
29

A TTL-based Approach for Data Aggregation in
Geo-distributed Streaming Analytics

DHRUV KUMAR, University of Minnesota, Twin Cities

JIAN LI, University of Massachusetts, Amherst

ABHISHEK CHANDRA, University of Minnesota, Twin Cities

RAMESH K. SITARAMAN, University of Massachusetts, Amherst

Streaming analytics require real-time aggregation and processing of geographically distributed data streams

continuously over time. The typical analytics infrastructure for processing such streams follow a hub-and-

spoke model, comprising multiple edges connected to a center by a wide-area network (WAN). The aggregation

of such streams often require that the results be available at the center within a certain acceptable delay

bound. Further, the WAN bandwidth available between the edges and the center is often scarce or expensive,

requiring that the traffic between the edges and the center be minimized.

We propose a novel Time-to-Live (TTL-)based mechanism for real-time aggregation that provably opti-

mizes both delay and traffic, providing a theoretical basis for understanding the delay-traffic tradeoff that is

fundamental to streaming analytics. Our TTL-based optimization model provides analytical answers to how

much aggregation should be performed at the edge versus the center, how much delay can be incurred at the

edges, and how the edge-to-center bandwidth must be apportioned across applications with different delay

requirements.

To evaluate our approach, we implement our TTL-based aggregation mechanism in Apache Flink, a popular

stream analytics framework. We deploy our Flink implementation in a hub-and-spoke architecture on geo-

distributed Amazon EC2 data centers and a WAN-emulated local testbed, and run aggregation tasks for

realistic workloads derived from extensive Akamai and Twitter traces. The delay-traffic tradeoff achieved by

our Flink implementation agrees closely with theoretical predictions of our model. We show that by deriving

the optimal TTLs using our model, our system can achieve a “sweet spot” where both delay and traffic are

minimized, in comparison to traditional aggregation schemes such as batching and streaming.

CCS Concepts: • Computer systems organization → Cloud computing; • Information systems →

Data analytics; Data streaming;

Keywords: Geo-distributed systems; Edge; Cloud; Stream processing.

ACM Reference Format:
Dhruv Kumar, Jian Li, Abhishek Chandra, and Ramesh K. Sitaraman. 2019. A TTL-based Approach for Data

Aggregation in Geo-distributed Streaming Analytics. In Proc. ACMMeas. Anal. Comput. Syst., Vol. 3, 2, Article 29
(June 2019). ACM, New York, NY. 27 pages. https://doi.org/10.1145/3326144

1 INTRODUCTION
Streaming data analytics has been an important topic of research in recent years. Large quantities

of data are generated continuously over time across a variety of application domains such as web

Authors’ addresses: Dhruv Kumar, dhruv@umn.edu, University of Minnesota, Twin Cities; Jian Li, jianli@cs.umass.edu,

University of Massachusetts, Amherst; Abhishek Chandra, chandra@umn.edu, University of Minnesota, Twin Cities; Ramesh

K. Sitaraman, ramesh@cs.umass.edu, University of Massachusetts, Amherst.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2476-1249/2019/6-ART29 $15.00

https://doi.org/10.1145/3326144

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

https://doi.org/10.1145/3326144
https://doi.org/10.1145/3326144

29:2 Dhruv Kumar et al.

and social analytics, scientific computing and energy analytics. One of the key requirements in

modern data analytics services is the real-time analysis of these data streams to extract useful

and timely information for the analyst. Several distributed data analytics platforms [7, 36] have

been developed in recent times to meet this growing requirement of real-time streaming analytics.

Nowadays, a large amount of data is generated continuously by geographically distributed sources

(e.g., agents, sensors, mobile devices, edge nodes, etc.) in many streaming applications [34]. For

instance, services like Facebook, Twitter and Netflix continuously gather data from the end users

for a variety of analytical purposes such as finding the popular web content amongst their users or

monitoring the QoS metrics. Large content delivery networks (CDNs) like Akamai [25] that serve a

significant fraction of content on the Internet continuously collect data from their edge servers

and clients from around the globe to understand what, where and how content is accessed for the

purpose of providing content analytics insights to businesses.

Hub-and-spoke model for analytics processing. A typical analytics infrastructure for pro-

cessing such geo-distributed streams follows a hub-and-spoke model, which conceptually comprises

a single centralized “hub” connected to multiple edges by a wide-area network (WAN). The data is

either generated at the edge or collected at the edge from clients such as sensors, mobile devices etc.

In the latter case, clients report data to the edge that is “closest” to them. Each edge has a cluster of

servers to collect and process its data streams and then send the processed data to a central hub for

further processing. Analysts directly query the central server for retrieving the relevant analyzed

data. In this paper, we limit ourselves to aggregation-based processing which we explain next.

Data aggregation.We focus on optimizing a common and widely-used operation that is per-

formed within any analytics system – the operation of computing aggregates, such as the Reduce

operation in MapReduce, GroupBy in SQL and LINQ etc. We consider data streams in which every

record is of the type (k,v), where k is the key and v is its corresponding value, e.g., in the Akamai

content analytics context the key could be a combination of content id (url) and geographic location

and the value could be the number of clients accessing the url from that location. Aggregation

is performed over such a key-value stream by grouping all records (k,vi), 1 ≤ i ≤ n that have

the same key value k , to produce an aggregate record (k,v1 ⊕ v2 ⊕ · · · ⊕ vn), where v1,v2, · · · ,vn
are the values received for key k up to time T and ⊕ is an application-defined associative binary

operator. Such operators can be as simple as sum ormax , or more sophisticated, including filters

(such as Bloom filters), transforms and sketches (such as HyperLogLog), and user-defined functions.

In this paper, we focus on continuous aggregation at the center where the newly arrived data record

(k,v) is immediately aggregated into its key k’s aggregated value to provide the most updated

aggregated result for any key k .
Delay-traffic tradeoff. The data transfer from the edges to the center happens over a WAN link

which is generally scarce or expensive [27]. To save WAN bandwidth, the computing resources on

the edge could be utilized to perform (partial) aggregation on the input data stream before sending

intermediate results to the center for a full aggregation. Such edge-based aggregation leads to a

fundamental tradeoff between two key metrics: delay andWAN traffic, as illustrated in Figure 1.

Here, delay corresponds to the edge-induced aggregation delay
1
in computing the results, while

WAN traffic is the amount of data sent out over the wide-area links. Figure 1 shows the delay-traffic

tradeoff, with delay decreasing as traffic increases and vice versa. In particular, the two end-points

correspond to two extreme approaches to edge aggregation: streaming and batching. Streaming

refers to sending all the data from the edges to the center without any processing at the edges.

This approach is able to achieve the desired low delay but results in high WAN traffic. On the other

1
While network delay is another component of the end-to-end delay, we mainly focus on aggregation delay as this is a

direct consequence of edge aggregation, and consider network delay in Section 6.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

A TTL-based Approach for Data Aggregation in Geo-distributed Streaming Analytics 29:3

Fig. 1. Delay-traffic tradeoff. This figure shows the empirically computed delay and traffic for varying amounts
of edge-based aggregation for the Akamai trace using AWS EC2 testbed. More details in Section 5.

hand, batching
2
refers to aggregating the data at the edge for a long time (typically, a few hours)

and then sending the summarized data to the center for further processing. This approach is able

to achieve the desired low traffic but results in high delay. However, different analytics systems, or

even different applications using the same system, require different tradeoffs between delay and

traffic.

Real-world examples. We discuss examples of analytics services from industry to further

support the different delay-traffic tradeoff requirements explained above.

1) Akamai Media Analytics. Akamai Media Analytics [3] provides insights into online video

performance, quality of experience, and audience behavior by monitoring crucial metrics that

drive business critical decisions. Media Analytics consists of two main services: a delay-sensitive

Quality of Service (QoS) Monitor and a delay-tolerant Audience Analytics. The customers of both

the services are video providers who use Akamai’s video delivery services. Both analytics services

use a hub-and-spoke model where individual clients (video players) send information as a stream of

packets (called “beacons”) in real-time to the widely-distributed Akamai edge servers. Each beacon

has key-value pairs that are aggregated by the edge servers and then forwarded to a central hub

for more aggregation and processing. Users visualize the fully aggregated data by accessing the

central hub. Our experiments use the beacon traces from Akamai that underly both these services.

QoS Monitor analyzes the quality of video streams using metrics such as startup time, rebuffer

rates, audience size, bitrates, and availability in near real-time. The goal is for video providers using

the service to get a real-time view of how their end-users are experiencing their video streams

and take immediate diagnostic action if there is a noticeable quality degradation. A common use

case is when a large live streaming event such as the FIFA soccer world cup is being delivered by

Akamai. The analytics service is used to quickly identify and solve video quality degradations, even

as the event is in progress. Given the performance diagnostic goals of the service, reducing delay is

extremely important, even at a greater traffic cost.

Audience Analytics provides analytics around the behavior of the audience engaging with video

content using metrics such as time spent per video, geographic location of the user and so on. This

is not a service used for performance diagnostics, but rather for the video provider to gain analytic

insights useful for the business. So, it is more crucial to reduce the traffic cost, even at the expense

of greater delay.

2
Strictly speaking, anything that is not pure streaming can be called as batching but in this paper, we user the term batching

for referring to aggregation for a long time (such as few hours).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

29:4 Dhruv Kumar et al.

2) Twitter Analytics. A large number of businesses use Twitter for their marketing and advertise-

ment campaigns [30]. In such cases, the businesses want to understand how their audience engages

with their brands and campaigns. Twitter Analytics such as trending hashtags, trending topics,

audience statistics etc are very common for making business decisions. The need for real-time

updates versus reducing traffic cost may vary depending on the specific use. For instance, real-time

advertisement campaigns are delay sensitive. But, brand awareness campaigns have longer-term

goals and less delay sensitive, making traffic cost reduction important. Consequently, our model

and algorithms allow for adjusting the relative weights of delay and traffic at a granular level, even

allowing per-key weights. Note that we use traces from Twitter for a trending topics query in our

evaluation.

In summary, between the extremes of streaming and batching, there are different operating

points for a wide-area data analytics system that represent different tradeoffs between delay and

traffic. A goal of our work is to devise edge aggregation mechanisms that can provably achieve the
desired delay-traffic tradeoffs.

Research contributions. In this paper, we propose a novel Time-to-Live (TTL)-based aggregation
mechanism for online stream aggregation that provably optimizes delay and traffic jointly. In this

approach, records corresponding to each key are aggregated at the edge for a certain time period

dictated by its TTL, before the aggregates are sent over the WAN to the center. The proposed

approach is able to achieve the desired delay-traffic tradeoff, and is also able to satisfy the low
delay - low traffic requirement where needed. To the best of our knowledge, we are the first to

provide a theoretical basis for understanding the delay-traffic tradeoff that is fundamental to

streaming analytics. In doing so, we provide analytical answers to how much aggregation should

be performed at the edge versus the center, how much delay can be incurred at the edges, and

how the edge-to-center bandwidth must be apportioned across different applications with different

delay requirements. We study the tradeoff between delay and traffic by presenting a family of

optimal TTL-based algorithms for jointly minimizing both delay and traffic. In addition, we present

extensions to our approach to solve two complementary problems: (i) minimizing delay under a

traffic constraint and (ii) minimizing traffic under a delay constraint. This paper makes the following

research contributions:

• To the best of our knowledge, the proposed TTL-based aggregation model is the first to provide a

theoretical basis for understanding the delay-traffic tradeoff that is fundamental to geo-distributed

streaming analytics. Our model also characterizes the storage requirements at the edges to achieve

such a tradeoff.

• Using this model, we show how to optimize delay and traffic jointly, achieving a user-desired

delay-traffic tradeoff, while also characterizing a stable “sweet spot” operating region that achieves

the “best” tradeoff where both delay and traffic are relatively small.

• We have implemented the TTL-based aggregation mechanism in Apache Flink, a popular stream

analytics framework. As part of this implementation, we provide a simple, expressible API for

users to easily leverage the proposed optimization framework. In addition, our optimization

dynamically adapts to changing workloads.

• We evaluate our approach through experiments running our Flink implementation on geo-

distributed Amazon EC2 data centers, as well as a local cluster emulating WAN characteristics.

The experiments are driven by real-world Akamai and Twitter traces. Our empirical results are

in close agreement with our theoretical model predictions. Further, we show that by deriving

the optimal TTLs using our model, our system can achieve a “sweet spot” stable operating point

where both delay and traffic are minimized, in comparison to traditional aggregation schemes

such as batching and streaming.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

A TTL-based Approach for Data Aggregation in Geo-distributed Streaming Analytics 29:5

• We show that the proposed TTL-based aggregation is general enough to model a wide variety of

optimization formulations with different types of objective functions and constraints.

2 TIME-TO-LIVE (TTL) AGGREGATORS
The main aggregation mechanism that we propose is a TTL aggregator that takes a key-value data
stream as input and outputs an aggregated key-value stream. The aggregator has a cache to store

keys for aggregation. Each key k has a TTL value Tk that is the time period for which the key k
must be kept in the cache. Figure 2 shows the flow of records in a TTL aggregator. When a record

(k,v) arrives at the edge for which the key k is not present in the cache, a cache miss is said to have
occurred. In case of a cache miss, the key k is inserted into the cache and its aggregated value is set

to the value of the record, i.e., aддk = v . Additionally, a timer is created and assigned to key k with

its value set to the TTL value Tk of the key, i.e., (Timerk = Tk). The timer counts down and until

the timer expires (i.e., Timerk = 0), any new records of key k are aggregated into the result stored

in the cache for key k without resetting the timer value. That is, for any new record (k,v ′) for
which the key k is present in the cache, a cache hit is said to have occurred and aддk = aддk ⊕ v

′
.

When timer Timerk goes to zero, the aggregated record (k,aддk) is sent out in the output stream.

Relationship to TTL caches. There is extensive literature [6, 10, 12, 14, 15, 22] on TTL caches

that store frequently used objects in context of content, database records, memory pages, etc. Such

a cache would set a TTL when an object is first stored in cache and evict the object when the TTL

expires. While a TTL aggregator serves a different purpose, some of the theoretical analysis of TTL

caches directly apply. This novel connection between aggregation and traditional caching allows

us to bring to bear the analytical work done in the caching domain into data analytics.

Comparison with windowed grouped aggregation. Windowed grouped aggregation is a

common operation used in many stream processing frameworks, where records within a time

window are aggregated together. In some batch computing-based execution frameworks (e.g., Spark

Streaming [36]), windowed grouped aggregation is used for microbatching streams of records to

simulate stream computing. TTL-based aggregation approach provides a number of advantages

over windowed grouped aggregation.

First, the window size in windowed grouped aggregation is typically application-defined (and

fixed statically), whereas TTL-based aggregation supports dynamic TTL window sizes that can

help us achieve desired tradeoffs. Most systems also use the same window size across all the keys

in windowed grouped aggregation, whereas the TTL-based approach allows different TTL window

sizes for different keys. Even in cases where the window size can be tuned, determining the optimal

or "best” window size is hard in practice and is typically done using ad hoc approaches. TTL-based

aggregation, on the other hand, provides a principled approach to automatically and adaptively
determine per-key window sizes. It can be employed to achieve theoretically provable optimal

TTL window sizes that satisfy the desired delay-traffic tradeoffs (see Section 3). More broadly, the

TTL-based aggregation approach opens up the door for finding optimal solutions to a wide variety

of problem formulations with different types of constraints on delay and traffic. We give a flavor of

these in Section 6. No such solutions exist for windowed grouped aggregation to the best of our

knowledge.

Delay versus traffic tradeoff using a TTL aggregator. Suppose that each key k arrives in a

Poisson process
3
at the input of a TTL aggregator with rate λk (in records per unit time) and a

TTL value of Tk is used for that key. Let the expected aggregation delay, Dk , be the expected delay

experienced by the arrival of a record with key k , i.e., Dk is the expected time difference between

3
We relax the Poisson arrivals assumption for our implementation and empirical evaluation.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

29:6 Dhruv Kumar et al.

Fig. 2. TTL aggregator.

the arrival of record with key k and the next departure of the record with that key. Let µk be the

departure rate
4
of key k (in records per unit time) andmk be the miss probability of key k .

Theorem 2.1. For all keys k , mk = µk =
1

1+λkTk
and the expected aggregation delay Dk =

(mk + 1)Tk/2 = (1

1+λkTk
+ 1)Tk/2.

Proof. The probability of not finding a key k in cache of the TTL aggregator is the miss

probabilitymk . Since the miss probability analysis derived in the context of TTL caches [14] equally

applies in our TTL aggregator context, we derivemk =
1

1+λkTk
. Since every flush of key k into the

output stream can be matched with a prior time when the key entered the cache on a “cache miss”

event, µk equals the miss probabilitymk .

The expected aggregation delay Dk , for each arrival of key k , can be computed as follows. When

a key k arrives at a time t and it results in a miss, that key is inserted into the cache, a timer is

set of the value of Tk , and the key is flushed from cache at time t +Tk . Thus, if the arrival of key
k at time t is a cache miss, its delay is exactly Tk . Note that a cache hit occurs for every arrival

of key k within the time interval [t , t + Tk], since the key is present in cache during that time

period. Since the arrivals for key k are Poisson, the expected delay of the cache hits that arrive in

the interval [t , t +Tk] is exactly half the size of that interval, i.e., the delay is Tk/2. To derive this

more formally, the cumulative delay experienced by all cache hit arrivals in the interval [t , t +Tk]

is

∫ t+Tk
t λk (t +Tk − x)dx = λkT

2

k /2. Since the expected number of cache hit arrivals in interval

[t , t +Tk] is λkTk , the expected aggregation delay per cache hit arrival is (λkT
2

k /2)/λkTk , which
equals Tk/2. Weighting the delay for cache misses and hits by their respective probabilities, the

aggregation delay Dk =mkTk + (1 −mk)Tk/2 = (mk + 1)Tk/2. □

Evaluating the storage at a TTL aggregator. Let B the expected number of keys in the

aggregator at a given time. The time-average probability (occupancy probability) that key k is in

the aggregator equals to 1 −mk . Therefore, we have

B =
∑
k

(1 −mk) =
∑
k

λkTk
1 + λkTk

. (1)

3 OPTIMIZING DELAY-TRAFFIC TRADEOFF
Themain advantage of TTL aggregators is that they can be deployed at the edges of a hub-and-spoke

analytics system to provide precise, theoretically-validated delay-traffic tradeoffs. Let there beM

4
The departures may no longer be Poisson.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

A TTL-based Approach for Data Aggregation in Geo-distributed Streaming Analytics 29:7

edges with themth
edge having Nm distinct keys. Denote the sets of edges and distinct keys asM

andNm , respectively. Suppose that λ
m
k is arrival rate of kth key at themth

edge, where 1 ≤ k ≤ Nm
and 1 ≤ m ≤ M . An analytics system serves multiple applications that have different delay and

traffic requirements. A real-time application is more delay-sensitive and may place a greater penalty

for delay for its keys than a non-real-time one. An application with larger records may be more

expensive to transmit from edge to center than an application with records of a smaller size. So, to

posit a tradeoff between delay and traffic, we incorporate unit costs for traffic, cmk , and for delay, dkm ,

for each key value k at edgem, allowing variation in these costs according to both key and edge.

Our goal is to find the optimal vector of timersT = {Tm
k }k ∈Nm,m∈M to minimize the total cost

C (T) incurred across all keys and edges as defined below

C (T) = αCdelay + (1 − α)Ctraffic,

where the total delay cost
5
is Cdelay, the total traffic cost is Ctraffic and 0 ≤ α ≤ 1 is a system-

wide weighting factor that determines how the two costs are weighted against each other. Using

Theorem 2.1, we can write Cdelay as the sum of the delay cost of all keys over all edges, i.e.,

Cdelay =

M∑
m=1

Nm∑
k=1

dmk λmk T
m
k

2

*
,
1 +

1

1 + λmk T
m
k

+
-
. (2)

Similarly, we can write Ctraffic as the sum of the traffic cost of all keys over all edges, i.e.,

Ctraffic =

M∑
m=1

Nm∑
k=1

cmk λ
m
k

1 + λmk T
m
k
. (3)

Therefore, we can write the overall cost C (T) to equal the following

α
M∑

m=1

Nm∑
k=1

dmk λmk T
m
k

2

*
,
1 +

1

1 + λmk T
m
k

+
-
+ (1 − α)

M∑
m=1

Nm∑
k=1

cmk λ
m
k

1 + λmk T
m
k
. (4)

The total delay costCdelay represents the loss of revenue for the network provider if it is not able

to meet the SLA signed with the application owner whose application uses its network. The total

traffic cost Ctraffic represents the operational cost for the network provider for enabling application

data transfer via its network.

Theorem 3.1. The optimal timers (TTLs) that minimize the expression for C (T) in Equation (4)
satisfy

Tm
k =




1

λmk
*
,

√
2(1−α)cmk λmk

αdmk
− 1 − 1+

-
, λmk ≥

αdmk
(1−α)cmk

,

0, otherwise,
(5)

for k ∈ Nm andm ∈ M .

Proof. We first prove that C (T) is convex in Tm
k and then derive the optimal value by differenti-

ating it with respect to Tm
k and setting the differential to zero. Details are in Appendix 10. □

Without loss of generality, we assume that the edges are ordered in the decreasing order of

arrival rate, i.e., λm
1
≥ · · · ≥ λmNm

. Suppose for each k = 1, · · · ,Nm , there exists a k
′, such that

5
Note that the network delay, measured as the time between the key being flushed from the edge server to the time that the

center receives it, is independent of our optimizing parameter Tk . Network delay can be easily incorporated within our

framework without impacting our analysis as shown in Appendix 10.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

29:8 Dhruv Kumar et al.

Fig. 3. Example of the optimal TTL value T for a given key at a given edge server vs. its arrival rate λ.

λmk ′ ≥
αdmk′

(1−α)cmk′
and λmk ′+1 <

αdmk′+1
(1−α)cmk′+1

. From (1) and Theorem 3.1, we immediately have the following

corollary.

Corollary 3.2. Let Bm be the expected number of keys at edge serverm. Then,

Bm =
Nm∑
k=1

(1 −mk) =
k ′∑
k=1

*
,
1 −

√
αdmk

2(1 − α)cmk λ
m
k − αd

m
k

+
-
. (6)

We next discuss how the TTL adapts to different factors: stream arrival rate, delay/traffic unit

cost, and the weighting factor α .

3.1 TTL adaptation to arrival rate
Let λ be the arrival rate of a given key at a given edge, c be its unit traffic cost, d be its unit delay cost,

and T be the optimal TTL derived for that key using Theorem 3.1. Figure 3 shows how optimizer

automatically adjusts the TTL T of the key in accordance to its arrival rate λ. The optimized TTL

aggregator exhibits different behaviors within each of four different ranges for the arrival rate λ as

we describe below.

Region 1: 0 ≤ λ ≤ λ0. In this region, the arrival rate λ is too low for any aggregation to occur and

the TTL T is set to zero. That is, the TTL aggregator “streams” the incoming records directly to the

center.

Region 2: λ0 ≤ λ ≤ λ1. In this region, the arrival rate λ is low but large enough to allow

aggregation. The TTL in the region is a concave increasing function of the arrival rate.

Region 3: λ1 ≤ λ ≤ λ2. In this region, the arrival rate is high enough that TTL can start to be

lowered while still achieving the traffic benefits of aggregation. The TTL in this region is a concave

decreasing function of the arrival rate.

Region 4: λ ≥ λ2. In this region, the arrival rates are very high and TTL can be lowered more

significantly and still maintain the traffic benefits of aggregation. The TTL in this region is a convex

decreasing function of the arrival rate.

The transitions points between the regions and the corresponding TTL values shown in Figure 3

can also be determined: λ0 ≜ αd
(1−α)c , λ1 ≜

(2+
√
2)αd

(1−α)c ,while λ2 can be derived numerically. In practice,

the arrival rate λ can be computed directly from the incoming data stream (see Section 4).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

A TTL-based Approach for Data Aggregation in Geo-distributed Streaming Analytics 29:9

Fig. 4. Example of stable operating region. The values of α inside the dashed red circle are stable operating
points, that correspond to relatively small delay and traffic that do not change too much with small changes
in α .

3.2 TTL adaptation to unit cost
We next consider how TTL is affected by the relative delay and traffic unit costs (d/c). It is clear
from (5) that the optimal timer T is decreasing in d/c, for a given key at a given edge with a given

arrival rate λ, and α . This is intuitive, as the ratio d/c increases, the cost of delay has a larger impact

than the cost of traffic, hence, to achieve the optimal tradeoff, it is intuitive to decrease the TTL T
such that Cdelay is decreased, and Ctraffic is increased. The converse holds when d/c is decreased.
As we described in the real-world examples in Section 1, there are can be different sets of

delay requirements for different customers of an analytics service. For instance, the keys that are

aggregated for a real-time marketing campaign or for QoS monitoring are more delay sensitive

than keys aggregated for a brand awareness campaign or for audience analytics. The unit delay cost

quantifies the delay sensitiveness of the key and represents the financial cost of an additional unit

of delay for the analytics customer. Thus, higher unit delay costs represent greater delay sensitivity

and vice versa. On the other hand, the unit traffic cost could represent the bandwidth cost incurred

by the analytics provider to transmit an additional data record.

3.3 TTL adaptation to α

The weighting factor α is an input parameter to the system, and the system operator can choose

different values of α to balance the impact of delay and traffic on the total cost. It is clear from (5)

that the optimal timer T is deceasing in α , for a given key at a given edge with a given arrival

rate λ in regions II, III, and IV in Figure 3, and given d and c values. Furthermore, the threshold

λ0 is increasing in α ∈ (0, 1), with its value satisfying (0,∞). For the two extreme cases, when

α → 0, λ0 → 0 and T → ∞, this corresponds to batching; when α → 1, λ0 → ∞ and T → 0, this
corresponds to streaming.

One possibility is to automatically derive the α value(s) that achieve(s) the “best” delay-traffic

tradeoff. To do so, we characterize the stable operating region across all the values of α . Intuitively,
our goal is to find a “sweet spot” operating region where both delay and traffic are relatively

small. Furthermore, for any point in this region, the value of delay and traffic do not change too

much around this point, i.e., the derivatives of delay and traffic are bounded at this point. Figure 4

illustrates the stable operating region for a pair of delay-traffic cost curves against α .
Choosing α in practice. As explained above, α is a system-wide knob which the analytics

provider can set to tradeoff delay and traffic costs across all consumers hosted on the analytics

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

29:10 Dhruv Kumar et al.

system. Using the real-life examples discussed in Section 1, an analytics system that hosts customers

of the QoS monitoring service may choose a higher value of α , say α > 0.8, to emphasize delay

sensitivity of the service. While an analytics system hosting consumers of the Audience Analytics

service may chose a lower value of α , say α < 0.2, to emphasize traffic cost sensitivity. An analytics

system that hosts a mix of delay and traffic cost sensitive services may choose a neutral value of α
and capture the varying requirements through the per-key unit costs for delay and traffic.

The above examples are meant to help us understand that the choice of α is very much dependent

on the type of services hosted by the analytics system. Having α as a user input adds to the flexibility

of the overall optimization framework and ultimately, shows the wide applicability of the proposed

optimization framework.

4 APACHE FLINK IMPLEMENTATION
In this section, we provide details of our implementation of the proposed TTL aggregation and its

optimization framework in Apache Flink [9], a popular stream processing engine. Apache Flink

follows the dataflow model [4] as its computation model. In the dataflow model, data streams

enter continuously into the system from various data sources and are transformed by a set of

stream operators. We introduce two new operators - TTLAggregation operator, which supports TTL

aggregation and TTLAggregationOptimized operator which incorporates the proposed optimization

framework. We first give details of these operators’ API for any user to use them in their application.

Then we give the details of the actual implementation of these operators in Apache Flink.

4.1 TTL Aggregation operators
TTLAggregation operator. The TTLAggregation operator allows the user to perform the proposed

TTL aggregation as explained in Section 2. The operator API is similar to that of the existing

window operators like Tumbling windows and Sliding windows [35]. TTLAggregation operator

takes as input the TTL value and the aggregation function to be performed on the data stream. For

example, the user can use the TTLAggregation operator as follows:

input
.keyBy(new KeySelectorFunction())
.process(new TTLAggregation(TTL,
new UserDefinedAggregateFunction()
));

Here, TTL is the TTL value to be used for TTL aggregation. It can be the same (a single floating

point value) or different (stored as a map, Map<Key, TTL>) across keys. Additionally, users can also

specify a default TTL as a second argument which will be used for any new keys in the data stream.

In the scenarios where the unique number of keys are very high, the user may want to partition the

keys into a smaller number of classes and instead provide the TTL for each class. This essentially

means adding another level of keying in the data stream.

TTLAggregationOptimized operator. The advantage of the proposed TTLAggregation operator

over the existing window operators such as Tumbling window operator is that it can benefit from

the optimization framework proposed in this paper. It can help the user achieve the delay-traffic
tradeoffs achieved by the proposed optimization framework. To this end, we introduce another

operator called as TTLAggregationOptimized which uses the optimization framework proposed

in this paper to compute the TTL value for every key. The user can also choose between per-key

optimization or global optimization in which the entire data stream is considered to be belonging

to a single global key. For example, the user can use per-key optimization in the following way:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

A TTL-based Approach for Data Aggregation in Geo-distributed Streaming Analytics 29:11

Fig. 5. Implementation design for TTLAggregationOptimized operator in Apache Flink.

input
.keyBy(new KeySelectorFunction())
.process(new TTLAggregationOptimized(PerKey=True, α,

DelayCost, TrafficCost, InitialTTL, UpdateInterval,
new UserDefinedAggregateFunction()

));

Here α , DelayCost and TrafficCost are user-defined tradeoff parameter, unit delay cost and unit

traffic cost respectively, as discussed in Section 3. This operator allows the unit delay cost and unit

traffic cost to be same (single floating point value) or different (Map<Key, UnitCost>) across all keys,

allowing multi-class differentiation.

Adaptive TTL optimization. In a real system, the arrival rates of incoming data streams will vary

over time. Therefore, we implement an adaptive TTL optimization where TTLs are re-computed

periodically based on current key arrival rates. The UpdateInterval argument allows the user to

recompute the TTLs after every UpdateInterval time units. InitialTTL is the TTL value assigned

to each key until the system has sufficient data to measure its arrival rate.

Note that the proposed TTL operators can also be implemented in other stream processing

engines such as Spark Streaming [36] and Apache Heron [24] which we leave as part of the future

work. In Section 5, we also show how our TTL-based optimization framework can be used to

optimize delay-traffic tradeoff for traditional windowed group aggregation.

4.2 Prototype
The design of TTLAggregationOptimized operator is shown in Figure 5. It has the following four

components:

TTL dictionary. It stores the up-to-date TTL value for each key.

TTL aggregator cache. It functions exactly as explained in Section 2. It receives the incoming

data stream, performs TTL aggregation, stores the most up-to-date aggregated value for every key

and sends the aggregated records to downstream operators. If the incoming record’s key does not

exist in the TTL aggregator cache, the key is inserted into the TTL aggregator cache and the key’s

timer value is set to its current TTL value, fetched from the TTL dictionary. If the key already exists

in the TTL aggregator cache, the aggregated value of the key is updated with the current record’s

value. Whenever the key’s timer expires, the TTL aggregator cache evicts the key and sends the

aggregated record to the downstream operators.

Arrival rate tracker. The Arrival rate tracker monitors the incoming data stream. It maintains the

most up-to-date arrival rate of each key and updates the arrival rate of a key whenever it receives

a new record for that key. The average arrival rate for each key is computed using exponential

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

29:12 Dhruv Kumar et al.

smoothing [8] (with smoothing factor = 0.9 in our implementation). Note that more sophisticated

methods of arrival rate prediction can be used but the investigation of these methods is beyond the

scope of this paper and are left as part of future work.

Optimizer. The optimizer is the main component implementing the entire optimization framework

proposed in Section 3. The optimizer runs an adaptive algorithm that periodically retrieves the

most up-to-date arrival rates for all the keys from the Arrival rate tracker and recomputes the TTL

values for the keys for which the change in arrival rate is above a certain threshold. The TTL values

are computed using Equation (5). The recomputed TTL values are saved into the TTL dictionary for

subsequent accesses. Note that the TTL computation for each key involves a single mathematical

formula whose computation overhead is negligible.

TTLAggregation operator has a similar design to the TTLAggregationOptimized operator. The

only difference is the absence of the Arrival rate tracker component and the way in which TTL

values are computed. The TTLAggregation operator directly takes the TTL values as an input from

the user and does not modify them during the course of the query execution.

5 EMPIRICAL EVALUATION
5.1 Experimental setup
We consider the hub-and-spoke system topology where there is a central server connected to

multiple edge servers. In this setup, a Flink cluster runs on each of the central and edge server sites.

Each of the edge sites continuously ingests a separate incoming data stream, performs aggregation

using the TTLAggregationOptimized operator (Section 4.1) and then forwards the aggregated data

to the central server. The central server receives the data from all the edge servers, performs a

final aggregation and then saves the final results into a database. Additionally, we also run a data

streamer locally on each of the edge sites to generate raw input data streams which are sent to the

respective edge clusters. We now describe each of the above mentioned components in detail.

Data streamer. It replays timestamped records from a trace file and can speed up or slow down

record replay to explore different stream arrival rates. Each record has three components: <arrival
timestamp, key, value>. The data streamer sends each record <key, value> to the Flink job running

at the edge according to its timestamp.

Edge site. The Flink job running on the edge cluster receives data records from the data streamer

and assigns an arrival timestamp to each record. Then the records are partitioned based on keys using

the keyBy operator. The partitioned records are then forwarded to the TTLAggregationOptimized

operator. This TTLAggregationOptimized operator performs the user specified aggregation function

using the proposed TTL aggregation mechanism (Section 2) and then forwards the aggregated

records to the output sink operator. The output sink operator assigns eviction timestamp to every

record and sends the record to the TCP socket Socketcenter,in listening at the central server site.

Central site. The center continuously receives the incoming partially aggregated records from the

edge, assigns them an arrival timestamp, performs the final aggregation and updates the database

with the most recent aggregated values.

We demonstrate the effectiveness and practicality of our algorithms through a real deployment

of the hub-and-spoke system topology on two testbeds:

AWS EC2 testbed.We use 6 AWS EC2 (t2.xlarge instance type) geographically distributed sites

for our experiments. We run the central server in California region while the edge servers are

deployed in Virginia, Oregon, London, Mumbai and Seoul. The data streamer runs locally on each

of the edge server sites.

Emulated testbed.We also run our experiments on a local 12-node testbed which emulates the

WAN bandwidth characteristics measured across the AWS EC2 sites. Each of the central server and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

A TTL-based Approach for Data Aggregation in Geo-distributed Streaming Analytics 29:13

edge servers run on a cluster of two machines each. Each machine is a 6-core Intel(R) Xeon(R) CPU

E5-2620 v3 @ 2.40GHz. All the machines are connected by a 1 Gbps ethernet. We emulate WAN

characteristics using Linux TC utility.

Evaluation metrics. We use the following metrics:

• Delay: We measure the edge aggregation delay to be the time spent by a record at the edge. This

is computed by taking the difference between the eviction timestamp and the arrival timestamp of

the record at the edge. As discussed earlier, we mainly focus on the edge aggregation delay here.

We also compute the edge-to-center network delay and show it in results as appropriate.

• Traffic: We define traffic to be the number of records transmitted per second over the WAN.

5.2 Datasets and queries
Datasets. We use two datasets to evaluate our proposed approach: a collection of anonymized

beacon logs from Akamai’s download analytics service, and the real tweet data from Twitter.

Akamai [25] operates a large geographically distributed content delivery network. It runs real-life

analytics services for a variety of purposes. One such service is the download analytics service [1]

which is consumed by the content providers for tracking important metrics such as the unique

number of users downloading a particular content, the location from where an item is downloaded,

the type of device used for downloading, the download performance experienced by the user, the

number of successful complete downloads and so on. These metrics are collected from a software

called as Download Manager [2] that is installed on millions of user devices such as mobiles,

desktops, tablets, laptops, etc. This download manager is typically used for downloading softwares,

software updates, music, videos, games, security updates, etc. The download manager running

on the user device logs information about its downloads to the geographically distributed edge

servers using beacons
6
. These beacons contain anonymized information about the download start

time, url, content size, number of bytes downloaded, user’s ip, user’s network, user’s geography,

server’s network and server’s geography. The beacon logs were collected for an entire one month.

We normalize data sizes, traffic sizes, time durations etc, for the purpose of keeping confidentiality. We
use the maximum value of these metrics that are plotted as the denominator for normalization, so that
points have co-ordinates in the range [0, 1].

The real tweet data from Twitter was collected using publicly available Twitter Streaming APIs

[31] in December 2015. It consists of approximately 4 million tweets per day. The Twitter Streaming

APIs only give a sample of the actual Twitter workload. Hence, we scaled the playback rate to around

6000 tweets per second to emulate the actual tweet rate [32]. Each tweet contains information

such as the username, user location, language of the tweet, actual tweet contents, user gender, age,

country, etc. Each tweet record is on an average 450 bytes which leads to a tweet stream rate of

around 20 Mbps.

For both the datasets, we distribute the data records across the edge server sites based on their

geographic information.

Queries. For the Akamai workload, we compute the Sum,Max and HyperLoдLoд [13] aggregation

for a very common query which groups by content provider id, the user’s country code, and the

url accessed. The number of unique keys in this query are of the order of 10
6
. The Sum aggregation

computes the total number of bytes successfully downloaded for each key, the Max aggregation

computes the largest successful download size for each key, and the HyperLogLog aggregation is

used to approximate the number of unique client IP addresses for each key. Due to space constraints,

we only show the results corresponding to the Sum aggregation queries, but similar results hold for

6
A beacon is a HTTP GET request by the Download Manager for a small GIF containing the reported values in its url query

string.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

29:14 Dhruv Kumar et al.

(a) Representative key 1. (b) Representative key 2.

Fig. 6. CDF of inter-arrival times for real Akamai trace and synthetic trace for two representative keys.

other queries and aggregation operators. For Twitter data, we show results for the popular word

count query which computes the frequency of words appearing in tweets grouped by location.

Similar results hold for other Twitter queries such as the trending topics query which computes

the frequency of tweets grouped by location, language and topic but they are not shown due to

space constraints.

5.3 Empirical results
We first show the key results of our evaluation by running experiments using the Akamai trace on

the AWS EC2 testbed.

Characteristics of the real-world Akamai trace. We first show that the real-world Akamai

trace does not have strict Poisson arrivals for any key. To that end, we generate a synthetic trace

based on the real Akamai trace, where each key follows Poisson arrivals with the same average

arrival rate as in the Akamai trace. We analyzed the distribution of inter-arrival times for the

corresponding keys from the real and synthetic trace and found them to be visibly different as

depicted in Figure 6. Additionally, we performed the Two Sample Kolmogorov-Smirnov test (KS test)

for a quantitative comparison of the distribution of inter-arrival times for the corresponding keys

in real and synthetic traces for Akamai. We used a P-value of 0.05 for rejecting the null hypothesis

that the two samples were drawn from the same distribution. None of the keys passed the KS test,

showing that the real Akamai trace does not have strict Poisson arrivals for any key.

Comparison of theoretical and empirical results. We now show that despite the fact that the

real-world traces, such as the Akamai trace, may not be strictly Poisson, our proposed theoretical

optimization model with Poisson assumptions works well in practice. To that end, we compare the

theoretically computed average delay, traffic, and storage costs (calculated using Equations (2), (3),

and (1)) to the empirically computed delay, traffic, and storage costs. In particular, we compare three

results: 1) empirical costs for the real Akamai trace, 2) empirical costs for the synthetic Poisson

trace with same key arrival rates as the Akamai trace as described earlier, and 3) theoretical costs

for the same synthetic trace. We vary the tradeoff parameter α from 0 to 1 and for each α , we
compute all three results. We use d = 0.01, c = 1 for all the keys at all the edges.

Figure 7 compares the curves for all three cases. We can see that the theoretical costs match very

well with the empirical costs for the synthetic trace while the empirical costs for the real Akamai

trace differ slightly more with the other two.

Another important takeaway from Figure 7 is the variation of delay and traffic costs as α goes

from 0 to 1. Our proposed approach can cover the entire delay-traffic tradeoff curve with batching

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

A TTL-based Approach for Data Aggregation in Geo-distributed Streaming Analytics 29:15

(a) Delay vs. traffic. (b) Delay vs. α .

(c) Traffic vs. α . (d) Storage vs α .

Fig. 7. Comparison between theory and experimental results of delay-traffic tradeoff for Akamai trace.

on the left end and streaming on the right end. Depending on the delay-traffic tradeoff requirement

of the application, the user can choose an appropriate α . For instance, if the user is looking for the

“best” delay-traffic tradeoff, an α value in the range 0.8-0.9 would work well in this experiment.

Here, the “best” delay-traffic tradeoff is able to simultaneously achieve 90% reduction in delay as
compared to batching and 94% reduction in traffic as compared to streaming. Given the close match

between theoretical and empirical results, a key point here is that this “best” (or stable) operating

region can be derived theoretically (as discussed in Section 3.3), rather than through trial-and-error

empirically, as is the common practice today.

Multi-class traffic differentiation. Next, we show the effect of the variation in dmk /c
m
k ratio on

Tm
k and consequently on the delay-traffic tradeoff. We consider two classes of keys: high priority

keys (called as class R) having dmk = 1, cmk = 1 and low priority keys (called as class NR) having

dmk = 0.01, cmk = 1. Here, class R has a relatively higher delay-traffic unit cost ratio (dmk /c
m
k)

compared to class NR, and thus, a lower tolerance for delay, even at the expense of higher traffic.

We can see from Figure 8 that the average delay is lower for high priority keys while the average

traffic is higher for high priority keys. This result is in accordance with the theory in Section 3.2.

This differentiation is useful in the scenarios where some keys are less delay tolerant than the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

29:16 Dhruv Kumar et al.

(a) Delay vs. α . (b) Traffic vs. α .

Fig. 8. Delay-traffic tradeoffs for multi-class traffic. The delay (resp. traffic) for class R (dmk /c
m
k = 1) is always

lower (resp. higher) compared to that for class NR (dmk /c
m
k = 0.01).

Fig. 9. Comparison of total cost for per-key (Pk) and global (Glb) approaches for both TTL-based aggregation
(TTL) and windowed grouped aggregation (Window).

others. A typical example of this would be a QoS monitoring data stream which sends the video

delivery statistics to the center for all the users. If there are both paid users and unpaid users in the

incoming data stream, then the paid users’ statistics are more critical and must reach the center

sooner than that of the unpaid users. In this case, the paid users’ keys would be assigned lower

delays compared to the unpaid users’ keys.

We now show other results of our evaluation by running experiments on the emulated testbed.
Application of TTL-based optimization to windowed grouped aggregation. Here, we show
how our proposed TTL-based optimization framework can be used to optimize windowed group

aggregation, where the optimal window size is derived by our optimization framework.

We compare the delay-traffic tradeoff for our TTL-based aggregation operator to a windowed

grouped aggregation operator, that uses the TTL values derived from our optimization framework
as its window size. We also consider two types of windowing (and TTL-based) approaches. One

is per-key windowing where each key has its own window size, i.e., the windows are unaligned

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

A TTL-based Approach for Data Aggregation in Geo-distributed Streaming Analytics 29:17

Fig. 10. Comparison of static TTL and adaptive TTL.

in stream processing terminology. The second is global windowing where all keys have aligned
windows of same size. For computing the TTL for the global windowing case, instead of considering

the individual arrival rates of every key, we compute the average of the arrival rates of all the keys

and use this average as the common arrival rate for all the keys. We vary the tradeoff parameter α
from 0 to 1 and we use d = 0.01, c = 1 for all the keys.

Figures 9 shows the total cost comparison for windowed grouped aggregation and TTL-based

aggregation approach. We see that the results match closely for the per-key windowing as well

as for the global windowing. At the same time, the total cost for per-key TTL-based aggregation

approach can be up to 10% less than that of the global TTL-based aggregation approach. Similar

trend is seen for per-key vs. global windowed grouped aggregation as well. From these results,

we conclude that the optimization model proposed in this work can be used for achieving a good

delay-traffic tradeoff in windowed grouped aggregation (if the window sizes are tunable and can

be used with per-key windowing).

Adaptive TTL optimization. In practice, the arrival rates of the keys in the incoming data stream

may not be known a priori, and may also change over time. Thus, it is important to recompute the

TTLs periodically so that the TTLs reflect the current arrival rates. To show the performance of

our proposed approach in such scenarios, we consider a synthetic trace in which the arrival rates

keep on changing continuously (first increase for a certain time and then decrease). The record

arrivals follow Poisson distribution. We consider two approaches:

• Static TTL approach. In this approach, the average arrival rates of the keys are computed using

the entire trace at the beginning of the experiment (hence, this is the best static approach). We use

this pre-computed arrival rate to compute the TTL value for each key and use this TTL value for

the entire processing of the synthetic trace.

• Adaptive TTL approach. In this approach, we start from an initial TTL and recompute the TTL

periodically online using the most up-to-date arrival rate of the keys, as discussed in Section 4.2.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

29:18 Dhruv Kumar et al.

Figure 10 compares the static TTL approach with the adaptive TTL approach. Due to space

constraints, we only show the results of one key. Results for other keys also follow the same trend.

Here, we fix α = 0.6, c = 1,d = 1. We can see that as the arrival rate varies, the TTL value also

keeps on changing taking into account the most up-to-date arrival rate. An interesting point to note

here is that the TTL varies in accordance with the theory proposed and explained in Section 3.1.

Section 3.1 explains that as the arrival rate increases, the TTL goes through four regions: Region

1, where the TTL is zero because of very low arrival rate, Region 2, where the TTL is a concave

increasing function of the arrival rate, Region 3, where the TTL starts decreasing and Region 4,

where the TTL decreases significantly. These four regions are shown as R1, R2, R3 and R4 in Figure

10. Note that there is some noise in the initial portion and the last portion of the trace due to the

arrival rate being too low, which sometimes results in bursty arrivals in the adaptation intervals.

The more interesting portion is the middle portion where the arrival rate increases significantly.

Here, we see that initially TTL also increases with the arrival rate (Region 2), but beyond a point, it

switches to decreasing with increasing rate (Region 3), and continues to decrease as the arrival rate

increases (Region 4). Once the arrival rate starts decreasing, we see a reverse transition through

the different regions.

Based on the variation in TTL, the instantaneous delay cost, traffic cost and total cost also

vary accordingly. We see that at low arrival rates, the total cost for both the static and adaptive

approaches is about the same (close to 0), but as the rate increases, Adaptive achieves lower total

cost (up to 31% near the peak arrival rate). Looking at the delay and traffic curves, we find that the

TTL is tuned to lower delay aggressively at the expense of higher traffic during high rate periods.

This is primarily because of the parameter values of α , c and d , which prefer lower delay compared

to traffic. For other values of these parameters, the optimization framework will still try to achieve

low total cost, though the desired delay-traffic tradeoff point may be different.

Twitter trace results. We next show one key result of our evaluation by running experiments

using the Twitter trace on the emulated testbed. Due to space constraints, we omit other results

but the conclusions remain the same. As in the case of Akamai trace, we again confirm that the

real-world Twitter trace does not have strict Poisson arrivals for any key. For this, we generate

another synthetic trace based on the real Twitter trace where each key follows Poisson arrivals with

the same average arrival rate as in the Twitter trace. The KS-test (with P-value of 0.05) comparing

the distribution of the inter-arrival times for the corresponding keys in the real and synthetic traces

fails for all the keys, indicating that the real Twitter trace does not have Poisson arrivals for any

key.

Here, we again show that the proposed optimization model works well in practice by comparing

our empirical results to the theoretical results for the Twitter trace. Similar to Figure 7, we consider

three results: 1) empirical costs for the real Twitter trace, 2) empirical costs for the synthetic trace

and 3) theoretical costs for the synthetic trace. We vary the tradeoff parameter α from 0 to 1 and

for each α , we compute all three results.

The results are shown in Figure 11. We can see that in this case also, the theoretical costs match

very well with the empirical costs. The "best" delay-traffic tradeoff in this case can be achieved

by choosing α in the range 0.4-0.5 where both delay and traffic are small in comparison to the

batching delay and streaming traffic.

6 EXTENSIONS
Here, we show how our framework can be extended to explore TTL aggregators in other types of

problems. We consider two particular problems. One is to minimize the delay cost with a traffic

constraint, the other is to minimize the traffic cost with a delay constraint.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

A TTL-based Approach for Data Aggregation in Geo-distributed Streaming Analytics 29:19

(a) Delay vs. traffic. (b) Delay vs. α .

(c) Traffic vs. α . (d) Storage vs. α .

Fig. 11. Comparison between theory and experimental results of delay-traffic tradeoff for Twitter trace.

6.1 Minimizing delay (traffic bound)
Since the bandwidth for the edge-to-center WAN is usually limited, we consider the problem to

minimize the delay subject to a traffic constraint. Our goal is to find the optimal vector of timers

T = {Tm
k }k ∈Nm,m∈M to minimize the total delay costCdelay incurred across all keys and edges, such

that the traffic over all keys on each edge is bounded, i.e.,

min Cdelay

s.t. Cm
traffic

≤Wm , m = 1, · · · ,M,

Tm
k ≤ T

m
k,max
, k = 1, · · · ,Nm , m = 1, · · · ,M, (7)

where Cm
traffic

is the traffic caused by all keys on edgem. Using Theorem 2.1, we can write Cm
traffic

as

the sum of the delay cost of all keys over edgem, i.e.,Cm
traffic

=
∑Nm

k=1
cmk λmk

1+λmk Tmk
.Wm is a constant, e.g.,

average bandwidth limit on traffic for edgem. Tm
k,max

is the maximal delay that key k can tolerate,

which is a constant based on the application.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

29:20 Dhruv Kumar et al.

Theorem 6.1. The optimal timers (TTLs) that minimize the expression for Cdelay in Equation (7)
satisfy

Tm
i = 0, i = 1, · · · , j,

Tm
i = T

m
i,max, i = j + 1, · · · ,Nm , (8)

where we assume that the delay costs per content are sorted as dm
1
≥ dm

2
≥ · · · ≥ dmNm

, and j satisfies



j∑
k=1

cmk λ
m
k +

Nm∑
k=j+1

cmk λ
m
k

1 + λmk T
m
k,max


=Wm , (9)

where ⌈·⌉ is the ceiling function.

(a) Delay vs. traffic budget. (b) Traffic vs. traffic budget. (c) Storage vs. traffic budget.

Fig. 12. Minimize delay with a constraint on traffic. Keys with higher unit delay cost (dmk) are always given
preference over the keys with lower unit delay cost in the assignment of available traffic budget.

Empirical results. Intuitively, Theorem 6.1 tries to assign the available traffic budget (called

constraint in the theorem) to the keys having higher unit delay costs as compared to others. To

showcase how this theorem works in practice, we run a simple empirical analysis on the emulated

testbed using the Akamai trace. In this experiment, we consider two classes of keys: high priority

keys (class R) having higher dmk (= 1) and low priority keys (class NR) having lower dmk (= 0.01). We

use cmk = 1 for all the keys. We vary the available traffic budget from zero to the minimum traffic

budget required for streaming all the keys without any delay.

From Figure 12, we can see that initially, when the available traffic budget is very small, the

model assigns the complete budget to high priority keys. As the available traffic budget increases,

the model first assigns the available budget to the high priority keys and then assigns the remaining

portion of the budget to the low priority keys. Therefore, we see that first the average delay goes on

decreasing for the high priority keys until it becomes close to zero. Till this point, the average delay

for the low priority keys remains high since they have not been assigned any traffic budget. After

this point, the average delay for the low priority keys starts decreasing as they also start getting

assigned some portion of the traffic budget. Correspondingly, the traffic for high priority keys

keeps increasing with the increase in the available traffic budget until almost all the high priority

keys are sent without any delay. Till this point, the traffic for the low priority keys is negligible

since they have not been assigned any traffic budget. After this point, the traffic for the low priority

keys starts increasing as they also start getting assigned some portion of the budget.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

A TTL-based Approach for Data Aggregation in Geo-distributed Streaming Analytics 29:21

6.2 Minimizing traffic (delay bound)
Some applications have a stringent constraint on the delay between edge servers and the center,

hence we consider the problem to minimize the traffic subject to a delay constraint. Our goal is

to find the optimal vector of timers T = {Tm
k }k ∈Nm,m∈M to minimize the total traffic cost Ctraffic

incurred across all keys and edges, such that the delay over all keys on each edge is bounded, i.e.,

min Ctraffic

s.t. Cm
delay
≤ Γm , m = 1, · · · ,M,

Tm
k ≤ T

m
k,max
, k = 1, · · · ,Nm , m = 1, · · · ,M, (10)

whereCm
delay

is the delay experienced by all keys on edgem. Using Theorem 2.1, we can writeCm
delay

as the sum of the delay cost of all keys over edgem, i.e.,

Cdelay =

M∑
m=1

Nm∑
k=1

dmk λmk T
m
k

2

*
,
1 +

1

1 + λmk T
m
k

+
-

(11)

Γm is a constant, e.g., average delay limit for edgem.

Theorem 6.2. The optimal timers (TTLs) that minimize the expression for Ctraffic in Equation (10)
satisfy

Tm
i = T

m
i,max, i = 1, · · · , l ,

Tm
i = 0, i = l + 1, · · · ,Nm , (12)

where we assume that the traffic costs per content are sorted as cm
1
≥ cm

2
≥ · · · ≥ cNm , and l satisfies



l∑
k=1

*
,

dmk λmk T
m
k,max

2

*
,
1 +

1

1 + λmk T
m
k,max

+
-
+ dmk λmk B

m
k
+
-


= Γm . (13)

(a) Delay vs. delay budget. (b) Traffic vs. delay budget. (c) Storage vs. delay budget.

Fig. 13. Minimize traffic with a constraint on delay. The delay for class R (dmk /c
m
k = 1) is always lower in

comparison to the delay for class NR (dmk /c
m
k = 0.01) while the traffic for class R is always higher in comparison

to the delay for class NR.

Empirical results.We conduct a similar experiment to the traffic bound optimization case here

using the Akamai trace on the emulated testbed. In this experiment, we again consider two classes

of keys: high priority keys (class NR) having higher cmk (= 1) and low priority keys (class R) having

lower cmk (= 0.01). We use dmk = 0.01 for all the keys. We vary the available delay budget from zero

to the minimum delay budget required for batching all the keys. Figure 13 shows the results. We

see a similar trend to that seen with the traffic bound case here, where the high priority class gets

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

29:22 Dhruv Kumar et al.

allocated its portion of the delay budget first, and the low priority class gets the remaining portion

(if available). We note that our current formulation provides a strict prioritization of traffic or delay

across classes based on their delay/traffic unit cost preferences. This formulation can be extended

to achieve some fairness across different classes, to avoid starvation of lower priority classes. Such

an extension is part of our future work.

7 RELATEDWORK
Stream processing systems. A number of stream processing systems have been proposed in

recent times [9, 23, 24, 36], which aim at supporting streaming data applications requiring low

latency and high throughput. All of these systems work well in a single data center environment,

where the available bandwidth is much more abundant compared to a wide-area setting. Our work

focuses on achieving the delay-traffic tradeoff in a geo-distributed environment and can benefit

from these systems for efficient stream processing at every individual edge or center. We have

showcased the benefits of our approach by implementing a prototype in Apache Flink running at

every edge and center.

Geo-distributed analytics.Much of the work in the area of geo-distributed analytics has focused

on batch analytics [19, 27, 33], which optimizes query and placement of data and tasks to balance

bandwidth usage and latency. On the contrary, our work focuses on streaming analytics, where

latency is a critical metric.

JetStream [28] and AWStream [37] are wide-area streaming analytics systems. AWStream is

an improvement over JetStream, but both systems focus on trading off accuracy with bandwidth

consumption. Moreover, AWStream relies on offline empirical evaluation to choose the best tradeoff.

Sana [21] is yet another wide-area streaming analytics system focusing on multi-query optimiza-

tion in a wide-area environment. Our proposed work, on the other hand, provides a theoretical

framework for trading off delay with traffic. Further, our online algorithm automatically tries

to identify the optimal delay-traffic tradeoff. Some of the techniques proposed by these works,

including quality degradation and multi-query optimization, are complementary to our work.

TTL caches. TTL caches have been employed in the Domain Name System (DNS) since the early

days of Internet [22]. More recently, it has gained attention due to fact that a simple and tractable

analysis can be modeled to mimic the behaviors of caching algorithms. [10, 11] first introduced the

notion of characteristic time for LRU under IRM to show that TTL caches can be used to provide

accurate estimates of the performance of large caches. The accuracy of TTL cache is theoretically

justified under IRM [6] and stationary processes [20], and numerically verified under renewal

processes [16]. Its performance in cache networks has been studied [6, 15, 26]. All of the prior

work focus on using TTL caches for storing popular objects of various types. While our use of TTL

for aggregation is novel, some of the prior work on the mathematical properties of TTL caches

are relevant in our new context, allowing us to use the expression for miss rates derived in this

literature.

Aggregation. Aggregation is an important operator in analytics and has been studied in the past

in various contexts. Heintz et al. focused on delay-traffic tradeoff [18] as well as delay-accuracy

tradeoff [17] in the context of windowed grouped aggregation in geo-distributed streaming analytics.

Our work is different from both these works from two perspectives. First, we focus on continuous

aggregation instead of windowed grouped aggregation. Second, we propose theoretically sound

online algorithms for achieving the desired delay-traffic tradeoff as compared to the heuristic-

based online algorithms proposed in both of these prior works. Amur et al. [5] studied grouped

aggregation focusing on the design and implementation of efficient data structures for batch and

streaming computation but did not consider delay as a performance metric which is critical in the

geo-distributed setting. Aggregation has also been studied in sensor networks [29], where the goal

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

A TTL-based Approach for Data Aggregation in Geo-distributed Streaming Analytics 29:23

is to gather and aggregate data in an energy efficient manner to enhance network lifetime. The

goal of our work is different and is to achieve the desired delay-traffic tradeoff in a geo-distributed

environment.

8 CONCLUSION
In this paper, we proposed a new TTL-based mechanism for aggregation that allows us to model

and optimize the all-important delay-traffic tradeoff in wide-area streaming analytics. TTLs have

been widely used in the context of caching frequently used objects, such objects range from DNS

entries to web pages. However, its use for aggregating wide-area distributed data streams is novel.

As we show with our Apache Flink implementation, TTL aggregators are easy to implement in

the current stream processing frameworks. We also show that the TTL mechanism provides a set

of knobs that can be used by the network operator to balance delay and traffic costs of a large

geo-distributed analytics system in a manner that is predictable and theoretically well-founded.

As future work, we plan to consider applications of the TTL approach to other types of wide-area

stream processing.

9 ACKNOWLEDGMENTS
The authors thank the anonymous reviewers and our shepherd Ganesh Ananthanarayanan, for

many constructive comments and suggestions that greatly improved the quality of this paper.

The authors also thank Kshitij Tayal for his helpful comments on the formulations. This work

was sponsored in part by NSF under Grants CNS-1717834 and CNS-1717179, as well as by the

U.S. Army Research Laboratory and the U.K. Ministry of Defence under Agreement Number

W911NF-16-3-0001.

REFERENCES
[1] Akamai Download Analytics solution. Accessed: 2018-10-29. https://www.akamai.com/us/en/multimedia/documents/

product-brief/download-analytics-product-brief.pdf.

[2] Akamai Download Manager. Accessed: 2018-10-29. https://www.akamai.com/us/en/products/media-delivery/

download-manager-overview.jsp.

[3] Akamai Media Analytics. Accessed: 2018-10-29. https://www.akamai.com/us/en/products/media-delivery/

media-analytics.jsp.

[4] Tyler Akidau, Eric Schmidt, Sam Whittle, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J. FernÃąndez-

Moctezuma, Reuven Lax, SamMcVeety, Daniel Mills, and Frances Perry. 2015. The dataflowmodel: a practical approach

to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data processing. (2015).

[5] Hrishikesh Amur, Wolfgang Richter, David G. Andersen, Michael Kaminsky, Karsten Schwan, Athula Balachandran,

and Erik Zawadzki. 2013. Memory-efficient Groupby-aggregate Using Compressed Buffer Trees. In Proc. of ACM
SOCC.

[6] D. Berger, P. Gland, S. Singla, and F. Ciucu. 2014. Exact Analysis of TTL Cache Networks. Performance Evaluation 79

(2014), 2–23.

[7] Oscar Boykin, Sam Ritchie, Ian O’Connell, and Jimmy Lin. 2014. Summingbird: A framework for integrating batch and

online mapreduce computations. VLDB 7, 13 (2014), 1441–1451.

[8] Robert Goodell Brown. 1963. Smoothing, forecasting and prediction of discrete time series. Prentice-Hall Englewood
Cliffs, N.J. 468 p. pages.

[9] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas Tzoumas. 2015. Apache

Flink: Stream and Batch Processing in a Single Engine. (2015).

[10] H. Che, Y. Tung, and Z. Wang. 2002. Hierarchical Web Caching Systems: Modeling, Design and Experimental Results.

IEEE Journal on Selected Areas in Communications 20, 7 (2002), 1305–1314.
[11] Ronald Fagin. 1977. Asymptotic Miss Ratios over Independent References. J. Comput. System Sci. 14, 2 (1977), 222–250.
[12] A. Ferragut, I. Rodríguez, and F. Paganini. 2016. Optimizing TTL Caches under Heavy-tailed Demands. In Proc. of

ACM SIGMETRICS.
[13] Philippe Flajolet, ÃĽric Fusy, Olivier Gandouet, and et al. 2007. Hyperloglog: The analysis of a near-optimal cardinality

estimation algorithm. In Proc. of IN AOFA.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

https://www.akamai.com/us/en/multimedia/documents/product-brief/download-analytics-product-brief.pdf
https://www.akamai.com/us/en/multimedia/documents/product-brief/download-analytics-product-brief.pdf
https://www.akamai.com/us/en/products/media-delivery/download-manager-overview.jsp
https://www.akamai.com/us/en/products/media-delivery/download-manager-overview.jsp
https://www.akamai.com/us/en/products/media-delivery/media-analytics.jsp
https://www.akamai.com/us/en/products/media-delivery/media-analytics.jsp

29:24 Dhruv Kumar et al.

[14] N. C. Fofack, M. Dehghan, D. Towsley, M. Badov, and D. L. Goeckel. 2014. On the Performance of General Cache

Networks. In VALUETOOLS.
[15] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley. 2012. Analysis of TTL-based Cache Networks. In VALUETOOLS.
[16] M. Garetto, E. Leonardi, and v. Martina. 2016. A Unified Approach to the Performance Analysis of Caching Systems.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems 1, 3 (2016), 12.
[17] Benjamin Heintz, Abhishek Chandra, and Ramesh K. Sitaraman. 2016. Trading Timeliness and Accuracy in Geo-

Distributed Streaming Analytics. In Proc. of ACM SoCC.
[18] Benjamin Heintz, Abhishek Chandra, and Ramesh K. Sitaraman. 2017. Optimizing Timeliness and Cost in Geo-

Distributed Streaming Analytics. (2017).

[19] Chien-Chun Hung, Ganesh Ananthanarayanan, Leana Golubchik, Minlan Yu, and Mingyang Zhang. 2018. Wide-area

analytics with multiple resources. In Proc. of EuroSys.
[20] B. Jiang, P. Nain, and D. Towsley. 2016. On the Convergence of the TTL Approximation for an LRU Cache under

Independent Stationary Rrequest Processes. ACM Transactions on Modeling and Performance Evaluation of Computing
Systems 3, 4 (2016), 20.

[21] Albert Jonathan, Abhishek Chandra, and Jon Weissman. 2018. Multi-Query Optimization in Wide-Area Streaming

Analytics. In Proc. of ACM SoCC.
[22] J. Jung, A. Berger, and H. Balakrishnan. 2003. Analysis of TTL-based Cache Networks. In IEEE INFOCOM.

[23] KSQL: Streaming SQL for Kafka. Accessed: 2018-10-29. https://www.confluent.io/product/ksql/.

[24] Sanjeev Kulkarni, Nikunj Bhagat, Masong Fu, Vikas Kedigehalli, Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel,

Karthik Ramasamy, and Siddarth Taneja. 2015. Twitter Heron: Stream Processing at Scale. In Proc. Of ACM SIGMOD.
[25] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. 2010. The Akamai Network: A Platform for High-performance

Internet Applications. SIGOPS Oper. Syst. Rev. 44, 3 (2010), 2–19.
[26] N. K. Panigrahy, J. Li, F. Zafari, D. Towsley, and P. Yu. 2018. Optimizing Timer-based Policies for General Cache

Networks. Arxiv preprint arXiv:1711.03941 (2018).
[27] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya Akella, Paramvir Bahl, and Ion Stoica.

2015. Low Latency Geo-distributed Data Analytics. In ACM SIGCOMM.

[28] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S. Pai, and Michael J. Freedman. 2014. Aggregation and Degradation

in JetStream: Streaming Analytics in the Wide Area. In Proc. of USENIX NSDI.
[29] Ramesh Rajagopalan and Pramod Varshney. 2006. Data-aggregation techniques in sensor networks: a survey. 4 (2006),

48–63.

[30] Twitter Analytics. Accessed: 2018-10-29. https://business.twitter.com/en/analytics.html.

[31] Twitter Developer APIs. Accessed: 2018-10-29. https://developer.twitter.com/en/docs.

[32] Twitter usage statistics. Accessed: 2018-10-29. http://www.internetlivestats.com/twitter-statistics/.

[33] Raajay Viswanathan, Ganesh Ananthanarayanan, and Aditya Akella. 2016. CLARINET: WAN-Aware Optimization for

Analytics Queries. In Proc. of USENIX OSDI.
[34] Ashish Vulimiri, Carlo Curino, Philip Brighten Godfrey, Thomas Jungblut, Konstantinos Karanasos, Jitendra Padhye,

and George Varghese. 2015. Wanalytics: Geo-distributed analytics for a data intensive world. In ACM SIGMOD.
1087–1092.

[35] Windows API in Apache Flink. Accessed: 2018-10-29. https://ci.apache.org/projects/flink/flink-docs-stable/dev/

stream/operators/windows.html.

[36] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Stoica. 2013. Discretized streams:

Fault-tolerant streaming computation at scale. In ACM SOSP. 423–438.
[37] Ben Zhang, Xin Jin, Sylvia Ratnasamy, John Wawrzynek, and Edward A. Lee. 2018. AWStream: adaptive wide-area

streaming analytics. In Proc. of ACM SIGCOMM.

10 APPENDIX
Expected end-to-end delay:We characterize the average end-to-end delay that each key expe-

riences as comprising the network delay due to key transmission from edge server to the central

controller, as well as the aggregation delay caused by key aggregation at the edge server. W.l.o.g.,

we consider a key k from edge serverm, ∀m ∈ M. Using Theorem 2.1, the aggregation delay of

key k at edgem, denoted by Dm
a-delay-k

, can be derived as follows.

Dm
a-delay-k

=

(
1

1 + λmk T
m
k
+ 1

)
Tm
k

2

,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

https://www.confluent.io/ product/ksql/
https://business.twitter.com/en/analytics.html
https://developer.twitter.com/en/docs
http://www.internetlivestats.com/twitter-statistics/
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html

A TTL-based Approach for Data Aggregation in Geo-distributed Streaming Analytics 29:25

where λmk is the arrival rate of key k at edgem. Then the total expected aggregation delay for all

keys from edge serverm is

Dm
a-delay

=

Nm∑
k=1

λmk D
m
a-delay-k

=

Nm∑
k=1

(
1

1 + λmk T
m
k
+ 1

)
λmk T

m
k

2

, (14)

and the total expected aggregation delay cost for all keys from edge serverm is

Cm
a-delay

=

Nm∑
k=1

dmk λmk D
m
a-delay-k

=

Nm∑
k=1

(
1

1 + λmk T
m
k
+ 1

)
dmk λmk T

m
k

2

, (15)

where dmk is a constant characterizing the average delay cost for key k .
The network delay is measured as the time between the key being flushed from the edge server

to the time that the central hub receives it, which is a constant. Denote it as δmk for key k from

severm. The total expected network delay experienced by all keys from edge serverm is

Dm
n-delay

=

Nm∑
k=1

λmk δ
m
k , (16)

then total expected network delay cost experienced by all keys from edge serverm is

Cm
n-delay

=

Nm∑
k=1

dmk λmk δ
m
k . (17)

Thus, the total expected end-to-end delay and total expected end-to-end delay cost for all keys from
edge serverm is

Dm
delay
= Dm

a-delay
+ Dm

n-delay
, (18)

Cm
delay
= Cm

a-delay
+Cm

n-delay
. (19)

Therefore, the total expected end-to-end delay and total expected end-to-end delay cost in the whole

system is

Ddelay =

M∑
m=1

Dm
delay
, Cdelay =

M∑
m=1

Cm
delay
. (20)

Proposition 1. Cdelay is increasing in Tm
k for k ∈ Nm ,m ∈ M .

This is clear from (15) and (17), and intuitive since larger Tm
k results in more aggregation, which

increase the delay.

Average traffic: Traffic is measured as the number of updates sent over the network from edge

caches to the center. In our model, a cache miss is proceeded by a update or a update (“flush")

follows a cache miss. Hence, the number of updates equals to the number of cache miss. Therefore,

the total expected traffic caused by all keys from edge serverm is

TRm
traffic

=

Nm∑
k=1

λmk m
m
k =

Nm∑
k=1

λmk
1 + λmk T

m
k
, (21)

and the total expected traffic cost caused by all keys from edge serverm is

Cm
traffic

=

Nm∑
k=1

cmk λ
m
k m

m
k =

Nm∑
k=1

cmk λ
m
k

1 + λmk T
m
k
, (22)

where cmk is a constant characterizing the average traffic (miss) cost for content k .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

29:26 Dhruv Kumar et al.

Therefore, the total expected traffic and the total expected traffic cost in the whole system is

TRtraffic =

M∑
m=1

TRm
traffic
, Ctraffic =

M∑
m=1

Cm
traffic
. (23)

Proposition 2. Ctraffic is decreasing in Tm
k for k ∈ Nm ,m ∈ M .

This is clear from (22), and intuitive since largerTm
k results in more aggregation, which decreases

the traffic.

Our goal is to find optimal timers {Tm
k }k ∈Nm,m∈M to jointly obtain the optimal tradeoff between

the whole system delay and traffic cost. To do so, we first define the following functions

C (T) = αCdelay + (1 − α)Ctraffic

= α
M∑

m=1

Nm∑
k=1

((
1

1 + λmk T
m
k
+ 1

)
dmk λmk T

m
k

2

+ dmk λmk δ
m
k

)
+ (1 − α)

M∑
m=1

Nm∑
k=1

cmk λ
m
k

1 + λmk T
m
k
. (24)

Proof of theorem 3.1:

Proof. We first show thatC (T) is convex inTm
k for k ∈ Nm ,m ∈ M .We examine the properties

of its second derivative as follows. The first-order derivative of C (T) with respect to (w.r.t.) Tm
k is

αdmk λmk
2
+

αdmk λmk
2

1

(1+λmk Tmk)2
−

(1−α)cmk (λmk)2

(1+λmk Tmk)2
, then its second derivative w.r.t. Tm

k is

∂2C (T)

∂(Tm
k)2
=
−α (λmk)

2dmk
(1 + λmk T

m
k)3
+
2(1 − α) (λmk)

3cmk
(1 + λmk T

m
k)3

=
α (λmk)

2dmk
(1 + λmk T

m
k)
> 0

since α ≥ 0, Tm
k ≥ 0, λmk ≥ 0 and dmk > 0. Hence C (T) is convex in Tm

k for k ∈ Nm ,m ∈ M .
Since C (T) is convex in Tm

k , for k ∈ Nm ,m ∈ M, we take its derivative w.r.t. Tm
k and set it to

zero, we have

αdmk λmk
2

+
αdmk λmk

2

1

(1 + λmk T
m
k)2
−

(1 − α)cmk (λmk)
2

(1 + λmk T
m
k)2

= 0,

i.e., Tm
k =

1

λmk
*
,

√
2(1−α)cmk λmk

αdmk
− 1 − 1+

-
. In real system, we require Tm

k ≥ 0, i.e, λmk ≥
αdmk

(1−α)cmk
. Hence,

for all k ∈ Nm with 0 ≤ λmk <
αdmk

(1−α)cmk
, we map its timer Tm

k to zero. □

Derivation of transition points in Figure 3:

Proof. Without loss of generality, we consider a given key k at a given edge. From Theorem 3.1,

we have T = 0 if λ is in region I in Figure 3. In the following, we consider the case λ ≥ λ0.
We consider the first derivative of T (λ) w.r.t. λ,

∂T

∂λ
= −

1

λ2
*
,

√
2(1 − α)cλ

αd
− 1 − 1+

-
+
1

λ
·
1

2

1√
2(1−α)cλ

αd − 1

·
2(1 − α)c

αd

=
1

λ2


1 −

(1 − α)cλ − αd

αd

√
αd

2(1 − α)cλ − αd


. (25)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

A TTL-based Approach for Data Aggregation in Geo-distributed Streaming Analytics 29:27

Then, for
∂T
∂λ > 0, we have (2−

√
2)αd

(1−α)c < λ < (2+
√
2)αd

(1−α)c . As λ ≥
αd

(1−α)c , we have
αd

(1−α)c ≤ λ < (2+
√
2)αd

(1−α)c .

Similarly, λ ≥ (2+
√
2)αd

(1−α)c when
∂T
∂λ < 0. Therefore, T is increasing in λ when

αd
(1−α)c ≤ λ < (2+

√
2)αd

(1−α)c ,

and decreasing in λ when λ ≥ (2+
√
2)αd

(1−α)c . Denote λ0 ≜ αd
(1−α)c , and λ1 ≜

(2+
√
2)αd

(1−α)c .

Next, we consider the second derivative,

∂2T

∂λ2
= −

2

λ3


1 −

(1 − α)cλ − αd

αd

√
αd

2(1 − α)cλ − αd



+
1

λ2


−

(1 − α)c

αd

√
αd

2(1 − α)cλ − αd
−

(1 − α)cλ − αd

αd
·
√
αd · (−

1

2

)
2(1 − α)c

[2(1 − α)cλ − αd]3/2



= −
2

λ3
+
[

√
3(1 − α)cλ − (

√
3 − 1)αd][

√
3(1 − α)cλ − (

√
3 + 1)αd]

λ3 (αd)1/2[2(1 − α)cλ − αd]3/2
. (26)

Again, consider
∂2T
∂λ2 < 0, we have

[

√
3(1 − α)cλ − (

√
3 − 1)αd][

√
3(1 − α)cλ − (

√
3 + 1)αd] < 2(αd)1/2[2(1 − α)cλ − αd]3/2. (27)

Denote f1 (λ) = [

√
3(1−α)cλ − (

√
3− 1)αd][

√
3(1−α)cλ − (

√
3+ 1)αd], and f2 (λ) = 2(αd)1/2[2(1−

α)cλ − αd]3/2. It is easy to check that both f1 and f2 are increasing in λ when λ ≥ αd
(1−α)c , and

f1 (λ1) = (8 + 6
√
2) (αd)2 < f2 (λ1) = (14 + 10

√
2) (αd)2. (28)

Thus, it is clear that
∂2T
∂λ2 < 0 when λ0 ≤ λ ≤ λ1, i.e., T is concavely increasing in λ when

λ0 ≤ λ ≤ λ1.
Now, suppose there exists a λ2 such that

∂2T
∂λ2 = 0, thus it is clear that λ2 > λ1 from (27) and (28).

Therefore, we have T concavely increasing in λ when λ0 ≤ λ ≤ λ1, concavely decreasing in λ
when λ1 ≤ λ ≤ λ2, and convexly decreasing in λ when λ > λ2.

Since f1 (λ) > f2 (λ) when λ is large, while f1 (λ) < f2 (λ) when λ is small, and both f1 and f2 are
continuous, hence λ2 indeed exists. We can numerically verify the existence and value of λ2. □

Proof of corollary 3.2:

Proof. From (1) and Theorem 3.1, we immediately have

Bm =
Nm∑
k=1

(1 −mk) =
Nm∑
k=1

λkTk
1 + λkTk

= Nm −

Nm∑
k=1

1

1 + λkTk

= Nm − *
,

k ′∑
k=1

1

1 + λkTk
+

Nm∑
k=k ′+1

1

1 + λkTk
+
-

= Nm − *
,

k ′∑
k=1

1

1 + λmk
*
,

1

λmk
*
,

√
2(1−α)cmk λmk

αdmk
− 1 − 1+

-
+
-

+

Nm∑
k=k ′+1

1

1 + λmk · 0
+
-

=

k ′∑
k=1

*
,
1 −

√
αdmk

2(1 − α)cmk λ
m
k − αd

m
k

+
-
. (29)

□

Received February 2019; revised March 2019; accepted April 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 29. Publication date: June 2019.

	Abstract
	1 Introduction
	2 Time-to-Live (TTL) Aggregators
	3 Optimizing Delay-Traffic Tradeoff
	3.1 TTL adaptation to arrival rate
	3.2 TTL adaptation to unit cost
	3.3 TTL adaptation to

	4 Apache Flink Implementation
	4.1 TTL Aggregation operators
	4.2 Prototype

	5 Empirical Evaluation
	5.1 Experimental setup
	5.2 Datasets and queries
	5.3 Empirical results

	6 Extensions
	6.1 Minimizing delay (traffic bound)
	6.2 Minimizing traffic (delay bound)

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References
	10 Appendix

