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AbstractÐWe study four augmentations of ring networks which are intended to enhance a ring's efficiency as a communication

medium significantly, while increasing its structural complexity only modestly. Chordal rings add ªshortcutº edges, which can be viewed

as chords, to the ring. Express rings are chordal rings whose chords are routed outside the ring. Multirings append subsidiary rings to

edges of a ring and, recursively, to edges of appended subrings. Hierarchical ring networks (HRN's) append subsidiary rings to nodes

of a ring and, recursively, to nodes of appended subrings. We show that these four modes of augmentation are very closely

related: 1) Planar chordal rings, planar express rings, and multirings are topologically equivalent families of networks with the

ªcutwidthº of an express ring translating into the ªtree depthº of its isomorphic multiring and vice versa. 2) Every depth-d HRN is a

spanning subgraph of a depth-�2dÿ 1� multiring. 3) Every depth-d multiring M can be embedded into a d-dimensional mesh with

dilation 3 in such a way that some node of M resides at a corner of the mesh. 4) Every depth-d HRN H can be embedded

into a d-dimensional mesh with dilation 2 in such a way that some node of H resides at a corner of the mesh. In addition to

demonstrating that these four augmented ring networks are grid graphs, our embedding results afford us close bounds on how much

decrease in diameter is achievable for a given increase in structural complexity for the networks. Specifically, we derive upper and

lower bounds on the optimal diameters of N-node depth-d multirings and HRNs that are asymptotically tight for large N and d.

Index TermsÐRing networks, chordal rings, express rings, multirings, hierarchical ring networks, grid graphs, graph embedding,

diameter trade-offs.

æ

1 INTRODUCTION

EVER since the earliest uses of networks for commu-
nication and computation, there has been serious

interest in ring networks because of their structural
simplicity and (modest) fault tolerance. Of course, this
interest has been moderated by the large diameter and
small (bisection) bandwidth of rings. It was natural,
therefore, to seek ways to augment a ring network in a
manner that enhances the network's efficiency as a
communication mediumÐby increasing its bandwidth
and decreasing its diameter significantlyÐwhile increasing
its structural complexity only modestly. This paper is
devoted to studying four avenues for such augmentation,
each of which adds ªshortcutº edges to a ring in a specific
way. All four of the resulting network families are still the
object of active study to this dayÐboth by theoreticians
and by system-designers.1 We begin by exposing certain
basic structural properties of the four families, proving that
their constituent networks are ªessentiallyº equivalent in
communication power and are ªalmostº grid graphs, i.e.,
subgraphs of high-dimensional meshes. We then apply

the exposed structure to the question of how much
decrease in diameter one can achieve via each type of
ring augmentation, for a given increase in the structural
complexity of the augmentation, deriving asymptotically
tight upper and lower bounds on the diameter decrease as
a function of augmentation complexity.

The remainder of this section is devoted to filling in the
gaps of the preceding paragraph in a way that prepares the
reader for our study. In Section 1.1, we formally describe
the ring augmentations of interest. In Section 1.2, we
preview our main results in a way that precisely
defines the preceding paragraph's terms ªessentiallyº
and ªalmost.º In Section 1.3, we suggest why a
predominantly theoretical study, such as ours, is relevant
to those who design and build systems. Finally, in
Section 1.4, we discuss the literature on which our work
builds.

1.1 Four Ring Augmentations

Our four modes of augmentation all start with the N-node
ring network RN which has node-set ZN �def f0; 1; . . . ; N ÿ 1g
and edge-set f�i; i� 1 modN� j i 2 ZNg. Of the names we
use for our four families of augmentated rings, ªchordal
ringº and ªhierarchical ring networkº appear in the
literature while ªexpress ringº and ªmultiringº are, to our
knowledge, new here.

1.1.1 Chordal Rings

A chordal ring augments a ring network by adding
ªshortcutº edges that can be viewed as chords of the
ring. Chordal rings were among the earliest proposed
cost-efficient interconnection networks for parallel archi-
tectures [3] and they continue to be studied in this
context, especially in regard to the problem of diameter
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reduction (see, e.g., [4], [8], [25]). Fig. 1 depicts a chordal

augmentation of R21.

1.1.2 Express Rings

An express ring is not a new network topology but, rather, a

drawing of a chordal ring which routes the ªshortcutsº

around the exterior of the ring (in either the clockwise or

counterclockwise sense), thereby turning each chord into an

arc of the ring. Express rings constitute the simplest

instance of both the express interconnection networks

of [11] and the ªhopº-enhanced optical communication

networks of [12], [15], [16], [17], [18], [23], [31]. In deference

to the latter sources, we henceforth use the word hop to refer

ambiguously to an arc of an express ring or an edge of the

underlying ring. The express ring in Fig. 2 is a drawing of

the chordal ring in Fig. 1.
An important structural characteristic of an express ring

R is its (circular) cutwidth, i.e., the maximum number of

hops that ªcross overº any ring edge, counting the edge

itself. Formally, if R has N nodes, then its cutwidth is

max
i2ZN

jf�j; k� 2 Hops�R� j j � i and k � i� 1 mod Ngj:
�1:1�

In order to understand this definition, one must keep in
mind that circular cutwidth is a characteristic of a drawing
since an express ring is itself a drawing. Hence, as is
reflected in (1.1), one measures the cutwidth of an express
ring by scanning hops in their clockwise sense (whence the
ªmod Nº in (1.1)). Thus, for instance, the express ring in
Fig. 2 has cutwidth 5 because, e.g., in the drawing, the hop
that connects nodes 0 and 14 crosses over the ring-edges
�14; 15�; �15; 16�; �16; 17�; �17; 18�; �18; 19�; �19; 20�; �20; 0� and
not over any other ring-edges.

Note. Cutwidth models important network resources such
as (depending on context): the bandwidth requirements
of the underlying ring's various links; the number of
distinct frequencies that the underlying ring's links must
support; the sizes of the switches that control the wires
that cross ªaboveº the express ring's nodes.

Of special interest in our study are express rings that
admit cutwidth-c drawings in which hops never cross. For
brevity, we call such networks cutwidth-c noncrossing express
rings.

1.1.3 Multirings

A multiring (MR, for short) is obtained from a ring network
by appending at most one subsidiary ring to each edge of
the ring and, recursively, to each edge of each subsidiary
ring. (Each edge of an MR thus belongs to either one or two
subrings; in the latter case, one subring is the ªchildº of the
other in the tree of rings created by the recursive
appendages.) MRs thus are one possible realization of a
ªtree of rings.º MRs capture the essential structure of the
SONET (Synchronous Optical NETwork) MRs [10] that are
important in the realm of communication (especially
telephonic) networks. Fig. 3 depicts an MR that is
isomorphic to the express ring of Fig. 2.
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Fig. 1. A chordal augmentation of the 21-node ring R21.

Fig. 2. An express ring that is isomorphic to the chordal ring of Fig. 1.

Fig. 3. An MR that is isomorphic to the express ring of Fig. 2.



Since our complexity-preserving transformations of MRs

to and from express rings (in Section 2.1) have some

subtlety, we now define MRs in some formal detail. The

node-set of a depth-d MR M consists of d pairwise disjoint

sets, V1; V2; . . . ; Vd; each Vi comprises the level-i nodes ofM.

The edges of M are specified implicitly as follows:

. The induced subgraph on the level-1 node-set V1 is
the (unique) level-1 ring of M. In Fig. 3,
V1 � f0; 7; 14g.

. The level-2 node-set V2 is a disjoint union of some
number k2 � jV1j disjoint sets, V2;1; V2;2; . . . ; V2;k2

.

- Each set V2;j is associated with a distinct pair of
nodes u2;j; v2;j that are adjacent in the level-1
ring of M.

- The induced subgraph of M on each node-set
V2;j [ fu2;j; v2;jg is a level-2 ring of M.

In Fig. 3, V2;1 � f4; 6g; V2;2 � f11; 13g; V2;3 � f18; 20g.
. For each level i > 2, the level-i node-set Vi is a

disjoint union of some number ki � jViÿ1j � kiÿ1

disjoint sets, Vi;1; Vi;2; . . . ; Vi;ki .

- Each set Vi;j is associated with a distinct pair of
adjacent nodes ui;j; vi;j from a level-�iÿ 1� ring of
M. At least one of ui;j; vi;j must be an element of
Viÿ1; the other could belong to a lower-index Vk.

- The induced subgraph of M on each node-set
Vi;j [ fui;j; vi;jg is a level-i ring of M.

In Fig. 3,

V3;1 � f1g;V3;2 � f5g;V3;3 � f8g;V3;4 � f12g;
V3;5 � f15g;V3;6 � f19g:
V4;1 � f3g;V4;2 � f10g;V4;3 � f17g:
V5;1 � f2g;V5;2 � f9g;V5;3 � f16g:

An important structural characteristic of an MR is its

(tree-)depth, i.e., the number of levels of the recursive

appending of subsidiary rings. Easily, the depth of an MR

is its number of levels, i.e., the number of sets Vi.

Note. The depth of an MR most obviously represents the

number of decision points needed to route messages

within the network. Less obviously, it is also a measure

of the network's tolerance to edge-faults. It thus

represents a trade-off of routing ease for fault tolerance

and routing distance.

1.1.4 Hierarchical Ring Networks

A hierarchical ring network (HRN, for short) is obtained from
a ring network by appending at most one subsidiary ring to
each node of the ring and, recursively, to each node of each
subsidiary ring. (Each node of an HRN thus belongs to
either one or two rings; in the latter case, one ring is the
ªchildº of the other.) HRNs are thus an alternative to MRs
as a possible realization of a ªtree of rings.º As with MRs,
the (tree-)depth of an HRN, i.e., the number of levels of the
recursive appending of subsidiary rings, is an important
structural characteristic. HRNs have been studied exten-
sively in the context of shared-memory multiprocessors and
have actually been implemented in such machines [9], [26],

[28], [30]. Fig. 4 depicts a depth-3 HRN which is
(isomorphic to) a spanning subgraph of the MR of Fig. 3.

The reader can easily adapt the formal description of
MRs in Section 1.1.3 to a formal description of HRNs. The
key difference is that, with an HRN H:

. Each set Vi;j is associated with a distinct node
ui;j 2 Viÿ1 and

. the induced subgraph of H on each node-set
Vi;j [ fui;jg is a level-i ring of H.
In Fig. 4,

V1 � f0; 7; 14g:
V2;1 � f1; 4g;V2;2 � f8; 11g;V2;3 � f15; 18g:
V3;1 � f2; 3g;V3;2 � f5; 6g;V3;3 � f9; 10g;
V3;4 � f12; 13g;V3;5 � f16; 17g;V3;6 � f19; 20g:

1.2 Our Main Results

1.2.1 Qualitative Results

Our study of augmented ring networks begins in Section 2
with two sets of structural results.

Topological equivalences. In Section 2.1, we establish
strong relationships among our four families of augmented
ring networks, which show them to be essentially equiva-
lent in communication power.

1. Let R be an augmented ring within one of the
following three families: the family C of noncrossing
chordal rings; the family E of noncrossing express
rings2; the family M of MRs. In each of the other two
families, there exist augmented rings that are
(graph-theoretically) isomorphic to R. More im-
portantly, key structural parameters can be pre-
served under this isomorphism: For each cutwidth-c
noncrossing express ring there is an isomorphic
depth-c MR and vice versa.

2. Every depth-d HRN is (isomorphic to) a spanning3

subgraph of a depth-�2dÿ 1� MR.
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Fig. 4. A hierarchical ring network that is a spanning subgraph of the MR

of Fig. 3.

2. Easily, the families C and E comprise all and only outerplanar
graphs [20].

3. A spanning subgraph of a connected graph G is a connected subgraph
on the nodes of G.



Embeddability results. In Section 2.2, we prove that

every depth-d MR MÐhence, any cutwidth-d noncrossing

express ringÐcan be embedded into the positive orthant

of the d-dimensional lattice4 (the d-lattice, for short) with

dilation 3, in such a way that some node ofM resides at the

origin of the orthant. Using an even simpler embedding, we

prove that every depth-d HRN H can be embedded into the

positive orthant of the d-lattice with dilation 2, in such a

way that some node ofH resides at the origin of the orthant.

1.2.2 Quantitative Results

In Section 3, we study diameter-structure trade-offs for

augmented rings. In Section 3.1, we build on the results of

Section 2 to derive asymptotically tight bounds on the

diameters of HRNs and MRs, as functions of their depths.

. Let �d�N� denote the radius of the smallest
d-dimensional `1-sphere that contains � N lattice
points. (Equivalently, �d�N� is the smallest integer k
such that � N points of the d-lattice reside within
distance k of the origin.)

. Let �d
�HRN��N� (resp., �d

�MR��N�) denote the
optimal diameter of an N-node depth-d HRN (resp.,
an N-node depth-d MR).

Note that, when d � 1, an N-node MR or HRN consists of a

single ring so that

�
�MR�
1 �N� � �

�HRN�
1 �N� � bN=2c:

For each fixed dimensionality d > 1, we derive the

following upper and lower bounds that are asymptotically

tight for large d and N:

21ÿ2=d�d�N��1ÿ o�1�� � �d
�HRN��N�;�d

�MR��N� � 2�d�N�:
Further, we show that, for any fixed d,

�d�N� � 1

2
N1=d�d!�1=d�1� o�1��;

whence, for any fixed d,

2ÿ2=dN1=d�d!�1=d�1ÿ o�1�� � �d
�HRN��N�;�d

�MR��N�
� N1=d�d!�1=d�1� o�1��:

Our equivalence results readily extend these bounds to the

diameters of cutwidth-d noncrossing express rings and

chordal rings.
In Section 3.2, we settle the natural question of how our

diameter-structure trade-offÐworded in terms of express

ringsÐchanges when we allow hops to cross. We prove that

the bounds of the trade-off weaken, at most, by a factor of

two, i.e., allowing hops to cross can at best halve the

diameters of cutwidth-c express rings. Simple examples

show that the factor 2 is the best possible.

1.3 The ªPracticalº Import of Our Results

Topological equivalences. The overriding significance of
the topological equivalences we present in Section 2.1 is
that they establish fundamental ties among the four
essentially disjoint, active, contemporaneous bodies of
literature that are devoted to our four ring augmenta-
tions. Our bibliography gives one but a peek into these
literatures. These results are, thus, kindred to the several
known structural equivalence results5 for butterfly-related
networks (see, e.g., [5], [13], [24]). To our knowledge, our
results are the first of this type for ring-related networks.
More importantly than just obviating wasted work, the
merging of these literatures can give one access to
nonobvious efficient algorithms for important tasks. We
exemplify this claim via two simple, closely related
scenarios:

1. We are given an MR in its real-life incarnation as a
SONET network. We wish to devise an efficient
circuit-switching algorithm that establishes
point-to-point connections in the network in a
way that makes optimal use of available
bandwidth. In contrast to ªrealº SONET networks,
as described in [10], we allow both clockwise and
counterclockwise routings of messages.

2. We wish to route messages within an optical HRN
using as few frequencies as possible.

Although it is not obvious a priori, the algorithm developed
in [14] for (in our terminology) converting chordal rings to
express rings of minimum circular cutwidth is readily
adapted (e.g., using our equivalence results) to efficiently
solve both of these problems optimally.

Embeddability results. The most obvious lesson from
our embedding results is that MRs and their kindred
networks can be ªpackedº tightly into high-dimensional
meshes. This tight packing leads directly (but not
obviously) to the diameter-structure trade-offs that we
establish for augmented rings in Section 3. More subtly,
both the tightness of our embeddings and the dimension-
alities of their target meshes expose and elucidate certain
behavioral relationships between augmented rings and
meshes along the lines of those reported in [19]. In a
different direction, our embeddings lead to efficient emula-
tions of augmented rings on other networks directly via
mesh-embeddings, such as those in [21], and indirectly via
complicated emulation algorithms, such as those in [22].
Finally, the embeddings expose a nonobvious grid-like
structure in augmented rings which implies a variety of
unexpected algorithmic and structural properties, as
described in [7] and [32].

1.4 A Survey of Related Work

We have already cited numerous sources that relate to
our study either in the object of study (augmented
ring networks) or in the general focus (proving the
ªequivalenceº of network families). However, we know
of no prior technical results that relate directly to our new
qualitative results. Further, we present the first upper and
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4. As usual, the d-dimensional lattice is the infinite analogue of the
d-dimensional mesh, having nodes (lattice points) that are d-tuples of
(positive and negative) integers and adjacencies between nodes that differ
by precisely �1 in precisely one coordinate. The positive orthant of the lattice
is the induced subgraph on the set of lattice points whose entries are all
nonnegative.

5. Behavioral equivalence results are known for many other network
families (see, e.g., [2], [22], [29]).



lower bounds for the diameter-structure trade-off for MRs
and HRNs that are asymptotically tight. The following
sources relate to our diameter-structure trade-offs for
express rings (hence, for MRs):

Several papers study diameter-cutwidth trade-offs for
hop-augmented networks. Notable among these are [23],
whose journal version inspired our study of such trade-offs,
and [18], [12], which were done contemporaneously to and
independently of our study. The former two sources study
unidirectional express paths: Start with a path and add hops
that decrease the maximum left-to-right hopping distance
from the left end of the path to any other node. We find in
[18] an exact determination of the minimum of such a
distance for any cutwidth-c N-node unidirectional express
path. Although the bounds of [23] are less definitive than
those of [18], their regular upper-bound construction is of
interest when express links (hops) are weighted with a
delay function which increases with the length of the hop.

In an invited talk in March 1997 [1], we presented an
early version of the current results, providing the first
nontrivial diameter-structure trade-offs for augmented
ring networks. We showed there that:

1

4e
dN1=d ÿ d=2 � 1

2
�d�N� � �

�MR�
d �N� � 2ÿ1=ddN1=d:

�1:2�
These bounds are within constant factors when d is ªsmall,º
say, d � 1

6 log2 N . Importantly, this work introduced a
new lower-bounding techniqueÐan early version of
Theorem 2.4Ðbased on embedding depth-d MRs into the
d-lattice. Subsequently, the bounds in (1.2) were improved
in [12]: The upper bound was decreased by a constant

factor and the lower bound was increased by adapting

the grid-embedding technique of [1] so that �
�MR�
d �N� was

determined to within a factor of 2 for all N and all d:

�d�N� � �
�HRN�
d �N�; �

�MR�
d �N� � 2�d�N�: �1:3�

Independently of [12], we improved the bounds in both
(1.2) and (1.3), deriving the asymptotically tight upper and
lower bounds for both MRs and HRNs that we report in
Section 3.

One finds in [31] a ªstate of the artº survey on diameter
structure trade-offs, including the few that are known for
augmented networks other than paths and rings.

2 EXPOSING THE STRUCTURE OF AUGMENTED

RINGS

This section is devoted to establishing the qualitative results
described in Section 1.2.1. Informally, in Section 2.1, we
show that the four ring augmentations of interest are
ªessentiallyº equivalent in communication power. Then, in
Section 2.2, we show that MRs (hence, also noncrossing
chordal rings and express rings) are ªalmostº grid
graphs [32].

2.1 Topological Equivalences

In the following results, ªlinear timeº is measured relative
to the number of edges in the subject network.

We begin by noting the obvious topological equivalence

of chordal rings and express rings. The only issue of interest

here is the ease of orienting the chords of a chordal ring in a

way that minimizes the cutwidth of the resulting express

ring.

Theorem 2.1 [14]. In linear time, one can transform any planar

drawing of a chordal ring into a planar drawing of an

isomorphic express ring of minimum cutwidth and vice versa.

Proof Sketch. 1) To transform any express ring to an

equivalent chordal ring, simply ignore the (clockwise,

counterclockwise) senses of the arcs and route them

inside the ring. 2) One finds in [14] an efficient algorithm

for transforming a chordal ring to an equivalent express

ring having minimal cutwidth. (A slightly simpler, but

less efficient, algorithm appears in [27].) tu

We turn next to the more challenging equivalence

between express rings and MRs.

Theorem 2.2. In linear time, one can transform any planar

cutwidth-c drawing of an express ring into a drawing of an

isomorphic depth-c MR and vice versa.

Proof. We prove the claimed equivalence via a pair of

explicit transformations which facilitate keeping track of

the cutwidth-depth correspondence.
Transformation ER! MR. Let R be any express ring

that is presented via a cutwidth-c planar drawing. We
transform R into an isomorphic depth-c MR by ªturning
it inside outº while decomposing it into c shells: Shell 1
will be a subring of R while each other shell will be a set
of subsidiary subrings. The subrings within each shell #k
will turn out to be the level-k subrings of R's isomorphic
MR. The decomposition proceeds as follows:

Shell 1 of R is the subring formed by the hops of R
that are ªexposedº in the sense of not being contained
within any other hop of R. The level-1 node-set of R
comprises the nodes of the shell-1 ring.

In Fig. 2, Shell 1 comprises the three-node ring
�0$ 7$ 14�.

Shell 2 of R is obtained by focusing, in turn, on each
hop of Shell 1. Say that �u; v� is such a hop, but that
nodes u and v are not adjacent in the ring underlying R.
Then, say there is a path inR that connects nodes u and v
and uses hops that become ªexposedº when the hops
of Shell 1 are removed. The intermediate nodes of that
path become one of the level-2 node-sets V2;j of R and
that path, plus hop �u; v�, becomes one of the subrings
of Shell 2.

In Fig. 2, shell 2 comprises the three subrings

�0$ 4$ 6$ 7$ 0�; �7$ 11$ 13$ 14$ 7�;
�14$ 18$ 20$ 0$ 14�:
In general, Shell i� 1 of R is obtained by focusing, in

turn, on each hop of Shell i that contains at least one node
from node-set Vi �def S

j Vi;j. Say that �u; v� is such a hop,
but that nodes u and v are not adjacent in the ring
underlying R. Then, say there is a path in R that
connects nodes u and v and uses hops that become
ªexposedº when the hops of all shells k � i are removed.
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The intermediate nodes of that path become one of the
level-�i� 1� node-sets Vi�1;j of R and that path, plus hop
�u; v�, becomes one of the subrings of Shell i� 1.

In Fig. 2, Shell 3 comprises the six subrings

�0$ 1$ 4$ 0�; �4$ 5$ 6$ 4�; �7$ 8$ 11$ 7�;
�11$ 12$ 13$ 11�; �14$ 15$ 18$ 14�;
�18$ 19$ 20$ 18�;
Shell 4 comprises the three subrings

�1$ 3$ 4$ 1�; �8$ 10$ 11$ 8�;
�15$ 17$ 18$ 15�;

and Shell 5 comprises the three subrings

�1$ 2$ 3$ 1�; �8$ 9$ 10$ 8�;
�15$ 16$ 17$ 15�:

One can directly read off from these subrings the sets

V1; . . . ; V5 enumerated in Section 1.1.3.
We have, thus, constructed an MR whose nodes and

edges are, respectively, the nodes and hops of the
express ring R. In particular, our running example
has constructed the MR of Fig. 3 from the express ring
of Fig. 2.

Transformation MR!ER. The easiest way to perform
this transformation proceeds in two steps. First, trace the
obvious Hamiltonian cycle in a given MR, making all
unused edges into chords of the ring obtained from the
trace. Then, apply the algorithm of [14] to transform the
resulting chordal ring into an express ring. The problem
with this approach is that one must proceed carefully if
one wants a depth-d MR to produce a noncrossing
cutwidth-d express ring. We choose, therefore, to use an
iterative transformation that allows us to perspicuously
keep track of the parameter d in both the MR and the
express ring.

We begin with a depth-d MRM and transform it into
an isomorphic express ring by successively ªcollapsingº
its subsidiary rings. We begin with the level-1 ring ofM.
Make all of its edges level-1 tentative edges of the express
ring RM that we are constructing. In general, we look at
each tentative edge in turn. When we are looking at a
level-i tentative edge �u; v�, if there is no level-�i� 1�
ring that contains edge �u; v�, then we make this a
final edge of RM; if there is a level-�i� 1� ring,

�u$ w1 $ w2 $ � � � $ wk $ v$ u�;
that contains edge �u; v�, then we make this edge a
final arc between nodes u and v, and we incorporate,
under this new arc, the path �w1 $ w2 $ � � � $ wk�, with
each edge of the path being a level-�i� 1� tentative edge
of RM. When no tentative edges remainÐwhich must
happen since each tentative edge is scanned just once
before being converted to a final entity (edge or arc)Ðwe
shall have produced an express ring RM whose nodes
and hops are, respectively, the nodes and edges of M.
This recipe constructs the express ring in Fig. 2 from the
MR in Fig. 3. tu
Our final structural result exposes the relationship

between HRNs and MRs.

Theorem 2.3. In linear time, one can add edges to a depth-d
HRN that transform it into a depth-�2dÿ 1� MR. Hence, the
former network is a spanning subgraph of the latter.

Proof. Let us be given a depth-d HRN H. We proceed in a
manner reminiscent of transformation MR!ER of
Theorem 2.2 to transform H into a noncrossing
cutwidth-�2dÿ 1� express ring E�H�. We then invoke
transformation ER! MR of Theorem 2.2 to transform
E�H� into the desired depth-�2dÿ 1� MR. Fig. 5 may
make the following procedure more intuitive.

We begin with the level-1 cycle

�v1;0 $ v1;1 $ � � � $ v1;k1ÿ1�
of H. For each j 2 f0; 1; . . . ; k1 ÿ 1g, we ªfoldº the
sub-HRN H1;j rooted at node v1;j under the cycle-edge
between v1;j and v1;j�1 mod k1

as follows: We place the
nodes v1;j; v1;j;1; v1;j;2; . . . ; v1;j;k1;jÿ1 of the level-1 cycle of
H1;j (which, of course, is a level-2 cycle of H) in that
order between nodes v1;j and v1;j�1 mod k1

and add edges
that connect:

. node v1;j to node v1;j;1,

. each node v1;j;k to its clockwise neighbor v1;j;k�1,
and

. node v1;j;k1;jÿ1 to node v1;j�1modk1
.

Of course, all of these edges, save the very last, are edges
of H. We then recursively fold the sub-sub-HRNs rooted
at these new nodes under the appropriate edges of this
cycle.
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Fig. 5. Folding H's subsidiary subrings recursively within its root subring.



The indicated folding process clearly produces a
noncrossing express ring E�H� which contains H as a
spanning subgraph. The initial ring (level 1) of H
contributes 1 to the cutwidth of E�H�. Each successive
level of folding lays down a subring of H in a way that
contributes 2 to the cutwidth of E�H�. In the end,
therefore, E�H� has cutwidth 2dÿ 1.

A direct application of transformation ER! MR of
Theorem 2.2 now produces the desired depth-�2dÿ 1�
MR. tu
The transformation of Theorem 2.3 produces the MR of

Fig. 3 from the HRN of Fig. 4 via the express ring of Fig. 2.

2.2 Augmented Rings as Grid-Graphs

We show now that the networks of interest are ªalmostº
grid graphs in the sense of being embeddable into high-
dimensional grids with small dilation. We use the standard
notion of graph embedding [6]: One embeds a guest
graph G into a host graph H via a one-to-one mapping of
nodes of G to nodes of H together with a compatible routing
of edges of G along paths in H. The dilation of the
embedding is the length of the longest path of H used to
route an edge of G. We strengthen the applications of our
embeddings by insisting that some node of the guest
augmented ring reside at a corner of the host grid.

Theorem 2.4. Every depth-d MR M can be embedded into the
positive orthant of the d-lattice with dilation 3 in such a way
that some node of M is mapped to the origin of the lattice.

Proof. We embed the given M into the positive orthant of
the d-lattice via the following strategy which avoids
interference among M's subrings:

1. We number the dimensions of the d-lattice,
starting from 1, from left to right and allocate
dimension i 2 f1; 2; . . . ; dg of the lattice to the
level-i subrings of M.

2. We embed M's (unique) level-1 subring in the
familiar interleaved ring-into-path pattern along
dimension 1 so that, up to parity, one ªhalfº of the
ring-nodes occupy even-numbered lattice nodes
while the other ªhalfº occupy the interleaved
odd-numbered lattice nodes.

3. We embed M's level-i subrings in an interleaved
pattern so that, for i > 1, (at most) the two level-i
rings incident to each level-�iÿ 1� node ofM use
disjoint, alternating sets of lattice nodes along
dimension i.

We now supply details of the node-mapping component
of our embedding, allowing the simple edge-routing to
be specified implicitly.

Embedding M's level-1 subring. The familiar
dilation-2 embedding of a ring in a path proceeds as

follows: Letting the ring have nodes (in clockwise
order) v0; v1; . . . ; vnÿ1, we take an n-step ªwalkº along
dimension 1 of the lattice, starting at the origin h0;~0i.
During the ith step of the walk, where 0 � i < n, we visit
node hi;~0i of the lattice. When i is even, we deposit node
vi=2 of the ring at this node. When i is odd, we deposit
node vnÿdi=2e of the ring at this node (cf. Fig. 6).

Embedding M's level-k subrings, k � 2. Let us focus
on an arbitrary level k � 2. Each level-k subring R ofM
contains two adjacent nodes of one of M's level-�kÿ 1�
subrings, which we call the anchors of R. By induction,
we assume that the anchors of each level-k subring lie on
a line ªparallelº to one of the axes of the d-lattice; this is
certainly true of the level-1 ring. If a level-k subring R
has n nodes, then we prepare to embed it as follows:

Path reservation. Letting m �def b�nÿ 2�=2c, we reserve
a path of length 3m emanating from each anchor node
in the positive direction of and ªparallelº to the
dimension-k axis of the d-lattice. We view this path
as consisting of m three-node boxes, as depicted in Fig. 7.

Subring labeling. We return now to the structure of
M. We label all level-k subrings with the ªcolorsº
f0; 1; 2g in such a way that no two like-colored level-k
subrings share an anchor node. This is possible since
each node of each level-�kÿ 1� subring is incident to at
most two level-k subrings.

Note. We can ªalmostº color the subrings with two
colors. We need the third color only when the number of
subrings is odd and each subring is adjacent to two
others (so that the subrings form a complete ªdaisyº).
However, we actually make good use of the third color,
even when it is not needed for subring discrimination.

We next label each nonanchor node of each level-k
subring as either ªoutgoingº or ªincomingº in the
following way: We traverse all of the level-k subrings
that emanate from a given level-�kÿ 1� subring R0 by
traversing R0 in a clockwise sense and traversing each of
its level-k subrings as it is encountered for the first time.
During this traversal of an n-node level-k subring,
we label the first d�nÿ 2�=2e nodes ªoutgoingº and
the remaining b�nÿ 2�=2c nodes ªincoming.º Our
embedding will place at most one ªincomingº node
in each of the boxes we have reserved and up to two
ªoutgoingº nodes in the manner we describe now.

Subring embedding. We are finally ready to embed
the level-k subrings ofM. Let us focus on a subring that
was assigned color � 2 f0; 1; 2g. If this ring has an even
length, then we embed its nodes in the boxes emanating
from its anchor nodes using the node labeled � in each
box (see Fig. 7). Our coloring regimen assures that
ªadjacentº subrings will not conflict with one another. If
the subring has odd length n, then we modify the
preceding embedding by placing the ªoutgoingº nodes
d�nÿ 2�=2e ÿ 2 and d�nÿ 2�=2e ÿ 1 (counting outward
from the anchor node) in the same box. One of these
nodes will be placed in the node labeled � in the box.
The other will be placed in the node that is not used by
the ªincomingº node of the other subring that shares this
anchor node. While the dilation of the embedding is not
affected by the relative positions of ªoutgoingº nodes
d�nÿ 2�=2e ÿ 2 and d�nÿ 2�=2e ÿ 1 in their shared box,

604 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 6, JUNE 2001
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the traversal of the embedded MR may be facilitated if
node d�nÿ 2�=2e ÿ 2 is placed closer to the anchor node.

Validation and analysis. It should be clear from our
construction that the described ªembeddingº (we have
yet to show that it is, indeed, a valid embedding) has
dilation 3. What we must verify is that the described
node-assignment is one-to-one, i.e., that we have never
assigned two nodes ofM to the same lattice point. To the
end of this verification, let us consider the potential
sources of collisions.

Adjacent level-k subrings. If two level-k subrings are
incident on the same anchor node, then they share the
path of boxes emanating from that anchor. However, our
node-assignment reserves the path for ªoutgoingº nodes
of one of the subrings and for ªincomingº nodes of the
other. Since 1) the two subrings are labeled with distinct
colors, 2) every lattice-node occupied by an ªincomingº
node has the same color as the ªincomingº node's
subring, and 3) every lattice-node occupied by an
ªoutgoingº node has a color distinct from the color
assigned to ªincomingº nodes, it is clear that these two
level-k subrings never collide in the embedding.

Interleaved level-2 subrings. The only other potential
collisions arise from level-2 subrings that are embedded
in an interleaved fashion that arises from the interleaving
of the nodes of the level-1 subring. The situation is
depicted schematically in Fig. 8. Now, the only potential
for collision in this picture arises when mA � mB, in
which case, subrings A and B want to ªturnº (from
ªoutgoingº to ªincomingº or vice versa) at the same
place along the path and, hence, are going to cross one
another. We claim that this crossing can cause no
collisions. To wit, if subrings A and B share an anchor,
then they are adjacent and, hence, cannot collide by our
earlier reasoning about colors and labels. Alternatively, if
the subrings do not share an anchor, then subring B will
end up on a lattice-path that is distinct from subring A's
two lattice-paths once it ªturns.º Once again, the ªturnº
cannot cause collisions.

We conclude that the described embedding is valid
and, hence, verifies the claim of the theorem. tu

The ER! MR transformation of Theorem 2.2 allows
us to adapt the embedding algorithm of Theorem 2.4 to
cutwidth-d noncrossing express rings, yielding the
following:

Corollary 2.1. Every cutwidth-c noncrossing express ring E can

be embedded into the positive orthant of the c-dimensional

lattice with dilation 3 in such a way that some node of E is

mapped to the origin of the lattice.

We close this section with the HRN analogue of

Theorem 2.4.

Theorem 2.5. Every depth-d HRN H can be embedded into the

positive orthant of the d-lattice with dilation 2 in such a way

that some node of H is mapped to the origin of the lattice.

Proof Sketch. Our embedding strategy follows that of

Theorem 2.4 with the following simplification: Since

every subring of an HRN has only one anchor node, each

such level-k subring can be laid out in the kth dimension

of the d-lattice with dilation 2, as in Fig. 6, in the same

way that an MRs level-1 subring is laid out in the proof

of Theorem 2.4. tu

3 DIAMETER-STRUCTURE TRADE-OFFS FOR

AUGMENTED RINGS

This section is devoted to establishing the quantitative

results described in Section 1.2.2. In Section 3.1, we bound

the decrease of �
�HRN�
d �N� and �

�MR�
d �N� with increasing

depth d, thereby simultaneously bounding the diameter of a

noncrossing express ring with increasing cutwidth. In

Section 3.2, we show that our diameter-cutwidth trade-off

for express rings weakens by at most a factor of two if we

allow hops to cross and we present a simple example to

show that this factor is best possible.

3.1 A Diameter-Depth Trade-Off for HRNs and MRs

In this section, we study diameter-depth trade-offs for

HRNs and MRs. Clearly, for d � 1, an HRN or an MR is just

a ring so that
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Fig. 8. A portion of the interleaving of subrings A and B in the embedding.

Fig. 7. A length-m path emanating from an anchor node.



�
�HRN�
d �N� � �

�MR�
d �N� � bN=2c:

Since we cannot derive precise expressions for the

optimal diameters of HRNs and MRs when d > 1, we

settle for asymptotically tight upper and lower bounds for

general �
�HRN�
d �N� and �

�MR�
d �N�.

We establish the overall strategy of our bounding

technique by deriving the simpler bounds one finds in

[12] before we turn to our tighter bounds in Theorem 3.1.

Lemma 3.1 [12]. For any N and d,

�d�N� � �
�HRN�
d �N�; �

�MR�
d �N� � 2�d�n�:

Proof. We derive the bounds for HRNs, the argument for

MRs being similar.
The upper bound. We construct an N-node depth-d

HRN H by packing the d-lattice with N nodes as densely
as possible, i.e., in a manner that minimizes the
maximum distance from the origin. By definition, the
`1-distance of any of the packed nodes from the origin is
� �d�N�. Now, we add edges to the packed nodes which
turn them into the HRN H. We add an edge between any
two nodes u and v such that u resides at a lattice-point of
the form h~x; c;~0iwhile v resides at one of u's ªneighborsº
of the form h~x; c� 1;~0i. Adding these edges creates a tree
that is embedded into the d-lattice with unit dilation. The
diameter of the tree is � 2�d�N� since any node can reach
the origin via a path of length � �d�N�. Finally, we add
nontree edges to close the tree paths into rings, thereby
creating the HRN H. Since the nontree edges can
only shorten distances within H, we conclude that
H's diameter is � 2�d�N�.

The lower bound. Let H be any N-node depth-d
HRN. Consider the breadth-first (hence, shortest-path)
tree T �u� rooted at an arbitrary node u of H. Note first
that T �u� can be laid out in a path with cutwidth d since it
is a subgraph of H. Next, invoke the result from [12] that
shows how to embed T �u� into the d-lattice with unit
dilation in such a way that node u is mapped to the
origin of the lattice. Under this embedding, some node of
T �u� must be embedded at a distance � �d�N� from the
origin. It follows that �d�N� is a lower bound on the
diameter of H. tu

We now craft a more sophisticated lower-bound

argument which closes the factor-of-2 gap between the

upper and lower bounds of Lemma 3.1. The key to our

argument is the following estimate for �d�N� whose proof

is presented in Appendix A:

Lemma 3.2. For any fixed d, �d�N� � 1
2N

1=d�d!�1=d�1� o�1��.

We turn now to our diameter bounds.

Theorem 3.1. For any fixed dimensionality d,

21ÿ2=d�d�N��1ÿ o�1�� � �
�HRN�
d �N�;��MR�

d �N� � 2�d�N�:

Proof. Retaining the upper bound of Lemma 3.1, we now

prove our tighter lower bound for HRNs, leaving the easy

adaptation of the bounding argument to MRs to the reader.

Let H be any N-node depth-d HRN and let
V1 � fv1; v2; . . . ; vkg be the node-set of H's level-1
subring. Each node vi 2 V1 belongs to a sub-HRN Hi of
H of depth � dÿ 1. Note that all of Hi's other nodes (if
there are any) come from higher-level subrings of H. We
consider two cases.

Some Hi is ªbig.º Say first that some

Hi 2 fH1;H2; . . . ;Hkg
has at least N1ÿ1=�2d� nodes. By Lemma 3.1, the diameter
of Hi is at least �dÿ1�N1ÿ1=�2d��; by Lemma 3.2, therefore,

�dÿ1�N1ÿ1=�2d��
�d�N� � N

�2dÿ1�=�2d�dÿ1����dÿ 1�!�1=�dÿ1��1� o�1��
N1=d�d!�1=d�1� o�1��

� 
�N1=�2d�dÿ1���
� 2�1ÿ o�1��:

It follows that the diameter of H, which is clearly no
smaller than that of Hi, is at least 2�d�N��1ÿ o�1��.

All Hi are ªsmall.º Say next that each

Hi 2 fH1;H2; . . . ;Hkg
has fewer than N1ÿ1=�2d� nodes. By the pigeon-hole
principle, there must exist an l 2 f1; 2; . . . ; kg such that
the cumulative number of nodes in Hl;Hl�1; . . . ;Hl�k=2 is
at least N=2. Further, since each Hi is ªsmall,º there exist
subgraphs

L �def Hl [ Hl�1 [ � � � [ Hj

and

R �def Hj�1 [Hj�2 [ � � � [ Hl�k=2

of H, each of which has � 1
4N�1ÿ o�1�� nodes. Impor-

tantly, for any pair of nodes, u from L and w from R, the
shortest path between u and w inH crosses edge �vj; vj�1�
ofH's level-1 ring. Consider now the breadth-first subtree
T �vj� ofH that is rooted at node vj. Since T �vj� can be laid
out in a path with cutwidth d, it can be embedded into the
d-lattice with unit dilation [12]. Since L has� 1

4N�1ÿ o�1��
nodes, there exists a node u of L whose shortest path to vj
has length� �d�14N�1ÿ o�1���. Analogously, there exists a
node w of R whose shortest path to vj�1 has length
� �d�14N�1ÿ o�1���. Since the shortest path from u to w in
H must pass through edge �vj; vj�1�, the distance
between u and wÐhence, the diameter of HÐcan be
no smaller than 2�d�14N�1ÿ o�1��� � 1. We use Lemma
3.2 to bound this quantity relative to �d�N� as follows:

�d��1=4�N�1ÿ o�1���
�d�N� � ��1=4�N�1ÿ o�1���

1=d�d!�1=d�1� o�1��
N1=d�d!�1=d�1� o�1��

� 2ÿ2d�1ÿ o�1��:
�3:1�

It follows from (3.1) that the diameter of H is no smaller
than 21ÿ1=�2d��d�N��1ÿ o�1��, as was claimed. tu

3.2 The Impact of Noncrossing Hops

The chordal rings and express rings that we have studied
here are unconventional due to our insistence that chords
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and hops, respectively, not cross. We show now that this
structural simplification cannot cost us more than a factor of
two in diameter. This factor cannot be decreased in general.
To wit, any unit-diameter N-node express (resp., chordal)
ring is isomorphic to an N-node clique which is not
outerplanar for any N � 4 [20].

Theorem 3.2. Any N-node cutwidth-c express ring R, in which
arcs are allowed to cross, can be transformed to a crossing-free
cutwidth-c N-node express ring R0 such that

Diameter�R0� � 2 �Diameter�R�:

Proof. We produce ring R0 from ring R in two stages. First,

we replace R by a cutwidth-c N-node express ring R00
whose hops form a tree (whose edges may cross).

Specifically, we obtain R00 by choosing an arbitrary node

v of R and growing a breadth-first spanning tree of hops

outward from v. Each path within R00 constitutes a walk

up the tree to its root v, then, down the tree to the desired

destination. SinceR00 is a shortest-path spanning tree ofR,

it follows that Diameter�R00� � 2 �Diameter�R�. Next,

we perform a series of transformations on R00 to

eliminate all crossings of hopsÐwithout increasing

either diameter or cutwidth. We eliminate crossings

starting with the edges/hops that emanate from the root

of the tree and proceed steadily down toward the leaves.

Since each transformation replaces (at least) one

offending hop with a shorter hop, no ªuncrossingº

step can create a new crossing. This fact guarantees

that our algorithm terminates. Our ªuncrossingº

algorithm is the analog for bidirectional trees of the

similarly motivated algorithm in [18]Ðwhich has many

fewer cases since its trees each have a nonroot node lying

to the right of its parent.

We describe our algorithm by specifying how it

ªuncrossesº two arbitrary crossing hops �a; c� and �b; d�
while never increasing the level of any node, i.e., the

node's distance from the root. With no loss in generality

(since the hops cross), assume that nodes a, b, c, and d

appear, in that order, in a clockwise traversal of the ring.

Our primary breakdown into cases considers how hops

�a; c� and �b; d� are oriented relative to the root of the

spanning tree.
Case 1. level�a� < level�c�; level�b� < level�d�; see Fig. 9a.

We branch on the relative levels of nodes a and b.

1.1. level�a� < level�b�. Eliminate hop �b; d�; add hop
�c; d�; see Fig. 9b.

1.2. level�a� � level�b�. Eliminate hop �a; c�; add hop
�b; c�; see Fig. 9c.

Case 2. level�a� > level�c�; level�b� > level�d�. This
case is clearly symmetric to Case 1.

C a s e 3 . level�a� < level�c�; level�b� > level�d�; s e e
Fig. 10a. We branch on the relative levels of nodes a and d.

3.1. level�a� < level�d�. Eliminate hop �d; b�; add hop
�c; b�; see Fig. 10b.

3.2. level�a� > level�d�.ThiscaseissymmetrictoCase3.1.
3.3. level�a� � level�d�. Eliminate hops �a; c� and �b; d�;

add hops �a; b� and �d; c�; see Fig. 10c.

C a s e 4 . level�a� > level�c�; level�b� < level�d�; s e e
Fig. 11a. We branch on the relative levels of nodes b and c.

4.1. level�b� � level�c�. Eliminate hop �b; d�; add hop
�c; d�; see Fig. 11b.

4.2. level�b� � level�c�. This case is symmetric to Case
4.1.

By the time we reach the leaves of the spanning tree,
we shall have transformed the express ring R00 to the
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Fig. 10. Resolving a Case 3 crossing.

Fig. 11. Resolving a Case 4 crossing.



express ring R0, which has no crossing hops and a
diameter no greater than that of R00. tu

APPENDIX

ESTIMATING �d�N�: THE PROOF OF LEMMA 3.2

We estimate the number of lattice points in a d-dimensional

`1-sphere S�;d of radius �. Note, first, that each orthant of the

sphere has d��
d

ÿ �
lattice points. Since there are 2d orthants, S�;d

contains no more than 2d d��
d

ÿ �
lattice points. We can improve

this estimate by using the inclusion-exclusion principle to

subtract out points that appear in the pairwise intersection of

the quadrants. We thereby find that S�;d contains at least

2d
d� �
d

� �
ÿ 2dÿ1d

d� �ÿ 1

dÿ 1

� �
points since there are d2dÿ1 pairs of intersecting quadrants
and each intersection contains

d� �ÿ 1

dÿ 1

� �
points.

We now use our upper and lower bounds on the number
of lattice points in S�;d to derive upper and lower bounds on
�d�N�. By definition of �d�n�, for all d and N,

2d
d� �d�N� ÿ 1

d

� �
ÿ 2dÿ1d

d� �d�N� ÿ 2

dÿ 1

� �
< N � 2d

d� �d�N�
d

� �
:

Manipulating the lefthand side of the above inequality, we
obtain

2d
d� �d�N� ÿ 1

d

� �
1ÿ d2

2�d� �d�N� ÿ 1�
� �

< N � 2d
d� �d�N�

d

� �
:

Bounding the lefthand and righthand sides of the above
inequality, we obtain

2d
��d�N��d

d!
eÿd

2=�d�N� < N � 2d
��d�N��d

d!
ed

2=�d�N�:

It follows that �d�N� � 1
2N

1=d�d!�1=d�1� o�1��. tu
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