
Department of Computer Science

An Empirical Study of Memory 
Sharing in Virtual Machines

Sean Barker, Timothy Wood†, 
Prashant Shenoy, and Ramesh Sitaraman

University of Massachusetts Amherst
The George Washington University†



Server A Server B
Sean Barker (sbarker@cs.umass.edu)

Virtualization in Data Centers

! Data centers use virtualization   
to improve resource utilization
• Flexible mapping of resources to users
• More servers and applications
• Smaller hardware footprint

! Maximizing benefits
• Efficient resource sharing 
• Virtual machine placement
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Content Based Page Sharing

! Eliminate identical pages of 
memory across multiple VMs

! Virtual VM pages mapped to 
physical pages

! Hypervisor detects duplicates

! Replaced with copy-on-write 
references
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Page Sharing Systems

! Extensive prior work in exploiting page sharing

! VMware ESX Server [SIGOPS 02]
• Periodic memory scanning to detect duplicates
• >30% memory savings

! Difference Engine [OSDI 08]
• Sub-page sharing and patching
• >60% memory savings

! Satori [USENIX 09]
• Sharing of short-lived pages
• >90% of possible sharing captured
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Open Questions on Sharing

! What levels of sharing are possible in typical      
real-world machines?

! What are the factors that impact sharing potential?
• OS family? Versions? Applications?

! How will emerging technologies impact sharing?
• New OS technologies?
• VDI farms?  LAMP clusters?
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! Our goal: Provide practical insights into these 
questions through a careful study of memory data
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Outline

! Background and motivation

! Data collection and types of sharing

! Study of real-world sharing potential

! Study of the factors impacting sharing 

! Conclusions

6



Sean Barker (sbarker@cs.umass.edu)

Data Collection

! Real-world memory traces
• ~50 real machines (server/desktop mix)
• Uncontrolled user workloads
• Memory snapshots every 30 minutes

! Supplementary traces from controlled VMs
• Mac/Win/Linux, mixed versions, 32/64 bit
• 3 application setups per VM:
• No workload (freshly booted)
• Server apps (LAMP stack)
• Desktop apps (office, browser, media player)
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Types of Sharing

! Self-sharing: sharing within individual VMs
• E.g., multiple zero pages
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! Inter-VM sharing: sharing across multiple VMs
• E.g., shared OS state

VM 1

Shared Machine
VM 2 VM 3

Total Inter-VM Sharing:
6 pages

A B C A B C A B C

Machine 1 Machine 2 Machine 3

Total Self-Sharing:
6 pages

A A A

Self-Sharing:
2 pages

Self-Sharing:
2 pages

Self-Sharing:
2 pages

B B B C C C
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Outline

! Background and motivation

! Data collection and types of sharing

! Study of real-world sharing potential

! Study of the factors impacting sharing 
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Self-Sharing in Real-World Traces
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! Significant (~15%) self-sharing potential observed

 0

 10

 20

 30

 40

 50

A B C D E F G

S
e

lf
-s

h
a

ri
n

g
 (

%
 o

f 
m

e
m

o
ry

)

Machine

average
maximum
minimum

! Average sharing of 14%
• Excluding zero pages

! Peak sharing up to 50%

! Stable ‘baseline’ sharing of 8% 
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Inter-VM Sharing in Real-World Traces
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! Observed minimal (<2%) inter-VM sharing potential 

! ‘High’ average sharing 
of just 2%

! <0.1% sharing in 
15 of 21 pairings

! In our traces, inter-VM 
sharing never above 6%
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Real-World Trace Observations

! Typical 15% possible sharing observed
• Significant, but less than expected from synthetic workloads

! Most (85+%) sharing derived from self-sharing
• What about collocating many VMs?
• All 7 machines...still 80+% from self-sharing

! Self-sharing doesn’t require virtualization!
• Could capture it within a VM or nonvirtualized host
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! Self-sharing is significant, but what causes it?
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Self-Sharing Case Study

! What causes self-sharing in a Linux desktop?
• Looking at nonzero sharing

! Expanded version of Linux memory tracer
• Track page contents and processes

! Group sharing involvement (% of self-sharing) 
by content and process
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run the same version on these systems, adding a signifi-
cant amount of sharing. This behavior is also seen in the
various Ubuntu pairings – mixing versions significantly
degrades inter-VM sharing in the base system (e.g., 75%
self-sharing between Ubuntu 10.04 and 10.10 32-bit), but
these cases still show significant application sharing.

Architecture mixes. Overall, we see similar behav-
ior when changing OS architecture (32-bit to 64-bit or
vice versa) as when changing the OS version. However,
changing the architecture is still significantly less disrup-
tive than changing the major OS version, which com-
pletely eliminates most sharing.

The one notable case in which we see an architecture-
specific behavior is when pairing the two 64-bit Ubuntu
versions (ub04-64/ub10-64). In this case, almost all
sharing in the base systems is due to inter-VM sharing
(80%) rather than self-sharing – this is likely due to the
fact that both of these systems displayed minimal self-
sharing themselves, as seen previously in Figure 7.

Application types. In all cases (except CentOS,
which did not run a GUI), we see that sharing was sub-
stantially higher in the GUI desktop applications than in
the server applications. This may be partially due sim-
ply to the higher memory footprint of our desktop appli-
cations, but is also likely due to the tendency of GUI-
related libraries to increase memory redundancy. We ex-
plore this tendency in Section 5.

4.4 Variable-Sized Hashing
Sharing is typically done on a page-by-page basis (that is,
only sharing at the granularity of an entire page). How-
ever, one can also share on a different granularity, trading
off between sharing potential and efficiency – a smaller
granularity increases overhead, but is capable of sharing
smaller chunks of memory. Since operating systems al-
locate memory on a per-page basis, it is most natural to
consider even multiples (0.5, 2, 4) of the base 4 KB page
size. Again, however, there is no requirement to share us-
ing these granularities. Thus, we examined several of our
traces with sharing granularities varying from 0.4 to 2.4
in intervals of 0.1. The results for a typical trace (taken
from an Ubuntu VM) are shown in Figure 10.

As expected, sharing increases modestly as the gran-
ularity increases. We also note the significant peaks at
0.5, 1, and 2 hashes per page (the evenly-dividing set-
tings). The greatest ratio of sharable memory to hashes
per page (a proxy for processing overhead) is still at the
standard 1-page granularity. This is in line with other
reported results [21] that have suggested modest but di-
minishing returns from increasing the sharing granular-
ity. Furthermore, these results confirm that the only rea-
sonable granularities evenly divide the page size, as other
granularities significantly reduce possible sharing.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.5  1  1.5  2

S
h
a
r
a
b
l
e
 
M
e
m
o
r
y
 
(
M
B
)

Hashing Size (as a multiple of page size)

Figure 10: Self-sharing with variable hashing sizes.

5 Sources of Self-Sharing

Our previous results demonstrate the importance of self-
sharing, but do not explain where this self-sharing orig-
inates. The root of self-sharing – internal redundancy –
presumably only exists by accident. However, we have
seen that that redundancy is common in all systems stud-
ied. To shed light on what causes redundancy, we have
conducted a case study on Linux desktop applications.

5.1 An Extended Memory Tracer
Since identifying the source of sharing requires more in-
formation than basic memory traces, we extended the
memory tracer (a kernel module) used to collect our real-
world Linux traces. The original tracer simply walks
through each page of memory and calculates a hash
based on the page contents. For pages in use by ac-
tive processes, our extended tracer also collects two ad-
ditional pieces of information:

• The content type of the page – either a specific
part of a regular program address space (e.g., stack,
heap), or a mapped page of a shared library.

• The process(es) using the page. For a shared library
page, there may be any number of processes using
the page. For other pages, there will only be one
process using the page.

For example, two pages might give the following
(omitting the memory content hash values):

[libc-2.12.so 000b6000 r-xp]: sshd apache2
[heap]: mysqld

The first is a specific page of libc, in use by SSH
and Apache. The second is a page in the MySQL heap.
Using this extended information, we can calculate not
only the amount of sharing possible, but which processes
or libraries are actually involved in the sharing.
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Self-Sharing by Process
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! Process self-sharing resulting from user workload

! >30% sharing processes 
GUI apps/libraries

! <20% sharing from 
other system processes

! Memory footprint likely 
dominated by GUI
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Self-Sharing by Content
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! Duplicate data allocations evident in processes

! 94% sharing from 
libraries and heaps

! Possibly from recreated 
data structures 

! 2.3 MB sharing from 
single Xorg heap page 
(~600 copies)
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Outline

! Background and motivation

! Data collection and types of sharing

! Study of real-world sharing potential

! Study of the factors impacting sharing 

! Conclusions
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Factors Impacting Sharing

! How do various properties influence sharing?

! Operating system characteristics
• Family (e.g., Linux or Windows)
• Version (e.g., Windows XP/7, Ubuntu 10.04/10.10)
• Architecture (x86 or x64)

! Application setup (LAMP and VDI setups)

! Sharing granularity (number of pages per chunk)

! New OS technologies (e.g., ASLR)
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Self-Sharing Across VMs

18

! Large self-sharing variations between ‘base’ OSes

! ~100 MB differences 
between OS families, 
major versions (XP/7)

! <20 MB differences 
between minor versions, 
architectures
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Sharing Across VMs
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Sharing Across VMs
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Sharing Across VMs
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Sharing Across VMs

19

 0

 50

 100

 150

 200

m
ac/ub10-64

w
in7-64/ub10-64

m
ac/w

in7-64

In
te

r-
V

M
 S

h
a
ri

n
g

 (
M

B
)

Virtual Machine Pair

no-app
server

desktop

<5 MB across 
OS families

 0

 50

 100

 150

 200

w
in7-32/w

inxp

w
in7-64/w

inxp

In
te

r-
V

M
 S

h
a
ri

n
g

 (
M

B
)

Virtual Machine Pair

no-app
server

desktop<5 MB base, 50+ MB 
app sharing across 

major versions



Sean Barker (sbarker@cs.umass.edu)

Sharing Across VMs
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Sharing Across VMs
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Sharing Across VMs
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Sharing Across VMs
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! Hierarchy: family, applications, version, architecture
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Sharing Granularity
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! Tradeoff between overhead and sharing potential

! Share memory chunks of size k (≠1) pages

! Only even page divisions 
provide decent returns

! Diminishing benefits from 
smaller chunk sizes  10
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Address Space Layout Randomization

! ASLR scrambles memory to             
improve system security
• libraries, code, stack, heap, ...

! Does ASLR have a negative                
impact on memory sharing?

! Impact of 4 ASLR implementations:
• Linux: mainline (2.6.32) and PaX
• Windows 7 (SP1)
• Mac OS X (Lion)

! Desktop applications with and without ASLR

21
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Figure 13: A non-randomized address space (a) and two exam-
ples of the address space after randomization (b and c).

6.1 Current ASLR Support

While ASLR adoption has been gradual and the level of
support varies among operating systems, most popular
OSes have at least rudimentary support and are mov-
ing towards more complete instrumentation. Most im-
plementations allow for enabling or disabling random-
ization, which we exercise in studying its impact. We
selected four implementations for study – two in Linux,
one in Windows 7, and one in Mac OS X Lion.

Linux. The Linux kernel first introduced ASLR sup-
port in 2005, and modern versions randomize the major
components of a process (library locations, stack, heap,
code) [8]. The ability to toggle system-wide ASLR is
provided via the /proc interface, as well as an inter-
mediate setting in which heap randomization is not used,
but all other randomizations are.

PaX. An alternate implementation of ASLR for Linux
is provided by PaX [13], which is a patch for the main-
line Linux kernel aimed at improving overall security.
A PaX-enabled kernel is used by several ‘hardened’ dis-
tributions of Linux aimed at maximizing security, and
can also be deployed in most normal distributions. The
ASLR implementation in PaX provides several features
not provided by the standard Linux implementation, such
as randomization within the kernel itself [7].

Windows. Microsoft introduced ASLR support in
Windows Vista and continued in Windows 7, providing
randomization of the stack, heap, DLLs, and so forth
[20]. ASLR is enabled on a per-application basis, and
is opt-in by default. While most system-provided appli-
cations within Windows enable ASLR, third-party appli-
cation support has been slow [16]. However, Microsoft
recently released a utility [5] that provides the ability to
forcibly enable or disable ASLR for particular processes.
In our tests, we encountered no ill effects from enabling
it for applications that do not opt-in by default.

Mac OS X. Apple first introduced a simplistic form of
ASLR in Mac OS X 10.6 (Snow Leopard), and support
was expanded in 10.7 (Lion) [9]. Unfortunately, there
is presently no straightforward way to disable random-

ization within Lion – the only known method [10] relies
on setting a particular POSIX flag during process cre-
ation. To leverage this, we write a script that simply sets
this flag, then spawns the target application (which runs
without randomization).

6.2 Evaluating ASLR’s Sharing Impact
For each of the four ASLR implementations, we wish
both to identify whether randomization has an impact on
sharing, and if so, to determine the extent of this impact.
To do this, we simulate a scenario in which many VMs
are booted from an identical base image. This is a lucra-
tive scenario both for virtualization and for page sharing,
and represents a case in which users are likely to care
about fine-tuning sharing potential. We run this scenario
for each of the three host operating systems – Ubuntu
10.10 64-bit (for both the standard Ubuntu kernel and
a patched PaX kernel, both version 2.6.32), Windows 7
64-bit, and Mac OS X 10.7.

For a single OS, our test procedure (using a single
VM) is as follows. First, we globally disable ASLR, us-
ing one of the tools mentioned in the previous section
(note that in the case of Mac OS X, we cannot disable
system randomization). We then reboot the VM to re-
set memory to a reliable state. Then, we populate the
VM’s memory by opening a predefined list of applica-
tions (web browser, text editor, office software, music
player, etc.) using a shell script or batch file. After let-
ting the contents of memory settle, we capture this ‘non-
randomized’ memory snapshot. We then globally enable
ASLR, reboot, and then repeat the snapshot procedure
again to obtain a ‘randomized’ snapshot.

To simulate booting multiple VMs from the same im-
age, we repeat this four times, resulting in a set of four
randomized snapshots and a set of four nonrandomized
snapshots. Since the only substantive difference between
the sets is whether randomization is used, any signifi-
cant reduction in sharing in the randomized snapshot set
should be due to ASLR – furthermore, the use of mul-
tiple snapshots averages any other memory differences
that occur between reboots.

The results, as a percentage reduction in sharing, are
shown in Figure 14. The total sharing reduction is fur-
ther broken down into self-sharing and inter-VM shar-
ing – note that these are not additive, since they do not
contribute equally to the total sharing. We see a mod-
est, but noticeable reduction in sharing across all imple-
mentations. The largest reduction is seen in Windows
7, in which total sharing was reduced by 13% (in line
with [18], which reported a 16% reduction in Windows
7). Total sharing in Mac OS X was reduced by only 3% –
however, as noted above, randomization was not disabled
for the system itself, and hence this result is conservative.
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Sharing Impact of ASLR
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! ASLR doesn’t prevent sharing but does reduce it

! >10% reduction in 
three of four cases

! ‘Better’ (PaX) sharing  
in Linux worsens impact
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Sharing Factor Observations

! Hierarchy with respect to sharing potential
• OS family, application setup, OS version, OS architecture

! Platform homogeneity
• Minimal sharing across heterogeneous systems
• Significant gains in homogeneous deployments (but still 

modest absolute levels)

! Finer-grained sharing may be leveraged to improve 
sharing potential

! OS improvements like ASLR may reduce sharing
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Conclusions

! Study into practical issues of page sharing
• Examined real-world machines and specific sharing scenarios

! Observed real-world sharing around 15%
• Significant, but less than expected
• Largely self-sharing, for which no virtualization needed

! Studied a variety of factors impacting sharing
• Key role of platform homogeneity
• Varying impact of modifying OS characteristics and applications
• New technologies may change the impact of sharing
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Questions? 
sbarker@cs.umass.edu
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