā) or if w is a leaf ofTu, edge(v,w)
retainsall the credit it received.
• Otherwise, edge(v,w) retains none of the credit it received and passes half the

credit it received to each of the two outgoing tree edges ofw.

In a similar fashion, nodeu distributes1
2 unit of credit via the up-treeT ′u rooted atu.

We bound the total units of credit retained by the edges in cut(A, Ā) as follows.
Each nodeu ∈ A distributes 1 unit of credit, of which some portion is retained by edges
in cut (A, Ā) and the rest is retained by edges(v,w) such thatw ∈ A is a leaf ofTu

or T ′u. If an edge(v,w) not in cut (A, Ā) retains credit from nodeu, then there is a
path of length logn from nodeu to w such that every node in the path belongs toA.
Note that a nodew may appear as a leaf in bothTu andT ′u. Since there are at mostk
nodes,w∈ A, there are at most 2k edges not in cut(A, Ā) that retain credit from nodeu,
and each such edge retains 1/2logn+1 = 1/(2n) units of credit fromu. Thus the number
of units of credit from nodeu ∈ A that is retained by edges in cut(A, Ā) is at least
1− 2k/2n = 1− k/n. Since there arek nodes inA, the total units of credit retained by
the edges in cut(A, Ā) is at least

k

(
1− k

n

)
= (1− o(1))k, (1)

sincek = o(n).
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Next, we show that each edge in cut(A, Ā) retains a total of at most(blogkc+1)/4
units of credit. Let(v,w) be a cut edge such thatv ∈ A andw ∈ Ā. Without loss of
generality, let nodesv andw be in levelsi and i + 1(mod logn) of Wn, respectively.
Let T ′v be the up-tree rooted at nodev, and letTw denote the down-tree rooted atw. The
edge(v,w) only retains units of credit that are passed down fromT ′v and not up from
Tw becausew does not have any units of credit to distribute initially, and any units of
credit that are passed up throughTw are retained before they reach(v,w). Thus, the cut
edge(v,w) retains the most credit whenall k of the nodes inA are placed in the first
blogkc + 1 levels of treeT ′v as close tov as possible, i.e., when all nodes in levels 0
throughblogkc−1 and some nodes in levelblogkc of treeT ′v are inA. Each nodeu ∈ A
at level j ≥ 0 of treeT ′v begins with1

2 unit of credit to pass down, and 1/2 j+2 units of
this credit reach the cut edge(v,w), while the rest of the original12 unit of credit passed
down byu exits the treeT ′v . Since there are 2j nodes in levelj of treeT ′v , the total units
of credit retained by cut edge(v,w) is at most

blogkc∑
j=0

(
2 j · 1

2 j+2

)
= blogkc + 1

4
. (2)

It follows from (1) and (2) that the number of edges in cut(A, Ā) is at least

C(A, Ā) ≥ (1− o(1))k · 4

blogkc + 1
≥ (4− o(1))

k

logk
.

Theorem 4.3. For k ≤ N/2, the edge-expansion function EE(Wn, k) is2(k/ logk).

Proof. The upper bound follows from Lemma 4.1. Fork = o(n), the lower bound
follows from Lemma 4.2.

For nε < k ≤ N/2, for any fixedε > 0, the bound is proved by embeddingKN

into Wn. For example, the following not-too-elegant embedding,π , will do. Suppose
that each nodew of KN is given a distinct labell (w) ∈ [1, N], and that the nodes
of KN are mapped to the nodes ofWn in an arbitrary one-to-one fashion. Letu and
v be two nodes inKN for which l (u) < l (v). Then the path for the edge betweenu
andv in KN is routed inWn from π−1(u) to π−1(v) as follows. First, the path travels
monotonically up the column in whichπ−1(u) resides, in order of decreasing level
numbers, until it reaches level 0. Then the path travels monotonically along a path of
length logn in order of increasing level number to the node on level logn(mod logn)
(i.e., level 0) in the column containingπ−1(v), following a path of length logn even
if π−1(u) andπ−1(v) are in the same column. Finally, the path travels monotonically
from level logn(mod logn) toπ−1(v) in order of decreasing level number. The dilation
of the embedding is 3 logn − 2. Note that the paths specified byπ are not necessarily
simple, and despite the symmetry in bothKN andWn, the paths are not symmetric, and
neither the congestion nor the dilation is uniform. However, for the purposes of proving
an asymptotic bound, these properties are not essential.

To analyze the congestion,c, of π it is easiest to bound the congestion due to the
three parts of the paths separately. The number of paths originating in a column is less
thanN logn, as is the number of paths terminating in a column. Hence, the congestion
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due to the first and last parts of the paths is at most 2N logn. To compute the congestion
of an edge spanning levelsi andi + 1(mod logn) of Wn due to the middle parts of the
paths, notice that the edge can be reached via a monotonic path in order of increasing
level number from at most 2i different inputs, and that at mostn/2i+1 outputs can be
reached from the edge. The middle parts of at mostN logn different paths originate at
each of these 2i inputs, but of these at mostN logn/2i+1 have destinations in the same
columns as then/2i+1 outputs that can be reached from the edge. Hence, the congestion
on the edge is at most(2i N logn)/2i+1 = (N logn)/2. Thus the total congestionc is at
mostO(N logn).

As explained in the Section 1.4,EE(Wn, k) ≥ kN/2c. Sincec = O(N logn) and
logn = 2(logk) (sincenε < k ≤ 1

2n logn, for someε > 0, by assumption), we have
EE(Wn, k) ≥ Ä(k/ logk). This embedding can be adapted to prove the sameÄ(k/logk)
lower bound onEE(Bn, k), and, since bothWn and Bn are bounded-degree networks,
for NE(Wn, k) andNE(Bn, k).

4.1.2. Node Expansion of Wn. In this section we determineNE(Wn, k) to within con-
stant factors by proving upper and lower bounds.

Lemma 4.4. The node-expansion function NE(Wn, k) is at most(3+ o(1))k/logk,
when1≤ k ≤ N.

Proof. Let A consist of two nonintersecting sub-butterfliesB′ and B′′ of Wn such
that B′ and B′′ havek/2 nodes each, and such that bothB′ and B′′ are contained in a
sub-butterflyB one dimension larger. Each level of the sub-butterfliesB′ and B′′ has
( 1

2+o(1))k/ logk nodes, and each level ofB has(1+o(1))k/ logk nodes. The neighbors
in Ā of the input nodes ofB′ andB′′ are the(1+ o(1))k/logk inputs ofB. Each output
node ofB′ andB′′ has two nodes in̄A as neighbors. Thus, the output nodes ofB′ and
B′′ have(2+ o(1))k/logk neighbors. Therefore, the total number of nodes inN (A) is
(3+ o(1))k/ logk. Therefore,NE(Wn, k) ≤ (3+ o(1))k/logk.

Lemma 4.5. The node-expansion function NE(Wn, k) is at least(1− o(1))k/logk,
when k= o(n).

Proof. To prove the lemma, we use a credit distribution scheme similar to that in the
proof of Lemma 4.2. We show that|N (A)| is at least(1− o(1))k/ logk, for anyset A
with k = o(n) nodes ofWn. Each nodeu ∈ A distributes 1 unit of credit to the nodes in
N (A) using the following procedure. LetTu be the down-tree rooted at nodeu. Nodeu
passes12 unit of credit down the treeTu using an iterative procedure. First, each of the
two nodes adjacent tou in treeTu receive1

4 unit of credit each. Iteratively, each nodev
does one of the following:

• If nodev is inN (A) or if v is a leaf ofTu, nodev retainsall the credit it received.
• Otherwise, nodev retains none of the credit it received and passes half the credit

it received to each of the two nodes adjacent tov in the next level ofTu.
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In a similar fashion, nodeu distributes1
2 unit of credit via the up-treeT ′u rooted atu to

the nodes inN (A).
We bound the total units of credit retained by the nodes inN (A) as follows. Each

nodeu ∈ A distributes 1 unit of credit, of which some portion is retained by nodes in
N (A) and the rest is retained by nodesv such thatv ∈ A andv is a leaf ofTu or T ′u.
If a nodev not inN (A) retains credit from nodeu, then there is a path of length logn
from nodeu to v such that every node in the path belongs toA. There are at mostk
nodes not inN (A) that retain credit from nodeu, and each such node retains at most
2/2logn+1 = 1/n units of credit fromu (counting units of credit from bothTu andT ′u).
Thus, the number of units of credit from nodeu ∈ A that is retained by nodes inN (A)
is at least 1− k/n. Since there arek nodes inA, the total units of credit retained by the
nodes inN (A) is at least

k

(
1− k

n

)
= (1− o(1))k, (3)

sincek = o(n).
Next, we show that each node inN (A) retains a total of at mostblogkc units of

credit. Letv be a node inN (A) and letTv andT ′v be the down-tree and the up-tree rooted
at v, respectively. Nodev retains the most units of credit whenall k of the nodes inA
are placed in levels 1 toblogkc of the treesTv andT ′v as close tov as possible. To obtain
an upper bound on the number of units of credit retained by nodev, assume that all the
nodes in levels 1 toblogkc of Tv andT ′v belong toA. Since each nodeu ∈ A at level
j ≥ 1 of treeTv or T ′v contributes 1/2 j+1 units of credit to nodev, and since there are a
total of 2j+1 nodes in levelj of treesTv andT ′v , the total units of credit retained by node
v ∈ N (A) is at most

blogkc∑
j=1

(
2 j+1 · 1

2 j+1

)
= blogkc. (4)

It follows from (3) and (4) that the number of nodes inN (A) is at least

(1− o(1))k · 1

blogkc ≥ (1− o(1))
k

logk
.

Theorem 4.6. For k ≤ N/2, the node-expansion function NE(Wn, k) is2(k/ logk).

Proof. The upper bound follows from Lemma 4.4. Fork = o(n), the lower bound
follows from Lemma 4.5. Fornε < k ≤ N/2, for any fixedε > 0, the lower bound is
proved by embeddingKN into Wn.

4.2. Expansion of Bn

In this section we determine the edge-expansion functionEE(Bn, k) and the node-
expansion functionNE(Bn, k) of Bn. We begin by showing thatEE(Bn, k) = (2 ±
o(1))k/ logk for k = o(

√
n). The lower bound cannot be extended to hold for all val-

ues ofk up to N/2 because, fork = N/2, the value of the expansion function can-
not exceed the bisection width ofBn, which we showed in Section 2 to beBW(Bn) ≤
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(2(
√

2−1)+o(1))n ≤ (2(√2−1)+o(1))N/ log N. Hence,EE(Bn, N/2) ≤ BW(Bn) ≈
(1.66+ o(1))(N/2)/ log(N/2). For larger values ofk, however, we can use the tech-
nique of embeddingKN into Bn, which gives a bound ofEE(Bn, k) = Ä(k/ logn). For
k = nε, for any fixedε > 0, this lower bound isÄ(k/ logk). Hence, for all values
of k, EE(Bn, k) = 2(k/ logk). Our bounds forNE(Bn, k) are not as tight. We show
that ( 1

2 − o(1))k/logk ≤ NE(Bn, k) ≤ (1+ o(1))k/ logk, for k = o(
√

n). For larger
values ofk we can again use the technique of embeddingKN into Bn, which yields
NE(Wn, k) = 2(k/ logk) over the whole range ofk.

Definitions. Let nodeu be in leveli of Bn.
Thedown-tree Tu is an(n/2i )-leaf complete binary tree rooted at nodeu of Bn. Tree

Tu is a subgraph ofBn such that thej th level of Tu consists of nodes in leveli + j of
Bn. Note that the leaves ofTu belong to level logn of Bn.

Theup-tree T′u is a 2i -leaf complete binary tree rooted at nodeu of Bn. Let nodeu
be in leveli of Bn. TreeT ′u is a subgraph ofBn such that thej th level ofT ′u consists of
nodes in leveli − j of Bn. Note that the leaves ofT ′u belong to level 0 ofBn.

4.2.1. Edge Expansion of Bn. In this section we determineEE(Bn, k) to within lower-
order terms by proving upper and lower bounds.

Lemma 4.7. The edge-expansion function EE(Bn, k) is at most(2 + o(1))k/logk,
when1≤ k ≤ N.

Proof. Let A be a sub-butterfly ofBn with k nodes such that the nodes in level 0 of the
sub-butterfly are in level 0 ofBn. Each level of the sub-butterflyA has(1+o(1))k/logk
nodes. Each output node of sub-butterflyA has two incident edges that belong to cut
(A, Ā). Thus, the total number of edges in cut(A, Ā) is (2+ o(1))k/ logk. Therefore,
EE(Bn, k) ≤ (2+ o(1))k/ logk.

Lemma 4.8. The edge-expansion function EE(Bn, k) is at least(2 − o(1))k/logk,
when k= o(

√
n).

Proof. Let A beanysubset of the nodes ofBn of cardinalityk. To prove the lemma,
we use a credit distribution scheme to show thatC(A, Ā) is at least(2− o(1))k/logk.
Each nodeu ∈ A distributes 1 unit of credit to the edges in cut(A, Ā) using the
following procedure. First, assume that nodeu ∈ A is in leveli of Bn such that 0≤ i <
b(logn+ 1)/2c. Let Tu be the down-tree rooted at nodeu. Furthermore, let the edges of
Tu be directed from root to leaf. Nodeu passes 1 unit of credit down the treeTu using an
iterative procedure. First, the two outgoing edges ofu in treeTu receive1

2 unit of credit
each. Iteratively, each tree edge(v,w) does one of the following:

• If tree edge(v,w) is in cut(A, Ā) or if w is a leaf ofTu, edge(v,w) retainsall
the credit it received.
• Otherwise, edge(v,w) retains none of the credit it received, and passes half the

credit it received to each of the two outgoing tree edges ofw.
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In a similar fashion, each nodeu ∈ A in level i of Bn, such thatb(logn+ 1)/2c ≤ i ≤
logn, distributes 1 unit of credit via the up-treeT ′u rooted atu.

We bound the total number of units of credit retained by edges in cut(A, Ā) as
follows. Each nodeu ∈ A distributes 1 unit of credit, of which some portion is retained
by edges in cut(A, Ā) and the rest is retained by edges(v,w) such thatw ∈ A is a leaf
of Tu or T ′u. If an edge(v,w) not in cut(A, Ā) retains credit from nodeu, there is a
path of length at leastb(logn+ 1)/2c from nodeu tow such that every node in the path
belongs toA. Therefore, there are at mostk edges not in cut(A, Ā) that retain credit
from nodeu, and each such edge retains at most

1/2b(logn+1)/2c ≤ 1/
√

n

units of credit. Thus, the number of units of credit distributed by a nodeu ∈ A that is
retained by edges in cut(A, Ā) is at least 1− (k/√n). Since there arek nodes inA, the
total units of credit retained by the edges in cut(A, Ā) is at least

k

(
1− k√

n

)
= (1− o(1))k, (5)

sincek = o(
√

n).
Next, we show that each edge in cut(A, Ā) retains a total of at most(blogkc+1)/2

units of credit. Let(v,w) be a cut edge such thatv ∈ A andw ∈ Ā. Without loss of
generality, let nodesv andw be in levelsi and i + 1 of Bn, respectively. LetT ′v be
the up-tree rooted at nodev. The cut edge(v,w) retains the most number of units of
credit whenall k of the nodes ofA are placed in the firstblogkc + 1 levels of tree
T ′v as close tov as possible, i.e., when all nodes of levels 0 throughblogkc − 1 and
some nodes in levelblogkc of treeT ′v are in A. Since each nodeu ∈ A at level j ≥ 0
of treeT ′v contributes 1/2 j+1 units of credit to cut edge(v,w), and since there are 2j

nodes in levelj of tree T ′v , the total units of credit retained by cut edge(v,w) is at
most

blogkc∑
j=0

(
2 j · 1

2 j+1

)
= blogkc + 1

2
. (6)

It follows from (5) and (6) that the number of edges in cut(A, Ā) is at least

C(A, Ā) ≥ (1− o(1))k · 2

blogkc + 1
≥ (2− o(1))

k

logk
.

Theorem 4.9. For k ≤ N/2, the edge-expansion function EE(Bn, k) is2(k/ logk).

Proof. The upper bound follows from Lemma 4.7. Fork = o(
√

n), the lower bound
follows from Lemma 4.8. Fornε < k ≤ N/2, for any fixedε > 0, the lower bound is
proved by embeddingKN into Bn.
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4.2.2. Node Expansion of Bn. In this section we determineNE(Bn, k) to within con-
stant factors by proving upper and lower bounds.

Lemma 4.10. The node-expansion function NE(Bn, k) is at most(1+ o(1))k/logk,
when1≤ k ≤ N.

Proof. Let A consist of two nonintersecting sub-butterfliesB′ andB′′ of Bn such that
B′ and B′′ havek/2 nodes each, bothB′ and B′′ are contained inB, which is one
dimension larger, and the output nodes ofB′, B′′, andB are on level logn of Bn. Each
level of the sub-butterfliesB′ andB′′ has( 1

2 + o(1))k/ logk nodes, and each level ofB
has(1+ o(1))k/ logk nodes. The neighbors in̄A of the input nodes ofB′ and B′′ are
the (1+ o(1))k/ logk inputs of B. The output nodes ofB′ and B′′ have no neighbors
in Ā. Therefore, the total number of nodes inN (A) is (1+ o(1))k/ logk. Therefore,
NE(Bn, k) ≤ (1+ o(1))k/ logk.

Lemma 4.11. The node-expansion function NE(Bn, k) is at least( 1
2 − o(1))k/logk,

when k= o(
√

n).

Proof. Let A beanysubset of the nodes ofBn of cardinalityk. To prove the lemma,
we use a credit distribution scheme similar to that in the proof of Lemma 4.8. We show
that|N (A)| is at least( 1

2 − o(1))k/ logk. Each nodeu ∈ A distributes 1 unit of credit to
the nodes inN (A) using the following procedure. First, assume that nodeu ∈ A is in
level i of Bn such that 0≤ i < b(logn+ 1)/2c. Let Tu be the down-tree rooted at node
u. Nodeu passes 1 unit of credit down the treeTu using an iterative procedure. First, the
two nodes adjacent tou in treeTu receive1

2 unit of credit each. Iteratively, each nodev
does one of the following:

• If nodev is inN (A) or if v is a leaf ofTu, nodev retainsall the credit it received.
• Otherwise, nodev retains none of the credit it received, and passes half the credit

it received to each of the two nodes adjacent tov in the next level of treeTu.

In a similar fashion, each nodeu ∈ A in level i of Bn, such thatb(logn+ 1)/2c ≤ i ≤
logn, distributes 1 unit of credit via the up-treeT ′u rooted atu.

We bound the total number of units of credit retained by nodes inN (A) as follows.
Each nodeu ∈ A distributes 1 unit of credit, of which some portion is retained by nodes
inN (A) and the rest is retained by nodesv such thatv ∈ A is a leaf ofTu or T ′u. If a node
v not inN (A) retains credit from nodeu, there is a path of length at leastb(logn+1)/2c
from nodeu to v such that every node in the path belongs toA. Therefore, there are at
mostk nodes that do not belong toN (A) that retain credit from nodeu, and each such
node retains at most

1/2b(logn+1)/2c ≤ 1/
√

n

units of credit. Thus, the number of units of credit distributed by a nodeu ∈ A that is
retained by nodes inN (A) is at least 1− (k/√n). Since there arek nodes inA, the total
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units of credit retained by the nodes inN (A) is at least

k

(
1− k√

n

)
= (1− o(1))k, (7)

sincek = o(
√

n).
Next, we show that each nodev ∈ N (A) retains a total of at most 2blogkc units of

credit. LetTv andT ′v be the down-tree and up-tree rooted at nodev, respectively. The
nodev retains the most number of units of credit whenall k of the nodes ofA are placed
in levels 1 toblogkc of the treesTv andT ′v as close tov as possible. To obtain an upper
bound on the number of units of credit retained by nodev, assume that all the nodes in
levels 1 toblogkc of Tv andT ′v belong toA. Since each nodeu ∈ A at level j ≥ 1 of
treeTv or T ′v contributes 1/2 j units of credit to nodev, and since there are a total of 2j+1

nodes in levelj of treesTv andT ′v , the total units of credit retained by nodev ∈ N (A)
is at most

blogkc∑
j=1

(
2 j+1 · 1

2 j

)
= 2blogkc. (8)

It follows from (7) and (8) that the number of nodes in cutN (A) is at least

(1− o(1))k · 1

2blogkc ≥ (
1
2 − o(1))

k

logk
.

Theorem 4.12. For k ≤ N/2, the node-expansion function NE(Bn, k) is2(k/ logk).

Proof. The upper bound follows from Lemma 4.10. Fork = o(
√

n), the lower bound
follows from Lemma 4.11. Fornε < k ≤ N/2, for any fixedε > 0, the lower bound is
proved by embeddingKN into Bn.

4.3. Summary

The lower bounds proved in this section are summarized below:

k = o(
√

n) k = o(n) k ≤ N/2

E E(Wn, k) (4− o(1))k/logk Ä(k/logk)

N E(Wn, k) (1− o(1))k/logk Ä(k/logk)

E E(Bn, k) (2− o(1))k/logk Ä(k/logk)

N E(Bn, k) ( 1
2 − o(1))k/logk Ä(k/logk)
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The upper bounds are shown below:

k ≤ N

E E(Wn, k) (4+ o(1))k/logk

N E(Wn, k) (3+ o(1))k/logk

E E(Bn, k) (2+ o(1))k/logk

N E(Bn, k) (1+ o(1))k/logk
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