
Adaptive TTL-Based Caching for Content Delivery
Soumya Basu

The University of Texas at Austin
Aditya Sundarrajan

University of Massachusetts Amherst
Javad Ghaderi

Columbia University

Sanjay Shakkottai
The University of Texas at Austin

Ramesh Sitaraman
University of Massachusetts Amherst,

Akamai Technologies

ABSTRACT
Content Delivery Networks (CDNs) cache and serve a majority of
the user-requested content on the Internet, including web pages,
videos, and software downloads. We propose two TTL-based caching
algorithms that automatically adapt to the heterogeneity, burstiness,
and non-stationary nature of real-world content requests. The �rst
algorithm called d-TTL dynamically adapts a TTL parameter using
a stochastic approximation approach and achieves a given feasible
target hit rate. The second algorithm called f-TTL uses two caches,
each with its own TTL. The lower-level cache adaptively �lters
out non-stationary content, while the higher-level cache stores
frequently-accessed stationary content. We implement d-TTL and f-
TTL and evaluate both algorithms using an extensive nine-day trace
consisting of more than 500 million requests from a production
CDN server. We show that both d-TTL and f-TTL converge to their
hit rate targets with an error of about 1.3%. We also show that f-TTL
requires a signi�cantly smaller cache size than d-TTL to achieve the
same hit rate, since it e�ectively �lters out rarely-accessed content.

KEYWORDS
TTL caching, Content Delivery Network, Stochastic Approximation

ACM Reference format:
Soumya Basu, Aditya Sundarrajan, Javad Ghaderi, Sanjay Shakkottai, and Ramesh
Sitaraman. 2017. Adaptive TTL-Based Caching for Content Delivery. In Pro-
ceedings of SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA, ,
2 pages.
DOI: http://dx.doi.org/10.1145/3078505.3078560

1 INTRODUCTION
By caching and delivering content to millions of end users around
the world, content delivery networks (CDNs) are an integral part of
the Internet infrastructure. The major technical challenge in design-
ing caching algorithms for a modern CDN is adapting to heteroge-
neous, bursty (correlations over time) and non-stationary/transient
request statistics. In this e�ort, applying known heuristics such as
Che’s approximation fail due to modeling inaccuracies and manu-
ally tuning the caching algorithms becomes prohibitively expensive.
Thus, our goal is to devise self-tuning TTL-based caching algo-
rithms that can automatically learn and adapt to heterogeneous,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMETRICS ’17, June 5–9, 2017, Urbana-Champaign, IL, USA
© 2017 Copyright held by the owner/author(s). ACM ISBN 978-1-4503-5032-7/17/06.
DOI: http://dx.doi.org/10.1145/3078505.3078560

bursty and non-stationary tra�c and provably achieve any feasible
hit rate and cache size.

We propose two TTL-based algorithms: d-TTL (for “dynamic
TTL”) and f-TTL (for “�ltering TTL”). Rather than statically deriving
the required TTL values from the request statistics, our algorithms
incrementally adapt the TTL values after each request, based on the
current request patterns. Our algorithms do not have prior knowl-
edge of request statistics; instead we use a stochastic approximation
framework and ideas from actor-critic algorithms for parameter
adaptation. We implement both d-TTL and f-TTL algorithms and
evaluate them using an extensive nine-day trace consisting of more
than 500 million requests from a production Akamai CDN server.
For a range of object hit rate targets, both d-TTL and f-TTL con-
verge to that target with an error of about 1.3%. For a range of byte
hit rate targets, both d-TTL and f-TTL converge to that target with
an error that ranges from 0.3% to 2.3%. In particular, f-TTL requires
a cache that is 49%(resp., 39%) smaller than d-TTL to achieve the
same object hit rate(resp., byte hit rate).

2 TTL-BASED CACHING ALGORITHMS
A TTL-based caching algorithm works as follows. When a new
object is requested, it is placed in cache and associated with a time-
to-live (TTL) value. If no new request is received for that object,
the TTL value is decremented in real-time and the object is evicted
when the TTL becomes zero. If a cached object is requested, a cache
hit occurs and the TTL is reset to its original value. When the re-
quested object is not found in cache, a cache miss occurs. ConsiderT
di�erent types of content. The objective of this work is to (asymptot-
ically) achieve a target hit rate h∗t ∈ (0,1) and a (feasible) target size
rate s∗t , for each type t ∈ [T]. To accurately model CDN tra�c, we
allow the request tra�c to be non-independent and non-stationary;
the request tra�c can have Markovian dependence over time. The
tra�c comprises a mix of stationary demands (statistics invari-
ant over the timescale of interest), and non-stationary demands
(�nitely many requests, or in general requests with an asymptoti-
cally vanishing request rate). The complete model is described in
[1].
d-TTL Cache. The d-TTL algorithm adapts the TTL value on every
request arrival to achieve a target hit rate h∗t ∀t ∈ [T]. d-TTL
uses stochastic approximation to dynamically increase the TTL
when the current hit rate is below the target, and decrease the
TTL when the current hit rate is above the target. Let θt (l) be the
TTL value after the l-th request arrival for content type t . Then, if
the object experiences a cache miss, d-TTL increases the TTL to,
θt (l+1) = θt (l)+

η0
lα (h∗t), whereη0 is some constant andα ∈ (0.5,1).

Poster SIGMETRICS’17, June 5-9, 2017, Urbana-Champaign, IL, USA

45

SIGMETRICS ’17, , June 5–9, 2017, Urbana-Champaign, IL, USA B. Soumya et al.

0.01

0.1

1

10

100

1000

0 20 40 60 80 100

Av
er
ag
e	

ca
ch
e	

siz
e,
	
 G
B

Average	
 object	
 hit	
 rate,	
 %

d-­‐TTL

f-­‐TTL

Figure 1: Hit rate curve for object hit
rates.

0

20

40

60

80

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

Ob
je
ct
,h
it,
ra
te
,,%

Time

2:hour,average

Cumulative,average

60%,ohr vos from,ttl:1
YES

12:00,,,,12:00,,,12:00,,,12:00,,,,12:00,,,12:00,,,,12:00,,,12:00,,,12:00,,,12:00

Figure 2: Object hit rate convergence
over time for d-TTL; target hit rate=60%.

0

20

40

60

80

0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

Ob
je
ct
,h
it,
ra
te
,,%

Time

2:hour,average

Cumulative,average

60%,ohr vos from,ttl:2
YES

12:00,,,,12:00,,,12:00,,,12:00,,,,12:00,,,12:00,,,,12:00,,,12:00,,,12:00,,,12:00

Figure 3: Object hit rate convergence
over time for f-TTL; target hit rate=60%.

On the contrary, in the event of cache hit, the TTL decreases to
θt (l + 1) = θt (l) −

η0
lα (1 − h∗t).

While d-TTL does a good job of achieving the target hit rate, it
does this at the expense of caching rare and unpopular recurring
content for an extended period of time, thus causing an increase in
cache size without any signi�cant contribution towards the cache
hit rate. We present a two-level adaptive TTL algorithm called
�ltering TTL (f-TTL) that �lters out rare and unpopular content to
achieve both a target size rate and a target hit rate (at a cache size
smaller than d-TTL).
f-TTLCache.The two-level f-TTL algorithm maintains two caches,
a lower-level cache Cs and a higher-level cache C. To facilitate the
�ltering process, it uses two dynamic TTL values—one (θst (l)) less
than or equal to the other (θt (l)). Upon a cache miss for object c
of type t , object c , potentially unpopular, is cached in Cs with the
smaller TTL to ensure quick eviction. Its metadata c̃ (only the object
ID and not the actual content) is cached in Cs with the larger TTL
to retain memory of this request. The two TTLs are then updated
to, θst (l + 1) = θ

s
t (l) +

η0
l

(
s∗t − θ

s
t (l)
)

and θt (l + 1) = θt (l) +
η0
lα h
∗
t .

Upon a cache hit, object c—now showing signs of popularity—
is cached1 in the higher-level cache C with the larger TTL, θt (l).
Let ϕ be the remaining time for object c . Then, the smaller TTL is
updated to θst (l + 1) = θst (l) +

η0
l

(
s∗t − θt (l) + ϕ

)
and the larger

TTL is decremented to θt (l + 1) = θt (l) −
η0
lα (1 − h∗t).

In f-TTL there is a third possibility. When the requested object c
is not in either cache but its metadata c̃ exists, a virtual hit occurs.
Object c , which is possibly popular is then cached in the higher-
level cache with the larger TTL value. The smaller TTL is updated
to θst (l + 1) = θ

s
t (l) +

η0
l

(
s∗t − θt (l)

)
and the larger TTL increases

to θt (l + 1) = θt (l) +
η0
lα h
∗
t .

The extra memory in the form of object metadata helps f-TTL
cache popular objects for a longer period of time while �ltering out
rare and unpopular content quickly. Thus, f-TTL utilizes the cache
space more e�ciently to simultaneously achieve a target hit rate
and a target size rate.

The convergence results of both d-TTL and f-TTL algorithms
are presented in [1].

1Caching an object in the higher-level cache implies evicting the object and/or its
metadata from the lower-level cache.

3 EMPIRICAL EVALUATION
We use an extensive data set containing access logs for content
requested by users that we collected from a typical production
server in Akamai’s commercially-deployed CDN, over a period of 9
days. The content requests traces contain 504 million requests (resp.,
165TB) for 25 million distinct objects (resp., 15TB). We observe that
the content popularity distribution exhibits a “long tail” with nearly
70% of the objects accessed only once. Further, we also see that
80% of the requests are for 1% of the objects. This indicates the
presence of a signi�cant amount of non-stationary tra�c in the
form of “one-hit-wonders” and rarely accessed content.

The performance of a caching algorithm is often measured by
its hit rate curve (HRC) that relates the cache size to the hit rate
it achieves. We compare the HRCs of d-TTL and f-TTL for object
hit rates and show that f-TTL signi�cantly outperforms d-TTL by
�ltering out the rarely-accessed non-stationary content. The HRCs
for object hit rates are shown in Figure 1. Note that the y-axis is
presented in log scale for clarity.

From Figure 1 we see that f-TTL always performs better than
d-TTL. We �nd that on average, f-TTL requires a cache that is 49%
smaller than d-TTL to achieve the same object hit rate.

For the dynamic TTL algorithms to be useful in practice, they
need to converge to the target hit rate with low error. From Figures
2 and 3, we see that the 2 hour averaged object hit rates achieved
by both d-TTL and f-TTL have a cumulative error of less than 1.3%
while achieving the target object hit rate, on average. We also see
that both d-TTL and f-TTL converge to the target hit rate quickly,
which illustrates that both d-TTL and f-TTL are able to adapt well
to the dynamics of the non-stationary tra�c.

A more detailed evaluation of the dynamic TTL algorithms in-
cluding the analysis of byte hit rates, sensitivity analyses and com-
parison to the Che’s approximation heuristic can be found in [1].

ACKNOWLEDGMENTS
This work is partially supported by the US DoT supported D-STOP
Tier 1 University Transportation Center, NSF grant CNS-1652115
and NSF grant CNS-1413998.

REFERENCES
[1] Soumya Basu, Aditya Sundarrajan, Javad Ghaderi, Sanjay Shakkottai, and Ramesh

Sitaraman. 2017. Adaptive TTL-Based Caching for Content Delivery. CoRR
abs/1704.04448 (2017). http://arxiv.org/abs/1704.04448

Poster SIGMETRICS’17, June 5-9, 2017, Urbana-Champaign, IL, USA

46

http://arxiv.org/abs/1704.04448

	Abstract
	1 Introduction
	2 TTL-based Caching Algorithms
	3 Empirical Evaluation
	References

