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Abstract. This paper proves tight bounds on the bisection width and expansion of
butterfly networks with and without wraparound. We show that the bisection width
of ann-input butterfly network is 2/2 — 1)n +o(n) ~ 0.82n without wraparound,
andn with wraparound. The former result is surprising, since it contradicts the prior
“folklore” belief that the bisection width is. We also show that every setlohodes

has at leastk/(2 logk))(1—o0(1)) neighbors in a butterfly without wraparound, and

at least(k/ logk)(1 — o(1)) neighbors in a butterfly with wraparoundkifs o(,/n)
ando(n), respectively.
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1. Introduction

This paper analyzes the bisection width and expansion of a network cabeitieafly

This network has been studied extensively and it, or one of its variants, has served as the
routing network in several parallel computers and ATM switches. Surprisingly, however,
the precise values of the butterfly’s bisection width and expansion were not previously
known. This paper proves upper and lower bounds on these parameters that are tight up
to low-order additive terms.

1.1. The Butterfly and Cube-Connected Cycles Networks

Throughout this paper we use the following terminology to describe butterfly networks.
The (logn)-dimensional butterflyB, hasN = n(logn + 1) nodes arranged in lag+ 1
levels ofn nodes each. (All logarithms in this paper are base 2.) Each node has a distinct
label(w, i) wherei is the level of the node (& i < logn) andw is a(logn)-bit binary
number drawn fronf0, 1}'°9" that denotes theolumnof the node. All nodes of the form
(w,i),0=<i <logn, are said to belong to column. Similarly, theith levelL; consists
of all of the nodegw, i), wherew ranges over al{logn)-bit binary numbers. For the
purposes of this paper, the edges in the network are undirected. Two fiwdésand
(w’,1’) are linked by an undirected edge’it= i + 1 and eithekw andw’ are identical or
w andw’ differ only in the bit in positiori’. (The bit positions are numbered 1 through
log n, the most significant bit being numbered 1.) The nodes on level 0 are caliegtie
nodesor justinputsof the network, and the nodes on level logre called theutput
nodesor justoutputs The 32-node butterfly networBg (N = 32,n = 8, logn = 3) is
shown in Figure 1.

Sometimes the level 0 and loghodes in each column are assumed to be the same
node. In this case the butterfly is saidtap aroundor to havenraparound We uséw,
to denote thelog n)-dimensional butterfly with wraparound. This network mdegn
nodes.

column

level 1

3

Fig. 1. The 32-node butterfly networRg.
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A number of properties of butterfly networks were known prior to our work. For
example, it is not difficult to show that the diameter®fis 2 logn, and the diameter of
W, is [ (3logn)/2], where thediameterof a network is the maximum, over all pairs of
nodess andv, of the length, in edges, of the shortest path betwesamdv. Also, the VLSI
layout area ofB, is (1 # 0(1))n? [3] and the layout area di, is ©(n?). (The leading
constant in the layout area dY, is not known). Furthermore, the three-dimensional
layout volumes oB,, andW,, are®(n®?) [16].

A network closely related to the butterfly is tbebe-connected cyclé§]. A logn-
dimensional cube-connected cycles netwdfkC, consists oh cycles, each containing
logn nodes. Each cycle has a distirittig n)-bit label, and within a cycle each node is
labeled with its position, a number between 1 andipgclusive. Taken together, these
labels give each node a distinct labe), i ), wherew is the label of its cycle, andis its
position in the cycle. Two nodes in different cycles are connected by an edge if and only
if they share the same positiorwithin their respective cycles, and their cycle labels
differ only in the bit in positiori. That is, two nodesw, i) and(w’, i) are connected if
w andw’ differ in bit positioni.

1.2. Bisection Width

The bisection widthof an N-node networkG = (V, E) is defined as follows. Aut
(S, S) of G is a partition of its nodes into two se®&andS, whereS = V — S. While
this definition of a cut is given in terms of the nodeg®father than its edges, it is often
helpful to think of the cutS, S) as the set of all (undirected) edges with one endpoint
in Sand the other irS. We call these theut edgesand say that thegrossthe cut. The
capacityof a cut,C(S, S), is the number of cut edges. We also say that the removal of
the cut edges partitior into SandS, meaning that in the network that remains after
these edges are removed frd&) no edge connects a node $to a node inS. It is
important to note, however, that two distinct cuts may have the same set of cut edges, so
the two notions of a cut are not always equivalent. (As an example, in a network with
k > 1 connected components distinct cuts share the empty set as their set of cut
edges.) Hence some care is required when viewing a cut as a set of edges and vice versa.
A bisectionof a network is a cutS, S) such thaiS| < [N/2] and|S| < [N/2]. The
bisection width BWG) is the minimum, over all bisectionsS, S), of C(S, S). In other
words, the bisection width is the minimum number of edges that must be removed from
the network in order to partition its nodes into two equal-sized sets (to within one node).
The bisection width of a network is an important indicator of its power as a com-
munications network. As an example, suppose thaNamode networkG is used to
route messages between the processors in a general-purpose parallel computer, with one
processor attached to each node. If each processor sends a message to another processor
chosen uniformly at random, then the expected number of messages that cross the bisec-
tion, in each direction, i8l /4. Assuming that each edge of the network can transmit one
message (in each direction) in one time step, the time required by the network to route
the messages is at leasf (4BW(G)). Hence, the smaller the bisection width, the longer
it will take to route the messages. Along these lines, in [7], [13], and [14], a network’s
bandwidth(also calleccapacity is defined in terms of its ability to route messages with
random destinations. We omit the precise definition of bandwidth here. In [13] the exact
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bandwidth of then-input butterfly is shown to berg while in [7] tight bounds on the
bandwidths of various other networks are proved. Using an argument similar to the one
above, both of these papers prove that the bandwidth of a network cannot exceed four
times its bisection width, although the definition of the bisection width of the butterfly
given in [13] differs slightly from the definition given here in two respects. First, in [13]
every edge connecting a node on lev&lith a node on level + 1 (for anyi > 0) is
directedfrom leveli to leveli + 1, whereas here all edges are undirected. Second, in [13]
the bisection width is defined as the minimum, over all ¢®sS) such thatS contains

at leastn/2 inputs andS contains at least/2 outputs, of the number of directed edges
from Sto S. Thus, the upper bound on bandwidth in terms of bisection width combined
with the exact bandwidth of the butterfly yields a lower bounah (& on the bisection
width, i.e., the number of directed edges needed to sepafaiaputs fronn/2 outputs.
Furthermore, the cytS, S} in which Sis the set of nodes whose column numbers begin
with 0 achieves this bound. This result in similar in spirit to our Lemma 3.1.

In addition to the routing example, there are a large number of problems for which
it is possible to prove some lower bourid,on the number of messages that must cross
any bisection of a parallel machine in order to solve the problem [28]. In each case,
| /(BW(G)) is a lower bound on the tim4,, to solve the problem.

The bisection width of a network also gives a lower bound on the VLSI layout area,
A, of a networkG. In particular, Thompson proved that> (BW(G))? [28]. Combining
this inequality with the inequalitf > > (I /BW(G))? for any particular problem yields
the so-called AT?” bound AT? > Q(12). (See [28].)

1.3. Expansion

The expansiorof a networkG is defined as follows. Thedge expansionf a set of
nodes,S, isC(S, S), i.e., the number of edges in the cut that separ&t#zem the rest
of the network. We define thedge-expansion function EG, k) of the network to be
EE(G, k) = S:nlg‘rlkC(S, S
for 1 < k < N. In other words, the edge expansion function specifies, for kattte
minimum number of edges that must be removed to isolate a &etades from the rest
of the network. )
The set of neighbors/(S) of a setS are the nodes i that are adjacent to nodes
inS, i.e.,

NS ={veS|FueS (uv)eE).

Thenode expansioof a setSis |V (S)|. We say that a networ hasnode-expansion
function NEG, k) if, for1 <k < N,

NEG, k) = min IN(S)]

In other words, the node expansion function specifies, for &atlte smallest number
of neighbors possessed by any sek obdes.

The expansion of a networ® is an indicator of the speed at which information
can be disseminated i@. In particular, if each node in a set bfnodes holds a small
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piece of information, they can increase the number of nodes holding the information
to k + NE(G, k) in a single step. Several load-balancing algorithms exploiting this
property are reported in [8]. The expansion function can also be used to compare the
computational powers of different networks. In particular, a difference in the expansion
functions of a guest network and a host network has been used to prove lower bounds
on the inefficiency of any emulation of the guest by the host [12], [25]. Finally, we
observe that the onli-node bounded-degree networks known to be capable of routing
and sorting deterministically i@ (log N) time are those that incorporate some form of
expansion (i.e., expansion functions of the faWB(G, k) > (1 + ¢)k, for some fixed

¢ > 0) into their structures [1], [2], [17], [19], [29].

1.4. Lower Bounds Based on Embeddings

Lower bounds on the bisection width and expansion dllamode networkH can often

be proved byembeddinghe complete grap® = Ky into H. In general, an embedding

of aguestnetworkG into ahostnetworkH is a mapping of nodes @ to nodes ofH

and edges o6 to paths inH. Theload | of an embedding is the maximum number of
nodes ofG mapped to any one node 6f. The congestion ©f the embedding is the
maximum number of paths (corresponding to edge&)rhat cross any one edge of

H. Thedilation d of an embedding is the length of the longest path. In proving lower
bounds on bisection width and expansion, the chosen embedding typically has load 1,
and routes the same number of pathscross each edge bf.

Given an embedding df into H with load 1 and congestior) a lower bound on
BWI(H) is computed as follows. L&, A) be a bisection oH with capacityC(A, A) =
BW(H). Then removing the edges frolfy whose paths cros#\, A) yields a bisection
of Ky with capacity at most- BW(H). SinceBW(Ky) = N?/4, we havec- BW(H) >
N2/4, and henc®W(H) > N?/4c. This approach readily yield& (n) lower bounds
on the bisection widths dB, andW,, but without tight leading constants.

The same technique can be used to prove lower bounds on the edge expansion of
a network. Suppose th#ty is embedded irH with load 1 and congestioa. Let A
be a set ok nodes inH such thatC(A, A) = EE(H, k). For each of th&E(K y, k)
edges leading out of the corresponding seKig, a path must be routed out &f in
H. Thus, we must have- C(A, A) > EE(Ky;, k). Since the edge expansion f; is
EE(Kn, k) = k(N — k), we haveEE(H, k) = C(A, A) > k(N — k)/c. Fork < N/2,
we haveEE(H, k) > kN/2c.

Prior to our work some bounds @W(B,) were known, andBW(W,) had been
analyzed exactly. It is not difficult to show tHBW(B,) < nandBW(W,) < n: partition
the columns into those whose numbers stat i and those whose numbers start with
a 1. Similarly,BW(CCC,) < n/2. For the cube-connected cycles network, Manabe et
al. [20] proved the converse, nama@yV(CCGC,) > n/2. (This paper appears only in
Japanese, however!) The same approach can be used to sh@Wivat) > n. Hence
BW(CCGC,) = n/2 andBW(W,) = n.

It is more difficult to prove an exact bound on the bisection width of the butterfly
without wraparoundB,, because it does not possess the same degree of symmetry as
CCG, andW,. For example, the nodes on level OBf have two neighbors while those
on level 1 have four, whereas W, every node has four neighbors. Prior to our work,
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BW(B,) was known to be at least/2. This lower bound is proved by embedding the
graph Xy into B,, where Ky is a variant of the complete graph in which any two nodes
are connected biyvo parallel edges. There is an embedding Ki2= 2K,jogn+1) into
Bn with load 1 and congestiamn(log n+1)2. SinceBW(2Kogn+1)) = (n(logn+1))2/2,
BW(B,) > n/2.

These embeddings also imply that the edge expansion functi@ysaofdW, satisfy
EE(B,, k) = Q(k/logn) andEE(W,, k) = Q(k/logn), fork < N/2.

1.5. Related Networks

Another network closely related to the butterfly is the Benetwork. A(log n)-dimen-

sional Bens network consists of two back-to-badkg n)-dimensional butterflies,

and B/, where thd th node on level log of B, is identified with theith node on level

logn of B/,. The nodes on level 0 @, are called the input nodes of the Bemegtwork,

and the nodes on level 0 &, are called the output nodes. Typically each input node is
viewed as having two input ports (i.e., connections for edges), and each output node is
viewed as having two output ports. The Bem&twork is calledearrangeablebecause

it is possible to route edge-disjoint paths betweenritinput ports and & output ports

in any permutation [5], [6], [30].

In addition to the cube-connected cycles and Benefworks, the butterfly has
been shown to be closely related to the hypercube and other bounded-degree variants of
the hypercube, including the shuffle-exchange network and the de Bruijn network. For
example, it is not difficult to prove that ad-node butterfly network can be embedded
in anN-node hypercube with constant load, congestion, and dilation. In fact, Greenberg
et al. [10] proved that, for some sizes Nf, the butterfly network is a subgraph of
the hypercube. Also, Schwabe [12], [26] showed thaNanode butterfly network can
emulateT steps of any computation of ad-node shuffle-exchange network (or de
Bruijn network) inO(T) steps, and vice versa.

More information about the structural and algorithmic properties of butterflies can
be found in the book by Leighton [15]. Some of the parallel computers that use butterfly
networks or its variants are described in [4], [9], [21]-[23]. Many network emulations
are described in [12] and [18].

1.6. Our Results

We begin in Section 2 by proving that the bisection width ofrtieput butterfly network
without wraparoundB,, is 2(v/2—1)n+o(n). We show how to construct such a bisection
and prove that no bisection is smaller. This result is surprising, because it contradicts the
prior folklore belief that the bisection widthis Next, in Section 3 we present an original
proof that the bisection width of the butterfly with wraparouwd, is n. Although this

result was proved previously by Manabe et al. [20], we include our proof because there is
no English-language proof of this result in the literature. In Section 4 we prove upper and
lower bounds on the edge- and node-expansion functiok¥,afnd B,. For example,

we show that every set &fnodes inB, has at leastk/(2 logk))(1 — o(1)) neighbors,

for k = o(4/n). Several similar results were previously known. For example, Snir [27]
proved tight bounds on the edge-expansion function for another variant of the butterfly
network, which he call§2,, that can be derived from,» by providing each input node
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in B2 with a pair of input ports and each output node with a pair of output ports. These
ports are technically not edges, as they do not connect pairs of noBgs ifut for the
purposes of calculating the edge expansion function, these ports are counted as edges.
In particular,EE(Q2p, k) is defined as

EE(Qn, k) = min, C(S S +2/LoN S|+ 2L gogm-1 N SI.

Let Sbe any set of nodes 2, and letC = C(S, S)+2|LoN S|+ 2| L gogm—1MN Sl and

k = |§|. Snir showed that logC > 4k. This translates to the lower bouB& (2, k) >
(4—0o(1))k/logk, which is similar to the bounBE(W,, k) > (4 — 0o(1))k/logk that we
prove in Section 4. Note that Snir's bound holds forlkalwhereas ours holds only for

k = o(n). This is the result of counting the input and output ports in the edge expansion
function for2,,; notice thatEE(2,,, |2n]) = 4n, whereaEE(W,, |W,|) = 0. Hong and
Kung [11] prove a bound for yet another variant®f TheirFFT, graph can be derived
from B, by adding a single input port to each input node and a single output port to
each output node. They prove that if, for a Satf k nodes, there is a (not necessarily
disjoint) setD of nodes such that every path from an input porStpasses through a
node inD, thenk < 2|D| log|D|. This bound roughly corresponds to the lower bound
NE(B,, k) > (% — 0(1))k/logk that we prove in Section 4.

2. The Bisection Width of the Butterfly

In this section we show that the bisection width of the butteB\W/(B,), satisfies 2/2—
1)n < BW(B;,) < 2(+/2 — 1)n + o(n).

We reach this result as follows. We begin by introducing a highly symmetric network,
the mesh of starsand an embedding of the butterfly into this network. We use the
embedding and the (as of yet unknown) bisection width of the mesh of stars to establish
tight lower and upper bounds dW(B,). We conclude by computing the bisection
width of the mesh of stars.

What follows is a list of properties of the butterfly that we use in our constructions;
most of these properties are well known and are given with no proof. Note iz
number of inputs in a butterfly, is always a power of 2.

Lemma 2.1. There is an automorphism of,Hi.e., an embedding of Binto B, with
load 1, congestiori, and dilation1) that maps each level;lonto Liggn—i.

Lemma 2.2. Letv andv’ be two nodes on the same level gf Bhen there is a level-
preserving automorphisea of B, such thatr (v) = v’. Moreoverlet {v, u} and{v’, u’}
be two edges of Bsuch that andv’ are on the same level and u antase on the same
level Then there is a level-preserving automorphigmof B, such thatr (v) = v’ and
7(u) =u.

Let p be a path through the butterfly. We callmonotonidf p visits any level at
most once.
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Lemma 2.3. Letv and u be nodes of Bv € Lo and ue Liggn. Then there is exactly
one monotonic path linking and u

ForO<i < j <logn, let By[i, j] denote the subgraph @, induced by levels
Lia L|+la e L]'

Lemma2.4. LetO<i < j <logn.Then BJi, j] has ry2i—' connected components
each component is isomorphic tg;B; and the kh level of each component is a subset
of the nodes on thé + k)th level of B,.

Lemma 2.5. Letn> 1.Then there is a partition of ¢, the first level of B, into two
disjoint sets| and O, each of cardinality 2 such that if we assign two distinct “input
ports” to each node of | and two distinct “output ports” to each node oftfen the
resulting network is rearrangeahl&hat is for any bijection of the input ports to the
output ports there is a set of n edge-disjoint paths that link each input port with its image
output port

Proof. The Benehetworkis rearrangeable and there is an embedding laign) — 1)-
dimensional Bene'hetwork intoB, with load 1, congestion 1, and dilation 3. This
embedding maps theand O nodes of the Berserietwork ontd_ . O

We say that a subset of noddds compacin a networkG if for any given cut ofG
we can move all o) to one side of the cut without increasing its capacity. Formally, let
G = (V, E)beanetworkantd < V. ThenU is compactirG if for any cutg = (A, A)
of G thereis a cuty = (A, AY) (possiblyg = g') such that

(1) eitheru € A'orU C A,
(2) An(V —U)=A N —U),and
(3) C(@) = C(».

Lemma2.6. U is compact in G if U is compact in the subgraph of G induced by
U UN ().

Proof. Follows from the definition of compact. O

Lemma2.7. LetU be a compact set of nodes in a networkl&en every connected
component induced in G by U is also compact

Proof. LetU,, U,, ..., U, be the connected componentslbin G. Assume by con-
tradiction thatU; is not compact irG, and letg = (A, A) be a cut ofG that partitions
U, so that moving all of the vertices &f; into eitherA or A increases the capacity of
the cut. SinceV'(U;) does not contain any nodesih, the partition of the remaining
connected components 0fby the cutg does not affect);’s contribution towardC(g).

In particular, ifU — U is moved entirely into eitheA or A, we obtain a new cut whose
capacity (which might be larger than that@fis made larger by movint; entirely
into either side of the cut, and thukis not compact, a contradiction. O
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Lemma2.8. LetG= B,andU=J"L;. Then U is compactin G

Proof. Letg = (A, A) be a cut ofB,. Define the cuty = (A, A) by A = AU U.
Clearly,g’ satisfies requirements (1) and (2) of the definition of compact. We conclude by
showingthaC(g’) < C(g). Assume, without loss of generality, th&NLo| < |ANLg|.

Let (I, O) be the partition oL o given by Lemma 2.5. Then

21AN1|=((/2—|ANT)+ ((ANLg —|ANO))
= (n/2—|AN O]+ (AN Lo —|ANT])
< (n/2—|ANO) + (JAN Lol — [ANT])
=2|ANO|.

HencelAN || < |AN O|. Also, by symmetry]An O| < |AN ||. Pick a bijectionr

of | onto O such thatr(AN1) € AN O andz1(AN0O) € AN I.ByLemma?2.5,
there is a set of |A N Lo| edge-disjoint paths realizing such that each path has one
end inAN Lo and the other end iA N Lo. Each of these paths must contain at least one
edge that crosses the ayit= (A, A). Hence,C(g) > 2|AN Lo|. By our construction,
C(g) = 2|AN Lg|. HenceC(g) < C(9). O

Lemma 2.9. Each connected component of[Blogn] is compactin B, 1 < i <
logn.

Proof. Let B’ be a connected componentBf[i, logn], and letB” be the other con-
nected component oBy[i, logn] such that\V'(B”) = N(B’). Both B’ and B” are
isomorphic toB,» . Let G be the network induced iB, by B’ U B” UN(B). G is
isomorphic toB,»-1. Thus, by Lemma 2.88" U B” is compact inG. Therefore, by
Lemma 2.6,B' U B” is compact inB,,. Furthermore, by Lemma 2. B’ is separately
compact inBj. O

Lemma 2.10. LetO<i <logn, 0< j,and k= n2/, where i and j are integral and
n is a power oR. Then there is an embeddingof By into B, such that

(1) The dilation of the embedding is

(2) The congestion of any edge is exa@ly

(3) = maps R[0,i — 1] onto B,[0, i — 1] with uniform load o2} .

(4) = maps R[i + 1+ j,logn+ j] onto Bi[i + 1, logn] with uniform load o2’

(5) Foreachle[i,i + j],  maps exactl! nodes of theth level of B onto each
node of theth level of B,, so that the load on each node on thie lievel of B,
is(j +12l.

Proof. We describe the embedding but do not give detailed proofs of the five properties
listed in the statement of the lemma. For anye {0, 1}%, the nodes of colummw of By

are all mapped to the column’ € {0, 1}" of B, for which the firsti bit positions ofw’
match the first bit positions ofw, and the last log —i bit positions ofw’ match the last

logn —i bit positions ofw. Within the columnw of By, for anyl € [0, i — 1], the node
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with label (w, I) is mapped to the node with labgb’, 1) in B,. For anyl € [i,i + j],
(w, ) is mapped to nodav’, i). Finally, forl € [i +j+1, (logn)+ j], (w, |} is mapped
to (w',| — j). O

2.1. Reducing the Butterfly to a Mesh of Stars

The j x k mesh of starsdenotedMOS , is the network obtained from the complete
bipartite graphk; « by replacing each edge with a path of length 2. This network has
three levels that we refer to &8, (with j nodes),M, (with jk nodes), andV3 (with k
nodes).

Let G = (V, E) be a network, leg = (A, A) be a cut ofG, and letU < V. We
say thatg bisects Uif |[ANU| < |ANU| < |ANU| + 1. TheU-bisection width of G
is defined by

BW(G, U) = min{C(g): gis a cut ofG that bisectdJ}.

In this section we show that
2BW(MOS, 1, M2) - BW(Bn) - 2BW(MOS& (n), t (), M2)
n2 - n - f(n)2
for some functionf suchthatlim_ ., f(n) = co. Later we compute the bisection width
of the mesh of stars, which gives us lower and upper bound/é(B,,).

We establish both bounds @W(B,) via the following embedding of butterflies
into meshes of stars.

+0o(1)

Lemma2.11. Let j,k > 1, and suppose jk divides Then there is an embedding
of B, into MOS i such that

(1) The dilation of the embedding 1s

(2) The congestion of any edge is exa&ty/k.

(3) = maps the firstogk levels of B onto M; with uniform load (n/j) logk.

(4) = maps the lasiog j levels of B onto Ms with uniform load (n/k) log j.

(5) 7 maps the other nodes of,Bnto M, with uniform load (n/jk) (log(n/jk) + 1).
Moreoverif jk = n, thenz~1({v}) is compact for any node of MOS «, and
the load of any node of pMs 1.

Proof. We begin by introducing the following auxiliary gra@h which has three levels.
The nodes on the first level are the connected componerg[0flogn — log j], the
nodes on the second level are the connected componeBtfiod k, logn —log j], and

the nodes on the third level are the connected componerg[lofg k, logn]. Suppose
thatx is a node on the second level. Then the connected comprméim, is contained

in one of the connected componentspn the first level, and also in one of the connected
componentsy, on the third level. LeG have (undirected) edges fraxrto bothw andy.

We now show thaG is isomorphic taViOS . By Lemma 2.4, the first level has
nodes, the second leiglnodes, and the third levkinodes. As we have seen, each node
on the second level @& has exactly one edge leading to each of the other two levels. By
Lemma 2.4, each node on the first level is a connected componBglitoflogn—log j],
which is isomorphic td,;. This connected component contains a number of connected
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components belonging tB,[k, logn — log j]. Applying Lemma 2.4 again, the set of
connected components Bf[k, logn — log j] contained in one node on the first level is
isomorphic toBy [k, logn—log j], and hence there are precisklgf these components.
For each of thesk components, there is a corresponding node on the second lesel of
so the degree of each node on the first lev& @ k. By a similar argument, the degree of
each node on the third level &f is j. What remains is to show that for each node on the
first level, there is a monotonic path of length 2 to each node on the third level. Consider
a pair of nodes andy on the first and third levels @. By Lemma 2.3, any node on the
first level of By, is linked to each node on the last level®f by a single monotonic path.
Hence, the path from any node on the first leveliah B, to any node on the last level
of y in B, must pass through some connected comporeritB,[logk, logn — log j]

that is contained in botly andy, which implies that there is a path fromto x to y

in G.

We define the embeddingof B, into G as follows. Letv be a node oB,. If visin
Bn[logk, logn — log j], thenv is mapped to the corresponding nodewf. Otherwise,

v belongs to either one connected componer;fo, logn — log j], or one connected
componentirB,[log k, logn], but not both. In this caseis mapped to the corresponding
node inM1 or Ms.

Since the nodes d8, mapped byr to M, are drawn fronB,[0, logk — 1], and the
nodes mapped tM3 are drawn fromBy[logn — log j + 1, logn], andjk dividesn, no
node ofB, that is mapped td/; is a neighbor inB, of a node mapped tM3. Hence,
the dilation ofr is 1, which satisifies requirement (1).

By symmetry (Lemma 2.2), the congestion ofidi to M, edges of5 is equal. Since
2n edges ofB,, are mapped acrofls edges ofG, the congestion of each edge is/K.
The same holds for the other level of edge$otthis establishes (2). (A more explicit
way to see this is that, by Lemma 2.4, a connected componei[ih logn — log j]
containsk connected components Bf,[log k, logn — log j], each of which is mapped
to a different node oM,. Since each component &[logk, logn — log j] hasn/jk
input nodes on level lok, and there are two edges from level log 1 to each of these
inputs, the congestion of each edge frdato M, is 2n/jk.)

By Lemma 2.4 satisfies (3)—(5).

Assume now thah = jk. Then forv € My, #~1(v) is a single node by our
construction and hence is compact. koe Ms, 7 ~1(v) is compact by Lemma 2.9.
By Lemma 2.1, the same holds fore M. O

First, we establish the lower bound on the bisection widthBgfin terms of
BW(MOS, n, M2). The proof makes use of the following lemma.

Lemma2.12. Letn> 1.Then
(1) Thereisani suchthdl <i <logn and BWB,, Lj) < BW(B).
(2) BW(Byz, I—Iogn)/nz = BW(Bn)/n-

Proof. To establish (1), leg = (A, A) be a bisection 0B, such thatC(g) = BW(B,).
Assume, without loss of generality, thed N Lo| < n/2. Then there is am such
that|ANLi| < n/2 < |ANLjl Letg = (A, A) be a cut ofB, (that does not
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necessarily bisedB,) such thatC(g’) < C(g), |A NLij|] <n/2 < |A NLjl, and
|[A'NLis1|—|A'NL;j|is as small as possible. We establish (1) by showingghaisects
eitherL; orL;, 1. Assume otherwise. TheA'NL;| < n/2 < |A'NL;,1]|. Since the edges
connecting nodes on levelwith nodes on level + 1 in a butterfly can be partitioned

into node- and edge-disjoint 4-cycles (which resemble butterflies when drawn, hence
the name “butterfly”), there must be a 4-cycle;u—v'—u'—v, with v,v" € L; and

u,u € Ljy1suchthatA' N{v, v'}| < |A N{u, u’}|. Hence, eithefA' N {v, v’} =0or
|A"N{u, u'}] = 2. In both cases we can modify by moving a single node from\’ to

A or vice versa to redugeY N L 1| — |A' N L;| without increasing the capacity of the

cut, which yields a contradiction.

To prove (2), select anthat satisfie8W(B,, Li) < BW(B,) (by (1) we know that
such ani exists), and lety = (A, A) be a cut ofB, that bisectd.; and for whichC(g) =
BW(B,, L;). Apply Lemma 2.10 withj = logn andk = n®. Let = be the embedding
of By into B, given by this lemma. Define a cut &, by g = (x 1(A), 7 1(A)).
Since the congestion of each edgeByf is exactlyn, C(g) - n = C(g’), and hence
C(g)/n? = C(g)/n. Sinceg bisects théth level of B,, by property (5) of Lemma 2.10,
g bisects every level oB,2[i, i + logn]. Furthermore, since log < [i,i + logn], ¢
bisects thelogn)th level of By2. Hence BW(Byz, Liogn)/N? < C(g')/n? = C(g)/n =
BW(B,, Li) < BW(B,)/n. O

Lemma 2.13. 2BW(MOS, n, M2)/n? < BW(B)/n.

Proof. This inequality clearly holds fon = 1. Assume henceforth that > 1. By
Lemma 2.12BW(B:, L|Ogn)/n2 < BW(B,)/n. Letg = (A, A) be a cut ofB,. that
bisectsLogn such thatC(g) = BW(Byz, Liogn). Apply Lemma 2.11 orBy. with j =

k = n, and letr be the embedding dB.: into MOS, , provided by this lemma. Note
that forv € My, 7~1(v) is a singleton irByz.

The setd7~1(v): v € My U Mg} are pairwise disjoint, compact (by Lemma 2.9),
and do not interseck oyn. Hence, we may assume, without loss of generality, that
each of these sets is a subset of eitAesr A. Define a cuty = (A, A) of MOSn
byv e A < = %(v) C A Sincer~1(v) is a singleton for any € M, andg bi-
sectsLiogn, 9 bisectsM,. Since the congestion of is exactly 2, Z(g') = C(9).
Hence, BW(MOS, n, M2)/n? < 2C(g)/n* = C(g)/n* = BW(By, Liogn)/N* <
BW(B,)/n. O

We now establish the upper bound on the bisection widtBpfLet G = (V, E)
be a network, lety = (A, A) be a cut ofG, and letU ¢ V. We say that) is amenable
with respect to df it is possible to shift nodes df from Ato A or vice versa so that any
number of nodes i (but not necessarily any subsetdf from 0 to|U| can be placed
on either side of the cut without increasing the capacity of the cutU.és,amenable
with respect tag in the networkG if for every 0< k < |U| there is a cuty = (A, A)
such that:

1) ANV —-U)=An( —U),
(2) INNU| =k, and
(3) C(@) = C(».
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Lemma 2.14. Let g = (A, A) be a cut of Glet U be a set of nodesnd let W =
U UN(U). Then U is amenable with respect to g in G iff U is amenable with respect

to glw 2 (AN'W, AN'W) in the subgraph of G induced by W
Proof. The lemma follows from the definition of “amenable.” O

Lemma2.15. Letn> 2,letU be a connected component 6ff B logn — 1], and let
g = (A, A) be acutof Bsuch that " A(U) € Aand Lggn NN(U) € A ThenU
is amenable with respectta g

Proof. By Lemma 2.4, the subgraph &, induced byU is isomorphic toBy,4. By
Lemma 2.14, we can restrict ourselves to the subgrapgB,ohduced byl U N (U).
Call this networkG, its levelsLg, ..., L, and letg’ be the cug restricted tG.
There is a seP of n/2 monotonic edge-disjoint paths &f leading fromLS to
L%gn and covering all the edges &. Each path ofP has one endpoint i\ and the
other inA, hencen/2 < C(g).
Consider a cuty’ = (A", A”) of G with the following property:

(#) LG C A", Liggn C A7, andVi, 0 <i <logn, L[ A"#0 = L, C A"
In other words, there is somg 0 < | < logn, such that levels 0 through— 1 of G
are contained entirely i&” and levelsj 4 1 through logn are contained entirely iA”,
while some of the nodes on levgimay belong toA and others taA”. Clearly, there is
a cutg” satisfying both(x) and|A” "U| = k for any 0< k < |U|. Now, if g” satisfies
(%), then any path oP contributes exactly one to the capacitygdt since there are no
other edgesC(g”) = n/2 < C(g). O

The following lemma provides a tight upper bound on the bisection widtB.of
in terms of theM,-bisection width ofMOS ;. The proof not only establishes the in-
equality, but also demonstrates how to find a bisectioBpfwvith capacity at most
2n-(BW(MOS j, M2)/j?+2/j), forany| such thaj®+2j — 1 < logn. In Section 2.2
we show that ag grows to infinity, BW(MOS ;, M,)/j? converges ta/2 — 1. Thus,
for largen, we can choose a largesatisfyingj® + 2j — 1 < logn, and construct a
bisection ofB, with capacity close to@/(2) — 1)n.

Lemma 2.16. BW(B,)/n < 2BW(MOS ;, M,)/j? + 4/ for any j such that j is a
power of2 andlogn > j%+2j — 1.

Proof. We begin by finding a bisection dfl, in MOS ; with minimum capacity.
Let j > 1 be a power of 2 and leg* be a cut ofMOS; that bisectsM, such that
C(g*) = BW(MOS j, My). Pick two nodesy, v € My, on different sides off*, u € A
andv € A. Next, for reasons that will soon become clear, we move at most one neighbor
of u and one neighbor of to the other side of* to produce a cugj = (A, A) in which



504 C. F. Bornstein, A. Litman, B. M. Maggs, R. K. Sitaraman, and T. Yatzkar

each ofu andv has one neighbor i and the other irA. By this constructiong bisects
M, andC(g) < BW(MOS j, M2) + 2j, since the degree of the neighborsuofndv
is j.

Next, we embedB,, into MOS j, and use the embedding combined with thegut
of MOSj, j to induce a cuty of B,,. Letk = j, n > j2 and letx be the embedding
of B, into MOS ; given by Lemma 2.11. Define a cut &, by g’ = (A, A) =
(r~Y(A), 7~1(A)). Since the congestion i$12j 2, we haveC(g') = 2nC(g)/j2. Hence,
C(g))/n = 2C(g)/j°. Because bisectsM, g’ bisects the nodes d, that are mapped
to My, i.e., the nodesiBy[ j, logn— j]. The remaining nodes iB,, those inB, [0, j —1]
andBy[log n— j + 1], might be mapped to either sidegsfin an arbitrary fashion. Hence,
the cutg’ does not necessarily bisdsy.

In order to transforng’ into a bisection oB,,, we move some nodes froAito A’, or
vice versa. LetN = n(1+ logn) be the number of nodes &;. Since only the nodes in
Bn[0, j —1] are mapped tt;, and only the nodes @&,[log n— j +1, logn] are mapped
to M3, the (absolute) difference betwehi| and| A’| can be at mos (2j /(1 +logn)).
Hence, forj = o(logn), the imbalance i®(N). By Lemma 2.11(5), for eacls € My,
7 Y(w) is a connected component &[], logn — j], and hence is isomorphic to
Bn/j2. Thus, |7 ~1(W)| = |7 ()| = |Bujjzl = n/j2(1 +log(n/j?) = N(1 - 2j/(1 +
logn))/j?. Since each af andv has one neighbor iAand the other i\, by Lemma 2.15,
both 7z ~*(u) andz~%(v) are amenable with respect ¢ By our construction, one is
a subset ofA’ and the other o\. Therefore, provided that there are enough nodes in
7~ 1(u) andz ~1(v), we can correct the imbalance without increasing the capacity of the
cut by either moving nodes from~1(u) to A’ or by moving nodes fromr —1(v) to A'.
Moving one node (in the right direction) decreases the imbalance by 2. Hence, there will
be enough nodes to move provided thaii21—2j/(1+logn))/j? > N(2j/(1+logn)).
This inequality holds whem® + 2j — 1 < logn.

Hence, forj3 + 2j — 1 < logn, BW(B,) < C(g') andBW(B,)/n < C(g)/n =
2C(9)/j* < 2BW(MOS j, M2)/j? + 4/j. O

2.2. The Bisection Width of the Mesh of Stars

In this subsection we show

BW(MOS,;, M
V2-1< % <V2-1+0Q).
As the following lemma shows, the real functidrix, y) 2 x4+ y — min(1, 2xy),

defined on the closed domaih = {(x, y): 0 < X,y < 1and 1< x + vy}, is related to
BW(MOS j, My).

Lemma 2.17. Let j be an even integdij > 0), and let(x, y) € D such that xj and
yj are integersLet B be the set of cutéA, A) of MOS ; that bisect M and satisfy
|[AN Mz| =xjand|AN Mz| =vyj. Then

min{C(g): g € B} = f(x,y)j
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Proof. Letg = (A, A) be a cut inB such thatC(g) is as small as possible. The
networkMOS ; hasx(1 — y)j? monotonic paths (of length 2) leading frosmn M
to AN Ms, and(1 — x)yj? monotonic paths leading frolA N M; to AN Ms. Each of
these paths contributes one to the capacitg.dh addition, there arayj? monotonic
paths fromA N M; to AN Ms. SinceC(g) is as small as possible, as many of the
middles nodes on these paths as possible ak iissume without loss of generality
that(1 — x)(1 — y) < xy (otherwise we can reverse the rolesfoind A, and examine
cutg’ = (A, A) instead, noting that(g') = C()). Sinceg bisectsMy, if 3 < xy, then
the middle nodes of exactiyxy — %) j2 of these paths are iA. (Here we need even so
that% j2is integral.) Each of these paths contributes two to the capacity@fherwise,
if xy < % then, becausg is minimal, the middles node of all of these paths aréjn
and the paths contribute nothing to the capacitg.ddince(1 — x)(1 — y) < Xy, there
are at mostj2/2 paths fromA N M; to AN Mz, and hence the middle nodes on these
paths are all inA and the paths contribute nothing to the capacity.of

In summaryC(g)/j2 = x(1—y) + (1 — X)y + 2 maxxy — % 0)=x+y—2xy+
max(2xy— 1,0) = x + y + max(—1, —2xy) = X + y — min(1, 2xy) = f(x, y). O

Lemma 2.18. The function f= x + y — min(1, 2xy) is continuous in the domain

D={(x,y): 0<x,y<1landl<x+y},and f(\/E \/g) = /2 —1is a(global)
minimum of f

Proof. Clearly, f is continuous. We havé(x,y) =X+ Yy —min(1,2xy) = X +y —
min(L, [(x+Y)?— (x—Y)?]/2). For any fixed value of + v, f (x, y) is minimized when
X = Y. Hence,f has a minimum on the ling = y. Consider the univariate function
f(x,x) = 2x — min(1, 2x?) for (x, x) € D. In this domainx > % This function is
monotonic decreasing for < \/% and monotonic increasing fr{y/% < X. Hence, it

reaches a minimum at= \/g O

Lemma 2.19. As a function of variable ,jwhich is positiveeven and integral
V2 -1 <BWMOS,j, M2)/j? < +v2—1+0(1).

Proof. Letg = (A, A) be a cut ofMQOS ; that bisectdM, such thatC(g) is as small
as possible. Assume, without loss of generality, that | AN (M U Mg)|. (Otherwise,
since|M1| + |Ma| = 2j, swapA andA) Letx = |AN My|/j andy = |AN Ma|/j.
Clearly,(x, y) € D.

The first inequality/2 — 1 < BW(MOS j, M2)/j?, follows from Lemmas 2.17
and 2.18 and the fact thaf2 — 1 is irrational whileBW(MOS j, M2)/ ] 2js not.

The second inequalitBW(MOS j, M2)/j2 < ~/2 — 1+ o(1), follows from the
same two lemmas and the fact thatj ages to infinity, for a minimum cug = (A, A),

X = |AN My|/j becomes arbitrarily close tg@ as doesy = |A N Ms|/j, so that

f (x, y) converges to the minimum valu‘e(\/i, \/g) =2-1. O
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Lemmas 2.13, 2.16, and 2.19 imply:
Theorem 2.20. Forn > 1,

2(v/2 — )n < BW(B,) < 2(+/2 — 1)n + o(n).

3. Bisection Width of W,

In this section we prove that the bisection widthvidf is n. The proof makes use of the
following lemma.

Lemma 3.1. Any cut of the butterfly network,Bhat bisects its inputér outputg, or
the set of inputs and outputs of the network taken toggtlasrcapacity at least.n

Proof. We prove this by embedding the complete bipartite gr&ph, in the but-
terfly network B,. Call the sides oK, , left andright, respectively. The embedding
maps the nodes on the left side Kf,, to the input nodes oB, and the nodes on
the right side to the output nodes Bf, in a one-to-one fashion. Each edge Kf
is mapped to the unique shortest path that connects the corresponding input and out-
put nodes of the butterfly, that is, the usual route used to connect those two nodes
in the butterfly network. The embedding has load 1, congegtiéh and dilation
logn.

Now take a cutS, S) of B, that bisects its inputs. The removal of the edgek of;
that are routed through any of the edges in the(8uf) results in a cut oK, , that has
capacity at mos€(S, S) - n/2. Next, take a minimum cut dk,,  that bisects the left
side ofKp . Letb andn — b be the number of right nodes on each side of the cut. The
capacity of this cutigb+n—b)-n/2, i.e.,n?/2. Since this is a minimum cut, any other
cut of K, , bisecting its left side, and, in particular, the one induce&jm, by (S, S)
must have capacity at least/2. Thus,C(S, S) > n. A cut bisecting the outputs of the
butterfly network is analogous.

Now consider a minimum cut that does not necessarily bisect either the left or right
sides ofK,, n,, but does bised,, ,, itself. Letb be the number of nodes from the left side
in one of the partitions induced by the cut. Then this partitionmasb nodes from
the right side oK, », while the other partition has — b nodes from the left side artl
nodes from the right. The capacity of the cubfs+ (n — b)%. Howeverb? + (n — b)?
has its minimum value whebh = n/2, and thus the cut has capacity at lea&t2. If
we map this cut onto the butterfly network, according to our embedding, we obtain a
cut (S, S) of the set of input and output nodes of the butterfly network. Again, we have
C(S, S -n/2 > n?/2, thus proving the lemma. O

Lemma 3.2. The bisection width of the butterfly network with wraparound is
BW(W,) = n.
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Proof. It is straighforward to prove th&W(W,) < n by exhibiting a bisection with
capacityn. For example, consider the c(8, S) whereSis the set of nodes in the first
n/2 columns of the butterfly network.

To show thatBW(W,) > n, we start with a cug = (S, S) that bisectsW, and
is as small as possible, and show how to tranglpteto a cut of equal capacity that
bisects the inputs oB,. Lemma 3.1 can then be used to provide a lower bound on
the capacity ofy. Becausey bisectsW,, either there exists a levelwith exactlyn/2
nodes inS, or there is a level with more thann/2 nodes inS such that on level
i + 1(mod logn) there are more tham/2 nodes inS. By the symmetry of the butterfly
with wraparound, we can renumber the level3/df so that, without loss of general-
ity, i = 0. The cut(S, S) is translated to a cut oB, by transmutingW, into B, in
a standard fashion: each noden level 0 ofW, is replaced by a pair of nodes. One
of these new nodes remains on level 0 in the same columraasl inherits the edges
connectingy to its two neighbors on level 1. The other new node remains in the same
column of v but becomes part of a new level lngand inherits the edges connect-
ing v to its neighbors on level log — 1. The resulting network is isomorphic &),.
Moreover, the edges in the c(, S) of W, now also form a cut oB,. As long as the
majority of the nodes in level 0 are I8 there must be some nodeon level 0 that is
in Sand that has a neighbor on level 1 that belong$ tsince anyk nodes on level
0 have at leask neighbors on level 1). Moving from Sto S does not increase the
capacity of the cut. We can repeat this process until level 0 is bisect¢8, [§). By
Lemma 3.1 this cut must have capacity at laasThereforeC(S, S) > n, and hence
BWW,) > n. O

Lemma 3.3. The bisection width of thélogn)-dimensional cube-connected cycles
network is BWCCG,) = n/2.

Proof. A bisection that cuts one of the cube dimensions has 8fZ& and thus
BW(CCGC,) < n/2. To prove a matching lower bound, we embé&d in CCG, as
follows. Suppose thdtv, i) and(w’, i’) are neighbors ik,,, where’ = i +1(mod logn).

If w = w’, then map the edge to the corresponding edg€@C,. Otherwise,
map the edge to a path of length two @CG, that passes throughw,i’), which

is connected to botlw, i) and (w’,i’). This embedding has congestion 2, and thus
BW(CCG,) > n/2. O

4. Expansion ofW, and B,

In this section we derive upper and lower bounds on the edge and node expanspn of
andB;.
4.1. Expansion of W

In this section we determine the edge-expansion fundi&(\W,, k) and the node-
expansion functioNE(W,, k) of W,. First, we show that, fok = o(n) (which implies
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k = o(N)), (4 — o(1)k/logk < EE(W,,k) < (4 + o(1))k/logk, which we also
write more succinctly aEE(W,, k) = (4 £+ o(1))k/logk. The lower bound cannot
be extended to hold for all values kfup to N/2 because, fok = N/2, the value of
the expansion function cannot exceed the bisection widWnfwhich we showed in
Section3to b8 W(W,) = n < (1+0(1))N/log N. HenceEE(W,, N/2) < BW(W,) <
(2+0(1))(N/2)/log(N/2), which is smaller than the lower bound that holddfet o(n)
by a factor of about 2. For larger values lgfhowever, we can use the technique of
embeddingKy into W,,, which gives a bound &E(W,, k) = Q(k/logn) fork < N/2.
Fork = n?, for any fixeds > 0, this lower bound i§2 (k/logk). Hence, foralk < N/2,
EE(W,, k) = ©(K/logk). Our bounds foNE(W,, k) are not as tight. We show that
(1—o0(1))k/logk < NE(W;,, k) < (3+ 0(1))k/logk, for k = o(n). For larger values of
k we can again use the technique of embeddirgnto W, which yieldsSNE(W,, k) =

O (k/logk) fork < N/2.

Definitions. The nodes of a rooted tree can be arranged in levels in the following
manner. The root of the tree is in level 0. A node whose parent is in idvelongs to
leveli + 1. The nodes of a-dimensional sub-butterfly oV, or B, can be arranged
in d + 1 levels of 2 nodes each. We refer to the nodes in level O (resp. kvef the
sub-butterfly as the inputs (resp. outputs) of the sub-butterfly. Note that the inputs and
outputs of a sub-butterfly may or may not be inputs or outpui&ipbr B,

Thedown-tree T is ann-leaf complete binary tree rooted at nagef W,, where
the children of a node on levelare located on leval + 1(mod logn). Let nodeu be
in leveli of W,. TreeT, is a subgraph of\,, such that the th level of T, consists of
nodes in level + j (mod logn) of W,. Note that the leaves df, also belong to leveil
of Wh,.

Theup-tree T, is ann-leaf complete binary tree rooted at nagdef W,, where the
children of a node on levélare located on level— 1(mod logn). Let nodeu be in level
i of W,,. TreeT is a subgraph of\, such that thg th level of T consists of nodes in
leveli — j(mod logn) of W,. Note that the leaves df; also belong to level of W.

4.1.1. Edge Expansion of Y In this section we determirieE(W,, k) to within lower-
order terms by proving upper and lower bounds.

Lemma 4.1. The edge-expansion function 8#,, k) is at most(4+ o(1))k/logk, for
1<k=<N.

Proof. Let A be a sub-butterfly ofA,, with k nodes. Each level of the sub-butterfly
A has(1 + o(1))k/logk nodes. Each input and output node of sub-butteiflyas two
incident edges that belong to aiA, A). Thus, the total number of edges in ¢é, A)

is (44 o(1))k/logk. Therefore EE(W,, k) < (4 4 o(1))k/logk. O

Lemma4.2. The edge-expansion function 8f,, k) is at least(4 — o(1))k/logk, for
k = o(n).

Proof. Let Abeanyset ofk = o(n) nodes ofW,. To prove the lemma, we use a credit
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Node u
Cut Edge

@ NodeinA

O Node notin A

Leaf of Ty

Fig. 2. Nodeu passe% unit of credit down tred,. A fractional value next to an edge indicates the number
of units of credit retained by the edge.

distribution scheme to show th@( A, A) is at leas(4 — o(1))k/logk. Each nodel € A
distributes 1 unit of credit to edges in au&, A) using the following procedure. Lét,
be the down-tree rooted at node Furthermore, let the edges &f be directed from
root to leaf. Nodeu passe% unit of credit down the tre&, using an iterative procedure.
Figure 2 shows a small example in which there is a path from a nddea leaf ofT,
consisting entirely of nodes iA, in which all of the siblings of the nodes belawon
the path are inA. First, the two outgoing edges dfin tree T, receive;ll unit of credit
each. Iteratively, each tree ed@e w) does one of the following:

o If tree edge(v, w) is an edge in cutA, A) or if w is a leaf of T,, edge(v, w)
retainsall the credit it received.

e Otherwise, edgév, w) retains none of the credit it received and passes half the
credit it received to each of the two outgoing tree edges.of

In a similar fashion, noda distributes unit of credit via the up-tre&; rooted atu.

We bound the total units of credit retained by the edges in8utA) as follows.
Each nodes € Adistributes 1 unit of credit, of which some portion is retained by edges
in cut (A, A) and the rest is retained by edges w) such thatw € Ais a leaf ofT,
or T;. If an edge(v, w) not in cut(A, A) retains credit from node, then there is a
path of length logn from nodeu to w such that every node in the path belongsAto
Note that a nodev may appear as a leaf in bofly andT;. Since there are at mokt
nodesw € A, there are at moskdges not in cutA, A) that retain credit from node,
and each such edge retain®?9"t1 = 1/(2n) units of credit fromu. Thus the number
of units of credit from nodes € A that is retained by edges in ¢, A) is at least
1-—2k/2n = 1 — k/n. Since there ark nodes inA, the total units of credit retained by
the edges in cutA, A) is at least

k (1 - E) — (1— o()k, 1)

sincek = o(n).
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Next, we show that each edge in ¢ét, A) retains a total of at mostlogk| +1)/4
units of credit. Let(v, w) be a cut edge such thate A andw € A. Without loss of
generality, let nodes andw be in levelsi andi 4+ 1(mod logn) of W,, respectively.
Let T, be the up-tree rooted at nodeand letT,, denote the down-tree rootecdwat The
edge(v, w) only retains units of credit that are passed down ffijand not up from
T,, becausav does not have any units of credit to distribute initially, and any units of
credit that are passed up throughare retained before they rea@h w). Thus, the cut
edge(v, w) retains the most credit wheall k of the nodes inA are placed in the first
[logk] + 1 levels of tre€T, as close ta as possible, i.e., when all nodes in levels 0
throughl|logk| — 1 and some nodes in levdbgk| of treeT; are inA. Each noder € A
atlevelj > 0 of treeT, begins with% unit of credit to pass down, ang2/*+2 units of
this credit reach the cut edg@e, w), while the rest of the origin% unit of credit passed
down byu exits the tredl;. Since there are/2nodes in levej of treeT/, the total units
of credit retained by cut edge, w) is at most

Llogk]
Z (21-. 1 >: Llogk] +1. )

= 2i+2 4

It follows from (1) and (2) that the number of edges in ¢at A) is at least

_ k
C(A, A) > (1 —o(1))k - o(1))m. O

4
S 4 —
llogk] + 1 = (

Theorem 4.3. For k < N/2,the edge-expansion function BE,, k) is © (k/logk).

Proof. The upper bound follows from Lemma 4.1. Hor= o(n), the lower bound
follows from Lemma 4.2.

Forn® < k < N/2, for any fixede > 0, the bound is proved by embeddiig,
into W,,. For example, the following not-too-elegant embeddimgwill do. Suppose
that each nodevw of Ky is given a distinct label(w) € [1, N], and that the nodes
of Ky are mapped to the nodes i, in an arbitrary one-to-one fashion. Letand
v be two nodes irKy for which I (u) < I(v). Then the path for the edge betwegn
andv in Ky is routed inW, from 7—1(u) to #~1(v) as follows. First, the path travels
monotonically up the column in which —%(u) resides, in order of decreasing level
numbers, until it reaches level 0. Then the path travels monotonically along a path of
length logn in order of increasing level number to the node on leveld@god logn)
(i.e., level 0) in the column containing=*(v), following a path of length log even
if 771(u) andz~(v) are in the same column. Finally, the path travels monotonically
from level logn(mod logn) to = —%(v) in order of decreasing level number. The dilation
of the embedding is 3 log — 2. Note that the paths specified byare not necessarily
simple, and despite the symmetry in béth andW,, the paths are not symmetric, and
neither the congestion nor the dilation is uniform. However, for the purposes of proving
an asymptotic bound, these properties are not essential.

To analyze the congestiog, of it is easiest to bound the congestion due to the
three parts of the paths separately. The number of paths originating in a column is less
thanN logn, as is the number of paths terminating in a column. Hence, the congestion
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due to the first and last parts of the paths is at mbskdi)n. To compute the congestion
of an edge spanning levalandi + 1(mod logn) of W, due to the middle parts of the
paths, notice that the edge can be reached via a monotonic path in order of increasing
level number from at most' different inputs, and that at mosy2'* outputs can be
reached from the edge. The middle parts of at nibkign different paths originate at
each of these'dnputs, but of these at mostlogn/2'*! have destinations in the same
columns as tha/2'+1 outputs that can be reached from the edge. Hence, the congestion
on the edge is at mog®' N logn)/2'+1 = (N logn)/2. Thus the total congestiaris at
mostO(N logn).

As explained in the Section 1.EE(W,, k) > kN/2c. Sincec = O(N logn) and
logh = ®(logk) (sincen® < k < %n logn, for somee > 0, by assumption), we have
EE(W,, k) > Q(k/logk). This embedding can be adapted to prove the saikglog k)
lower bound orEE(B,, k), and, since botW, and B,, are bounded-degree networks,
for NE(W,, k) andNE(By, k). O

4.1.2. Node Expansion of §¥ In this section we determireE(W,, k) to within con-
stant factors by proving upper and lower bounds.

Lemma 4.4. The node-expansion function K&, k) is at most(3 + o(1))k/logk,
whenl <k < N.

Proof. Let A consist of two nonintersecting sub-butterfliBs and B” of W,, such
that B’ and B” havek/2 nodes each, and such that b&hand B” are contained in a
sub-butterflyB one dimension larger. Each level of the sub-butterfBésnd B” has
(% +0(1))k/logk nodes, and each level Bfhas(1+ o(1))k/logk nodes. The neighbors
in A of the input nodes oB’ andB” are the(1 + o(1))k/logk inputs of B. Each output
node of B’ and B” has two nodes irA as neighbors. Thus, the output nodesBofand
B” have(2 + o(1))k/logk neighbors. Therefore, the total number of nodes/itA) is
(8+ o(1))k/logk. ThereforeNE(W,, k) < (3+ o(1))k/logk. O

Lemma 4.5. The node-expansion function K&,, k) is at least(1 — o(1))k/logk,
when k= o(n).

Proof. To prove the lemma, we use a credit distribution scheme similar to that in the
proof of Lemma 4.2. We show that/(A)| is at least(1 — o(1))k/logk, for anyset A

with k = o(n) nodes ofW,. Each nodel € A distributes 1 unit of credit to the nodes in

N (A) using the following procedure. L&, be the down-tree rooted at nodeNodeu
passe% unit of credit down the tred@, using an iterative procedure. First, each of the
two nodes adjacent in treeT, receive%1 unit of credit each. Iteratively, each node
does one of the following:

o Ifnodevisin N (A) orif v is aleaf ofT,, nodev retainsall the credit it received.
e Otherwise, node retains none of the credit it received and passes half the credit
it received to each of the two nodes adjacent to the next level ofT,,.
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In a similar fashion, noda distributes3 unit of credit via the up-tre&; rooted at to
the nodes inV (A).

We bound the total units of credit retained by the node&/iA) as follows. Each
nodeu € A distributes 1 unit of credit, of which some portion is retained by nodes in
N (A) and the rest is retained by nodesuch thatv € A andv is a leaf of T, or T}).

If a nodev not in V'(A) retains credit from noda, then there is a path of length lag
from nodeu to v such that every node in the path belongsAoThere are at mos
nodes not in\/(A) that retain credit from node, and each such node retains at most
2/2'°9"+1 — 1/n units of credit fromu (counting units of credit from botf, and T;).
Thus, the number of units of credit from node= A that is retained by nodes iR (A)

is at least I- k/n. Since there ark nodes inA, the total units of credit retained by the
nodes inV'(A) is at least

k (1 - g) = (1—o(1)k, ©)

sincek = o(n).

Next, we show that each node M (A) retains a total of at mogtlogk] units of
credit. Letv be anode ioV'(A) and letT, andT, be the down-tree and the up-tree rooted
atv, respectively. Node retains the most units of credit whatl k of the nodes inA
are placed in levels 1 tdogk] of the treesT, andT, as close t@ as possible. To obtain
an upper bound on the number of units of credit retained by mpdesume that all the
nodes in levels 1 tglogk| of T, andT, belong toA. Since each node < A at level
j > 1 of treeT, or T/ contributes 12/+! units of credit to node, and since there are a
total of 21+1 nodes in levej of treesT, and T/, the total units of credit retained by node
v € N(A) is at most

[logk]

. 1
Z (21+1 , W) = |logk]. (4)

j=1

It follows from (3) and (4) that the number of nodesNf( A) is at least

1 k
(1-o(1))k- Uo—ng >(1- 0(1))m~ O

Theorem 4.6. For k < N/2,the node-expansion function K&, k) is © (k/logk).

Proof. The upper bound follows from Lemma 4.4. Hor= o(n), the lower bound
follows from Lemma 4.5. Fon® < k < N/2, for any fixede > 0, the lower bound is
proved by embedding y into W,. O

4.2. Expansion of B

In this section we determine the edge-expansion fundi&B,, k) and the node-
expansion functioNE(B,, k) of B,. We begin by showing thaEE(B,, k) = (2 +
o(1))k/logk for k = o(y/n). The lower bound cannot be extended to hold for all val-
ues ofk up to N/2 because, fok = N/2, the value of the expansion function can-
not exceed the bisection width &;,, which we showed in Section 2 to BW(B,) <



On the Bisection Width and Expansion of Butterfly Networks 513

(2(v2—1)+o(1)n < (2(v/2—1)+0(1))N/log N. Hence EE(B,, N/2) < BW(By) ~
(1.66 + 0(1))(N/2)/log(N/2). For larger values ok, however, we can use the tech-
nigue of embedding(y into By, which gives a bound dEE(B,, k) = Q(k/logn). For

k = n®, for any fixede > 0, this lower bound ig2(k/logk). Hence, for all values
of k, EE(By, k) = ©(k/logk). Our bounds foNE(B,, k) are not as tight. We show
that(% — o(1)k/logk < NE(By, k) < (1 + o(1))k/logk, for k = o(,/n). For larger
values ofk we can again use the technique of embeddiginto B, which yields
NE(W;,, k) = ©(k/logk) over the whole range d.

Definitions. Let nodeu be in leveli of B,.

Thedown-tree T is an(n/2')-leaf complete binary tree rooted at nadef B,,. Tree
Ty is a subgraph oB, such that theth level of T, consists of nodes in levél+ | of
B,. Note that the leaves df, belong to level logn of B,

Theup-tree T is a 2-leaf complete binary tree rooted at nadef B,. Let nodeu
be in leveli of B,. TreeT; is a subgraph oB, such that thg th level of T consists of
nodes in level — j of B,. Note that the leaves df; belong to level O oB,.

4.2.1. Edge Expansion of B In this section we determirteE(By,, k) to within lower-
order terms by proving upper and lower bounds.

Lemma4.7. The edge-expansion function B, k) is at most(2 + o(1))k/logk,
whenl <k < N.

Proof. Let A be a sub-butterfly 0B, with k nodes such that the nodes in level 0 of the
sub-butterfly are in level 0 d8,,. Each level of the sub-butterfk has(1+ o(1))k/logk
nodes. Each output node of sub-butterfiyhas two incident edges that belong to cut
(A, A). Thus, the total number of edges in qu, A) is (2 + o(1))k/logk. Therefore,
EE(Bn, k) < (24 o(1))k/logk. O

Lemma 4.8. The edge-expansion function 8%, k) is at least(2 — o(1))k/logk,
when k= o(,/n).

Proof. Let A beanysubset of the nodes d, of cardinalityk. To prove the lemma,
we use a credit distribution scheme to show &, A) is at least2 — o(1))k/logk.
Each nodeu € A distributes 1 unit of credit to the edges in auA, A) using the
following procedure. First, assume that nade Ais inleveli of B, suchthatO<i <
L(logn+ 1)/2]. Let T, be the down-tree rooted at nodeFurthermore, let the edges of
Ty be directed from root to leaf. Nodepasses 1 unit of credit down the tr&eusing an
iterative procedure. First, the two outgoing edges of tree T, receive% unit of credit
each. Iteratively, each tree ed@e w) does one of the following:

e Iftree edge(v, w) is in cut(A, A) or if w is a leaf ofT,, edge(v, w) retainsall
the credit it received.

e Otherwise, edgév, w) retains none of the credit it received, and passes half the
credit it received to each of the two outgoing tree edges.of
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In a similar fashion, each nodec Ain leveli of B,, such that (logn+ 1)/2] <i <
logn, distributes 1 unit of credit via the up-trd¢ rooted atu.

We bound the total number of units of credit retained by edges ifA&uf) as
follows. Each nodel € A distributes 1 unit of credit, of which some portion is retained
by edges in cutA, A) and the rest is retained by edgesw) such thatw € Ais a leaf
of T, or T;. If an edge(v, w) not in cut(A, A) retains credit from noda, there is a
path of length at leastlogn + 1) /2] from nodeu to w such that every node in the path
belongs toA. Therefore, there are at mdsiedges not in cutA, A) that retain credit
from nodeu, and each such edge retains at most

1/2L(|09n+1)/2J <1//n

units of credit. Thus, the number of units of credit distributed by a nodeA that is
retained by edges in oA, A) is at least - (k/,/n). Since there ark nodes inA, the
total units of credit retained by the edges in €At A) is at least

k
k <1 - %) = (1—o()k, (5)

sincek = o(,/N).

Next, we show that each edge in ¢ét, A) retains a total of at mostlogk| +1)/2
units of credit. Let(v, w) be a cut edge such thate A andw € A. Without loss of
generality, let nodes andw be in levelsi andi + 1 of By, respectively. Lefl, be
the up-tree rooted at node The cut edg€v, w) retains the most number of units of
credit whenall k of the nodes ofA are placed in the firstlogk| + 1 levels of tree
T, as close taw as possible, i.e., when all nodes of levels 0 throligiyk] — 1 and
some nodes in levalogk] of treeT, are in A. Since each node € A at levelj > 0
of tree T/ contributes 121+ units of credit to cut edgév, w), and since there aré 2
nodes in levelj of tree T, the total units of credit retained by cut edge w) is at
most

Ry llogk] + 1
Z<2J'21+1>= SR ©6)

j=0

It follows from (5) and (6) that the number of edges in ¢At A) is at least

) k
C(A, A) > (1— o))k - - o(1))m. O

— > (2
logk] +1 =
Theorem 4.9. For k < N/2,the edge-expansion function B, k) is ® (k/logk).

Proof. The upper bound follows from Lemma 4.7. Roe= o(,/n), the lower bound
follows from Lemma 4.8. Fon®* < k < N/2, for any fixede > 0, the lower bound is
proved by embeddin y into By. O
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4.2.2. Node Expansion of B In this section we determingE(B,, k) to within con-
stant factors by proving upper and lower bounds.

Lemma 4.10. The node-expansion function K&, k) is at most(1 + o(1))k/logk,
whenl <k < N.

Proof. Let A consist of two nonintersecting sub-butterfli&sand B” of B, such that
B’ and B” havek/2 nodes each, botB’ and B” are contained irB, which is one
dimension larger, and the output nodesBof B”, andB are on level log of B,. Each
level of the sub-butterflieB’ andB” has(% + 0(1))k/logk nodes, and each level &
has(1 + o(1))k/logk nodes. The neighbors iA of the input nodes oB’ and B” are
the (1 4+ o(1))k/logk inputs of B. The output nodes oB’ and B” have no neighbors
in A. Therefore, the total number of nodesAA(A) is (1 + o(1))k/logk. Therefore,
NE(By, k) < (14 o(1))k/logk. |

Lemma 4.11. The node-expansion function K&, k) is at Ieast(% — 0o(1))k/logk,
when k= o(,/n).

Proof. Let A beanysubset of the nodes @, of cardinalityk. To prove the lemma,

we use a credit distribution scheme similar to that in the proof of Lemma 4.8. We show
that|AV/(A)| is at Ieas(% —o0(1))k/logk. Each noder € A distributes 1 unit of credit to

the nodes inV (A) using the following procedure. First, assume that nede A is in

leveli of B, suchthat O<i < [(logn+ 1)/2]. Let T, be the down-tree rooted at node

u. Nodeu passes 1 unit of credit down the trégusing an iterative procedure. First, the
two nodes adjacent in treeT, receive% unit of credit each. Iteratively, each node
does one of the following:

e Ifnodevisin NV (A) orif v is a leaf ofT,, nodev retainsall the credit it received.
e Otherwise, node retains none of the credit it received, and passes half the credit
it received to each of the two nodes adjacent to the next level of tred,.

In a similar fashion, each nodec Ain leveli of B,, such that (logn+1)/2] <i <
logn, distributes 1 unit of credit via the up-trd¢ rooted atu.

We bound the total number of units of credit retained by nodég(A) as follows.
Each nodal € A distributes 1 unit of credit, of which some portion is retained by nodes
in A/(A) and the rest is retained by nodesuch thav € Ais aleaf ofT, or T;. If a node
v notin\/(A) retains credit from node, there is a path of length at legstogn+1)/2]
from nodeu to v such that every node in the path belong#tarherefore, there are at
mostk nodes that do not belong #'(A) that retain credit from node, and each such
node retains at most

1/2L(Iogn+l)/2J < 1/\/ﬁ

units of credit. Thus, the number of units of credit distributed by a nodeA that is
retained by nodes V' (A) is at least - (k/./n). Since there ark nodes inA, the total
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units of credit retained by the nodesAh(A) is at least

K
k (1 - ﬁ) = (1— o)k, (7)

sincek = o(,/n).

Next, we show that each nodes N (A) retains a total of at most gk units of
credit. LetT, and T, be the down-tree and up-tree rooted at nodeespectively. The
nodev retains the most number of units of credit whadhk of the nodes ofA are placed
in levels 1 to[logk] of the treesT, andT, as close ta as possible. To obtain an upper
bound on the number of units of credit retained by nedassume that all the nodes in
levels 1 to|logk] of T, and T, belong toA. Since each node € A at levelj > 1 of
treeT, or T/ contributes 12 units of credit to node, and since there are a total oft2
nodes in levelj of treesT, andT,, the total units of credit retained by nodes N/ (A)
is at most

Llogk]

Z <2j+1 ~ 2%) = 2[logk]. ®)

j=1
It follows from (7) and (8) that the number of nodes in &itA) is at least

k

(1—o(1))k - ook

1_
2L0gk] > (3 —0(1)

Theorem 4.12. For k < N/2, the node-expansion function K&, k) is ® (k/logk).

Proof. The upper bound follows from Lemma 4.10. kot o(,/n), the lower bound
follows from Lemma 4.11. Fon® < k < N/2, for any fixeds > 0, the lower bound is
proved by embeddingy into B,. O

4.3. Summary

The lower bounds proved in this section are summarized below:

k = o(y/n) k = o(n) k<N/2
EE(Wh, k) (4 — 0o(2))k/logk Q (k/logk)
N E(W;, k) (1—0(2))k/logk Q (k/logk)
EE(Bn, k) (2 —0(2))k/logk Q (k/logk)

N E(Bn, k) (3 — o(D)k/logk Q (k/logk)
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The upper bounds are shown below:

k<N

EE(W, k) (4+ o(2))k/logk
N E(Wy, k) (3+ 0o(2))k/logk
EE(Bn, k) (2+ 0o(2))k/logk
N E(Bp, k) (1+ o(2))k/logk
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