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Abstract

The Art Gallery Problem deals with determining the number of observers necessary
to cover an art gallery room such that every point is seen by at least one observer.
This problem is well known and has a linear time solution for the 2 dimensional
case, but little is known in the 3-D case. In this paper we present a polynomial time
solution for the 3-D version of the Art Gallery Problem. Because the problem is
NP-hard, the solution presented is an approximation, and we present the bounds
to our solution. The solution uses techniques from (i) computational geometry to
�rst build a terrain hierarchy keeping the overall terrain's shape and to compute
the visibility map for each observer, (ii) graph coloring to make a �rst placement
of observers on the terrain, and (iii) set coverage to reduce the number of observers
based on their visibility map. A complexity analysis is presented for each step and
an analysis of the overall quality of the solution is given.

1 Introduction

In this paper the following 3-D visibility problem is considered: Given a 3-D
terrain map, how many observers do we need to cover the whole terrain and
where should we place them? A topographic terrain is a graph of a continuous
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function that assigns to every point on the plane an elevation. In practice, the
topographic terrain is discretized into a digital terrain model called a Digital
Elevation Map (DEM). The expression cover the whole terrain means that
every point on the terrain will be visible to at least one of the observers.

This visibility problem and its variations (Section 3) are real world problems
with several practical applications. The placement of antennas for cellular
telephone companies, where the number of antennas has to be minimized,
is one of them. A similar problem is to compute the coverage of a new set
of antennas placed in some desired positions. The placement of cameras for
security purposes in banks, supermarkets or department stores is another.
In the military context, commanders need to place scouts to cover a certain
region, or to determine where to hide their resources.

This work was developed focusing on the military context. One of the goals of
the Daedalus project [21] is to provide battle�eld commanders with powerful
new tools for planning and monitoring operations; the visibility problem solved
here facilitates both.

The 2-D \coverage" problem was posed by Victor Klee in 1973 and is better
known as The Art Gallery Problem [15]. For a polygon with n vertices, bn

3
c

observers are su�cient and sometimes necessary to cover the interior of the
polygon. The �rst proof was given by Chv�atal [4]. Later, Fisk gave a simpler
proof by using a triangulation of the polygon and showing that as a triangu-
lated polygon is 3-colorable, selecting the least used color will generate the
bound [9]. The placement of observers can be done in linear time [12]. Alter-
native formulations of the 2-D coverage problem include orthogonal polygons,
moving observers, polygons with holes and internal and external visibility of
the polygons. For more details about the 2-D problem, its applications and
solutions, see [15] and [22].

There are some similarities between the 2-D and the 3-D version of this visi-
bility problem, but little is known about covering a polyhedral terrain in 3-D.
In this paper an algorithmic solution to the 3-D version of the Art Gallery
Problem is presented and a time complexity analysis is provided. The method
presented here goes from an elevation map to an optimized placement of ob-
servers in polynomial time. The solution found here is not optimal, but the
total number of observers used is within a known bound of the optimal solu-
tion.

1.1 General assumptions

There are two common approaches for solving this problem, both have an
O(n3) time complexity (n is the number of vertices in the triangulated ter-
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rain). The �rst approach considers all points in the DEM and computes the
intervisibility of every pair of points. Some applications of this technique are
presented in Franklin and Ray [11], Ravela [19] and Wang [23]. Because all
points are considered, the run time in this case makes it infeasible for most
real applications. This paper adopts an approach that models the terrain as
a collection of disjoint triangles. This representation is called a Triangulated
Irregular Network (TIN) in geographic information systems or a Polyhedral
Terrain (or Surface) in computational geometry. Because this approach typ-
ically considers far fewer points than in the DEM, a visibility map can be
computed much faster in practice. De Floriani [10] presents a small survey
of algorithms for computing visibility using TINs. In this paper the following
questions are answered: (1) how many observers are needed to cover a polyhe-
dral terrain, such that every point on the polyhedral terrain will be visible by
at least one observer, and (2) where should the observers be placed.

In a polyhedral terrain observers can be placed on an edge or on a vertex.
Here only vertex observers are considered. By the de�nition of a polyhedral
terrain, an observer placed on vertex v can see at least all the triangles that
are adjacent to v. Furthermore it is assumed that the observer can not move
and that it can see in all directions from vertex v. The observer's height is
not considered (that is, the height of the observer above the terrain is zero),
which is the most conservative approach to the visibility problem.

Section 2 describes the algorithm for solving the 3-D visibility problem. Section
3 discusses other related problems that can be solved using the approach
presented in here. Section 4 presents the conclusions obtained from this work.

2 Algorithm description

The algorithm is divided into three steps. In the �rst step a DEM is trans-
formed into a multiresolution terrain hierarchy. The �nal terrain model used
in the algorithm is either the coarsest model in the hierarchy or a combination
of di�erent resolutions from the hierarchy. Combining data from di�erent res-
olutions results in a map with a variable \level of detail", which can improve
the quality of the terrain model in designated areas. In the second step only
local visibility is considered and the �ve-coloring algorithm is used to place a
set of observers in the terrain. The third step removes the constraint of local
visibility and computes global visibility maps for a subset of observers selected
from step 2. It uses global visibility maps and the greedy approach to the set
covering problem to reduce the number of observers in the terrain.

Notice that the �ve-coloring step (step 2) presented here does not give any
gain in terms of time complexity, but because it reduces the number of points
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to be considered in step 3 the gain will be seen in terms of run time for the
overall system.

In an earlier paper [13] this algorithm was proposed as a theoretical solution to
the problem and a hand generated example was used to illustrate the approach.
The algorithm is now fully implemented and will be demonstrated on the
terrain shown in Figure 1.

2.1 The terrain model

The input data is a DEM where each entry (X, Y) in the image represents the
height at the coordinate X, Y. The dense elevation map can be approximated
by computing a triangulation of the points X, Y in the plane and giving each
vertex a height corresponding to the elevation of point X, Y. The Delaunay tri-
angulation, which is the dual of the Voronoi diagram [1], has the nice property
that it maximizes the minimum angle of the triangles [16], thereby reducing
the roughness of the approximating surface [20]. A Delaunay triangulation of
a terrain used as an example in this paper is shown in Figure 1.

Fig. 1. A Delaunay triangulation of a 3-D terrain represented as a DEM. The terrain
here is a grid that has 32 by 24 points.

To precisely represent a terrain, a large number of triangles is needed; the
example presented in Figure 1 has 1426 triangles and 768 vertices. The terrain
in this case has the �nest granularity possible but for many applications this
level of detail is not required. By selectively removing points (see below) a
hierarchy of models for the terrain can be built and di�erent levels in the
hierarchy can be combined to enhance detail in certain regions of the model.
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The algorithm proposed by de Berg [8] to build a terrain hierarchy from a
DEM was used in the system described here. The system starts with a DEM
and a set of points Vfixed that are never removed from the terrain and are
intended to preserve the terrain structure. In this implementation the set
Vfixed is selected as follows: the user chooses a percentage P of points to
keep from the isometric lines obtained for the original terrain; the points in
the isometric lines are sampled randomly to generate Vfixed. For the example
presented in Figure 1, 74 points have been selected from the original terrain
as �xed points (see Figure 2). Because these points are sampled from the
isometric lines and never removed, the terrain's shape is preserved through
the levels in the hierarchy.

Fig. 2. The 2-D projection of the Delaunay triangulation for the original terrain
with all �xed points (see text) marked by a black square. There are 74 �xed points
in this case.

The �rst level in the hierarchy is the Delaunay triangulation of the DEM as
shown in Figure 2. All the other levels in the hierarchy are obtained by re-
moving points as follows: if a point v is not in Vfixed and is not marked remove
point v and all edges incident to v, mark v's neighbors and �x the Delau-
nay triangulation locally, that is, make a Delaunay triangulation considering
only the points that are neighbors of v. When all points in the terrain are
either in Vfixed or marked a new level in the hierarchy is obtained. Unmark all
marked points and repeat the process until the coarsest model of the terrain
is obtained. In this implementation the coarsest model is obtained when the
number of points in the terrain is at most twice the number of points in the
Vfixed set.

In some applications, parts of the terrain may need to be represented at higher
resolution than others. In this case, it is possible to combine di�erent resolu-
tions from the terrain hierarchy and get a more accurate model. The hierarchy
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obtained for the example contains seven resolutions for the same terrain. Fig-
ure 3 shows the coarsest model (level 7) in the hierarchy with all �xed points
marked. The rectangle shown in the middle of the terrain marks a region
selected by the user where the level of detail will be enhanced.

Fig. 3. A Delaunay triangulation in 2-D for the coarsest model; all the �xed points
are marked with a black square. This terrain model has 137 points and the rectangle
marks the area where the level of detail will be increased by using points from a
�ner resolution terrain in the hierarchy.

The user also selects the resolution level to be used when mixing di�erent
resolutions. Once the region is marked and the resolution level is selected the
system gets all points inside the region marked in the �ner resolution level
and adds them to the coarsest resolution model. Notice that the Delaunay
triangulation has to be �xed again, in this case all points from the coarsest
resolution and the points just added to the �nal model are used to compute a
new Delaunay triangulation. The �nal terrain model is shown in Figure 4, in
which all points marked were added from the terrain model in level 5.

Figure 5 shows the polyhedral terrain in 3-D. Notice that the overall shape
of the terrain was preserved. The planar graph of this terrain is now used to
place the �rst set of observers considering only local visibility information.

2.2 The �rst placement

The �rst placement of observers is done based only on local visibility. Ob-
servers are placed on vertices of triangles. It is assumed that an observer
placed on a vertex can see all triangles that share the vertex, and the observer
can see the whole triangle adjacent to that vertex. This is called local visibility;
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Fig. 4. The enhanced terrain model in 2 D. The 10 points marked with red dots
were added in the selected area from resolution level 5. This model has 274 triangles
and 147 vertices.

Fig. 5. The simpli�ed terrain model in 3 D. The general shape of the original terrain
presented in Figure 1 was preserved.

later this condition will be relaxed to reduce the number of observers.

Bose et al. showed that bn
2
c vertex observers are sometimes necessary and

always su�cient to cover a polyhedral terrain [2]. Thus 4-coloring the corre-
spondent planar graph of the polyhedral terrain, selecting the 2 least used
colors and placing an observer on each vertex with one of these 2 colors would
result in a �rst placement with bn

2
c observers. Unfortunately there is no al-

gorithmic solution for the 4-coloring problem to date. They also present an
algorithm to place b3�n

5
c vertex observers in linear time using the 5-coloring al-

gorithm developed by Chiba [3] and selecting the 3 least used colors. This idea
is applied in this work using a modi�ed version of the 5-coloring algorithm.
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The algorithmworks recursively using 3 lists of vertices as a guide for removing
vertices: one for vertices with degree 4 or less, one for vertices of degree 5, and
one for vertices of degree 6. It inspects the lists in order of degree and removes
the �rst vertex available (arbitrary choice) in one of the lists. It updates the
vertex information in all lists and repeats the process until it has only 5
vertices, these are painted accordingly (this depends on the version of the
algorithm used, Chiba paints each vertex with a di�erent color and we used a
priority queue - see detailed explanation below). After that it starts to insert
vertices in the painted graph in reverse order, that is, the last vertex removed
is the �rst vertex inserted. After insertion the neighborhood is checked and
the vertex is properly painted using the standard graph coloring constraint
(no adjacent vertices can have the same color).

Euler's formula guarantees the presence of at least one vertex with degree 6
or less in a planar graph [14], so the algorithm always applies (special care is
necessary when removing a vertex with degree 5 or 6, see [3]). Figure 6 presents
the results of the algorithm applied to the planar graph given in Figure 4.
There are 42 blue vertices, 40 yellow, 35 green, 22 red and 8 purple. Placing
an observer at every vertex of one of the 3 least used colors ensures that all
triangles will have at least one observer, and therefore the whole terrain will
be covered. Figure 7 shows the �rst placement of observers for the polyhedral
terrain given in Figure 4.

Fig. 6. The 5-coloring of the planar graph given in Figure 4.

In his �ve-coloring algorithm, Chiba selects colors randomly among the set
of possible colors available to paint a vertex [3]. If this approach was used
here the �rst placement step would have selected 83 points (above the bn

2
c

upper bound but below the b3�n
5
c bound presented in Bose's implementation).

Instead, a priority list of colors is used to maximize the number of times 2,
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out of 5, colors are used, thus minimizing the number of times the 3 least used
colors are applied and reducing the number of observers in the �rst placement.
The priority list approach resulted in the selection of 65 points as shown in
Figure 7 which is even below the tight upper bound of bn

2
c.

Fig. 7. The �rst placement of observers. There are 65 observers placed and they
cover the whole terrain model given in Figure 4. Notice that this placement does
not guarantee that the original terrain will be totally covered by this set of observers.

The outputs of the above algorithm are two cross-indexed lists: the �rst one is
a list of observers and, for each observer, a list of triangles that the observer
can see, as well as the total number of triangles visible to the observer. The
second list gives, for each triangle, a list of observers that can see it. Now,
considering global visibility in the polyhedral terrain, it is possible to reduce
the number of observers based on redundancies.

2.3 Reducing the number of observers

To reduce the number of observers a global visibility map for each observer
is computed. It uses the observer list and the triangle list computed in the
last step as input and proceeds as follows: for each observer in the observer
list, sort all triangles in the terrain using a radial sort (with appropriate data
structures this can be done in linear time [10]) and compute a horizon line
for the observer considering only local visibility. The horizon line is de�ned to
be the boundary of a star shaped polygon in 3-D for which all points inside
have been tested and marked for visibility. To make future visibility tests more
e�cient, the elevation angle associated with the line from the observer through
each of the points of the horizon line is saved. For each triangle in the sorted
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list, determine whether or not the triangle is visible to the observer using the
horizon line and the elevation angle. Add the triangle to the observer list and
the observer to the triangle list if the triangle is visible and update the horizon
line as needed. The upper bound of this algorithm is O(n2) for one observer
and thus O(n3) total time.

After the visibility map is computed for all observers, the triangle list is sorted,
such that the triangle with the smallest number of observers is �rst, and the
one with the largest number of observers is last. Ties are resolved arbitrarily.

Observers are now marked using the following loop: the triangle that is viewed
by the fewest observers is selected, and among those observers, the one who
can see the highest number of unpainted triangles is marked. All triangles that
the observer can see are painted. The loop is repeated and the next unpainted
triangle in the sorted list is selected until all triangles are painted.

In the second and all subsequent loops the number of unpainted triangles
covered by an observer has to be updated. This is done as follows: for each
triangle painted, go through its list of observers and decrease the number of
triangles that the observer can see by 1. This gives the number of unpainted
triangles that each observer can see, making the greedy selection more e�cient
for the next loop. Note that the number of triangles that an observer can see
at the beginning is also the number of unpainted triangles he can see. At the
end of this step all unmarked observers are removed from the terrain. The
pseudocode of this step is shown in Figure 8.

The greedy technique used in this step (lines 10 to 13) is a well known solution
to the Set Coverage problem and is described in [6]. The �nal set of observers
placed in the terrain is shown in Figure 9; the original 65 observers have been
reduced to 17. This reduced set of observers is enough to cover the terrain
model presented in Figure 4, but it is not guaranteed that they will cover the
original terrain model.

2.4 Placement of observers is NP-Hard

In order to justify the approximate algorithm presented here it is �rst shown
(based on the work of Cole and Sharir [5]) that computing the minimum num-
ber of observers to cover the whole terrain is NP-hard. This is proved based
on the reduction of Satis�ability (SAT [17]) to this problem: let F be a con-
junctive normal form (CNF) formula with clauses C1; � � � ; Cm, and variables
x1; � � � ; xn then reduce the satis�ability for F to the problem of determin-
ing whether a certain polyhedral terrain with O(nm) faces can be completely
viewed by nm points on it. The reduction is done by constructing a polyhedral
terrain with the following features: n rows and n � 1 walls, one row for each
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Input: List of observers where each observer has a list of triangles it can see, and the
list of triangles where each triangle has the list of observers that can see it.

Output: A reduced number of observers that can see the whole terrain.

1 For each observer gi in the list do

2 Make the radial sort of the triangles.

3 Computes the horizon line of gi using local visibility.

4 For each triangle tk in the sorted list do

5 if tk is visible

6 add tk to g0

is list

7 add gi to t0ks list

8 update the horizon line of gi

9 Sort the list of triangles

10 While not all triangles painted do

11 Select one unpainted triangle tk

12 Mark the observer gi in t0ks list that can see

the largest number of unpainted triangles.

13 Paint all triangles that gi can see and update

the list of observers.

14 Remove all unmarked observers form the observer list.

Fig. 8. The algorithm for reducing the number of observers.

variable in F , and m columns, one per clause. In each row there are 2m pits
arranged in a circular fashion. The upper rim of the pits are quadrilaterals
and the rims of each pair of adjacent pits in the same row have a common
vertex called a peak. Each pit is deep enough so an observer can only see the
whole pit from the boundary or from its interior.

Assuming row r corresponds to variable xr, the choice of selecting even peaks
for the viewing points in r will correspond to setting xr = true, otherwise
xr = false. Figure 10 shows the basic idea for the formula F = (x1 _ x2 _
�x3) ^ (�x1 _ x3 _ �x4). Using geometric properties of the terrain it is possible to
show that the whole terrain can be seen by nm observers if and only if the
formula F is satis�able. More details can be found in [5].
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Fig. 9. Final placement of observers given by step 3 - 17 observers are kept on the
terrain.
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Fig. 10. The idea on how to reduce SAT to our visibility problem

2.5 Complexity Analysis

A complexity analysis for each step in the algorithm is presented below, with
pointers to more detailed references.

(1) Step 1: Building the terrain model
(a) Delaunay triangulation is O(nlog(n)) (Preparata and Shamos [18]).
(b) The hierarchical representation takes O(n) (de Berg [8]).

(2) Step 2: First Placement
(a) 5-coloring is O(n) (Chiba [3]). Note that the changes to Chiba's al-

gorithm described here do not a�ect its time complexity.
(3) Step 3: Observer reduction

(a) Visibility Map - lines 1 to 8 - is O(n3) (see de Berg [7]).
(b) Sort the triangle list is O(nlog(n)).
(c) Selection of observers - lines 10 to 14 - is O(n3).
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The overall complexity of the algorithm as presented here is O(n3) because of
the visibility test (Step 3 item a) and the selection of observers (Step 3 item
c). Cormen et al [6] suggests that it is possible to implement the selection of
observers in linear time. Doing so may improve the run-time of the algorithm,
but will not improve its overall time complexity bound.

2.6 The quality of the solution

The approach presented here starts with a DEM, builds a terrain hierarchy,
and makes the �rst placement of observers in the terrain in O(nlog(n)) time.
As the observers are placed based only on local visibility information, the
number of observers can be reduced using global visibility information. Notice
that these two steps do not determine the complexity of the overall algorithm,
that is the third step could be applied directly to the triangulation of the
original DEM and the system would still run in O(n3). The �rst two steps are
used to reduce the number of points to be considered as observers and the
number of triangles in the visibility analysis, thereby reducing run time.

The solution produced by the greedy approach to the set coverage problem
(step 3) is known to be within a factor of O(log(n)) of the optimal solution [6].
The idea of the proof is the following: a cost c is attributed to each observer
selected and it is amortized among all unpainted triangles that the observer
adds to the solution. The cost of the overall solution C is computed and com-
pared with the cost of the optimal solution C�, which gives a rate of O(log(n))
(see [6] for details of the greedy technique applied to the set covering problem).
This bound is acceptable for a small number of observers and reasonable for
a large number of observers.

As it was mentioned before the �nal set of observers guarantees that the whole
simpli�ed model of the terrain will be covered, but nothing can be said about
the original terrain. The �nal set of observers from the example used here was
placed in the original terrain (the DEM presented in Figure 1) and the overall
visibility was computed. In this case, it turned out that 100% of coverage was
obtained using only 17 observers.

3 Variations of the original problem

The solution to the Terrain Coverage problem presented here can also be used
to solve similar problems. A simple change in the approach is to limit the
number of observers, that is, Given n observers and a terrain T, is it possible
to cover T using only n observers? If so, where should we place them? Note
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that this problem is also NP-complete. It is in NP because given a placement
of n observers it is possible to check in polynomial time if they cover the whole
terrain or not (just compute the visibility map, which can be done in O(n3)).
It is NP-complete because it is possible to make a reduction from SAT to this
problem similar to the one presented earlier [5].

A useful and similar optimization problem is the following: Given n observers
and a terrain, where should we place them in order to maximize the overall
coverage of the terrain?. Because the highest coverage is desired it is necessary
to maximize the non-overlapping coverage for each observer. Therefore it is
possible to sort the list of observers at each step of the loop and select the one
who can see the largest number of unpainted triangles at each step. Note that
because the sorting can be performed in O(nlog(n)) the overall complexity of
the solution is still O(n3).

Another variation for the problem is to constrain the placement of observers.
For example, if part of the terrain is occupied by the enemy or it is a lake,
observers should not be placed there. If we have the boundaries of the area
where we can not place an observer, we can select observers that see the largest
number of triangles and are not inside the forbidden region.

A fourth variation of this problem is to give a set of observer positions. In this
case it is possible to show the area not covered by these observers and to give
the number of extra observers needed to cover the remainder of the terrain.
This is accomplished by adding the observer points to the set Vfixed used in
the �rst step to compute the hierarchical representation of our terrain. For the
second step we give the set of desired points (DP ) separated from the planar
graph and while painting the vertices we test each vertex v. If v belongs to
DP then we paint it using the inverse of our priority list of colors. Finally,
during step 3 we use the DP list as a priority list for picking observers.

4 Conclusion

A system to solve the problem of placing a reduced number of observers in
a 3-D terrain such that each part of the terrain can be seen by at least one
observer was presented in this paper. The system has some nice properties: it
can combine detail from di�erent resolutions of the terrain hierarchy and using
the �ve-coloring algorithmwith a priority queue it places a �rst set of observers
on the terrain which will reduce the run time for the computation of global
visibility maps. This set of observers is reduced using global visibility maps
and the greedy approach to the set covering problem. Although the problem
is NP-hard, combining techniques above allow us to solve the placement of
observers covering the whole terrain in polynomial time. The overall quality
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of this placement is within O(log(n)) from the optimal solution.

The complexity analysis shows that the time required for the whole system is
bounded by O(n3), and we are investigating the possibility of reducing this
bound.
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