AdaptSize: Orchestrating the
Hot Object Memory Cache in a CDN

|
o

Daniel S. Mor Rarr{esh K.
Berger Harchol-Balter Sitaraman

USENIX NSDI. Boston, March 28, 2017.

di ' Ol UMASS (f’\‘
m TECHNISCHE UNIVERSITAT letlon =
I m KAISERSLAUTERN University AMEERSL

distributed computer systems

CDN Caching Architecture

Optimizing CDN Caches

Two caching levels:
a Disk Cache (DC)
a2 Hot Object Cache (HOC)

#reqs
HOC performance metric served
by HOC
object hitratio = OHR =
total
#reqgs

[Goal: maximize OHR }

Prior Approaches to Cache Management

Frequent decisions required

- ~__ , \

What to admit What to evict

Today in practice

e.g., Nginx, Varnish eve ryth 'ng LRU a few GBs capacity
: : . mixtures of H OC
2000s inacademia eyerything L J
e.g., Modha, Zhang, Kumar LRU/LFU
500 GB
. . . per hour
2010; in af:ademla everything concurrent
e.g., Kaminsky, Lim, Andersen LRU B 0 []

We Are Missing a Key Issue

Not all objects are the same

I I
1B 1KB 1MB

a2 Should we admit every object? Object Size

(no, we should favor small objects)

2 Afew key companies know this
(but don’t know how to it well)

a2 Academia has not been helpful
(almost all theoretical work assumes equal-sized objects)

What's Hard About Size-Aware Admission

Fixed Size Threshold: How to pick c:
admit if size < Threshold c pick c to maximize OHR
1.0 o
© 0.6 -
n p
8 0.5 - EE 0.4 - |
g 02 L
0.0 4 I I <)
1B IKB 1MB| 1GB © 00 ! '@* !
_ _ 1B 1KB Cb’b 1MB 1GB
Object Size & Threshold ¢
&

Threshold c
L The best threshold }

changes with traffic mix

5

Can we avoid picking a threshold c

A/

() Probabilistic admission: Unfortunately, many curves
example: exp(c) family
1.0
A 1.0 =
a "
3 0.5 - 8 w
0.0 = I I 1
1B KB 1MB T 1GB - N -
Cbject ize Object Size
high admission low adm!ssion : : :
probability probability [Whlch curve makes big difference }

[\é’ We need to adapt c }

The AdaptSize Caching System

. . adapt
a‘{'fﬁt First system that continuously adapts with
WI . « e
raffic /| | the parameter of size-aware admission time

()

Take traffic Calculate Enforce
admission
measurements the best ¢

g) control

A interval . A interval) A interval

| | I “t»...time
BRI
Threshold o Threshold o Threshold o
How to Find Best ¢ Within Each A Interval
Traditional approach AdaptSize approach
Hill climbing Markov model

Local optima on Enables speedy
OHR-vs-c curve global optimization

8

How AdaptSize Gets the OHR-vs-c curve

A/ miss

U Markov chain
= track IN/OUT for each object @ ’
Algorithm

request request
For every A interval and for every value of ¢

a use Markov chain to solve for OHR(c)

o find c to maximize OHR

Why hasn’t this been done?

Too slow: exponential state space

{ New technique: approximation with linear state space }

Implementing AdaptSize

Incorporated into Varnish
highly concurrent HOC system, 40+ Gbit/s

|

Take traffic
measurements

o

Calculate
the best c

ol

Enforce
admission
control

|

Implementing AdaptSize

Incorporated into Varnish
highly concurrent HOC system, 40+ Gbit/s

Take traffic Calculate Enfo rge
admission
measurements the best c
control

Challenges
: . 40% _yp 1%
1) Concurrent write conflicts equests ~ objects

2) Locks too slow [NsDr13s 141 - g

AdaptSize: producer/consumer + ring buffer

[Lock-free implementation} g 0

Implementing AdaptSize

Incorporated into Varnish
highly concurrent HOC system, 40+ Gbit/s

Enforce

Take traffic E> Calculate E> drmicsi
measurements the best ¢ shelnlizEteln

control

)

AdaptSize: admission is really simple

1 givenc, and the object size N J

a admit with P(c, size)

[Enables lock free & low overhead implementation 1 0 0
00% 8 -

AdaptSize Evaluation Testbed

Origin: emulates 100s of web servers
55 million /8.9 TB unique objects

DC: unmodified Varnish
4x 1TB/ 7200 Rpm

HOC systems: o unmodified Varnish
1.2 GB a2 NGINX cache
16 threads 2 AdaptSize

Clients: replay Akamai requests trace
440 million / 152 TB total requests

{ Origin l
40 GBit/
100ms RTT

~

40 GBit/
30ms RTT

Comparison to Production Systems

what to admit what to evict
Varnish everything concurrent LRU
Nginx frequency filter LRU
AdaptSize adaptive size-aware concurrent LRU

+92%
+48%

Varnish >

Nginx

AdaptSize

0.0 0.2 0.4 0.6
Object Hit Ratio

14

Comparison to Research-Based Systems

recency and
frequency
combinations

AdaptSize

LRU
LRU-K
SLRU

2Q

| TLFU

0.0 0.2 0.4 0.6
Obiject Hit Ratio

15

Robustness of AdaptSize

Size-Aware OPT: offline parameter tuning
AdaptSize: our Markovian tuning model

HillClimb: local-search using shadow queues

web web/social _ web/video

bject Hit Ratio
© o o o
nNn ~r OO

O
o

traffic mix changes

16

Conclusion

#reqs
Goal: maximize OHR of the Hot Object Cache Served
OHR=
total

Approach: size-based admission control ot 4 »

1.0

0.0 - , ,

1B 1KB 1MB 1GB

Object Size

17

Conclusion
Goal: maximize OHR of the Hot Object Cache

Approach: size-based admission control

[¢)]
1 1

Key insight: need to adapt parameter c

[\v}
1

Object Hit Ratio
o o o o
N

AdaptSize: adapts c via a Markov chain

Threshold ¢

Result: 48-92% higher OHRs |

0.0 0.2 0.4 0.6

" Object Hit Ratio .

Conclusion
Goal: maximize OHR of the Hot Object Cache

Approach: size-based admission control

Key insight: need to adapt parameter c

AdaptSize: adapts c via a Markov chain

Result: 48-92% higher OHRs

Throughput o :
Disk u%ilization GitHub /dasebe/Adaptsize

Byte hit ratio s BSD-2-Clause
Request latency)

In our paper

(R i iy

