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Abstract—Modern networking architectures are making it
increasingly possible to disperse services not just across servers
but into intermediate network devices as well. Here we introduce
the Misson-oriented Adaptive Placement (MAP) architecture,
which synthesizes prior work on middleware, load-balancing,
constraint solving, and aggregate programming into a framework
for self-adaptive management of dispersed services. We provide a
first evaluation of the efficacy and resilience that can be provided
through this approach: results in simulation demonstrating that
MAP can autonomously change the deployment of services to
adapt to changing needs and failures.

Index Terms—dispersed computing, middleware, load-
balancing, aggregate programming

I. INTRODUCTION

To accommodate highly interactive and real-time applica-

tions, computational resources are being dispersed into the

network. Computing near the user enables highly responsive

and interactive applications like real-time control of devices,

computing-in-the-loop decision making, and graphics. More-

over, modern networking hardware can not only route but

also perform general high-speed programmable information

processing. This can enable new frameworks of distributed

computing in which services run not just at user or server

machines, but are dispersed across a wide variety of appli-

ances in the network. In contrast, current service architec-

tures concentrate elasticity in data centers (Figure 1), where

computational power and storage abound but network and

timing constraints are limiting. Exploiting “hidden hardware”
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(a) Data center services

(b) Dispersed computing

Fig. 1. Current service architectures concentrate elasticity in data centers
(a), leaving services vulnerable to network and timing constraints, particularly
across heterogeneous sub-networks. Bottlenecks can be avoided by dispersing
computation to network hardware (b).

by dispersing services into the network can make services

faster and more resilient.

To this end, we propose Mission-oriented Adaptive Place-

ment (MAP), a distributed, multi-layer framework for decision

making and resource management. MAP combines prioritized

management of in-network compute/storage resources with

adaptive placement and migration of computing tasks, in
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response to changes in demand, availability, and load of

network and computing resources. MAP brings together prior

advances in middleware and container technology (giving

services platform independence and mobility), load balancing

and distributed constraint optimization (to allocate services

into sub-networks and individual devices) and aggregate pro-

gramming (AP) (for self-stabilizing information summarizing,

dispersal, and system integration).

In the remainder of this paper, we introduce the MAP archi-

tecture for dispersed computing and provide a first evaluation

of its efficacy and resilience. Section II reviews the context

and related work, Section III presents the MAP architecture,

Section IV empirically validates the self-adaptation and re-

silience of MAP, and Section V summarizes contributions and

outlines future work.

II. PROBLEM CONTEXT AND RELATED WORK

Middleware injects abstraction layers between application

software and underlying operating systems, hardware, and

networks [1], which can be used to address many distributed

computation issues. Examples like RMI [2], CORBA [3],

DDS [4], and various ESBs [5] offer different interaction

paradigms ranging from remote procedure calls (RPC) and

synchronous/asynchronous messaging to publish-subscribe

and representational state transfer (REST) [6], and support

value adds like authentication, fault tolerance, and manage-

ment of cache, network bandwidth, and OS priorities [7].

While most middleware facilitates use of system resources or

remote services, some also enable adaptations such as chang-

ing the functional behavior of the application, how resources

are used, or the number and location of distributed components

used [8], [9]. More recently, as cloud computing begins to

migrate compute and storage capacity into the network and

toward the network edge (edge computing and fog computing),

middleware is being used to perform additional tasks like

aggregation and staging, accounting and tracking resource use,

and security (for edge sensors and IoTs that do not speak IP

or lack enough hardware/power) [10]–[12]. The conception of

MAP draws directly on these antecedents.

Load balancing and resource allocation have been ex-

tensively studied for distributed hosting of applications and

services. Various mechanisms for load balancing of web appli-

cations are outlined in [13], including a DNS-based approach

used by MAP. Load balancing has also been widely used in

cloud systems for VM placement, consolidation, and migration

to better utilize cloud resources [14]. At large scale, load

balancing often adopts a layered approach, in which different

strategies are used for balancing load globally across regions

and locally within a region. For instance, the Akamai network

[15], which hosts a significant fraction of all web and video

applications, uses the stable marriage algorithm as a global

load balancer allocating resources across regions [16] and

consistent hashing for load balancing within a region [17].

MAP draws on these as well, making use of the same cloud

VM technologies and adopting a two-layer approach derived

Fig. 2. High-level architecture of MAP: global optimization by DCOP
allocates tasks and data across regions at a low update frequency, setting
constraints on each region’s implementation of high-frequency load balancing
by RLG across containerized service instances. All of these are connected
using aggregate programming (AP) primitives for resilient communication
and coordination and analyzed for stability both individual and collectively.

from that of Akamai, but adapting them for a highly dispersed

network rather than a data-center oriented architecture.

MAP also departs from most prior load balancing work in its

goals. Whereas most prior work aims at a best-effort allocation

of resources to maximize resource utilization, MAP instead

aims for optimal satisfaction of a set of mission priorities.

To this end, MAP formulates global load balancing as a Dis-

tributed Constraint Optimization Problem (DCOP), in which a

group of agents need to coordinate their value assignments to

minimize the sum of the resulting constraint costs [18]–[20].

This model has been used to solve several multi-agent coordi-

nation problems including distributed meeting scheduling [21],

sensor/robot coordination [22], coalition formation [23], smart

grids [24], and smart homes [25]. Closer still is [26], which

applies DCOP to dynamic load balancing, although that work

addresses migration of wireless load sources, rather than ser-

vices. Our layered approach mitigates scaling challenges faced

by these prior systems, which formulate all load balancing as

a single DCOP problem, whereas MAP optimizes only at the

global level where the number of regions is tractable.

III. THE MAP FRAMEWORK

The MAP framework is designed to operate on backhaul

networks that connect between pools of client devices and

one or more data centers (as in the example diagram in

Figure 1), as are often deployed by emergency response,

military, or large government or commercial organizations.

Many nodes in this network are general-purpose hardware

capable of hosting services and a MAP agent. We call them

Networked Computation Points (NCPs); in this paper, we

assume that all non-client devices are NCPs.

MAP is designed to adaptively place and migrate services

(and associated data) that are currently consolidated in data

centers into the in-network NCPs for data-centric applications

with a high degree of localization and structure (e.g., publish-

subscribe applications, aggregation and filtering of sensor

reports, or processing of imagery and video). MAP further

organizes the NCPs into regions, both to handle the expected
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scale of significant real-world deployments and to follow

existing structural or organizational divisions in the network.

To meet these goals, the MAP framework is organized into

the three-layer high-level architecture shown in Figure 2. At

the bottom, every NCP in the network hosts a MAP agent and

some number of containerized services, with the agent moni-

toring and managing NCP resource usage, and executing and

migrating services. In the middle, one MAP agent per region

is elected as its Regional Load-Balancing Gateway (RLG) and

executes an algorithm to manage allocations and load across

NCPs within a region, deciding how many containers of each

service will be hosted at each NCP (by starting and stopping

containers) and using DNS updates to route client requests to

NCPs. At the top, all RLGs participate in a DCOP algorithm,

which at a much slower rate allocates services to regions.

For stable and resilient interaction across NCPs, regions,

and layers, MAP uses aggregate programming (AP) as the

communication and coordination framework connecting all

MAP agents at every layer, providing self-adaptive coordina-

tion amenable to controls analysis for stability and conver-

gence. AP was developed to improve prediction and com-

position of distributed systems [27], founded on the field
calculus computational model [28], [29], which provides a

dual semantics for both collective system behavior and the

individual asynchronous actions single devices take in order

to produce that behavior. In particular, MAP uses the self-

stabilizing AP “building blocks” introduced in [30]: G blocks

spread information and C blocks summarize information.

This ensures resilience in communication and enables control-

theoretic analysis of MAP. These AP building blocks maintain

network state estimates at every RLG (and thus also the DCOP

algorithm) at the beginning of each round (comprising the

service demand arriving in the region and the load and allo-

cated containers for each service on all NCPs), and also carry

communications that disseminate supporting information, such

as service descriptions.

DCOP is used to periodically optimize region-level adaptive

placements (the region level is more tractable for compu-

tationally expensive multi-objective network optimization).

Load-balancing and resource management within each region

can then permit faster provisioning and dispatching decisions

within the bounds set forth by the overarching DCOP so-

lution, but working independently and in parallel to it. The

global DCOP, the regional load-balancing, the execution of

containerized services on NCPs, and the AP “glue” thus form

an interacting self-adaptive dynamical distributed system.

Realizing the MAP framework also addresses a number

of secondary engineering and integration issues. To facilitate

transparent deployment, the framework uses existing DNS

name resolution services to direct client requests to services

hosted in an appropriately configured virtualization and con-

tainer architecture. MAP also relies on existing authentication

and encryption techniques, and on other off-the-shelf protec-

tion and recovery methods to aid with security and resilience.

At this global level, the expected effects of MAP are as

follows: without MAP, client requests are sent to the data

center, and in response to increased load or demand additional

resources or servers are commissioned in one or more data

centers for load balancing. Allocations are confined to data

centers relying on backhaul access. Dependency or load on the

backhaul does not decline and even increases. Failing links or

attacks on the backhaul make the service delivery degrade or

fail. Failure, congestion and traversal delay are often fatal to

remote user expectations, especially in time-critical settings.

MAP can improve the operation and use of services in

several ways. Upon initialization, MAP’s multi-layer decision

making algorithms may pre-position some tasks and data at

selected NCPs depending on mission needs or application

affinity. Directing services to NCPs, instead of the data center,

reduces backhaul traffic and response time. With or with-

out prepositioning, MAP monitors the use of applications,

and periodically assigns and adjusts the in-network resources

for specific services, gradually migrating services to regions

nearer to where the demands are and maximizing the use

of available resources, yet again reducing backhaul traffic

and response time. Moreover, by enabling services to run in

diverse locations, MAP reduces dependencies on specific links

and NCPs, particularly those close to the datacenter, making

applications more resilient to unplanned events.

The modular design of MAP also enables improvement of

the system by upgrades to individual components, such as

the particular DCOP or RLG algorithm, the containerization

method, or individual service applications. The initial DCOP

algorithm has been described in [31], and we describe the

heuristics of a simple RLG below.

A. Heuristics of a simple RLG

RLG must balance allocation of containers against unknown

future demand, given that some services can take a long time to

handle arriving demands. Allocation of too few containers may

cause job drops due to overloading; allocation of too many

may under-load containers, which may be “stuck” completing

long jobs while other service jobs lack available containers.

We now present a simple reactive load-balancing on homo-

geneous NCPs with a few obvious alternative rules, to establish

a baseline for performance and highlight challenges for any

RLG implementation. In MAP each region has multiple NCPs,

and each with multiple containers. This simple RLG algorithm

allocates a fixed number (N ) of containers to a service if the

estimated load exceeds a proportion, p+ of the total capacity

assigned to that service. Each container to start is allocated to

an NCP following one of several heuristics: (i) most available

containers (MAC), (ii) least load percentage (LLC), or (iii)

already running the service now (SN), and either: (a) all new

containers started on the same NCP (bangbang), or (b) spread

evenly across NCPs (smooth). Complementarily, one container

at a time stops when the estimated load falls below a fraction

p− < p+, of the capacity allocated to the service. Once this

threshold is met, stopping occurs after waiting tdelay time.

Competing needs guide the choice of parameters. Stopping

too slowly due to low p− or tdelay deprives needy services

of containers. As a corollary, stopping multiple containers at
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Fig. 3. Control flow of MAP communication and decision-making across MAP elements (colored) hosted on NCPs and DNS nodes of network components.
Aggregate programming primitives (blue) resiliently summarize information from monitors to the RLG (orange) and DCOP (green) decision-making agents,
as well as disseminating information for inter-region coordination between DCOP and communicating the decisions of DCOP and RLG.

a time is desirable, though this can also cause job drops.

Too large a p+ may cause job drops by depriving needed

growth space for services with high loads. Slow processing can

cause job drops or persistent starting and stopping, while fast

processing can induce hysteresis in container allocation: an

initially oversubscribed service whose demand drops receives

more containers than one with initially few containers, even

if the steady state demands are identical.

Among the three heuristics, MAC starts more containers

at a time than SN and LLC and is less likely to have job

drops. MAC also stops containers faster with demand drop,

but may cause a service to retain more containers than needed.

Smooth initial allocations withstand higher demands over

bang-bang, i.e., initially distributing services over many NCPs

is preferable.

Finally, we note that parameters like p−, p+, the number

of containers started at a time, and the number stopped at a

time are fixed. We believe extension to an adaptive approach

is desirable, where parameters can change according to system

state and predicted demand, e.g., allocating more containers to

meet a surge in predicted demand, or raising p− to deal with

a service with too many containers.

IV. EXPERIMENTAL EVALUATION

To evaluate the MAP framework we have prototyped a

lightweight network and compute emulation capable of hosting

simulated services. The emulatation extends the framework

presented in [32], and pending public release approval, the

emulation, MAP code, and experimental scenarios supporting

these experiments (including a full listing to reproduce this

paper’s results) will be publicly available online at https:

//github.com/map-dcomp. Here we report evaluation of the

efficacy of MAP for self-adaptation by comparing scenarios

in which MAP disperses processes against scenarios where

elasticity is confined to a datacenter. We also evaluate the

resilience of MAP against node failures. All experiments are

run on dedicated machines with Xeon E3 4-core 3.1 GHz

processors, 32 GB of RAM, and Ubuntu 18.04.

As test networks we consider 16 or 17 NCPs either all in a

single region or partitioned into three regions with a separate

datacenter, where multi-region configurations form either a

chain or fully connected topology (Figure 4). We refer to these

networks hereafter as Single, Chain or Full. From the edge of

these networks, pools of 500 clients send requests for one

of three services in a shifting pattern of demand (for Full

we use three pools), where demand rises and falls sharply

for each service in turn, thus shifting the resource allocation

demands on the system over time. For these initial tests,

we consider abstracted versions of compute- and memory-

intensive processes (e.g., searching for designated objects in

an image stream) as our example services, assume that each

NCP can be further partitioned into four service containers, the

data-center can run 12 containers, and that network capacity is

non-limiting. As the processes modeled are compute-intensive,

once initiated, each served request run a job on a container for

just over 20 seconds before completing. In all tests, the MAP

implementation runs an agent on every NCP with a fixed leader

in each region where AP is run every 0.5 seconds, RLG is run

every 3 seconds (using parameters p+ = 0.75, p− = 0.25, and

tdelay = 3), and DCOP is run with a 60 second delay between

the end of one cycle and the beginning of the next cycle.

Figure 5 shows time trace behavior of shifting client demand

for 40 containers without MAP, with MAP, and with NCP-

failures and MAP. Each trace is based upon a Full topology,

where the data center is under-provisioned to handle the

incoming client demand. The traces and scenarios illustrate

MAP’s benefit over the baseline. They also illustate how

the MAP prototype responds to NCP conditions, including

failures. Across all figures, the shaded areas show the total

experimental demand induced by the edge clients, where

the three color codings represent demands for the services

app1, app2, and app3, following a demand flash profile. The

maximum compute capacity for the network is represented in

task containers as the black line, where dips in the third trace

are pre-determined, uniformly randomized NCP failures across

time. The solid red, blue, and magenta lines show the total

load that is successfully serviced, i.e., the sum of load from

each client requests that was able to fit within the available

processing capacity of the container to which it was dispatched

by DNS. Individual client requests that do not fit within a

target active container are considered a failed request for our

simulation. As a result, the shaded area above a solid load line

can be thought of as requests that were not serviced by active

containers. The dashed lines show the capacity allocated for
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(a) Single (b) Chain (c) Fully Connected

Fig. 4. Illustration of networks under test: (a) single region with 500 clients, (b) chain of regions with data center on one end and 500 clients on the other
end, and (c) three regions and data center in fully connected topology, with 500 clients at each region.

(a) Trace without MAP (b) Trace with MAP (c) Trace with MAP and NCP Failures

Fig. 5. Experiment traces vs. time (a) without MAP, (b) with MAP, and (c) MAP with failures scenarios for Full topology, Pm=0.55, Pt=240 and Pf=9.
Shaded areas show experimental client demand, solid lines show observed load, and dashed lines show allocated capacity capable of processing demand.

each service, as the number of containers that are dynamically

instantiated to handle load. For the “with MAP” figures, the

allocation at any point and time is a direct result of the CDIFF

DCOP and SN RLG implementations, where the difference

between the solid load line and the dotted line within the

shaded area can be thought of as the client load that could be

processed if load-balanced into some container with capacity.

Finally, for all baseline experiments, without MAP, we apply

only the SN algorithm to simulate vertical data center scaling.

Examining the collection of trace behaviors in these illus-

trations, we observe that dispersing services into a network

with more capacity, even in face of failures, should always

perform better than keeping those services in the datacenter.

This intuitive observation is a result of the fact that the total

network compute capacity has a greater capacity than just the

data center alone. In the MAP-only trace, we see unprocessed

demand where the rate of new service requests is rising faster

than the system can start new containers to serve them. This

outcome is a direct result of the sequential allocation of new

containers to NCPs by the RLG (i.e., an artifact of our initial

simple algorithm), and being that this is a Full topology,

CDIFF will also need time to react to the demand and spread

services out into peer-regions with available capacity. The

overfitting of the allocation scheme can be explained as a result

of the greedy RLG allocation scheme and the rapid stopping

of each service is an outcome of the parallized stop container

operation in the RLG. In the MAP with failures figure, we

trace MAP’s tolerance to 9 NCP failures, i.e., removing 36

containers of capacity. Across this run, we see the effect

of failures in both the second application curve, where two

NCPs hosting traffic fail in rapid succession, and in the third

application curve, where resources are significantly depleted.

In the former case, MAP’s DNS load-balancer, part of the

RLG, is effectively handling demand by spreading requests. In

the latter case, the simple algorithms in our implementation

are only able to partially adapt, but the performance is still

well above the non-MAP baseline.

Figure 6 summarizes the overall performance of MAP as

we vary the stress on the system. We vary the following: (Pt)

the time interval between halting demand for one service and

starting the next ranging from -30 seconds to 240 seconds

to test adaptation dynamics; (Pm) the total client demand

magnitude as 55%, 83%, 111% against the 72 container

network compute capacity (i.e., 40, 60, and 80 containers of

demand); (Pn) the network topology as Single, Chain, or Full;

(Pf) as 3, 6, or 9 faults; (Ph) as the RLG heuristic types

SN or MAC. For baseline experiments without MAP, we use

the Chain configuration. Figure 6(a) assesses the efficacy of

self-adaptation as a function of the rate at which demand

shifts from one service to another. As can be seen, even for

MAP is always able to adapt quickly enough within its, only

even slightly degrading as the demands begin to overlap, and

always well above datacenter-only performance. Not also that,

as predicted, MAC is always equal to or better than SN. Multi-

region performance is lower than single-region performance

(Figure 6(b)), due to the requirements for DCOP as well as

RLG, but still far above the data center baseline. Figure 6(c)

assesses the resilience of MAP to failures, showing that MAP’s

performance degrades gracefully with the rate of failure:

self-monitoring allows services to shift from failed nodes to

surviving nodes, though the loss of capacity means that not all

demand can be shifted. In summary, our simulations show that

MAP is able to fulfill the goal of increasing self-adaptation and

resilience through dispersal of services into NCPs.

102



(a) Shifting Demand Single Region (b) Shifting Demand Multi Region (c) NCP Failures

Fig. 6. Experimental response to perturbations, illustrating (a) single-region and (b) multi-region efficacy and (c) multi-region tolerance to NCP failure
scenarios, where Pt, Pm, Pn, Pf, and Ph are varied. Each point shows client success rates. In all cases, MAP shows improvement over datacenter-only.

V. CONTRIBUTIONS

We have shown that MAP can disperse services out of

data centers into intermediate NCPs throughout a network,

improving performance and resilience of networked services.

Future work will aim to increase the scale and realism of

networks used to validate the MAP framework, and to begin

transition into operational use in real-world systems, including

improving RLG and DCOP algorithms, as well as handling

service migration, dependencies, and decomposition. MAP

may also benefit from using advanced networking techniques,

like stochastic or multi-path routing. Finally, there are a

number of potential opportunities for application of the core

ideas in MAP and its components to other aspects of self-

managing and resilient networked computing systems.
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