
ar
X

iv
:1

10
9.

41
14

v1
 [

cs
.N

I]
 1

9
Se

p
20

11

Algorithms for Constructing Overlay Networks

For Live Streaming

KONSTANTIN ANDREEV1, BRUCE M. MAGGS2,6, ADAM

MEYERSON3, JEVAN SAKS4, and RAMESH K. SITARAMAN5,6

1Oppenheimer Funds Two World Financial Center, 225 Liberty

Street, 11th Floor New York, NY 10281, Email:

kandreev@oppenheimerfunds.com
2Department of Computer Science, Duke University, Durham, NC

27708-0129, Email: bmm@cs.duke.edu
3Department of Computer Science, 4732 Boelter Hall, University of

California, Los Angeles, CA 90095, Email: awm@cs.ucla.edu
4Microsoft, Seattle, WA

5Department of Computer Science, University of Massachusetts,

Amherst MA 01003, Email: ramesh@cs.umass.edu
6Akamai Technologies, 8 Cambridge Center, Cambridge, MA 02142

September 20, 2011

Abstract

In this paper, we present a polynomial time approximation algorithm
for constructing an overlay multicast network for streaming live media
events over the Internet. The class of overlay networks constructed by
our algorithm include networks used by Akamai Technologies to deliver
live media events to a global audience with high fidelity. In particular, we
construct networks consisting of three stages of nodes. The nodes in the
first stage are the entry points that act as sources for the live streams.
Each source forwards each of its streams to one or more nodes in the
second stage that are called reflectors. A reflector can split an incoming
stream into multiple identical outgoing streams, which are then sent on to
nodes in the third and final stage that act as sinks and are located in edge
networks near end-users. As the packets in a stream travel from one stage
to the next, some of them may be lost. The job of a sink is to combine the
packets from multiple instances of the same stream (by reordering packets
and discarding duplicates) to form a single instance of the stream with
minimal loss. We assume that the loss rate between any pair of nodes
in the network is known, and that losses between different pairs are in-
dependent, but discuss an extension to tolerate failures that happen in a

1

http://arxiv.org/abs/1109.4114v1

coordinated fashion. Our primary contribution is an algorithm that con-
structs an overlay network that provably satisfies capacity and reliability
constraints to within a constant factor of optimal, and minimizes cost to
within a logarithmic factor of optimal. Further in the common case where
only the transmission costs are minimized, we show that our algorithm
produces a solution that has cost within a factor of 2 of optimal. We also
implement our algorithm and evaluate it on realistic traces derived from
Akamai’s live streaming network. Our empirical results show that our
algorithm can be used to efficiently construct large-scale overlay networks
in practice with near-optimal cost.

1 Introduction

One of the most appealing applications of the Internet is the delivery of high-
quality live video streams to the end-user’s desktop or device at low cost. Live
streaming is becoming increasingly popular as more and more enterprises want
to stream on the Internet to reach a world-wide audience. Common examples
include radio and television broadcasts, live events with a global viewership,
sporting events, and multimedia conferencing. As all forms of traditional media
inexorably migrate to the Internet, there has been sea-change in recent years in
what is expected from live streaming technology. Today, broadcasters and end-
users increasingly expect a high-quality live viewing experience that is nearly
loss-free with fidelity comparable to that of a high-definition (HD) television
broadcast! A promising technology for delivering live streams with high fidelity
is building an overlay network that can “mask” the packet loss and failures
inherent in the Internet by using replication and redundancy [KSW+04]. Algo-
rithms that automatically construct such overlay networks are a key ingredient
of overlay streaming technology [NSS10]. Such algorithms need to be efficient,
since the failure and loss characteristics of the Internet change frequently, ne-
cessitating the periodic reconstruction of the overlay network. Further, the cost
of delivering the streams using the overlay network needs to be minimized, so
as to make the overall cost of live online media affordable. The primary contri-
bution of this work is formulating the overlay network construction problem for
live streams and developing efficient algorithms that construct overlay networks
that provably provide high quality service at low operating cost.

It is instructive to contrast overlay streaming technology with the tradi-
tional approach to live streaming. The traditional centralized approach to de-
livering live streaming involves three steps. First, the event is captured and
encoded using an encoder . Next, the encoder delivers the encoded data to one
more media servers housed in a centralized co-location center1 on the Internet.
Then, the media server streams the data to a media player on the end-user’s
computer. Significant advances in encoding technology, such as MPEG-2 and
H.264/MPEG-4, have made it possible to achieve full-screen High-Definition
(HD) television quality video with data rates between 2 to 20 megabits per

1A co-location center is a data center that provides power, rack space, and Internet con-
nectivity for hosting a large number of servers.

2

second. However, transporting the streaming bits across the Internet from the
encoder to the end-user without a significant loss in stream quality is a critical
problem that is hard to resolve with the traditional approach. More specifically,
the traditional centralized approach for stream delivery outlined above has two
bottlenecks, both of which argue for the construction of an overlay network for
delivering live streams.
Server bottleneck. Most media servers can serve no more than several hun-
dred Mbps of streams to end-users. In January 2009, Akamai hosted President
Obama’s inauguration event which drew 7 million simultaneous viewers world-
wide with a peak aggregate traffic of 2 Terabits per second (Tbps). Demand for
viewing live streams continues to rise quickly, spurred by a continual increase
in broadband speed and penetration rates [Bel10]. In April 2010, Akamai hit
a new record peak of 3.45 Tbps on its network. At this throughput, the entire
printed contents of the U.S. Library of Congress could be downloaded in under
a minute. In the near term (two to five years), it is reasonable to expect that
throughput requirements for some single video events will reach roughly 50 to
100 Tbps (the equivalent of distributing a TV-quality stream to a large prime
time audience). This is an order of magnitude larger than the biggest online
events today. To host an event of this magnitude requires tens of thousands of
servers. In addition these servers must be distributed across multiple co-location
centers, since few co-location centers can provide even a fraction of the required
outgoing bandwidth to end-users. Furthermore, a single co-location center is a
single point of failure. Therefore, scalability and reliability requirements dictate
the need for a distributed infrastructure consisting of a large number of servers
deployed across the Internet.
Network bottleneck. As live media is increasingly streamed to a global view-
ership, streaming data needs to be transported reliably and in real-time from
the encoder to the end-user’s media player over the long haul across the Inter-
net. The Internet is designed as a best-effort network with no quality guarantees
for communication between two end points, and packets can be lost or delayed
as they pass through congested routers or links. This can cause the stream
to degrade, producing “glitches”, “slide-shows”, and “freeze ups” as the user
watches the stream. In addition to degradations caused by packet loss, catas-
trophic events can cause complete denial of service to segments of the audience.
These events include complete failure of large Internet Service Providers (ISP’s),
or failing of ISP’s to peer with each other. As an example of the former, in Jan-
uary 2008 an undersea cable cut brought down networks in the Middle East
and India, dramatically impacting Internet services for several hours and taking
several days to return to normality. As an example of the latter, in June 2001,
Cable and Wireless abruptly stopped peering with PSINet for financial reasons.
In the traditional centralized delivery model, it is customary to ensure that the
encoder is able to communicate well with the media servers through a dedicated
leased line, a satellite uplink, or through co-location. However, delivery of bits
from the media servers to the end-user over the long haul is left to the vagaries
of the Internet.

The bottlenecks outlined above speak to the need of a distributed overlay

3

network for delivering live streams. For more comprehensive treatment of the
Internet bottlenecks and the architecture of delivery networks in general, in-
cluding media and application delivery, the reader is referred to [NSS10].

1.1 An overlay network for delivering live streams

The purpose of an overlay network is to transport each stream from its encoder
to its viewers in a manner that alleviates the server and network bottlenecks.
An overlay network can be represented by a tripartite digraph N = (V,E), and
a set of paths Π in N that are used to transport the streams (See Figure 1).
The node set V consists of a set of sources S representing entry points, a set R
representing reflectors, and a set of sinksD representing edge servers. Physically,
each node is a cluster of machines deployed within a data center of an ISP on
the Internet. The nodes are globally distributed and are located in diverse ISPs
and geographies across the Internet. The set of edges E = (S × R) ∪ (R ×D)
denote links that can potentially be used for transporting the streams. Note
that transporting a stream across a link (u, v) ∈ E involves a server at node u
sends a sequence of packets that constitutes the stream to a server at v using
the public Internet.

Given the server deployments that are represented by N , overlay network
construction entails computing the set of paths Π that can be used to route
each stream from its source to each of its sinks. Each path in Π originates at
a source, passes through a reflector, and terminates at a sink. Note that there
can be more than one path between a source and sink when multiple copies
need to be sent to enhance stream quality. We illustrate the functionality of an
overlay network by tracking the path of a stream through the overlay network
as it travels from the encoder to the end-user’s media player.

• An entry point (or, source) serves as the point of entry for the stream into
the overlay network and it receives the sequence of packets that constitutes
the stream from the encoder. The entry point then sends identical copies
of the stream to one or more reflectors. For instance, in Figure 1, source
1 originates stream 1 and it forwards the stream to reflectors 1, 2, 4, and
5.

• A reflector serves as a “splitter” and can send each stream that it receives
to one or more edge servers. For instance, in Figure 1, reflector 1 forwards
stream 1 to sinks 1 and 7, in addition to forwarding stream 2 to sink 1.

• An edge server (or sink) receives one or more identical copies of the stream,
each from a different reflector, and “reconstructs” a cleaner copy of the
stream, before sending it to the media player of the end-user. Specifically,
if the kth packet is missing in one copy of the stream, the edge server
waits for that packet to arrive in one of the other identical copies of the
stream and uses it to fill the “hole”. For instance, in Figure 1, stream
2 is sent from source 2 to sink 8 through two edge-disjoint paths, one
through reflector 3 and the other through reflector 5. Any packet lost on

4

Reflectors − R

Sinks − D

Sources − S1 2

1 2 3 4

1 2 3 4 5 6 7 8

5

STREAM 1

STREAM 2

Figure 1: An overlay network for live streaming

the path through reflector 3 can be recovered if that same packet is not
lost on the path through reflector 5. The process of stream replication
and reconstruction is key to ensuring a high quality of service (QoS) when
there is no single reliable loss-free path from the source to the sink. If
the packet is lost on all paths, then that packet is unrecoverable by the
sink. The unrecoverable loss is termed as end-to-end packet loss or post-
reconstruction packet loss.

The architecture of the overlay network allows for distributing a stream from
its entry point to a large number of edge servers with the help of reflectors, thus
alleviating the server bottleneck. The network bottleneck can be broken down
into three parts. The first-mile bottleneck from the encoder to the entry point
can be alleviated by choosing an entry point close to (or even co-located with)
the encoding facility. The middle-mile bottleneck of transporting bits over the
long-haul from the entry point to the edge servers can be alleviated by building
an overlay network that supports low loss and high reliability. This is the
hardest bottleneck to overcome, and algorithms for automatically constructing
such an overlay network is the primary contribution of this paper. The last-mile
bottleneck from the edge server to the end-user can be alleviated to a significant
degree by deploying edge servers “close” to end-users (in a network sense) and
mapping each user to the most proximal edge server. Further, with significant
growth of broadband into the homes of end-users, the last-mile bottleneck is
bound to become less significant in the future2.

2From the year 2000 to October 2009, the percentage US households with high-speed

5

1.2 Considerations for overlay network construction

Given a digraph N = (V,E) that represents a deployment of sources, reflectors,
and sinks, and given a set of live streams, the construction of an overlay network
involves computing a set of paths Π that specify how each stream is routed from
its source to the subset of the sinks that are designated to serve that stream
to end-users. As an example, in Figure 1, we are given a set of 2 sources, 5
reflectors, 8 sinks, and 2 streams. Further, we are given the designated subset
of sinks for stream 1 and 2 to be {1, 2, 4, 6, 7} and {1, 3, 4, 6, 8} respectively. The
goal of overlay construction is to create one or more paths from each source to
each sink that requires the stream.

In practice, the designated subset of sinks for a given stream takes into ac-
count the expected viewership of that stream. For instance, a large live event
with predominantly European viewership would include a large number of sinks
(i.e., edge servers) in Europe in its designated subset, so as to provide many
proximal choices to the viewers of that stream. Constructing the designated sub-
set of sinks for each stream and subsequently directing each viewer to his/her
most proximal sink within that designated subset, so as to alleviate the last-mile
bottleneck is called “mapping” (For a more technical discussion on mapping, see
[DMP+02, NSS10].) Mapping is a complementary problem to overlay network
construction and is not a topic of this paper. From the perspective of construct-
ing an overlay network, the source of each stream and the corresponding subset
of the sinks that are designated to serve that stream are simply given to us
as inputs to our algorithm. Note that a physical entry point deployment may
originate multiple streams and a physical edge server deployment may typically
receive and serve a number of distinct streams. However, for simplicity, and
without loss of generality, we will replicate the sources (resp., sinks) so that
each source (resp., sink) originates (resp., receives) exactly one stream.

As noted earlier, given the sources, reflectors, sinks, and streams, construct-
ing an overlay network involves constructing paths Π to transport each stream
to its designated subset of sinks. Overlay network construction can be viewed
as an optimization problem to minimize cost , subject to capacity, quality, and
reliability requirements as discussed below.
Cost: A significant fraction of the cost of operating an overlay network is the
transmission cost of sending traffic over the Internet. The sources, reflectors,
and sinks are servers co-located in data centers of ISPs across the Internet.
Operating the overlay network requires entering into contracts with each data
center (typically, owned by an ISP) for bandwidth use in and out of the facility.
A typical bandwidth contract is based either on average bandwidth use for
the month, or on the 95th percentile of five-minute-averages of the traffic for the
month [ASV06]. Therefore, depending on the specifics of the contract and usage
in the month so far, it is possible to estimate the incremental cost (in dollars) of
sending additional bits across each link in the overlay network. We would like to
minimize the total transmission cost of usage of all the links. While transmission

broadband Internet services grew from a mere 4.4% to 63.5%. Recent statistics for broadband
penetration derived from Akamai data can be found in [Bel10].

6

costs represent a major fraction of the operating costs of an overlay network,
there are also fixed costs such as the amortized cost of procuring servers and the
recurring co-location expenses. From the perspective of operating a streaming
overlay network, these are often sunk costs that are often shared across services,
with the possible exception of dedicated reflectors. Therefore, we do model a
fixed cost for reflector usage.
Capacity: The capacity constraints reflect resource and other limitations of the
nodes and links in the overlay network. These constraints can be represented
as capacities associated with the nodes and links of the digraph N = (V,E).
Bandwidth capacity specifies the maximum total bandwidth (in bits/sec) that
can be sent by a given node or sent through a given link. Bandwidth capacity
incorporates CPU, memory, and other resource limitations on the physical hard-
ware, as well as any bandwidth limitations for sending outbound traffic from a
co-location facility. For instance, a reflector machine may be able to push at
most 100 Mbps before becoming CPU-bound. Another type of capacity that is
also relevant is called fan-out and represents the maximum number of distinct
streams a node (such as reflector) can transmit simultaneously. It is critical to
model fan-out constraints and bandwidth capacity for the reflectors, since reflec-
tor capacity is the key to scalably transmitting streams to large audiences. We
start by modeling reflector fan-out constraints and later extend our solution to
accommodate reflector bandwidth capacity in Section 4. Note that, in addition
to resource limitations, one can also impose capacities to clamp down traffic in
certain locations and move traffic through other locations in the network for
contractual or cost reasons.
Quality: The quality of the stream that an edge server delivers to an end-
user is directly related to how well the edge server is able to reconstruct the
stream without incurring significant packet loss. Consequently, we would like to
guarantee good stream quality-of-service (QoS) by requiring that the end-to-end
packet loss for a stream at each relevant sink be no larger than a pre-specified
loss threshold.
Reliability: From time to time, catastrophic events on the Internet cause large
segments of viewers to be denied service. To defend against this possibility,
the overlay network must be monitored and recomputed frequently to route the
streams around major failures. In addition, one can place systematic constraints
on overlay network construction to provide greater fault-tolerance. An example
of such a constraint is to require that multiple copies of a given stream are always
sent through reflectors located in different ISPs. This constraint would protect
against the catastrophic failure of any single ISP. We explore incorporating such
constraints into the construction of overlay networks in Section 4.3.

1.2.1 Packet loss model

To estimate the end-to-end (i.e., post-reconstruction) packet loss for a stream at
an edge server, we need to measure and model the packet loss of each individual
link in digraph N = (V,E) of the overlay network. The packet loss on each link
can be periodically estimated by proactively sending test packets to measure

7

loss on that link. Typically, an exponentially-weighted historical average is
used as an estimate of the packet loss on that link at a given point of time.
In reality, losses in a link tend to be bursty and correlate positively over time,
i.e., if the kth packet on a link was lost there is a slightly greater probability
that the (k + 1)st packet on the same link will also be lost. Further, the loss
in different links can be correlated if the Internet routes corresponding to those
links happen to pass through the same physical routers. However, as a first cut,
it is quite reasonable to assume that all loss events on two different links are
independent and uncorrelated, i.e., losses on one link are completely unrelated
to a losses on any other link. Notice that we don’t assume that loss of packets
on individual links are uncorrelated, but we assume that losses on different links
are independent3. However, in Section 4, we explore extensions to this simplified
loss model to account for some correlated link failures.

1.2.2 Efficiency requirements

An algorithm for constructing an overlay network needs to be efficient since the
inputs to our optimization change with time, requiring the overlay network to be
recomputed frequently. The digraph N = (V,E) changes when new nodes are
deployed, existing nodes fail and need to be taken out of service, or when streams
are added or removed. The costs and capacities associated with the nodes and
links also change over time, depending on server deployments, bandwidth usage,
and contracts. For instance, suppose we have already used a reflector early in
the month such that its 95th percentile of traffic for the month is guaranteed
to be at least 40 Mbps. We can now set the capacity of that reflector to 40
Mbps and the link costs to zero and essentially use it for free for the rest of
month. Finally, the loss probabilities associated with each link in E must be
updated as loss conditions are measured on the Internet change. Thus, we need
efficient algorithms that run in polynomial time and can feasibly (re)construct
the overlay network, typically several times an hour. The need for algorithmic
efficiency is particularly key since the size of the overlays are growing successively
larger over time with growing streaming usage and wider deployments.

1.3 Our contributions

Our first key contribution is formulating the overlay network construction prob-
lem for live streams, an optimization problem that is at the heart of much of
enterprise-quality live streaming today. Subsequently, we design the first prov-
ably efficient algorithm for constructing an overlay network that obeys capacity
and quality constraints while minimizing cost. We show that constructing the
optimal overlay network is NP-Hard. However, we provide an approximation
algorithm that constructs an overlay network that is provably near-optimal.

3The assumption of loss independence between different links is not strictly true in practice,
especially if the underlying Internet paths that these links represent share resources such as
routers. However, we find the assumption to be a good first-cut approximation in practice
that enables the design of efficient algorithms.

8

Specifically, we provide an efficient algorithm that constructs an overlay net-
work that obeys all capacity and quality constraints to within a constant factor,
and minimizes the cost to within O(log n) of optimal. The approximation bound
for the cost is tight since set cover, which has a known logarithmic lower bound,
is a special case of our problem. Further, for the important special case where
only transmission costs are minimized, our algorithm produces a solution with
cost that is provably within a factor of 2 of optimal. In addition, our algorithm
can be extended to incorporate more complex constraints such as constructing
overlays that provide reliability even when individual ISPs fail. Our technique
is of independent interest and is based upon linear program rounding, combined
with a novel application of the generalized assignment algorithm [ST93]. Finally,
we implement our algorithm and show that it performs very well on a range of
actual trace data collected from the Akamai’s live streaming network. In par-
ticular, our algorithm produced near-optimal results within a feasible amount
of time for real-world networks.

1.4 Related work

First, we discuss related work on systems that deliver streams utilizing multicast
protocols, in lieu of the reflector-based overlay network that we study in our
current work. Next, we discuss optimization research that is closely-related to
our own algorithmic approach.

1.4.1 Multicast protocols

One of the oldest alternative approaches to distributing streams is called “mul-
ticast” [Dee91]. The goal of multicast is to reduce the total bandwidth con-
sumption required to send the same stream to a large number of hosts. Instead
of sending all of the data directly from one server, a multicast tree is formed
with a server at the root, routers at the internal nodes, and end-users at the
leaves. A router receives one copy of the stream from its parent and then for-
wards a copy to each of its children. The multicast tree is built automatically
as end-users subscribe to the stream. The server does not keep track of which
end-users have subscribed. It merely addresses all of the packets in the stream
to a special multicast address, and the routers take care of forwarding the pack-
ets on to all of the end-users who have subscribed to that address. Support for
multicast is provided at both the network and link layer. Special IP and hard-
ware addresses have been allotted to multicast, and many commercial routers
support the multicast protocols.

Unfortunately, few of the routers on major backbones are configured to par-
ticipate in the multicast protocols, so as a practical matter it is not possible
for a server to rely on multicast alone to deliver its streams. The “Mbone”
(multicast backbone) network was organized to address this problem [Eri94].
Participants in Mbone have installed routers that participate in the multicast
protocols. In Mbone, packets are sent between multicast routers using unicast
“tunnels” through routers that do not participate in multicast.

9

However, multicast protocols have other issues as well. With the multicast
protocols, the trees are not very resilient to failures. In particular, if a node
or link in a multicast tree fails, all of the leaves downstream of the failure lose
access to the stream. While the multicast protocols do provide for automatic
reconfiguration of the tree in response to a failure, end-users will experience a
disruption while reconfiguration takes place. Similarly, if an individual packet
is lost at a node or link, all leaves downstream will see the same loss. To
compound matters, the multicast protocols for building the tree do not attempt
to minimize end-to-end packet loss or maximize available bandwidth in the tree.
In contrast, as noted earlier, commercial media delivery systems such as Akamai
do not rely on multicast, but instead provide a new component called a reflector.
A reflector receives one copy of a stream and then forwards one or more copies
to other reflectors or media servers. Further, the media servers at the edge of
the Internet are capable of receiving packets via multiple paths to recover from
packet loss.

The approach studied in our work involves constructing an overlay network
in a centralized manner using dedicated hardware for entry points, reflectors,
and edge servers. For a more detailed overview of the system architecture of Aka-
mai’s live streaming network, the reader is referred to [KSW+04]. And, for an
analysis of the traffic on Akamai’s live streaming network, the reader is referred
to [SMZ04]. A complementary approach is the peer-to-peer (P2P) approach
to live streaming where end-user machines can self-organize themselves into an
overlay tree that can be used to distribute media content. An example of such a
system is “End System Multicast”(ESM) [CRSZ02, LRLZ08]. In ESM, there is
no distinction between reflectors, and edge servers. Each host participating in
the multicast may be called on to play any of these roles simultaneously in order
to form a tree. ESM allows multicast groups to be formed without any network
support for routing protocols and without any other permanent infrastructure
dedicated to supporting multicast. While P2P live streaming is cost-effective, it
is still unclear that it can provide the scale and quality-of-service of a dedicated
overlay network. Recently, there has also been work on hybrid systems such as
CoopNet [PWCS02, PS02] that incorporate certain elements of both dedicated
overlays and peer-to-peer systems. Still, the vast majority of enterprise-quality
live streaming for key global events today happen using the dedicated overlay
networks such as the one we study in this paper.

1.4.2 Algorithms for facility location

Our algorithmic approach is inspired by recent work on a general class of op-
timization problems known as facility location problems. In a classical version
of the facility location problem, there are a set of potential locations where fa-
cilities may be built and a set of client locations that each require service from
a facility. Given the cost of servicing each client from each facility location,
the objective is to determine the set of locations at which facilities should be
built so as to minimize the total cost of building the facilities and servicing
all the clients. This class of problems has numerous applications in opera-

10

tions research, databases, and computer networking. The first approximation
algorithm for facility location problems was given by Hochbaum [Hoc82] and
improved approximation algorithms have been the subject of numerous papers
including [Chu98, CG99, GK98, JMS02, JV99, MYZ02, STA97, Svi02]. Except
for Hochbaum’s result, the papers described above all assume that the costs
of servicing clients from facilities form a metric (satisfying the symmetry and
triangle inequality properties). While our overlay network construction problem
is significantly different from the prior work on facility location, we can provide
a rough analogy where reflectors acts as facilities, sinks act as clients, and the
costs are the weights that represent packet loss probabilities. But the analogy
does not fully capture the additional complexities and unique challenges that
need to be overcome to solve our problem. Further, the packet loss probabilities
do not necessarily form a metric. And, the symmetry and triangle inequality
constraints frequently fail in real networks.

Our overlay network construction problem includes set cover as a special
case, though our problem is much more general. But, it is instructive to review
the set cover literature, since it provides lower bounds on the complexity of our
problem. The fact that our problem has set cover as a special case, gives us
an approximation lower bound of Ω(log n) with respect to cost achievable by a
polynomial-time algorithm (unless NP ⊂ DTIME(nO(log logn))) [LY94, Fei98].
A simple greedy algorithm gives a matching upper bound for the set cover
problem [Joh74, Chv79]. Our problem is capacitated (in contrast to the set cover
problem where the sets are uncapacitated). Capacitated facility location (with
“hard” capacities) has been considered in prior work [PTW01], but the local
search algorithm provided depends heavily upon the use of an underlying metric
space. The standard greedy approach for the set cover problem can be extended
to accommodate capacitated sets, but our problem is significantly more complex
as it requires a two-level assignment of sources (i.e., streams) to reflectors and
reflectors to sinks. Two-level assignments have been considered previously in
other contexts [KPR99, BR01, MMP01, GM02], though they assume that the
points are located in a metric space. Another basic property of our problem
that makes it less amenable to a greedy approach that has worked well in other
contexts is that with multiple streams the coverage no longer increases concavely
as more reflectors are used to route the streams. In other words, using two
additional reflectors may improve our solution by a larger margin than the sum
of the improvements of the reflectors taken individually.

A unique feature of our overlay network construction problem is the ability
to route a stream via multiple paths and combine the different copies at the
sink to provide a high level of quality. This is reminiscent of extensions to the
facility location problem where a given client is assigned to multiple facilities
in a redundant fashion [JV04, GMM01]. However, unlike our results, each of
the previous papers assumes that the costs for connecting clients to facilities
form a metric. Further, it is also assumed that the coverage provided by each
facility is equivalent (whereas in our problem the reflectors provide benefit in a
more complex manner by enabling multiple paths that decrease the end-to-end
packet loss).

11

1.4.3 Network reliability

While our problem aims to construct an overlay network with low cost and
providing a specified level of quality-of-service, there has been prior relevant
work on network reliability that studies when a network becomes disconnected
due to link failures. Given a network where each link e fails (i.e., vanishes)
independently with probability pe, the all-terminal network reliability prob-
lem aims to determine the probability that the network becomes disconnected.
Likewise, the two-terminal network reliability problem is to determine the prob-
ability that a specified source and sink node in the network are disconnected
from each other. Both problems and several related variations are known to
be ♯P-complete [PB83, Val79] for general networks. Karger, however, showed
a fully polynomial-time randomized approximation scheme (FPRAS) that ap-
proximates the all-terminal network reliability to within a relative error of 1± ǫ
in time that is polynomial in the number of vertices and 1/ǫ, with high prob-
ability [Kar95] . Further, Karger showed how his approach can be extended,
with some restrictions, to a more general problem, namely the multi-terminal
network reliability problem, where instead of all terminals we have an arbitrary
subset of terminals and we would like to compute the probability some pair of
terminals in the subset are disconnected. While some versions of the network
reliability problem are exactly solvable in polynomial time for the three-level
networks that we study in this paper, our problem differs from the network re-
liability in that our goal is to construct an overlay network with considerations
of both cost and quality-of-service as measured by end-to-end packet loss.

1.5 Outline of the paper

The remainder of this paper is organized as follows. In Section 2, we formally
state the overlay network construction problem and show how the problem
can be modeled as an Integer Program (IP). In Section 3, we describe our
polynomial-time approximation algorithm Approx that utilizes the technique of
LP relaxation followed by rounding to obtain a near-optimal overlay network.
In Section 4, we study various extensions to the overlay network construction
problem to capture additional real-world constraints. In Section 5, we show
that our algorithm is capable of producing good overlay networks on variety of
real-world trace data obtained from the Akamai live streaming network. Finally,
in Section 6, we conclude with directions for future research.

2 The overlay network construction problem

In this section, we formally define the overlay network construction problem
and show how the problem can be formulated as an integer program (IP).

2.1 Problem definition

As an input to the problem, we are given the following.

12

• A tripartite digraph N = (V,E), where V = S ∪ R ∪ D and E = (S ×
R) ∪ (R × D). The set S denotes the set of sources, R denotes the set
of reflectors, and D denotes the set of sinks (See Figure 1). The nodes
in the network represent the current deployment in the CDN of entry
points (sources), reflectors, and edge servers (sinks) that actually serve
the streams to end-users. Each link (i, j) ∈ E represents the underlying
Internet path used for transmitting streams from node i to node j.

• For each link (which corresponds to a path through the Internet), we are
given the probabilities of packet loss on the links are denoted by

pij ∈ [0, 1], for each (i, j) ∈ E.

The loss probability reflects the odds that a packet sent on that link is
lost or otherwise rendered useless (a packet that arrives significantly out-
of-order or late is also useless). The link loss probabilities are typically
measured by a software component residing at each node that sends a
sequence of test packets to estimate the loss.

• We are given a set of live streams where each stream has a specified source
in S and a specified subset of sinks inD that require the stream. Though in
reality multiple streams can originate at a physical entry point deployment
or end at a physical edge server deployment, we assume that exactly one
stream originates at each source and exactly one stream ends at each sink .
We make this assumption without any loss of generality since each source
(resp., each sink) can be replicated a sufficient number of times so that we
have exactly one stream per source (resp., sink). Once this modification
is made, we let n be the maximum number of nodes in any level of the
network, i.e., n = max(|D|, |R|) since |S| ≤ |D|.

• Next, we are given the costs associated with routing the streams. Each
stream incurs a cost for being transmitted over each link. The cost is
represented by

ckij ∈ R
+,

which is the cost of transmitting the stream originating at source k ∈ S
through link (i, j) ∈ E. Note that the costs of carrying different streams
over a given link can be different depending on how they are encoded. The
transmissions costs can also vary from link to link in accordance with the
contracts between the CDN and the ISPs that provide the bandwidth. In
addition to the transmission costs, we assume that there is a fixed cost for
using a reflector to route one or more streams denoted by

ri ∈ R
+, for each i ∈ R.

• The reflectors of the overlay network must obey capacity constraints that
derive from hardware and software limitations. First, we model the fan-
out constraints on each reflector. For each reflector i ∈ R, reflector i can

13

simultaneously transmit to at most Fi different sink nodes. In addition
to fan-out constraints, one can also place an upper bound on the band-
width (in bits per second) that can be transmitted through each reflector
node. We extend our results to capture this additional constraint later in
Section 4.

• The goal of the overlay network is to simultaneously route each stream
from its respective source to its subset of sinks with a minimum acceptable
quality-of-service. The primary metric for quality of service (QoS) that we
consider in this paper is end-to-end packet loss. To this end, we are given
an end-to-end loss threshold that represents the maximum acceptable end-
to-end packet loss for each stream sent from its source k to a sink j. The
thresholds are represented by

Φk
j ∈ [0, 1], for k ∈ S and j ∈ D.

Note that in this framework a given stream could require different levels
of QoS at different sinks.

Given the digraph N = (V,E), stream information, costs, capacities, link packet
loss probabilities, and end-to-end loss thresholds as outlined above, the goal of
overlay network construction is to create a set of paths Π that can be used to
simultaneously route each stream from its source to its subset of sinks such that
capacity and end-to-end loss thresholds are met and the total cost is minimized.

2.2 Integer programming formulation

We formulate the overlay network construction problem as an integer program
(IP) as follows. We use yki as the indicator variable for the delivery of the k-th
stream to the i-th reflector, zi as the indicator variable for utilizing reflector i
and xk

ij as the indicator variable for delivering the k-th stream to the j-th sink
through the i-th reflector. Consider a stream that originates from source k that
goes through reflector i to reach sink j. As noted earlier, the loss experienced
by the packets in the stream when transmitted over link (k, i) (resp., link (i, j))
is pki (resp., pij). Assuming that packet loss in the two links are independent,
the loss experienced by the stream along the entire path from source k to sink j
is pki + pij − pkipij . Since it is more convenient to work with the logarithms of
probabilities, we transform the packet loss probability along paths into weights
where wk

ij = − log (pki + pij − pkipij). In other words wk
ij is the negative log

of the probability of packet loss along path (k, i, j). Likewise, we define W k
j =

− logΦk
j to be the weight threshold of the stream originating at source k and

ending at sink j, where Φk
j is the corresponding end-to-end loss threshold4. Thus

4Note that both wk
ij and W k

j can take the value of +∞ as defined. In practice, we use a
sufficiently large finite value instead.

14

we are able to write the IP:

min
∑

i∈R

rizi +
∑

i∈R

∑

k∈S

ckkiy
k
i +

∑

i∈R

∑

k∈S

∑

j∈D

ckijx
k
ij

s.t.

(1) yki ≤ zi ∀i ∈ R, ∀k ∈ S

(2) xk
ij ≤ yki ∀i ∈ R, ∀j ∈ D, ∀k ∈ S

(3)
∑

k∈S

∑

j∈D xk
ij ≤ Fizi ∀i ∈ R

(4)
∑

j∈D xk
ij ≤ Fiy

k
i ∀i ∈ R, ∀k ∈ S

(5)
∑

i∈R xk
ijw

k
ij ≥ W k

j ∀j ∈ D, ∀k ∈ S

(6) xk
ij ∈ {0, 1}, yki ∈ {0, 1}, zi ∈ {0, 1}

Constraints (1) and (2) force us to pay for the reflectors we are using, and to
transmit packets only through reflectors that are in use. Constraint (3) encodes
the fan-out restriction. Constraint (4) is redundant in the IP formulation, but
provides a useful cutting plane in the LP rounding algorithm that we present in
Section 3. Constraint (5) are the “weight constraints” that capture the end-to-
end loss requirements for QoS as shown in Claim 2.1 below. Note that since we
have replicated the sinks such that exactly one stream ends at each sink, there
is exactly one weight constraint per sink. Thus, there are a total of |D| ≤ n
weight constraints, where n = max(|R|, |D|). Constraint (6) is the integrality
constraint for the variables. The set of paths Π that is the output of overlay
network construction can be extracted from the solution to the IP above by
routing a stream from its source k through reflector i ∈ R to sink j ∈ D if
and only if xk

ij equals 1 in the IP solution. The cost objective function that is
minimized represents the total cost of operating the overlay network and is the
sum of three parts: the fixed cost of using the reflectors, the cost of sending
streams from the sources to the reflectors, and the cost of sending streams from
the reflectors to the sinks.

Claim 2.1. If constraint (5) holds, then for each stream originating at source k
and destined for sink j, the end-to-end packet loss is at most the corresponding
end-to-end loss threshold Φk

j .

Proof. Since packet loss on different links are assumed to be independent, the
end-to-end loss probability of the reconstructed stream from source k to sink
j is the product of the loss probabilities along each of its edge-disjoint paths
in Π. Since we use the negative logarithm of the loss probabilities as weights,
the logarithm of the product of loss probabilities is equal to the sum of the
corresponding weights. Specifically, the LHS of constraint (5) is the sum of the
weights of the edge-disjoint paths in Π from source k to sink j, which equals
the negative logarithm of the end-to-end loss probability of the stream from k

15

to j. Note that W k
j represents the negative logarithm of the acceptable end-to-

end loss threshold Φk
j . Therefore, asserting that the LHS value is at least W k

j

captures the end-to-end threshold requirement for the stream.

Claim 2.2. In the IP formulation constraints (1),(2),(3) and (6) dominate (4).

Proof. We look at cases for zi.

1) If zi = 0, then from (1) and (6) we get yki = 0 for ∀k ∈ S. Now from (2)
and (6) we get xk

ij = 0 ∀k ∈ S and ∀j ∈ D. Thus (4) is implied.

2) If zi = 1, then if yki = 0 we still have xk
ij = 0 ∀j ∈ D, which means

∑

j∈D

xk
ij = 0

If yki = 1 then from (3) we have

∑

k∈S

∑

j∈D

xk
ij ≤ Fi

which means that ∀k ∈ S
∑

j∈D

xk
ij ≤ Fi

Which concludes the proof.

3 An approximation algorithm for overlay net-

work construction

To motivate the need for an approximation algorithm, we first show a hardness
result for computing the optimal solution for the overlay network construction
problem.

Theorem 3.1. The overlay network construction problem is NP-hard. Further,
there is no polynomial time algorithm that can achieve cost that is within a
(1− o(1)) lnn factor of optimal, unless5 NP ⊂ DTIME(nO(log logn)).

Proof. The set cover problem that is known to be NP-hard [GJ79] is as follows.
Given a set of elements and a collection of sets containing those elements, the
goal of set cover is to select the smallest number of sets such that every element
is included in at least one of the selected sets. The set cover problem is a special
case of the overlay network construction problem as shown below. Let each set
correspond to a reflector and each element correspond to a sink. Further, let
there be one source (labeled 1) that originates a single stream that must be sent

5Note that NP ⊂ DTIME(nO(log log n)) is a weaker requirement than P = NP , thus
yielding a stronger result.

16

to all sinks with W 1
j = 1, for all j ∈ D. Next, let w1

ij = 1 if the set represented
by reflector i contains the element represented by sink j, and zero otherwise.
(Note that w1

ij is set to 1 by making the probability of loss on path (1, i, j) to

be 1/2 and w1
ij is set to 0 by making the probability of loss on path (1, i, j)

to be 1.) Finally, let ri = 1, for all i ∈ R, let all other costs be zero, and let
fan-out Fi be unbounded for all i ∈ R. It is easy to see that solving the above
special case of the overlay network construction problem with the smallest cost
is equivalent to finding the smallest collection of reflectors in R that cover all
the elements in S. Thus, overlay network construction is NP-hard. Further, it
is known that the there is no polynomial time algorithm that can approximate
the set cover problem within a (1 − o(1)) lnn factor of optimal, unless NP ⊂
DTIME(nO(log logn)) [LY94, Fei98]. Thus, the same inapproximability result
also holds for the overlay network construction problem.

With Theorem 3.1 in mind, we now describe a polynomial-time approxima-
tion algorithm Approx that produces a solution that has cost within a O(log n)
factor of optimal while satisfying the fan-out and weight constraints within con-
stant factors, i.e., the algorithm has the best possible approximation ratio to
within constant factors. Our approximation algorithm Approx works in two
phases. In the first phase, the integer program (IP) described in Section 2.2
is “relaxed” to obtain a linear program (LP). Specifically, the LP relaxation is
obtained by substituting the integrality constraints (6) in the IP with

xk
ij ∈ [0, 1], yki ∈ [0, 1], zi ∈ [0, 1]

That is, the above variables can now take fractional values, rather than just 0
or 1. We solve the LP optimally and find a fractional solution denoted by

(ẑi, ŷki , x̂k
ij)

In the second phase, we find a solution to the IP by “rounding” the fractional
LP solution to integral values using a two-step rounding process: a randomized
rounding step (Section 3.1) followed by a modified version of a Generalized
Assignment Problem (GAP) approximation (Section 3.2). Once the rounding
process is complete, we establish that the integral solution obtained through
rounding is a provably good approximate solution for the original IP, which in
turn provides a provably good overlay network for simultaneously routing all
the streams from their sources to their respective destinations.

3.1 Randomized rounding

We apply the following randomized rounding procedure to obtain the values
(z̄i, ȳki , x̄k

ij). We use parameter c > 1, which will be determined later, as a
preset multiplier.

(1) Compute żi: ∀i ∈ R, set żi = min(ẑic logn, 1)

17

(2) Compute ẏki : ∀i ∈ R, ∀k ∈ S, if żi = 0 then set ẏki = 0, else set

ẏki = min

(

ŷki c logn

żi
, 1

)

(3) Compute z̄i: We round z̄i = 1 with probability żi and 0 otherwise.

(4) Compute ȳki : If z̄i = 1 then round ȳki = 1 with probability ẏki and 0
otherwise.

(5) Compute x̄k
ij : If żi = ẏki = 1 set x̄k

ij = x̂k
ij

else if ȳki = 1 set x̄k
ij =

1
c logn with probability x̂k

ij/ŷ
k
i and 0 otherwise.

(6) Set all the variables z̄i, ȳ
k
i , and x̄k

ij not set in the above steps to 0.

The only fractional values left after this procedure are x̄k
ij . As outlined later in

Section 3.2, to round the x̄k
ij ’s we will apply a modified version of the Generalized

Assignment Problem (GAP) approximation due to Shmoys and Tardos [ST93].
The GAP rounding will preserve the cost and violate the fan-out and weight
constraints by at most an additional constant factor.

3.1.1 Analysis of the randomized rounding

We bound the expected cost of the solution after randomized rounding in terms
of the optimal cost as follows. Let Ĉ denote the value of the cost objective
function for our fractional solution (ẑi, ŷki , x̂k

ij) obtained by solving the LP

relaxation. Likewise, let C̄ be the value of the cost objective function after the
randomized rounding procedure, i.e., C̄ is the value obtained by evaluating the
objective function using values (z̄i, ȳki , x̄k

ij). Finally, let COPT the optimal
objective function value obtained by solving the IP. From steps (1) and (3) of
the rounding procedure we conclude that

E[z̄i] = żi ≤ ẑic logn. (1)

From step (4) of the rounding procedure, we conclude that

E[ȳki] = żi ·min

(

ŷki c logn

żi
, 1

)

≤ ŷki c logn. (2)

Further, in all cases as shown below,

E(x̄k
ij) = x̂k

ij . (3)

In the case where żi = ẏki = 1, we deterministically set x̄k
ij = x̂k

ij and hence

E(x̄k
ij) = x̂k

ij . Else, we have the following two cases to consider.

1. If ẏki < 1, it follows that

ẏki =
ŷki c logn

żi
.

18

2. If żi < 1, then żi = ẑic logn. Thus, since ŷ
k
i ≤ ẑi due constraint (1) of the

LP,
ŷki c logn

żi
=

ŷki c logn

ẑic logn
≤ 1.

That is, it is again true that

ẏki = min

(

ŷki c logn

żi
, 1

)

=
ŷki c logn

żi
.

Therefore, in both of the above cases,

E(x̄k
ij) = żi · ẏ

k
i · (x̂k

ij/ŷ
k
i) ·

1

c logn
= żi ·

ŷki c logn

żi
· (x̂k

ij/ŷ
k
i) ·

1

c logn
= x̂k

ij .

Using the linearity of expectations, the Equations 1,2, and 3 above imply

E[C̄] ≤ c logn · Ĉ ≤ c logn · COPT .

Thus we have the following lemma.

Lemma 3.2. The expected cost after the randomized rounding step is O(log n)
times the optimal cost.

Now we will show that with high probability all weight constraints are met
to within a small constant factor. By high probability, we mean a probability
of more than 1 − 1/n, where n = max(|R|, |D|) as defined earlier. Recall that
the constraints (5) are the “weight constraints” as shown below:

∑

i∈R

xk
ijw

k
ij ≥ W k

j ∀j ∈ D, ∀k ∈ S.

Let random variable W
k

j be the LHS of the weight constraint evaluated at x̄k
ij ,

i.e.,

W
k

j
∆
=

∑

i∈R

x̄k
ijw

k
ij .

We show that after the randomized rounding step the following holds with high

probability: W
k

j ≥ (1 − δ)W k
j , for all j and k and a small constant δ > 0. To

provide a probabilistic bound for W
k

j , we use a version of the Hoeffding-Chernoff
bound [Hoe63, MR95] below.

Theorem 3.3 (Hoeffding-Chernoff bound). Let vi be a set of independent
random variables where for all i either vi ∈ [0, 1] or V ariance(vi) = 0. Let
0 < δ < 1, let S =

∑

i vi and µ = E [
∑

i vi] then

Pr(S < (1− δ)µ) ≤ exp
(

− δ2µ
2

)

Pr(S > (1 + δ)µ) ≤ exp
(

− δ2µ
3

)

19

Proof. This theorem is the standard Hoeffding-Chernoff bound with a small
modification. The standard bound requires all random variables vi ∈ [0, 1].
However, we allow random variables with zero variances, i.e., those that take a
single value with probability 1, to be in any range. Clearly, any such vi with
zero variance can decomposed into ⌈vi⌉ variables that are each deterministically
set to vi

⌈vi⌉
∈ [0, 1] with probability 1. Applying the standard bound after this

decomposition yields our theorem.

We define random variable vkij
∆
= (c logn)x̄k

ij
wk

ij

Wk
j

. In order that we may use

Theorem 3.3, we need to establish the following two criteria.

1. The random choices made in computing vkij and vki′j , for i 6= i′, are in-

dependent and not shared. Each random variable vkij is computed using

random variable x̄k
ij which in turn depends on the random choices made

in computing ȳki . But, for any i 6= i′, random variable vkij is independent

of vki′j , since the random choices in computing ȳki and z̄i are distinct from

those made in computing ȳki′ and z̄i′ .

2. Without loss of generality we can assume wk
ij ≤ W k

j since it never helps
to have more weight on a source-to-sink path than the weight that the
sink itself demands. When x̄k

ij is probabilistically set, it is set to either

1
c logn or 0. It follows that vkij = (c logn)x̄k

ij
wk

ij

Wk
j

∈ [0, 1]. Otherwise, x̄k
ij

is deterministically set to x̂k
ij with probability 1. The range of vi can be

arbitrary in this case, since the variance of vi is zero.

Using Equation 3, the expected value of vkij is

E[vkij] = c logn ·
wk

ij

W k
j

· x̂k
ij .

Since the weight constraints are satisfied by the LP solution,

∑

i∈R

wk
ij

W k
j

· x̂k
ij ≥ 1. (4)

Thus,

µ
∆
= E

[

∑

i∈R

vkij

]

=
∑

i∈R

E[vkij] = c logn ·
∑

i∈R

wk
ij

W k
j

· x̂k
ij ≥ c logn. (5)

20

Using the Hoeffding-Chernoff bound of Theorem 3.3, we get the following chain
of inequalities:

Pr(W
k

j < (1− δ)W k
j) = Pr

(
∑

i∈R wk
ij · x̄

k
ij < (1− δ)W k

j

)

≤ Pr

(

∑

i∈R wk
ij ·x̄

k
ij

Wk
j

< (1 − δ)

)

, by dividing both sides by Wk
j

≤ Pr

(

∑

i∈R

wk
ij ·x̄

k
ij

Wk
j

< (1− δ)
∑

i∈R

wk
ij ·x̂

k
ij

Wk
j

)

, using Equation 4

= Pr(
∑

i∈R vkij ≤ (1− δ)µ) ≤ exp
(

− δ2µ
2

)

.

Thus, for a fixed j and k we bound the probability that the corresponding
weight constraint is not met to within a factor of 1 − δ using Equation 5 and
Theorem 3.3 as follows:

Pr
(

W
k

j < (1− δ)W k
j

)

≤ e

(

− δ2·c log n
2

)

=
1

nδ2·c/2
.

Since there are at most n weight constraints, i.e., one constraint per sink, we
set δ2 · c = 4. Specifically, if we set δ = 1/4 and c ≥ 64, all weight constraints
are satisfied to within a factor of 1 − δ with probability at least 1 − n

nδ2·c/2
≥

1− n
n2 ≥ 1− 1

n . Thus, we can state the following lemma.

Lemma 3.4. If we set c ≥ 64 then after the randomized rounding procedure, all
weight constraints are met to within a factor of 3

4 , with high probability. That

is, W
k

j ≥ 3
4W

k
j , for all j and k, with high probability.

Finally, we show that all fan-out constraints are met to within a factor of
two. Specifically, our goal is to show that, with high probability, after the
randomized rounding step the following holds:

∑

k∈S

∑

j∈D

x̄k
ij ≤ 2Fi ∀i ∈ R.

We want to again apply the Hoeffding-Chernoff bound. Unfortunately, the
random variables x̄k

ij in the above sum are not all independent. Specifically, x̄k
ij

and x̄k
ij′ , for j 6= j′, are not independent as both depend on the random choices

made in computing ȳki . For instance, if ȳ
k
i = 1 there is a higher probability for

all j ∈ D that x̄k
ij will be rounded to 1/c logn. However, x̄k

ij are obtained by a

two stage process in which first ȳki is rounded to 0 or 1 and then x̄k
ij is rounded

if and only if ȳki = 1. We will use two claims to prove the next lemma. Let

random variable E
[

∑

k∈S

∑

j∈D x̄k
ij |ȳ

k
i

]

be defined over the probability space

of ȳki , i.e., the random variable E
[

∑

k∈S

∑

j∈D x̄k
ij |ȳ

k
i

]

is a function that maps

ȳki to the value of the conditional expectation given the values of ȳki .

Claim 3.5. For any reflector i, we have

Pr

E

∑

k∈S

∑

j∈D

x̄k
ij |ȳ

k
i

 >
3

2
Fi

 ≤
1

2n2
.

21

Proof. In order to apply Theorem 3.3, we set

vki
∆
=

c logn

Fi
· E

∑

j∈D

x̄k
ij |ȳ

k
i

 .

Excluding the situation where żi = ẏki = 1 where ȳki = 1 and x̄k
ij is set to x̂k

ij

with probability 1 yielding a vki with zero variance, we have the following two
cases. Either ȳki = 0 then

E

∑

j∈D

x̄k
ij |ȳ

k
i

 = 0

Or, if ȳki = 1 then from the cutting plane constraint (4) from the IP formulation
we have

E

∑

j∈D

x̄k
ij |ȳ

k
i

 =
∑

j∈D

1

c logn
·
x̂k
ij

ŷki
≤

Fi

c logn

It follows that in both these cases,

vki =
c logn

Fi
·E

∑

j∈D

x̄k
ij |ȳ

k
i

 ∈ [0, 1] .

We know from Equation 3 and the fan-out constraint (3) that

E

∑

k∈S

∑

j∈D

x̄k
ij

 =
∑

k∈S

∑

j∈D

E
[

x̄k
ij

]

=
∑

k∈S

∑

j∈D

x̂k
ij ≤ Fi.

Therefore, using the above equation and the linearity of expectation, we have

µ = E

[

∑

k∈S

vki

]

=
c logn

Fi
· E

∑

k∈S

E

∑

j∈D

x̄k
ij |ȳ

k
i

=
c logn

Fi
·E

∑

k∈S

∑

j∈D

x̄k
ij

 ≤
c logn

Fi
· Fi = c logn. (6)

Now we use the Hoeffding-Chernoff bound of Theorem 3.3 and we get

Pr
(

E
[

∑

k∈S

∑

j∈D x̄k
ij |ȳ

k
i

]

> 3
2Fi

)

= Pr
(
∑

k∈S vki > 3
2c logn

)

,multiplying both sides by c log n
Fi

≤ Pr
(

∑

k∈S vki >
(

1 + c logn
2µ

)

µ
)

, using Equation 6

≤ exp
(

−(c logn)2µ
(2µ)23

)

≤ exp
(

−1
12 c logn

)

= n−c/12.

22

By setting c > 24 we get

Pr

E

∑

k∈S

∑

j∈D

x̄k
ij |ȳ

k
i

 >
3

2
Fi

 <
1

2n2
.

Which concludes the proof of this claim.

Claim 3.6. For some reflector i, suppose that the ȳki values are fixed such that
the following holds:

E

∑

k∈S

∑

j∈D

x̄k
ij |ȳ

k
i

 ≤
3

2
Fi

Then for c ≥ 36

Pr

∑

k∈S

∑

j∈D

x̄k
ij > 2Fi

 ≤
1

2n2

Proof. For a given reflector i, when all ȳki are fixed then x̄k
ij are independent.

We now define

vkij
∆
=

c logn

Fi
· x̄k

ij .

As in Claim 3.5, excluding the case where vki has zero variance, we have vkij ∈

[0, 1], since x̄k
ij ∈ [0, 1

c logn], Fi ≥ 1, and hence

vkij =
c logn

Fi
· x̄k

ij ≤
c logn

Fi
·

1

c logn
≤ 1.

Furthermore from the first part of this claim

µ
∆
= E

∑

k∈S

∑

j∈D

vkij

 ≤
3

2
Fi ·

c logn

Fi
=

3c logn

2
. (7)

Thus we apply Hoeffding-Chernoff bound of Theorem 3.3 and we get

Pr
(

∑

k∈S

∑

j∈D x̄k
ij > 2Fi

)

=

= Pr
(

∑

k∈S

∑

j∈D vkij > 2c logn
)

,multiplying both sides by c log n
Fi

≤ Pr
(

∑

k∈S

∑

j∈D vkij >
(

1 + c logn
2µ

)

µ
)

, using Equation 7

≤ exp(−(c logn
2µ)2µ/3) ≤ exp(−c logn/18), using Theorem 3.3 and Equation 7

≤ n
−c
18 .

Which by setting c ≥ 36 concludes the proof of this claim.

23

For a given reflector i, we apply the union bound to the bounds in Claims 3.5
and 3.6 to conclude that the

Pr

∑

k∈S

∑

j∈D

x̄k
ij > 2Fi

 ≤
1

2n2
+

1

2n2
=

1

n2
.

Since there are at most n reflectors, the probability that some reflector exceeds
the fan-out constraints by more than an factor of 2 is at most n · 1

n2 = 1
n . Thus.

we can state the following lemma.

Lemma 3.7. If we set c ≥ 36 then after the randomized rounding procedure all
fan-out constraint are met to within a factor of 2, with high probability.

3.2 Rounding by modified GAP approximation

As the last step in the rounding process, we describe how to convert the x̄k
ij

produced by the randomized rounding step to an integral solution. This so-
lution will violate the fan-out constraints by an additional constant factor, so
that all weight constraints will be met to within a combined factor of 1/4 with
high probability. As before let C̄ denote the cost value achieved by solution
(z̄i, ȳki , x̄k

ij) after the randomized rounding step. Using the values x̄k
ij , we

S

T

Figure 2: Converting x̄k
ij to an integral solution using a GAP flow graph

create a five-level “GAP flow graph” with edge capacities and edge costs that
will help us perform the rounding (See Figure 2). The flow graph consists of a
single node labeled S in the first level and a single node labeled T in the fifth
level. At the second level, we create a vertex for each reflector in R. The node
S is connected to each reflector i in the second level with an edge of capacity
equal to 2Fi and zero cost, where Fi is the maximum fan-out. The third level
consists of nodes representing all (reflector i, sink j) pairs such that x̄k

ij 6= 0.
We add an edge with capacity 1 and zero cost from a node in the second level

24

representing reflector i to all nodes in the third level (i, j) such that x̄k
ij 6= 0.

In the fourth level we represent each sink j as a collection of boxes where the
number of boxes is equal to

sj =

⌈

2
∑

i∈R

x̄k
ij

⌉

.

Note that since each sink receives only one stream fixing j automatically fixes
k. We order the wk

ij for each sink in non-increasing order. That is, WLOG we
assume that

wk
1j ≥ wk

2j ≥ . . .

This ordering of weights induces a corresponding ordering on the nonzero x̄k
ij

values. With each box we associate an interval of weights in this ordering.
The corresponding x̄k

ij values are also similarly associated with that box. In

associating weights and values, we ensure that the x̄k
ij values associated with

each box sum to exactly 1/2, except possibly the last box. We associate weights
and values with each box using the following process. Let t be the first index
for which

t
∑

i=1

x̄k
ij >

1

2
.

We associate with the first box the weight interval [wk
1j , w

k
tj] and the corre-

sponding portion of x̄k
ij values that add up to exactly 1/2. Next, we compute

an index r ≥ t and associate an interval with the second box as follows. Let
x′ =

∑t
i=1 x̄

k
ij − 1/2. If x′ > 1/2 we set r = t and associate with the second box

the weight interval [wk
tj , w

k
tj] and the portion of x̄k

tj of value 1/2 . Otherwise we
set r to be the smallest index such that

x′ +

r
∑

i=t+1

x̄k
ij >

1

2
.

And, we associate the second box the weight interval [wk
tj , w

k
rj] and the corre-

sponding portion of the x̄k
ij values, t ≤ i ≤ r, that total to 1/2. We continue

with this process until we associate all the boxes with weight intervals, except
possibly the last box that may not be associated with a weight interval. Note
the above algorithm ensures that the total of the x̄k

ij values associated with
each box is exactly 1/2, with the possible exception of the last box. We then
eliminate the last box for each sink. Using Lemma 3.4 and our assumption that
wk

ij ≤ W k
j , we can conclude that for all sinks j, with high probability,

∑

i∈R

x̄k
ij ≥

∑

i∈R

wk
ij

W k
j

· x̄k
ij ≥ 3/4.

Thus, since the x̄k
ij ’s add up to more than 1/2 for each sink, there is at least one

box that remains for each sink after eliminating the last box. Using the weight

25

interval assignments, we connect each node in the third level representing a
(reflector i, sink j) pair to the corresponding set of boxes that represent sink j
on the fourth level. Let b be a box in the set of boxes that represents sink j
that is assigned the weight interval [wk

tj , w
k
rj] for some t ≤ r. For each t ≤ i ≤ r,

we place an edge with capacity 1/2 and cost ckij between the third-level node
representing pair (i, j) and the fourth-level node representing box b. Finally,
we connect all the (non-eliminated) boxes to node T with edges of capacity 1/2
and zero cost.

Using our construction, a maximum flow can be routed from node S to
node T as follows. We start by routing a flow of 1

2 from each each box in the
fourth level to T. We extend these flows to the third level by using x̄k

ij values
associated with each box as the flow values. This flow can be further extended
to the second and first levels of the graph in the obvious way, following flow
conservation at each node and the capacity constraints. From Lemma 3.7, we
know that the capacity of the 2Fi on the edges from first to the second level of
the graph are not violated, with high probability. Note that this flow saturates
the cut of edges that come into T since each of these edges have a flow of 1/2,
hence the flow is maximum. The maximum flow routed in this fashion may
have fractional flow values on the edges from the third to the fourth level and
these values correspond to the x̄k

ij values. This flow has a total cost of at most

C̄, since eliminating boxes can only reduce the total flow and hence the total
cost. However, since all edge capacities are either integral or 1

2 , there exists a
minimum cost maximum flow with flow variables that equal only 0, 1/2 or 1
that has a total cost that is at most the cost of the original max flow. Thus,
the new min-cost maximum flow has a total cost of at most C̄. We find such
a maximum flow with minimum cost using a known polynomial time algorithm
[AMO93] and that provides us new flow values that we define to be x̃k

ij that
equal either 0, 1/2, or 1.

Now, we show that the minimum cost maximum flow that we constructed
satisfies at least a quarter of the weight threshold demanded by each sink.
For each stream with source k and sink j, we know from Lemma 3.4 that

W
k

j ≥ 3
4W

k
j , with high probability. Recall that for each sink j, we created

sj =
⌈

2
∑

i∈R x̄k
ij

⌉

boxes and potentially eliminated the last box. In any maxi-
mum flow, each (uneliminated) box must receive exactly 1/2 unit flow so that
the edges from level 4 to T are saturated. Let min(wk

ℓj) and max(wk
ℓj) denote

the smallest and the largest weights respectively assigned to the lth box, for
1 ≤ l ≤ sj . For the constructed flow,

∑

i∈R

wk
ij · x̃

k
ij ≥

1

2

sj−1
∑

ℓ=1

min(wk
ℓj),

since the last box is potentially eliminated and each uneliminated box receives

26

a flow of 1/2. Note that

1
2

∑sj−1
ℓ=1 min(wk

ℓj) ≥
1
2

∑sj
ℓ=2 max(wk

ℓj), since the weights are in nonincreasing order

= 1
2

∑sj
ℓ=1 max(wk

ℓj)−
1
2w

k
1j ≥

∑

i∈R wk
ij x̄

k
ij −

1
2w

k
1j ≥ W

k

j −
1
2W

k
j , since wk

1j ≤ W k
j

≥ 3
4W

k
j − 1

2W
k
j = 1

4W
k
j , using Lemma 3.4.

Thus, at least a quarter of the weight threshold of each sink is met.
The flow that we have constructed thus far is not 0-1, since some flow values

can equal 1/2. To rectify this, we double all x̃k
ij = 1/2. Clearly, after the dou-

bling we continue to satisfy at least a quarter of the weight threshold demanded
by each sink. However, we might violate fan-out constraints by at most an ad-
ditional factor of two. Thus, in combination with Lemma 3.7, this means that
we meet all fan-out constraints to within a total factor of at most 4. We also
at most double the cost C̃ associated with x̃k

ij , but that can be absorbed in the
O(log n) factor on the cost derived in Lemma 3.2. This concludes the rounding
of the last fractional variables of our solution. We get the desired 0-1 solution.
Note that from Theorem 3.1, we know that the approximation ratio achieved
by Approx is the best possible to within constant factors.

3.3 Putting it all together

We will now calculate the running time of our approximation algorithm Approx.
First, we will determine the number of variables and constraints in the LP (or,
the corresponding IP). Note that we replicated the sources and sinks so that each
sink (resp., source) receives (resp., originates) exactly one stream. Therefore,
|S| ≤ |D| and the total number of variables of the form xk

ij is |R| · |D|. Thus, the
LP (or, IP) has O(|R| · |D|) variables and O(|R| · |D|) constraints. Since the LP
can be solved in time polynomial in the number of variables and constraints,
the first step of finding the fractional LP solution takes time polynomial in
O(|R| · |D|). The randomized rounding step takes at most as many iterations
as the number of LP variables, so its running time is O(|R| · |D|), which is
dominated by the time for the LP solution step. The GAP flow graph has
O(|R| · |D|) nodes and edges. Thus, the running time of solving the network
flow problem on the GAP flow graph is also polynomial in O(|R| · |D|). Thus,
Approx is an efficient algorithm for solving the overlay network construction
problem with a run time that is polynomial in O(|R| · |D|).

Putting it all together, we can state the following main theorem.

Theorem 3.8. Algorithm Approx solves the overlay network construction prob-
lem by constructing paths Π for simultaneously routing each stream from its

source to its subset of sinks such that at least 1
4

th
of the weight threshold is met

for each stream and sink, and the reflector fan-out constraints are met to within
a factor of 4, with high probability. Further, the expected cost of the solution pro-
duced by Approx is within a factor of O(log n) of optimal. Approx runs in time
polynomial in its input size of O(|R| · |D|). Further, the approximation ratios

27

achieved by Approx are the best achievable by any polynomial time algorithm (to
within constant factors).

Here is some intuition of what the weight guarantee achieved by Approx

means in our context. Since we started by converting probabilities into weights

using logarithms, guaranteeing at least 1
4

th
the weight threshold translates to

guaranteeing at most the fourth root of the specified end-to-end packet loss
threshold. For example if we want end-to-end packet loss of at most Φk

j =
0.0001, our solution is guaranteed to provide an end-to-end loss probability of
at most 0.1. Our empirical studies in Section 5 indicate, however, that the
extent of weight constraint violations can be much less in practice than the
theoretical guarantees provided above.

4 Extensions and modifications

In this section, we examine extensions and modifications of the overlay network
construction problem that are relevant for practical applications.

4.1 Minimizing transmission costs

Perhaps the most important special case of the overlay network construction
problem is the common situation where the reflectors are considered to be“free”
and the operating cost is entirely dictated by the bandwidth costs for transmit-
ting streams from their sources to their respective sinks. In this formulation,
the fixed cost of utilizing a reflector is considered “sunk” cost and the over-
lay network is periodically reconstructed to minimize transmission costs while
obeying capacity constraints and maintaining quality of service. To model this
situation, we can set the cost ri = 0, for all i ∈ R. Further, our cost objective
function can be simplified to

∑

i∈R

∑

k∈S

∑

j∈D

Ck
ijx

k
ij ,

where Ck
ij captures the entire bandwidth cost of transmitting the stream from

its source k to sink j via reflector i, i.e.,

Ck
ij = ckki + ckij .

Note that since we are no longer considering the capital expenditure cost of
purchasing reflectors, the overlay construction problem no longer contains set
cover as a special case, suggesting perhaps that better approximation ratios
are possible. In fact, we now show that our algorithm Approx achieves an
approximation ratio of 2 for the above simplified cost objective function, rather
than the approximation ratio of O(log n) for the general case. To see why, let
COPT be the optimal transmission cost. From Equation 3, we conclude that
the expected cost after the randomized rounding step equals the cost of the LP

28

solution, which in turn is at most COPT . The GAP rounding step increases the
cost by at most a factor of 2, hence the cost of the solution produced by Approx

is at most 2COPT . Thus, we can state the following theorem.

Theorem 4.1. In the special case where transmission costs are minimized,
Algorithm Approx produces a solution with expected cost that is within a factor

of 2 of optimal. Further, at least 1
4

th
of the weight threshold is met for each

stream and sink, and the reflector fan-out constraints are met to within a factor
of 4, with high probability.

Is it possible to achieve an even better approximation ratio in the special case
where only transmission costs are minimized? We show that the overlay network
design problem for minimizing transmission cost is still NP-hard. However, our
argument does not forbid the existence of better approximation schemes for the
problem, for example a PTAS, which remains open.

Theorem 4.2. The overlay network design problem for minimizing transmis-
sion cost is NP-Hard.

Proof. We show that a simple restriction of the overlay network design problem
with zero reflector costs yields the subset sum problem that is NP-hard [GJ79].
Suppose that we have just a single source k that originates a single stream and
just two sinks A and B that demand that stream. Further, let each reflector
have a fan-out constraint of one (i.e., it can serve only a single sink). In addition,
assume that for each reflector i, the weights wk

i,A = wk
i,B , i.e., each reflector has

the same weight to either sink. Now the question of “Is there a way to provide
weight at least W k

A to sink A and at least weightW k
B to sink B without violating

any fan-out constraints?” is equivalent to “Is there a way to partition the set of
reflectors into two groups such the sum of the weights of the first group assigned
to A is at least W k

A and the sum of weights of the second group assigned to B is
at least W k

B?”. The latter question is equivalent to the subset sum problem that
is NP-hard. However, it is worth pointing out that the subset sum problem can
be solved in polynomial time provided that there are only a constant number
of distinct values for the weights. It also has a FPTAS (Fully-Polynomial Time
Approximation Scheme) for any number of distinct weight values [CLRS09].

4.2 Bandwidth capacity of reflectors

An important constraint in practice is to bound the aggregate bandwidth (in
bits per second) that a reflector can push to the sinks, rather than just the
fan-out. This capacity bound is due to both hardware and software limitations
of the reflector machines. We can introduce capacity bounds by introducing the
following constraints (3’) and (4’) to the IP formulation of Section 2.2:

(3′)
∑

k∈S

(

Bk ·
∑

j∈D xk
ij

)

≤ F ′
i zi ∀i ∈ R

(4′) Bk ·
∑

j∈D xk
ij ≤ F ′

i y
k
i ∀i ∈ R, ∀k ∈ S

29

Here Bk ∈ R
+ can be viewed as the encoded bandwidth (in bits per second) for

the stream that originates at source k. Thus, the LHS of constraint (3’) equals
the total bandwidth sent by reflector i and F ′

i is the bandwidth capacity bound
that represents the maximum bandwidth (in bits per second) that reflector i
can send. In this case, with small modifications, both our algorithm and our
analysis hold. Specifically, a very similar argument to the one that we used to
bound fan-out can be used to bound the bandwidth capacity instead.

4.3 Enhancing reliability for correlated failures

Data centers hosted on the same ISP are more likely to fail simultaneously in
a correlated fashion than data centers hosted on different ISPs. Such a failure
is typically caused by some catastrophic event impacting that ISP. In the worst
case, such a failure can render machines hosted in the failed ISP’s data centers
unreachable from rest of the Internet. Therefore, in a situation where there is
a need to employ multiple paths between a source and a sink using multiple
reflectors, we would prefer to use reflectors located in as many distinct ISPs as
possible6. In other words, we would like to restrict the number copies that a
sink receives from reflectors hosted on the same ISP. This provides an additional
level of fault tolerance against coordinated failures that impact the transmission
of the stream from a source to its sink. We can model this additional constraint
by assigning colors to each reflector such that a reflector’s color represents the
ISP where it is hosted. That is, we partition R by color into disjoint sets so that
R = R1 ∪R2 ∪ R3 . . . ∪ Rm, where m is total number of colors. Then, we have
the following “color constraints” added to the IP formulation of Section 2.2:

(7)
∑

i∈Rℓ

xk
ij ≤ 1. ∀j ∈ D, ∀k ∈ S, 1 ≤ ℓ ≤ m.

The purpose of these constraints is to break the reflectors into disjoint groups
and ensure that no group is delivering more than one copy of the stream into a
sink.

We incorporate the additional color constraints in our algorithm for con-
structing overlay networks as follows. We first solve the LP relaxation with the
color constraints. As before, we perform two steps of rounding to obtain an in-
tegral solution from the fractional LP solution. The first randomized rounding
step in Section 3.1 can be carried out with no modifications. However, the final
step of rounding x̄k

ij using the GAP flow graph in Section 3.2 requires modifica-
tion. The color constraint restriction introduces a new type of constraint in the
GAP flow graph (Figure 2). This constraint bounds the total flow along some
subsets of the edges between the second and third level of the GAP flow graph.
Such constraints can be introduced into any flow problem. On a general graph

6ISP failures also impact entry points and edge servers and can be tackled through other
means. One can build in fault tolerance for the entry points by automatically reassigning an
alternate entry point to avoid the failed one [KSW+04]. Further, one can move end users
away from the failed edge servers using mapping [NSS10]. In this paper, we focus only on the
impact on reflectors in the “middle-mile”.

30

T

B

2

2
A

S

P Q

1

2

2

2

2

Figure 3: Example of an integral flow with bundles problem.

this problem is called the “Integral Flow with Bundles Problem” and is known
to be NP-hard [GJ79]. A key issue that makes the problem more complex is
that the introduction of a color constraint can create a gap between the optimal
fractional and integral flows, even in the more restricted leveled graph case that
we are interested in. We provide a simple example in Figure 3 to demonstrate
this point. The capacities for all edges are as shown in the Figure 3. Suppose
there is an additional set constraint that the set of edges {AB,PQ} has a ca-
pacity of 3. Clearly the max integral flow is only 3. However one can achieve a
fractional max flow of 3.5 units, by sending 2 units of flow on SA and 1.5 units
on edge SP then splitting the flow at A by sending .5 units on edge AQ and the
rest on AB. This phenomenon will prevent us from applying GAP directly, as
we cannot always find an integral flow that is at least as good as the fractional
flow, necessitating a different approach.

Our approach finds an integral solution within a constant factor (of at most
13) of optimal cost while violating the constraints by an additional constant
factor (of at most 13) by adapting techniques due to Srinivasan and Teo [ST01]
and using an LP rounding theorem due to Karp et al. [KLR+87] . Given the
larger constants, we view our results for enforcing color constraints to be pri-
marily of theoretical interest. We leave open both the practical evaluation of
these techniques as well as better algorithms with provably smaller constants.

We reformulate the flow problem on the GAP flow graph (see Figure 2) as
a new LP in terms of paths. In the GAP flow graph, let B be the set of boxes
(nodes) at level 4 and let P be the set of all paths from S to the boxes in B.
Further, for each 1 ≤ l ≤ m and j ∈ D, let Sl,j be the set of all edges from a
node in level 2 to a node in level 3 such that the node in level 2 represents some
reflector i ∈ Rl and the node in level 3 represents the reflector-sink pair (i, j).
Finally, let the variable πp ∈ [0, 1] indicate the amount of fractional flow carried

31

by path p, for each p ∈ P . The LP follows.

(i)
∑

p∈P|e∈p

πp ≤ ue, ∀ e ∈ E,where E is the set of edges in the GAP flow graph

(ii)
∑

p∈P|p={S→b}

πp =
1

2
, ∀ b ∈ B

(iii)
∑

p∈P|p∩Sl,j 6=∅

πp ≤ 1, j ∈ D and 1 ≤ l ≤ m,where m is the number of colors

(iv)
∑

p∈P

cpπp ≤ C

Here ue is the capacity on edge e ∈ E, S is the node in the level 1 of GAP flow
graph, {S → b} denotes a path from S to a box b, cp is the cost of path p ∈ P ,
and C is the total cost of the solution produced by the randomized rounding
step. The constraints (i) above codify the capacity constraints on the edges.
Constraints (ii) require a flow of 1/2 to each of the boxes in B. Constraints (iii)
are the special (set-type) color constraints and constraint (iv) controls the cost.

As we saw earlier, the values x̄k
ij obtained from the randomized rounding

step can be used to create a valid flow on the GAP flow graph. One can
decompose this flow into flow paths in the standard fashion and produce a
feasible fractional solution for the above LP that we denote by π̄p, p ∈ P . Next,
analogous to Srinivasan and Teo’s technique, we do a step of path filtering to
eliminate all “expensive” paths p such that cp > 4C, resulting in a smaller set
of paths P ′ ⊆ P . Using the fact that cp > 4C for p ∈ P − P ′, we have

∑

p∈P−P ′

π̄p <
1

4
, (8)

since otherwise the total cost of the solution would be more than C, leading to
a contradiction. Thus, using constraint (ii) of the above LP and Equation 8, we
have

∑

p∈P′|p={S→b}

π̄p ≥
1

4
, ∀ b ∈ B (9)

Now, set π̃p = 4π̄p, for all p ∈ P ′. The values π̃p, p ∈ P ′, are a feasible solution
to the following LP, where constraints (i), (iii), and (iv) below are obtained by
quadrupling the RHS of the corresponding constraints of the prior LP. Further,
constraints (ii) below are obtained from Equation 9 and then multiplying both
RHS and LHS by negative 36 for reasons that will become clear when we apply

32

Theorem 4.3 below.

(i)
∑

p∈P′|e∈p

πp ≤ 4ue, ∀ e ∈ E,where E is the edge set of GAP flow graph

(ii)
∑

p∈P′|p={S→b}

−9πp ≤ −9, ∀ b ∈ B

(iii)
∑

p∈P′|p∩Sl,j 6=∅

πp ≤ 4, 1 ≤ l ≤ m and j ∈ D

(iv)
∑

p∈P′

(cp
C

)

πp ≤ 4

Now we round the fractional solution π̃p to obtain an integral solution using
the following result due to Karp et al. [KLR+87].

Theorem 4.3 ([KLR+87]). Let A be a real valued r × s matrix and z be a
real-valued s-vector. Let b be a real-valued vector such that Az = b and t be
a positive real number such that, in every column of A, (i) the sum of all the
positive entries is at most t and (ii) the sum of all the negative entries is at least
−t. Then it is possible to compute an integral vector z̈ such that for every i,
either z̈i = ⌊zi⌋ or z̈i = ⌈zi⌉ and Az̈ = b̈ where b̈i−bi < t for all i. Furthermore,
if z contains d nonzero components, the integral approximation can be obtained
in time O(r3 log(1 + s/r) + r3 + d2r + sr).

To use the above theorem, note that our inequalities can be converted into
equalities by using the standard trick of adding a distinct slack variable for each
constraint [CLRS09]. Next, we bound the sum of the positive coefficients for
each πp in the above LP. The variable πp appears 4 times (at most once for
each level) in constraints (i) with a coefficient of 1, at most once in (iii) with a
coefficient of 1, and exactly once in (iv) with coefficient at most 4. This adds up
to a total of 9. Further, each slack variable appears only in one constraint with
a coefficient of 1. Likewise, the negative coefficients for any πp from constraints
(ii) is at least −9. Applying Theorem 4.3, we round the feasible fractional
solution π̃p ∈ [0, 1] to the above LP to get an integral solution π̈p ∈ {0, 1}
that satisfies all the constraints with an additive factor less than 9. Thus, the
rounded values π̈p satisfies the following modified constraint (ii):

∑

p∈P′|p={S→b}

−9πp < −9 + 9 = 0, ∀ b ∈ B

The strict inequality in the above equation is important since it guarantees that
there is at least one path p ∈ P ′ from source S to each box b with πp = 1
that can be used for routing. Further, this additive factor translates into an
approximation ratio of 4 + 9 equal to 13 for the cost, i.e., the obtained cost is
no more than a factor of 13 from optimal. Finally, the coloring constraints are
(approximately) satisfied to ensure that no more than 4 + 9 = 13 copies of any
stream are sent to a sink from reflectors belonging to a particular ISP. Thus
we get the promised approximation guarantees, though the larger constants for

33

satisfying the coloring constraints make the result of theoretical significance
only, as streams in practice seldom use more than 3 paths in total to meet their
packet loss thresholds.

The running time of the rounding step can be evaluated by observing that the
number of non-zero values of π̃p (which is at most |P|), the number of constraints
in the LP, and the number of variables in the LP are each O(|R| × |D|). Thus,
applying Theorem 4.3 the running time is O(|R|3 · |D|3).

5 Implementation and Experimental Results

In this section, we demonstrate the efficacy of the approximation algorithm
outlined in this paper by implementing and running it on realistic inputs derived
from Akamai’s live streaming network. We implemented our algorithm Approx

in C++. As a comparison, we also implemented two other algorithms that we
call ApproxHack and IP, resulting in three different algorithms being compared.
The computers that were used to run the experiments each had a single Intel
Pentium 4 processor clocked at 2.4 Ghz and had 1 GB of RAM. When we
compare two solutions from the different algorithms for the same input, we
ensure consistency by always running the experiments on the same machine.

As we saw earlier, Approx consists of solving a linear program followed
by randomized rounding and another rounding step using modified GAP ap-
proximation. We now propose a local-search variant of our solution called
Approxhack where the linear program is solved. But, rather than perform a
rounding process, we fix any variables that turn out to be integral in the LP
solution, and solve the remaining variables using integer programming. One can
think of Approxhack as performing a local search heuristic as it tries to find an
optimal integer solution within the neighborhood of the fractional LP solution.
Note that Approxhack always produces a solution with cost that is at most
the cost of the solution produced by Approx. The reason is that both Approx

and Approxhack do not alter variables that happen to have integral values in
the LP solution and leave them as is in the final solution. Thus, Approxhack
that solves an integer program for the remainder of the variables produces a
solution that is at least as good as any other way of determining the values of
those remaining variables, including the rounding procedure used by Approx.
However, unlike Approx, Approxhack does not run in polynomial time as it in-
volves solving an integer program that could take exponential time. Finally, we
implement a third solution that we refer to as IP, that simply solves the integer
programming formulation directly, without using linear programming relaxation
or rounding. IP always produces the optimal solution with the smallest cost,
but could take exponential time as it solves an integer program. Note that the
cost achieved by IP is at most the cost achieved by ApproxHack, which in turn
is at most the cost objective value achieved by Approx. However, Approx is the
only polynomial time algorithm of the three.

For solving linear and integer programming problems, we investigated using a
number of packages, including DashOptimization XPress-MP, AMPL (plugging

34

in any number of the supported solvers), Ciplex’s Concert API, and GLPK. We
also used COIN-OR’s (http://www.coin-or.org) Open Solver Interface to call
the different mathematical programming solvers. In general in our experiments
it turned out that the running time of the solvers do not differ significantly so
we chose to use GLPK as our default solver. Hence GLPK is used as the solver
in all three algorithms to solve linear and integer programs as needed.

For randomness we used srand seeded with the current time and rand()/RAND MAX
to generate random numbers between 0 and 1. We also used Boost’s Graph Li-
brary (http://boost.org) for implementing the modified GAP rounding as a part
of our algorithm Approx.

5.1 Input

We collected usage data from Akamai’s live streaming network to make our input
as realistic as possible. Recall that Akamai’s live streaming network is a three-
layered network of entry points (sources), reflectors, and edge servers (sinks) as
assumed in our work. To protect the privacy of end-users and content providers,
and to remove proprietary Akamai information, we erased server and stream
names and we normalized costs. Cost data was challenging to compile because
some of the contractual agreements between Akamai and the various Internet
service providers are complicated and have an array of clauses. Nevertheless we
were able to come up with numbers that represent a good estimate of the actual
cost incurred.

Next, we used actual Internet loss data as measured from the Akamai net-
work. The loss data was collected by Aditya Akella and Jeff Pang. For more
on the methodology of collecting the data, please refer to [FABK03, APM+04].
We observed that there are two distinct periods with respect to the losses, a
low loss period that occurs during the night and on weekends, and a high loss
period between 12 noon EST and 6 pm EST when Europe and both coasts of
North America are active. We ran our algorithms on three different sets of loss
data. One set is representative of a low loss period, another is representative
of a high loss period, and a third represents an average loss situation that is in
between the first two. The low and high loss data were extracted directly from
the Akamai traces. To simulate an average loss case, we averaged the Akamai
traces over a full 24 hour cycle.

The Akamai live streaming network can be viewed as a collection of deployed
networks, one for each format. Therefore, we broke the entry points (each of
which correspond to one or more sources that originate one or more streams) into
three groups based on format: Windows Media (WMS), Real Media (REAL),
and Quick Time (QT). We anonymized them by calling them media formats
A, B, and C. For creating smaller networks, we removed entry points, reflectors
and/or edge servers from the above deployed media format networks. We tested
a wide variety of deployed networks starting from a 4 × 7 × 14 network all the
way up to 179× 44× 414 (here the first number represents the number of entry
points, the second one is number of reflectors and the third one is the number
of edge servers).

35

http://www.coin-or.org
http://boost.org

5.2 Experimental results

We ran our algorithms for each scenario of average loss, low loss, and high
loss. Within each of these three cases, we study all three media formats as well
as deployed networks of different sizes. For each media format and deployed
network, we routed a set of streams to their respective sinks using Approx,
ApproxHack and IP. The streams and their demand patterns are derived from
usage traces from Akamai’s live streaming network. The size of the problem that
we solve is the number of variables in the corresponding integer programming
formulation of the problem in Section 2.2 and is O(|R| × |D|). In Figure 4, we
show the problem sizes that we solve for each format and deployed network.
The x-axis is labeled by the media format (A, B, or C) followed by the deployed
network characteristics (number of entry points, reflectors, and edge servers).
The y-axis is a log-based plot of the corresponding problem sizes.

5.2.1 Setting the multiplicative factor

We want to point out an interesting practical feature of our algorithm Approx

that we observed in our experimentation. Recall that we have a preset mul-
tiplier of c logn that is used in step 1 of the randomized rounding procedure
in Section 3.1. This multiplier influences how close the cost of the solution is
to the optimal as well as the degree to which the weight constraints are met.
Specifically, choosing a smaller multiplier will bound the cost objective function
to be closer to the optimum value. However, a smaller multiplier will also make
it more likely that the weight constraints are violated to a larger degree. In our
experiments, we explored this tradeoff by varying the value of the multiplier
and running our algorithm on various network sizes and loss scenarios.

Our key finding is that we can achieve very good results even with small
constants as multipliers, which implies that Approx produces a better approx-
imation in practice than the theoretical bounds imply. For example, we ran
experiments on media format C under average loss conditions on a 10× 7× 28
deployed network. We tried all multipliers starting from 1 to 280. We found
that in the beginning the objective values varied a lot from run to run, but with
the multipliers larger than 6 the solution stabilizes, and we get the same solu-
tion all the time. This shows that in reality, the multiplier can be set to small
value and the cost of the solution produced by Approx is no more than a small
constant away from the optimal solution. The results from this experiment are
summarized in Figure 5, where we show both the cost objective value obtained
(smaller is better) and the average constraint violation. Note that in this spe-
cific example network we happened to get a better solution with a constant of
2 than the one the algorithm eventually converged to. In Figure 5, one can see
that it has a better cost objective value and no violated constraints. However,
this solution did not recur in a stable fashion for higher values of the constant.

36

5.2.2 Behavior under different loss conditions

We now compare our algorithm Approx with Approxhack and IP described ear-
lier in terms of run time and the cost achieved. We simulated all three algorithms
for different sized networks, different formats, and different loss conditions. We
expect our algorithm Approx to be the fastest as it is the only polynomial time
algorithm. Note that both Approxhack and IP involve solving an integer pro-
gram that could take exponential time and could become infeasible for larger
problem sizes. However, we expect IP to produce the smallest value for the cost
objective function, followed by Approxhack as the next best.

In addition to these three algorithms, we also plot the value of the cost
objective function of the fractional solution to the LP. Note that the cost of
the LP solution is a lower bound on the cost produced by IP. Though the LP
solution may not always be a valid solution for the overlay network construction
problem, it is still an instructive lower bound for large problem sizes when IP

is too inefficient to produce a valid optimal solution.
Average loss conditions. This is the scenario in which we model moderate
loss conditions for the network links by averaging our loss traces from the Aka-
mai network over a calendar day. As expected, our experimental results show
that Approx is the fastest in all cases and in some cases the only feasible algo-
rithm (See Figure 6)7. IP is sometimes not feasible beyond even relatively small
problem sizes, like the 10 × 7 × 28 network for format C that had a problem
size of about 2500 variables. On the other hand Approx was able to solve a
42× 44× 100 network in reasonable time and even a 88× 44× 198 network that
yielded a problem size of about 800,000 variables. Approxhack performed well
up to a size 200,000 variables, trailing in time to Approx, but failed on higher
sizes.

The comparison between the cost objective value achieved by each of the
algorithms is also shown in Figure 7. Note that the optimal cost is achieved by
IP and can be used as a basis for comparison. For larger network sizes where
IP was too inefficient to produce a solution, the cost objective value of LP is
relevant since it is a lower bound on the best possible cost. As expected, Approx
produces a larger value for the cost objective function, but is within a reasonable
factor of optimal.
Low loss period. This is the scenario where we simulate low loss conditions
that tend to occur in the non-peak hours and is derived from the Akamai traces.
This is the “easy” case, since we expect a number of low-loss paths (i.e., high-
weight paths) from the sources to the sinks to be available to meet the weight
thresholds at the sinks. During a low loss period, Approx barely outperforms
IP in terms of time (see Figure 8). Both algorithms run in a feasible amount of
time for up to a 42×44×100 network, which is a problem size of about 200,000
variables. IP took too much time and did not, however, complete for the largest
network for format B that we simulated, which had dimensions 50× 44× 80.

In terms of the value of the cost objective function, when IP completed it

7Note that all run time plots in this section use the log scale. Hence, the data points look
visually closer than they actually are.

37

outperformed Approx in most cases by only a small percentage. But, in a few
cases for the larger networks in Formats B and C, IP outperformed Approx by
a larger factor (see Figure 9). Since IP produced results for all but the largest
of networks, we did not run Approxhack for the low loss scenario.
High loss period. There are periods of time when heavier losses can be
experienced across the Internet, typically during the peak hours of the day.
This section addresses this scenario using the peak-hour traces from Akamai.
We see that our algorithm Approx is again superior in terms of time to IP and
also outperforms Approxhack (See Figure 10). IP ran for more than 18 hours on
the 10× 7× 28 network for Format C where Approx was able to solve the larger
21 × 44 × 50 network for Format C in 3.4 minutes. Approx was even able to
solve a relatively dense 42× 44× 100 network for Format C, which has problem
size of 200,000 variables, in 3 hours and 13 minutes.

In terms of the cost objective function that is being minimized, Approxhack
did beat Approx as one can expect, though in many cases by only a small
constant factor. But Approxhack took a longer time to produce the better
solution. For instance, the 42 × 44 × 100 network for Format C took 4 hours
18 minutes (See Figure 10). And, the time difference between Approx and
Approxhackwidened even more with larger problem sizes such as the 50×44×80
network of Format B.

5.3 Experimental Conclusions

Most of our expectations for running time and quality of the solution were
confirmed by our experiments. Our approximation algorithm Approx was the
only feasible way to solve all of the simulated networks and problem sizes in a
reasonable amount of time, though it meant sacrificing some solution optimality.
As live streaming continues to significantly increase in popularity each year,
the problem sizes that we are required to solve increase as well. Therefore,
polynomial-time approximation algorithms such as Approx provide the only
feasible solutions for the future, as exponential time algorithms such as IP and
our variant Approxhack may not always complete within a reasonable amount
of time for the most popular formats. However, our experiments also suggest
that the “easier” case of low loss is amenable to a more exact solution using IP.
This would suggest a hybrid approach where IP or perhaps even Approxhack is
used for small and medium-sized networks when the loss is low, while Approx

is used in all other cases. It is worth noting, however, that overlay network
construction is most critical in average and high loss situations where there is a
strong need to route streams around hot spots of congestion and packet loss on
the Internet. In this regime, Approx was the only consistently feasible choice.

6 Concluding remarks

Algorithms for constructing optimum overlay networks are at the heart of mod-
ern live stream delivery technology. The algorithms need to be highly efficient,

38

as new overlay networks need to be constructed rapidly in response to the chang-
ing failure and loss characteristics of the Internet. Further, the algorithms must
scale to even larger networks as global live streaming usage continues to grow.
In this work, we provide the first problem formulation and efficient algorithm
for constructing live streaming overlays. Besides proving theoretical guarantees,
we have shown that our algorithm is effective on typical real-world inputs.

A number of interesting challenges for future research remain. A primary
challenge is developing incremental algorithms for solving the overlay network
construction problem. Often times there are Internet disruptions that are local
to a specific ISP or a specific geography, requiring a quick response by rerouting
the impacted streams. In such a situation, it might not be necessary or even
feasible to recompute the entire overlay network using an algorithm such as
Approx. Rather, it would be useful to develop provably-good algorithms that
can work in an incremental fashion by recomputing only parts of the overlay
network that are directly impacted by the disruption. In such an operational
model, the overlay network would be constructed from scratch only when the
deployments or the Internet changed in a major way, while smaller changes to
the overlay network would be made more frequently in an incremental fashion.

A Acknowledgements

The authors want to thank Umut Acar, Aditya Akella, Jeff Pang and Maverick
Woo for many helpful discussions and for helping collect data for the exper-
iments. A preliminary version of this paper containing only a subset of the
results appeared as an extended abstract in the Proceedings of the ACM Sym-
posium on Parallel Algorithms and Architectures (SPAA) in 2003. This work
was supported in part by NSF grant CCR-0122581, NSF grant CCR-012258,
NSF Career award No. CCR-97-03017 and NSF Award CNS-05-19894.

References

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Net-
work Flows: Theory, Algorithms, and Applications. Prentice Hall,
1993.

[APM+04] A. Akella, J. Pang, B. Maggs, S. Seshan, and A. Shaikh. A com-
parison of overlay routing and multihoming route control. ACM
SIGCOMM Computer Communication Review, 34(4):93–106, 2004.

[ASV06] M. Adler, R. Sitaraman, and H. Venkataramani. Algorithms for
optimizing bandwidth costs on the Internet. IEEE Workshop on
Hot Topics in Web Systems and Technologies (HOTWEB), pages
1–9, 2006.

[Bel10] David Belson. Akamai state of the Internet report, Q4 2009.
SIGOPS Operating Systems Review, 44:27–37, August 2010.

39

[BR01] Ivan D. Baev and Rajmohan Rajaraman. Approximation algorithms
for data placement in arbitrary networks. In Proceedings of the
Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 661–670, Philadelphia, PA, USA, January 2001. Society for
Industrial and Applied Mathematics.

[CG99] Moses Charikar and Sudipto Guha. Improved combinatorial algo-
rithms for the facility location and k-median problems. In Proceed-
ings of the 40th Annual Symposium on Foundations of Computer
Science, pages 378–388, Washington, DC, USA, October 1999. IEEE
Computer Society.

[Chu98] F.A. Chudak. Improved algorithms for uncapacitated facility lo-
cation problem. In Proceedings of the 6th Conference on Inte-
ger Programming and Combinatorial Optimization, pages 180–194.
Springer, 1998.

[Chv79] V. Chvatal. A greedy heuristic for the set-covering problem. Math-
ematics of Operations Research, 4(3):233–235, 1979.

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intro-
duction to algorithms. The MIT Press, 3 edition, 2009.

[CRSZ02] Y. Chu, S.G. Rao, S. Seshan, and H. Zhang. A case for end system
multicast. , IEEE Journal on Selected Areas in Communications,
20(8):1456–1471, 2002.

[Dee91] S.E Deering. Multicast routing in a datagram Internetwork. Ph.D
Thesis, Dept. of Computer Science, Stanford University, December
1991.

[DMP+02] John Dilley, Bruce M. Maggs, Jay Parikh, Harald Prokop,
Ramesh K. Sitaraman, and William E. Weihl. Globally distributed
content delivery. IEEE Internet Computing, 6(5):50–58, 2002.

[Eri94] H. Eriksson. Mbone: The multicast backbone. Communications of
the ACM, 37(8):54–60, 1994.

[FABK03] N. Feamster, D.G. Andersen, H. Balakrishnan, and M.F. Kaashoek.
Measuring the effects of Internet path faults on reactive routing.
In Proceedings of the 2003 ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Systems, pages
126–137. ACM, 2003.

[Fei98] U. Feige. A threshold of ln n for approximating set cover. Journal
of the ACM, 45(4):634–652, 1998.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness. W.H. Freeman and Co,
San Francisco, CA, 1979.

40

[GK98] Sudipto Guha and Samir Khuller. Greedy strikes back: improved fa-
cility location algorithms. In Proceedings of the Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 649–657, Philadel-
phia, PA, USA, January 1998. SIAM.

[GM02] S. Guha and K. Munagala. Improved algorithms for the data place-
ment problem. In Proceedings of the Thirteenth Annual ACM-SIAM
symposium on Discrete Algorithms, pages 106–107. SIAM, January
2002.

[GMM01] S. Guha, A. Meyerson, and K. Munagala. Improved algorithms
for fault tolerant facility location. In Proceedings of the Twelfth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 636–
641. SIAM, January 2001.

[Hoc82] D.S. Hochbaum. Heuristics for the fixed cost median problem. Math-
ematical Programming, 22(1):148–162, 1982.

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded ran-
dom variables. Journal of the American Statistical Association,
58(301):13–30, 1963.

[JMS02] K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for fa-
cility location problems. In Proceedings of the Thirty-Fourth Annual
ACM Symposium on Theory of Computing, pages 731–740. ACM,
May 2002.

[Joh74] D.S. Johnson. Approximation algorithms for combinatorial prob-
lems*. Journal of Computer and System Sciences, 9(3):256–278,
1974.

[JV99] Kamal Jain and V. Vazirani. Primal-dual approximation algorithms
for metric facility location and k-median problems. In Proceedings of
the 40th Annual Symposium on Foundations of Computer Science,
pages 2–13, Washington, DC, USA, October 1999. IEEE.

[JV04] K. Jain and V.V. Vazirani. An approximation algorithm for the fault
tolerant metric facility location problem. Algorithmica, 38(3):433–
439, 2004.

[Kar95] D.R. Karger. A randomized fully polynomial time approximation
scheme for the all terminal network reliability problem. In Proceed-
ings of the Twenty-Seventh Annual ACM Symposium on Theory of
Computing, pages 11–17. ACM, May 1995.

[KLR+87] M. Karp, T. Leighton, R. Rivest, C. Thompson, U Vazirani, and
V. Vazirani. Global wire routing in two-dimensional arrays. Algo-
rithmica, 2, pages 113–129, 1987.

41

[KPR99] M. Korupolu, G. Plaxton, and R. Rajaraman. Placement algorithms
for hierarchical cooperative caching. Proceedings of the 10th ACM-
SIAM Symposium on Discrete Algorithms, pages 586–595, January
1999.

[KSW+04] L. Kontothanassis, R. Sitaraman, J. Wein, D. Hong, R. Kleinberg,
B. Mancuso, D. Shaw, and D. Stodolsky. A transport layer for live
streaming in a content delivery network. Proceedings of the IEEE,
92(9):1408–1419, 2004.

[LRLZ08] J. Liu, S.G. Rao, B. Li, and H. Zhang. Opportunities and challenges
of peer-to-peer internet video broadcast. Proceedings of the IEEE,
96(1):11–24, 2008.

[LY94] C. Lund and M. Yannakakis. On the hardness of approximating
minimization problems. Journal of the ACM, 41(5):960–981, 1994.

[MMP01] Adam Meyerson, Kamesh Munagala, and Serge Plotkin. Web
caching using access statistics. In Proceedings of the Twelfth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 354–
363, Philadelphia, PA, USA, January 2001. SIAM.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms, chapter 4,
pages 67–74. Cambridge University Press, 1995.

[MYZ02] M. Mahdian, Y. Ye, and J. Zhang. Improved approximation algo-
rithms for metric facility location problems. In Approximation Al-
gorithms for Combinatorial Optimization, pages 229–242. Springer,
2002.

[NSS10] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The Aka-
mai network: a platform for high-performance Internet applications.
SIGOPS Operating Systems Review, 44:2–19, August 2010.

[PB83] J. Scott Provan and Michael O. Ball. The complexity of counting
cuts and of computing the probability that a graph is connected.
SIAM Journal on Computing, 12(4):777–788, 1983.

[PS02] V. N. Padmanabhan and K. Sripanidkulchai. The case for coop-
erative networking. In Revised Papers from the First International
Workshop on Peer-to-Peer Systems, pages 178–190, London, UK,
2002. Springer-Verlag.

[PTW01] M. Pál, É. Tardos, and T. Wexler. Facility location with nonuniform
hard capacities. In Proceedings of the Forty-Second IEEE Sympo-
sium on Foundations of Computer Science, pages 329–338, Wash-
ington, DC, USA, October 2001. IEEE Computer Society.

42

[PWCS02] V.N. Padmanabhan, H.J. Wang, P.A. Chou, and K. Sripanidkulchai.
Distributing streaming media content using cooperative networking.
In Proceedings of the Twelfth International Workshop on Network
and Operating Systems Support for Digital Audio and Video, pages
177–186. ACM, 2002.

[SMZ04] K. Sripanidkulchai, B. Maggs, and H. Zhang. An analysis of live
streaming workloads on the Internet. In Proceedings of the 4th ACM
Internet Measurement Conference (IMC), pages 41–54. ACM, Oc-
tober 2004.

[ST93] D.B. Shmoys and É. Tardos. An approximation algorithm for
the generalized assignment problem. Mathematical Programming,
62(1):461–474, 1993.

[ST01] A. Srinivasan and C. Teo. A constant-factor approximation algo-
rithm for packet routing and balancing vs. global criteria. SIAM
Journal of Computing, 30(6):2051–2068, 2001.

[STA97] D.B. Shmoys, É. Tardos, and K. Aardal. Approximation algorithms
for facility location problems. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, pages 265–274.
ACM, May 1997.

[Svi02] Maxim Sviridenko. An improved approximation algorithm for the
metric uncapacitated facility location problem. In Proceedings of the
9th International Conference on Integer Programming and Combi-
natorial Optimization, pages 240–257, London, UK, 2002. Springer-
Verlag.

[Val79] L.G. Valiant. The complexity of enumeration and reliability prob-
lems. SIAM Journal on Computing, 8:410–421, 1979.

43

Figure 4: Problem Size and Network Sizes for Media Formats

44

0

5

10

15

20

25

30

35

40

45

const is 1 const is 2 const is 3 const is 4 const is 5 const is 6 const is 7 const is 8 const is 9 const is 10

Objective Value

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

const is 10

const is 9

const is 8

const is 7

const is 6

const is 5

const is 4

const is 3

const is 2

const is 1

Average when violated

Weight violated

Figure 5: Cost objective value and loss violations for small constant multipliers
for a 10× 7× 28 network under average loss conditions for format C.

45

Average Loss A Time

0.01

0.1

1

10

100

1000

Ave A 4-7-14 Ave A 5-7-14 Ave A 6-7-14 Ave A 10-7-14 Ave A 20-44-14

Glpk IP Time

Approxhack

Glpk Approx Time

Average Loss for Format B: Run Time Plot

0.1

1

10

100

1000

10000

100000

1000000

Ave B 30-4-20 Ave B 30-25-30 Ave B 50-44-20 Ave B 50-44-80 Ave B 88-44-198

IP

Approxhack

Approx

Average Loss for Format C: Run Time Plot

0.1

1

10

100

1000

10000

100000

1000000

Ave C 10-7-14 Ave C 10-7-28 Ave C 8-7-350 Ave C 21-44-50 Ave C 42-44-100

IP

Approxhack

Approx

Figure 6: Run time (in seconds) under average loss conditions (log plot)

46

Average Loss for Format A: Objective Value Plot

1

10

100

1000

Ave A 4-7-14 Ave A 5-7-14 Ave A 6-7-14 Ave A 10-7-14 Ave A 20-44-14

IP

LP

Approxhack

Approx

Average Loss for Format B : Objective Value Plot

1

10

100

1000

10000

Ave B 30-4-20 Ave B 30-25-30 Ave B 50-44-20 Ave B 50-44-80 Ave B 88-44-198

IP

LP

Approxhack

Approx

Figure 7: Value of the cost objective function under average loss conditions (log
plot)

47

Low Loss for Format A: Run Time Plot

0.01

0.1

1

10

100

Low A 4-7-14 Low A 5-7-14 Low A 6-7-14 Low A 10-7-14 Low A 20-44-14

 IP

Approx

Low Loss for Format B: Run Time Plot

Low Loss for Format C: Run Time Plot

Figure 8: Run time (in seconds) under low loss conditions (log plot)
48

Low Loss for Fornat A : Objective Value Plot

1

10

100

1000

Low A 4-7-14 Low A 5-7-14 Low A 6-7-14 Low A 10-7-14 Low A 20-44-14

IP

LP

Approx

Low Loss for Format B: Objective Value Plot

1

10

100

1000

10000

Low B 30-4-20 Low B 30-25-30 Low B 50-44-20 Low B 50-44-80

IP

LP

Approx

Low Loss for Format C: Objective Value Plot

1

10

100

1000

Low C 10-7-14 Low C 10-7-28 Low C 8-7-350 Low C 21-44-50 Low C 42-44-100

IP

LP

Approx

Figure 9: Value of the cost objective function under low loss conditions (log
plot)

49

High Loss for Format A: Run Time Plot

0.01

0.1

1

10

100

1000

10000

High loss A 4-7-14 High loss A 5-7-14 High loss A 6-7-14 High loss A 10-7-14 High loss A 20-44-14

IP

Approxhack

Approx

High Loss for Format B: Run Time Plot

0.1

1

10

100

1000

10000

High B 30-4-20 High B 30-25-30 High B 50-44-20 High B 50-44-80

IP

Approxhack

Approx

High Loss for Format C: Run Time Plot

0.1

1

10

100

1000

10000

100000

High C 10-7-14 High C 10-7-28 High C 8-7-350 High C 21-44-50 High C 42-44-100

IP

Approxhack

Approx

Figure 10: Run time (in seconds) under high loss conditions (log plot)
50

High Loss A Objective

1

10

100

1000

High A 4-7-14 High A 5-7-14 High A 6-7-14 High A 10-7-14 High A 20-44-14

Glpk IP Obj

LP Obj

Approxhack

Glpk Approx Obj

High Loss for Format B : Objective Value Plot

1

10

100

1000

High B 30-4-20 High B 30-25-30 High B 50-44-20 High B 50-44-80

IP

LP

Approxhack

Approx

High Loss for Format C: Objective Value Plot

1

10

100

1000

High C 10-7-14 High C 10-7-28 High C 8-7-350 High C 21-44-50 High C 42-44-100

IP

LP

Approxhack

Approx

Figure 11: Value of the cost objective function under high loss conditions (log
plot)

51

	1 Introduction
	1.1 An overlay network for delivering live streams
	1.2 Considerations for overlay network construction
	1.2.1 Packet loss model
	1.2.2 Efficiency requirements

	1.3 Our contributions
	1.4 Related work
	1.4.1 Multicast protocols
	1.4.2 Algorithms for facility location
	1.4.3 Network reliability

	1.5 Outline of the paper

	2 The overlay network construction problem
	2.1 Problem definition
	2.2 Integer programming formulation

	3 An approximation algorithm for overlay network construction
	3.1 Randomized rounding
	3.1.1 Analysis of the randomized rounding

	3.2 Rounding by modified GAP approximation
	3.3 Putting it all together

	4 Extensions and modifications
	4.1 Minimizing transmission costs
	4.2 Bandwidth capacity of reflectors
	4.3 Enhancing reliability for correlated failures

	5 Implementation and Experimental Results
	5.1 Input
	5.2 Experimental results
	5.2.1 Setting the multiplicative factor
	5.2.2 Behavior under different loss conditions

	5.3 Experimental Conclusions

	6 Concluding remarks
	A Acknowledgements

