
AdaptSize: Orchestrating the
Hot Object Memory Cache in a CDN

USENIX NSDI. Boston, March 28, 2017.

Daniel S.
Berger

 Mor
Harchol-Balter

 Ramesh K.
 Sitaraman

CDN Caching Architecture

1

Content providers

Users

CDN

100% 100% 100% 100%

1% 1% 1% 1%

DC

HOC

HOC performance metric

 object hit ratio = OHR =

Optimizing CDN Caches
Two caching levels:

❏ Disk Cache (DC)

❏ Hot Object Cache (HOC)

2

reqs
served

by HOC

total
reqs

Goal: maximize OHR
100%

40%

DC

HOC

1%

Frequent decisions required

What to admit What to evict

Prior Approaches to Cache Management

LRU

mixtures of
 LRU/LFU

concurrent
LRU

historicallyToday in practice
e.g., Nginx, Varnish

2000s in academia
e.g., Modha, Zhang, Kumar

2010s in academia
e.g., Kaminsky, Lim, Andersen

everything

everything

everything

500 GB
per hour

3

DC

HOC

a few GBs capacity

We Are Missing a Key Issue

Not all objects are the same

4

9 orders of m
agnitude

❏ Should we admit every object?
(no, we should favor small objects)

❏ A few key companies know this
(but don’t know how to it well)

❏ Academia has not been helpful
(almost all theoretical work assumes equal-sized objects)

What’s Hard About Size-Aware Admission
Fixed Size Threshold:

admit if size < Threshold c

5

The best threshold
changes with traffic mix

How to pick c:
pick c to maximize OHR

Threshold c

2pm 9pm

best
 c

at 8
 a

m

Probabilistic admission:

Can we avoid picking a threshold c

6

Which curve makes big difference

Unfortunately, many curves
example: exp(c) family

We need to adapt c

high admission
probability

low admission
probability

What to admit What to evict

The AdaptSize Caching System

concurrent LRUAdaptSize adaptive size-aware

First system that continuously adapts
the parameter of size-aware admission

Incorporated into high-throughput
production caching system (Varnish)

7

adapt
with
traffic

adapt
with
time

Take traffic
measurements

Calculate
the best c

Enforce
admission

control

Calculate
the best c

How to Find Best c Within Each Δ Interval

8

Local optima on
OHR-vs-c curve

Traditional approach

Hill climbing

…time

Enables speedy
global optimization

AdaptSize approach

Markov model

Δ interval Δ interval Δ interval

How AdaptSize Gets the OHR-vs-c curve

Markov chain

9

Why hasn’t this been done?
 Too slow: exponential state space

➢ track IN/OUT for each object
IN OUT

request request

hit

Algorithm
 For every Δ interval and for every value of c

❏ use Markov chain to solve for OHR(c)

❏ find c to maximize OHR

miss

New technique: approximation with linear state space

DC

HOC

Implementing AdaptSize

10

Incorporated into Varnish
highly concurrent HOC system, 40+ Gbit/s

Take traffic
measurements

Calculate
the best c

Enforce
admission

control

Adapt
Size

Goal: low overhead
on request path

DC

HOC

Implementing AdaptSize

11

Take traffic
measurements

Calculate
the best c

Enforce
admission

control

Adapt
Size

1) Concurrent write conflicts

2) Locks too slow [NSDI’13 & 14]

producer/consumer + ring buffer

Challenges

AdaptSize:

40% 1%
requests objects

Incorporated into Varnish
highly concurrent HOC system, 40+ Gbit/s

Lock-free implementation

DC

HOC

Implementing AdaptSize

12

Take traffic
measurements

Calculate
the best c

Enforce
admission

control

Adapt
Size

Incorporated into Varnish
highly concurrent HOC system, 40+ Gbit/s

admission is really simpleAdaptSize:

Enables lock free & low overhead implementation

❏ given c, and the object size

❏ admit with P(c, size)

40 GBit /
100ms RTT

AdaptSize Evaluation Testbed

13

Clients: replay Akamai requests trace
 440 million / 152 TB total requests

Origin: emulates 100s of web servers
 55 million / 8.9 TB unique objects

HOC systems:
 1.2 GB
 16 threads

❏ unmodified Varnish

❏ NGINX cache

❏ AdaptSize
40 GBit /
30ms RTT

DC

HOC
Adapt

Size

Origin

DC: unmodified Varnish
 4x 1TB/ 7200 Rpm

Comparison to Production Systems

14

+92%

what to admit what to evict

Varnish

Nginx

AdaptSize

frequency filter LRU

adaptive size-aware concurrent LRU

everything concurrent LRU

+48%

Comparison to Research-Based Systems

15

manually tuned parameters

manually tuned parameters

manually tuned parameters
+67%

recency and
frequency

combinations

Robustness of AdaptSize
Size-Aware OPT: offline parameter tuning

16

AdaptSize: our Markovian tuning model

HillClimb: local-search using shadow queues

Approach: size-based admission control

Conclusion
Goal: maximize OHR of the Hot Object Cache

17

OHR=

reqs
served

by HOC

total
reqs

AdaptSize: adapts c via a Markov chain

Approach: size-based admission control

Conclusion
Goal: maximize OHR of the Hot Object Cache

18

OHR=

reqs
served

by HOC

total
reqs

Key insight: need to adapt parameter c

Result: 48-92% higher OHRs

Key insight: need to adapt parameter c

Approach: size-based admission control

Conclusion
Goal: maximize OHR of the Hot Object Cache

19

OHR=

reqs
served

by HOC

total
reqs

Result: 48-92% higher OHRs

In our paper ❏ Throughput
❏ Disk utilization
❏ Byte hit ratio
❏ Request latency

/dasebe/AdaptSize

AdaptSize: adapts c via a Markov chain

