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ABSTRACT
We study the problem of inferring the structure of a com-
munication network based only on network measurements
made from a set of hosts situated at the network periphery.
Our novel approach called “OCCAM” is based on the prin-
ciple of occam’s razor and finds the “simplest” network that
explains the observed network measurements. OCCAM in-
fers the internal topology of a communication network, in-
cluding the internal nodes and links of the network that are
not amenable to direct measurement. In addition to network
topology, OCCAM infers the routing paths that packets take
between the hosts. OCCAM uses path metrics measurable
from the hosts and expresses the observed measurements as
constraints of a mixed-integer bilinear optimization problem
that can then be feasibly solved to yield the network topol-
ogy and the routing paths. We empirically validate OCCAM
on a wide variety of real-world ISP networks and show that
its inferences agree closely with the ground truth. Specifi-
cally, OCCAM infers the topology with an average network
similarity score of 93% and infers routing paths with a path
edit distance of 0.20. Further, OCCAM is robust to error in
its measured path metric inputs, producing high quality in-
ferences even when 20-30% of its inputs are erroneous. Our
work is a significant advance in network tomography as it
proposes and empirically evaluates the first method that in-
fers the complete network topology, rather than just logical
routing trees from sources.

1. INTRODUCTION
Enterprises rely heavily on the Internet and other

communication networks for their operations. However,
they lack explicit knowledge about the topological prop-
erties of their network, such as the nodes and links of the
network and the routes that packets take between their
hosts. In fact, communication networks are often ad-
ministered by multiple entities and no single entity may
have apriori knowledge of the topology of the entire net-
work. However, there are great benefits for enterprises
to know the topological properties of their communi-
cation network. For instance, by deducing the graph
structure of the network and the routing paths between
their hosts, the enterprise can better understand the

impact of node (i.e., router) and link failures on their
mission-critical communication, leading to better disas-
ter planning and recovery. Further, knowing the net-
work topology and routes allow for better performance
monitoring and network resource management for en-
terprise communication.

Formally, a communication network N = (G,H,P )
can be represented by a graph G = (V,E), where V is
the set of nodes and E is the set of links, a set of hosts
H ⊂ V , and a set of routing paths P in G between
host pairs in H × H. An example of a communica-
tion network is shown Figure 1. Our work focuses on
the problem of infering network N using only metrics
measured from the hosts H. Network inference includes
both topology inference that infersG and route inference
that infers the routes P between each pair of hosts.

1.1 Prior Work in Network Inference
To set our research in context, we review prior work

in network inference that has been an active area of re-
search for more than two decades, given its importance
in many practical contexts. Much prior work can be put
into two broad categories depending on what measure-
ments can be made and to what extent the non-host
nodes in V \H assist in those measurements.

The first category of work assumes that active probes
(such as traceroute and mtrace) and data feeds (such
as BGP) can be used for network inference. For ex-
ample, Skitter [7] and its successor Archipelago [5] de-
rives the topology of the Internet using traceroutes and
BGP tables. Rocketfuel [25] infers the topology of an
ISP using traceroutes, BGP, and DNS measurements.
Dimes [24] aims to infer topology by running tracer-
outes from applications installed by volunteers on their
personal computers, as opposed dedicated machines as
hosts. Doubletree [9] modifies traceroute to be more
efficient by making the assumption that paths from a
source or paths to a destination form a tree.

The above work require the non-host nodes in the
network to support specific types of active probes (e.g,
traceroutes) and/or to provide measurement feeds (e.g.,
BGP). However, for reasons of security, many networks
(e.g., military networks) do not allow probes such as
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traceroutes and do not expose other internal network
data that may be used for inference. Even in civilian
networks such as the Internet, an increasing fraction of
routers do not respond to traceroutes [14, 28]. Further,
future networks may obfuscate topology inference by
returning false traceroutes [26].

In the past two decades, such considerations have
led to a second category of work that we refer to as
“network tomography” that aims to infer topology and
routes with minimal co-operation from the non-host net-
work elements (i.e., no traceroutes or data feeds) [3, 4,
6,11,20,27]. In the network tomography literature, net-
work inference is typically performed using only easily-
measurable path metrics derived from the hosts, such as
path distance (in number of hops) between hosts and
path sharing that is the (relative) amount of link shar-
ing between two host-to-host paths (c.f., Section 1.2).
Our focus is network tomography, as we use only path
metrics and assume no co-operation from non-host net-
work elements.

Early work on network tomography focused in infer-
ring the logical source tree rooted at a host, not the
entire network [3,11,12,20,22]. A source tree is the log-
ical tree formed by the routes from a host as the root
to the other hosts as the leaves. A source tree is not a
subgraph of the topology G, but rather the logical tree
that describes how paths from a source to other desti-
nations bifurcate. For instance, the source tree rooted
at host A in Figure 1 is shown in Figure 2. Ratnasamy
et al. [22] propose a method to infer a binary source
tree by using multicast probes sent from a source host
to a set of destination hosts. The tree is constructed
by observing that destinations experiencing correlated
losses have a common shared path from the source, and
the amount of correlation increases with the length of
the shared path. Subsequently, these results were ex-
tended to infer non-binary source trees with theoretical
guarantees [11], using delay covariances at the hosts in-
stead of losses [12], and using a train of unicast packets
instead multicast [10].

Besides inferring single source trees in isolation, how
multiple source trees intersect has been studied. Given
two source trees, [8, 21] discover the links where the
trees intersect, using path sharing metrics between pairs
of sources and destinations. But, the technique does
not allow the trees to be merged into a single network,
unless the trees overlap in very specific ways that do
not hold for general topologies. Thus, these techniques
cannot be used to produce the complete topology and
routes as we do in our work.

Recently, there has been some progress on complete
topology inference. A sparse random graph with shortest-
path routing can be inferred with small error and with
high probability, though using primitives with no es-
tablished techniques for measurement [1]. Concurrent

to our work, an interesting theoretical advance shows
that certain classes of graph topologies can be inferred
using stronger primitives that allow the measurement
of distances from hosts to certain (non-host) internal
nodes [2]. Specifically, it is assumed that given paths
from a host A to two hosts B and C, the individual
distances from A, B, and C to the internal node where
the paths diverge can be measured. However, it is not
known how such a stronger primitive can be imple-
mented accurately in a real-world network, while our
work uses only path metrics as primitive with well-
known accurate implementations.

Thus, our work is a significant step forward in net-
work tomography as we provide the first empirically-
validated method for inferring the complete topology and
routes of real-world networks.

1.2 Path metric inputs to network inference
As in much of the network tomography literature,

we assume that path metrics of two types are avail-
able as inputs to network inference: path sharing met-
rics (PSMs) and path distance metrics (DMs). Much is
known about how to measure them by sending multi-
cast [3, 4, 11, 12, 20] or unicast [10] packet probes, and
passive measurement that deduces the information from
existing traffic flows [13]. We measure PSMs and DMs
in standard ways known in the literature. Our contri-
butions lie not in how these metrics are measured, but
on how they can used to perform network inference.

1) Path Sharing Metrics (PSMs). PSMs mea-
sure to what extent routes (i.e., paths) between hosts
share links. Let PSM(S, Ti, Tj) represent the number
links shared between the paths from a single source host
S to two destination hosts Ti and Tj . Our work does
not require measuring absolute values for the PSMs, but
only relative ones. For instance, given a source S and
three destinations T1, T2, and T3, it suffices to measure
how PSM(S, T1.T2) compares with PSM(S, T2, T3). It
is well-known how relative PSMs can be computed us-
ing latency and/or loss experienced by packet probes
from the source host [3, 11, 12, 20]. For instance, in
Figure 1, by sending multicast (or, a train of unicast)
packet probes from a source A to receivers C, D, and
E, one can infer that PSM(A,C,E) < PSM(A,C,D),
since more correlation is expected between the packets
received at C and D than between C and E.

In fact, it is well-known from prior work [11,12] how
the entire source tree can be inferred by repeatedly us-
ing the relative values of the PSMs. For instance, the
source tree in Figure 2 can be constructed by making
the most correlated pair of destinations (hosts C and D)
as siblings. Next, we can extract the next-most corre-
lated destination with either C or D (host E) and make
E a sibling of the parent of C and D, and so on till the
entire source tree is inferred.
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Figure 1: Communication network with hosts, internal
nodes (routers) and links. The routing paths from host
A to other hosts are shown in dotted lines.
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Figure 2: Source tree rooted at host A

2) Distance Metrics (DMs). A DM measures the
distance, i.e., the number of links, in the path from a
source host S to hosts T . Again, we do not require ab-
solute values of the DMs, and relative ones will suffice.
More precisely, given a single source S and two destina-
tions T1 and T2, it suffices to measure how DM(S, T1)
compares with DM(S, T2). For instance, in Figure 1, it
is easy to see that DM(A,F ) < DM(A,D).

A standard approach to measuring DMs is to use the
TTL field [19] of the IP Header. The source host ini-
tializes the TTL value in the IP Header to 255, and
each node on the path to the destination decrements
the TTL by 1. At the destination, the TTL value is
read from the IP Header. And the end-to-end distance
between the source and destination host is calculated
by taking the difference.

1.3 Our Contributions
To our knowledge, our work is the first to propose,

implement, and empirically validate a method for infer-
ring the complete network topology and routing paths
of a communication network, using only path metrics.
Prior work on network tomography has been limited to
inferring individual source trees, how these trees inter-
sect, or use stronger measurement primitives that are
not easily implementable. Specific contributions follow.

1) We propose a novel theoretical approach (OC-
CAM) that applies the Occam’s razor principle [23]
to pose and solve an optimization problem to find the

“simplest” network that obeys observations. The so-
lution to the optimization problem yields the inferred
network and routing paths. Our optimization approach
is a new way of thinking about network inference and
contrasts with other statistical ways of thinking about
the problem known in the prior art, such as Maximum
Likelihood Estimation (MLE) [11]. We prove the cor-
rectness of OCCAM by formally showing that it pro-
vides a solution that satisfies all PSM and DM obser-
vations.

2) We evaluate OCCAM on several real-world ISP
network topologies and show that it provides high-quality
inferences that agree closely with ground truth. The av-
erage network similarity score of the inferred topology
with respect to ground truth is 93%. The inferred rout-
ing paths have a small average edit distance of 0.20 from
ground truth.

3) We analyzed the robustness of OCCAM’s inference
when a fraction of its inputs are erroneous, as would be
the case if its PSM and DM inputs are derived from
actual network measurements. For the networks we
tested, OCCAM produced a high-quality inference even
when a random 20-30% of the PSMs and DMs were er-
roneous.

4) To more closely simulate real-world network infer-
ence, we implemented multiple ISP topologies on the
DETER [17] network emulator. Using unicast packet
probes, we derive PSM and DM values from packet-level
measurements from DETER. Using these measured val-
ues as inputs to OCCAM, we show that it produces
high-quality inferences, close to ground truth.

5) It is well-known from prior work that source trees
can be constructed with PSM inputs. It is natural to
ask if the source trees so constructed can be “stitched”
together to create the complete network topology. This
yields a variant of network inference where you are pro-
vided source trees (instead of PSMs) as the measured
input, in addition to DM constraints. We show that
OCCAM’s optimization can be modified to perform tree
stitching. In this variant, OCCAM performed similar to
the original version when PSMs and DMs are provided
as the measured input.

2. THE OCCAM APPROACH
The OCCAM approach infers a networkN ′ = (G′, H, P ′)

using as inputs measurements from the actual “ground-
truth” network N = (G,H,P ) as follows.
Measurement Inputs. DM metrics and relative values of
the PSM metrics are measured from the hosts H of N
using standard techniques described in Section 1.2 and
provided as inputs.

1. Optimization Step. Network inference is formu-
lated and solved as an optimization problem where
the “simplest” network satisfying the observed PSM
and DM constraints is produced as a solution.
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2. Inference Step. The inferred networkN ′ = (G′, H, P ′)
is constructed from the solution of the optimiza-
tion.

2.1 The Optimization Step
The key idea of our approach is to view network in-

ference as an optimization problem where the “sim-
plest” network satisfying the observed PSM and DM
constraints is produced as a solution. We view this ap-
proach as analogous to Occam’s razor that is a heuristic
element of the scientific method and advocates the con-
struction of the simplest and most parsimonious model
that obeys the empirical observations. We capture the
existence of nodes and links, as well as the membership
of links in routing paths, as indicator variables whose
values are set by the optimization process1 (cf. Table 3).
The values of these variables as set by the optimization
yield the inferred network topology and routing paths.

Objective function. There are many notions of
simplicity possible in a network setting. We use the no-
tion that the inferred network should have (i) the small-
est number of links, and (ii) the smallest total host-to-
host shortest path distance. We can express the notion
of simplicity as the objective function that needs to be
minimized as follows.

min : α
∑
S∈H

∑
T∈H

mS
T + (1− α)

∑
i∈V

∑
j∈V

wij , (1)

where mS
T is an integer variable denoting the length of

the path from source host S ∈ H to destination host
T ∈ H, wij is a variable indicating if a link exists be-
tween node i and node j in the inferred network, and
0 ≤ α ≤ 1 weighs the relative importance of the two
components of the objective function.

Path sharing. For each measured relative PSM
metric of the form PSM(S, T1, T2) < PSM(S, T2, T3)
we add the constraint below.

∑
i∈V

vS,T1

i vS,T2

i <
∑
i∈V

vS,T2

i vS,T3

i , (2)

where vS,Ti is a variable indicating if node i is on the
path from host S to host T . The LHS of the above
inequality thus counts the number of nodes in the in-
tersection of paths from S to T1 and T2. Similarly the
RHS counts the number of nodes present in the inter-
section of paths from S to T2 and T3.
Distance metrics. For each measured DM metric, if

DM(S, T1) < DM(S, T2), we add the constraint below.

mT1

S < mT2

S (3)

1We do not know how many non-host nodes exist apriori.
So, we define indicator variables for an upper bound on the
number of non-host nodes and allow the optimization to
decide how many such nodes actually exist by setting those
indicator variables.

where mT
S is an integer variable indicating the distance,

in terms of number of links on the path from S to T .
When the absolute value of the DMs can be calculated
accurately, the above constraint can be replaced by

mT
S = DM(S, T ), (4)

for every pair of hosts (S, T ). However, in practice,
we have observed that using the constraint above on
absolute DM values increases the run time of the algo-
rithm. So, in our experiments, we run OCCAM with
the weaker constraint on relative DM values of Equa-
tion 3 and empirically show that it is sufficient to obtain
a high-quality network inference.

Source tree property. Let PS ⊂ P be the set of
routing paths in G between host pairs {S}×H; we add
the following constraints to ensure that links belonging
to PS form a tree.∑

i

sSi,j ≤ 1 ∀j ∈ V S ∈ H (5)

where sSi,j is a variable indicating if link (i, j) is on any of

the paths in PS . The constraint ensures that for every
node j ∈ V , the number of links in PS that terminate
at node j, is at most 1. Thus, it ensures that there is
at most one unique path to node j from source host S.

Source-oblivous paths. Typically, a packet at a
node i ∈ V is forwarded to the next node j ∈ V by
consulting a routing table that provides the “next-hop”
for each destination T ∈ H, independent of the packet’s
source. In particular, two packets arrive at a node i
from different sources are forwarded to the same next
node j if they are going to the same destination T . We
capture this as follows:

∑
j∈V

dTi,j ≤ 1 ∀i ∈ V, T ∈ H, (6)

where dTi,j is an indicator variable indicating if a link
(i, j) is on any of the paths PT , where PT ⊂ P is a set
of routing paths in G between host pairs in H × {T}.
Above equation ensures that, if a node i is on any of
paths to destination T , the number of possible forward
hops is at most 1.

Populating the dTi,j variables. Link (i, j) is in PT
if only if there exists a source S such that both of the
following hold.

1. Link (i, j) belongs to PS , i.e., sSi,j is 1.

2. Node j is on the path from S to T , i.e., vS,Tj is 1.

Note that the above two conditions imply that link (i, j)
is in PT because the first condition implies that the path
from S to j must go through (i, j). Thus, dTi,j can be

set to 1, if only if
∑
S∈H s

S
i,jv

S,T
j is positive. This can
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Symbol Meaning

sSi,j An indicator variable indicating
if link (i, j) belongs to any path with host
S as the source.

dTi,j An indicator variable indicating if
link (i, j) belongs to any path with
host T as the destination

mS
j An integer variable denoting the

number of hops required to reach
node j from host S

vS,Tj An indicator variable indicating if

node j is on the path from host
S to enclave T

wij an indicator variable indicating if the
link (i, j) is present in the inferred graph

Figure 3: Output variables set by optimization

be expressed using the following constraint.

−M(1− dTi,j) <
∑
S∈H

sSi,jv
S,T
j ≤MdTi,j ∀i, j ∈ V, (7)

where M is a suitably large constant. Note that if∑
S∈H s

S
i,jv

S,T
j is zero, the first inequality above forces

dTi,j to be zero. Else, if
∑
S∈H s

S
i,jv

S,T
j is positive, the

second inequality above makes dTi,j to be 1.
Constraints to calculate distances.

mS
j =

∑
i∈V

sSi,j(m
S
i + 1) ∀S ∈ H j ∈ V, (8)

where mS
j is the number of hops to node j from source

S. The above constraint evaluates variable mS
j by stat-

ing that if there exists an incoming link (i, j) in PS , i.e.,
if sSi,j = 1, then the value of mS

j can be computed as

mS
i + 1. (Note that constraint (5) ensures that there is

at most one such link (i, j) in PS). If there is no such
link (i, j) in PS , i.e. if sSi,j = 0, then mS

j is 0. In this

case, we say that node j is not on any paths in PS . We
initialize the variable mS

S to 0.
Tracing a host-to-host path. We add below con-

straints to find nodes that are on the path from host
S to host T . These variables are used in (2) to encode
PSM constraints. To determine if node i is on the path
from S to T , we add the following constraint.

vS,Ti =
∑
j∈V

vS,Tj sSi,j ∀S, T ∈ H,∀i ∈ V −H (9)

Node i is on the path from S to T , if there exists a
node j ∈ V such that (i) j is on the path from S to T ,

i.e., (vS,Tj = 1) and, (ii) there exists an outgoing link

from node i to node j in PS . The above two conditions
suffice because (5) ensures that there can be at most
one incoming link to j in PS , and if such a link exists,
i should necessarily be on the path from S to T .

Boundary conditions. Paths in PS should always
contain a outgoing link from source S, and an incoming
link at each destination host T ∈ H \ S. We add the
following constraints for each host S ∈ H to ensure that
the above requirement is met.∑

j∈V
sSS,j = 1, (10)

∑
j∈V

sSj,T = 1 ∀T ∈ H \ S, (11)

Similarly, we need to ensure that paths in PS have no
incoming link at source S and no outgoing link at a
destination host T ∈ H \ S. We add the following con-
straints for each host S ∈ H to ensure that the above
requirement is met. ∑

j∈V
sSj,S = 0, (12)

∑
j∈V

sST,j = 0 ∀T ∈ H \ S, (13)

We also ensure that if there is an outgoing link (j, k)
at node j in PS , then there must exist an incoming link
at node j that is in PS .

sSj,k ≤
∑
i∈V

sSi,j ∀j ∈ V \ S, (14)

The above equation says that if sSj,k is 1, i.e., there
exists an outgoing link (j, k) at node j, then the term∑
i∈V s

S
i,j cannot be 0, i.e., there must exist an incoming

link at node j. Note that we do not write the constraint
if node j is the source host S.
Dealing with inaccurate measurements. The

PSM and DM metrics derived as inputs can sometimes
be inaccurate in real world scenarios. For instance, the
PSMs can be inaccurate in real-world networks when
there is no multicast available, a train of unicast packet
probes must be used, and there is a significant amount
of background traffic. Such was the case with some of
our experiments on the DETER testbed. An variant
of the optimization step that we used to tackle mea-
surement inaccuracies is to convert the hard PSM and
DM constraints in (2) and (3) into soft constraints by
moving them to the objective function. That is, we
add a third component to the objective function in (1)
that represents the number of PSM and DM constraints
that are violated. Thus, violations of PSM and DM con-
straints are minimized, along with other considerations.
Thus, the new objective function finds the “simplest”
network that obeys “most” of the observed measure-
ments. As we show later, with this approach, OCCAM
made accurate network inferences even when 20-30% of
the PSM constraints were incorrect.
Discussion. The OCCAM approach assumes that

the network is “simple” in two different respects. First,
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it posits that the network is itself “simple” in the sense
of having the fewest number of links and the shortest
distances between the hosts. This is reflected in the ob-
jective function that is minimized. Real-world network
designers may not always design networks that strictly
obey that notion of simplicity. Second, OCCAM as-
sumes that the paths on the network are also “sim-
ple” and posits that paths are source-oblivious and sat-
isfy the source tree property. Again, specific real-world
routing protocols may disobey some of these properties
some of the time.

In the philosophy of science, Occam’s Razor is used as
an aesthetic principle for choosing the simplest theory
that fits the observations. Its use has been unreason-
ably effective in producing sound scientific principles.
Likewise, as we show in Section 3, even though OC-
CAM’s quest for simplicity can produce erroneous re-
sults, it generally results in high-quality network infer-
ence. We also observe that even when some individual
assumptions are violated, OCCAM can correct for the
erroneous assumptions and still produce a high-quality
network inference.

2.1.1 Solution approach
The optimization problem formed with the objec-

tive function in Equation 1 and constraints that include
Equations 2, 3 and 5 to 14 is a Mixed Integer Bilinear
Program (MIBP). For ease of using solvers such as
CPLEX, we linearized the problem to form a Mixed
Integer Program (MIP) as follows.

Linearize a product of binary variables. Note
that the constraints in Equations 2, 9 and 7 have bi-
linear terms that are a product of two binary variables.
We linearize each such bilinear term as follows. Con-
sider a bilinear term of the form xy, where x and y are
binary variables. Replace the term xy with a new bi-
nary variable z and add the three constraints: z ≤ x,
z ≤ y and z ≥ x+y−1. The first two inequalities ensure
that z is 0, if either x or y is 0. The third inequality
ensures that z is 1 if both x and y are 1.

Linearize the product of an integer and a bi-
nary variable. Note that the constraints in Equation
8 have bilinear terms that are a product of an integer
and a binary variable. Suppose that a bilinear term has
the form ib, where b is a binary variable and i is an in-
teger variable lower bounded by 0 and upper bounded
by I. The product term ib can be linearized as follows.
Replace the term ib with a new integer variable z and
add four constraints: z ≤ Ib, z ≤ i, z ≥ i−(1−b)I, and
z ≥ i. Note that if b is zero, than the first inequality
ensures that z will be zero as well (note that the third
inequality only states that z has to be greater than a
negative number). On the other hand, if b is 1, the
first two inequalities ensures that z ≤ i. The third and
fourth inequalities ensure that z ≥ i. Together, this
ensures that z equals i.

Using the CPLEX solver. We use the distributed
parallel MIP feature of CPLEX to solve our problem on
a server cluster. We set the relative MIP gap to 0.15,
which means that CPLEX stops looking for solutions
once it finds one within 15% of the optimal. Empiri-
cally, for networks that we evaluate in this paper, we
have found that a MIP gap of 0.15 produces solutions
that are reasonably accurate within a run time that does
not exceed 10 to 15 minutes.

Algorithm 1: GRAPH-CONSTRUCT-I

1 Input : Set of hosts H and solution variables ;
2 Output : Network N ′ = (G′, H, P ′). ;

3 Initialize: V ′ ← φ, E′ ← φ, P ′ ← φ ;

4 foreach (S, T ) ∈ H ×H do

5 i0 ← T , k = 0 ;

6 while ik 6= S do

7 k ← k + 1 ;

8 Find a node ik such that sSik,ik−1
equals 1 ;

9 end
10 π(S, T ) = {ik, ik−1, ik−2, ......., i1, i0} ;
11 V ′ =

⋃
k ik ;

12 E′ =
⋃
k,k−1(ik, ik−1) ;

13 end
14 G′ ← (V ′, E′) ;
15 P ′ =

⋃
(S,T )∈H×H π(S, T ) ;

16 return N ′ = (G′, H, P ′) ;

2.2 Inference Step
Algorithm GRAPH-CONSTRUCT-1 infers a network

N ′ = (G′, H, P ′) using the values set to the sSi,j vari-
ables in the optimization step. For a fixed source-destination
pair (S, T ) ∈ H ×H, a routing path π(S, T ) is inferred
as follows. Starting from T , the while loop in lines 6-9
iteratively finds nodes to build a path towards source
S. In each iteration k, a node ik is found such that
sSik,ik−1

equals 1, and the loop terminates when ik is the
source host S. The path π(S, T ) is then constructed as
the union of the links

⋃
k(ik, ik−1). Each node ik and

link (ik, ik−1) is added to graph G′ in Lines 11 and 12
respectively. Thus at the end of the for loop in line 13,
the routing paths P ′ and graph G′ is constructed.

2.3 Correctness of OCCAM
Theorem 1. Given PSMs and DMs as inputs, OC-

CAM infers a network N ′ = (G′, H, P ′); such that the
routing paths P’ satisfy the following properties:

1. The set of routing paths P ′ contains an unique
acyclic path between each pair of hosts; and

2. G′ and P ′ satisfies all the given PSM and DM con-
straints.
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Proof Sketch We first show that OCCAM infers an
unique acyclic routing path π(S, T ) between every pair
of hosts (S, T ) ∈ H × H. Constraints in (11) ensures
there exists a link (j, T ), for some j ∈ V , such that
sSj,T equals 1. Link (j, T ) is on the path π(S, T ). Now

constraints in (14) ensures that for link (j, k), if sSj,k =
1, then there exists an incoming link (i, j) such that
sSi,j = 1, unless j is the source host S. Link (i, j) is
in π(S, T ). Thus link (j, T ) triggers the formation of a
path begins at source S and terminates at T . The path
is acyclic as it would otherwise violate constraints in
(8). Now constraints in 8 ensure mT

S equals the length

of path π(S, T ) and vS,Ti equals 1 only if node i is on
the path π(S, T ). Thus constraints in 2 and 3 ensure
the PSM and DM constraints are satisfied. We provide
the complete proof in Appendix A.

The above shows that the output N ′ of OCCAM
obeys all the PSM and DM constraints, but it is theo-
retically possible that there are other optimal solutions
that are different from N ′. Further, it is also possible
that the ground truth differs from N ′ because it may
not be a network that minimizes the objective func-
tion. We empirically show in Section 3 that OCCAM
produces a network that is very similar to the ground
truth, though always not the same. However, for spe-
cific classes of networks, OCCAM provably produces
the ground truth. We show below that if the ground
truth network is a tree then there is exactly one opti-
mal solution and OCCAM’s output exactly corresponds
to the ground truth network.

Theorem 2. Let the PSMs and DMs be derived from
a ground truth network N that is a tree. Given the
PSMs and DMs as input, OCCAM’s output is the ground
truth network N .

Proof. Our proof builds on the main theorem of
Hakimi and Yau [15]. Given a graph, its distance ma-
trix D provides the shortest distance between each pair
of external nodes (i.e., hosts) in the graph. Theorem 6
in [15] shows that if there exists a tree that satisfies a
distance matrix D, then the graph with smallest num-
ber links that satisfies D is unique and equals the tree.

Suppose that our ground truth network N is a tree.
Further, suppose that we run OCCAM with its objec-
tive function set to minimizing the total number of links
(by setting α = 0 in Equation 1) and with the abso-
lute distance constraint (Equation 4). OCCAM out-
puts the graph with the smallest number of links in the
feasible region defined by its constraints. Since N is
the ground truth, N satisfies all constraints considered
by OCCAM, including all the absolute distance con-
straints, i.e., N is in the feasible region. From Hakimi
and Yau, we know that the graph with the minimum
number of links in the feasible region is unique and,

hence, must equal N . So, OCCAM correctly outputs
N .

3. EMPIRICAL RESULTS
We use several real-world networks obtained from

topology-zoo [16] to evaluate OCCAM (see Table 5).
To judge the quality of the network inference produced
by OCCAM, in Section 3.1, we develop metrics that
can compare two networks and quantify its similarity.
Later, we outline two types of experiments and results.
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Figure 4: Graph example to illustrate NS score and
PED

3.1 Quality metrics for network inference
Given a communication network N = (G,H,P ) and

an inferred network N ′ = (G′, H, P ′), we introduce two
metrics below that quantitatively measure the quality
of inference.

3.1.1 Network Similarity (NS)
The NS score measures how close the inferred graph

G′ = (V ′, E′) is to the ground truth of G = (V,E).
Intuitively, we compute the “best” one-to-one mapping
φ : V → V ′ to match the vertices of one graph with the
vertices of the other2. We then compute the percentage
of links that are matched under φ, i.e., percentage of
links present in both graphs. Formally,

NS(G,G′) =

max
φ:V→V ′

(
100×

∑
i,j∈V×V Ei,j ∧ E′φ(i),φ(j)

|E|+ |E′| −
∑
i,j∈V×V Ei,j ∧ E′φ(i),φ(j)

)
,

(15)

where Ei,j (resp., E′φ(i),φ(j)) are indicator variables that

is set to 1 if the corresponding link is present in G (resp.,
G′) and 0 otherwise, ∧ is the boolean AND operator,
and ∨ is boolean OR operator. Note that the numera-
tor evaluates the number of links that are in common
between the graphs and the denominator is the total
number of links present in either graph. Note that the
when G and G′ are identical, the NS score is a 100%.
2Since G and G’ have the same hosts, φ maps hosts in V to
the corresponding hosts in V ′. If V and V ′ have different
sizes, some nodes in the larger set are left unmapped.
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Topology Description

ATT Backbone network of a major
US ISP.

Tata Backbone network of a major
Indian ISP

Bandcon Content delivery service provider
Colt A network providing high

bandwidth and voice services
Europe, Asia and North America.

Columbus TV, telephone and broadband ISP
in the Caribbean

Dfn A popular ISP in Oregon, USA
Evolink Widely used ISP in Europe

Rnp a nation-wide Internet network
infrastructure for the academic
community at Brazil.

Sanet Academic network of national
research and education networking
organisation of Slovakia

Sinet Security innovation network, focused
on supporting entrepreneurial
companies that
build cybersecurity solutions.

Surfnet SURF an Internet Provider that offers
students, lecturers and scientists in the
Netherlands

6et1 A hand crafted topology used in the initial
stages to test OCCAM

Figure 5: A sub-network of the above real-world net-
works were used for evaluating OCCAM.

Where as ifG andG′ have complimentary links, no links
match and the NS score is 0%. In general, NS score is a
measure of network similarity with values between these
two extremes.

An example, Figure 4 shows two graphs G = (V,E)
and G′ = (V ′, E′). To evaluate NS(G,G′), we first find
the one-to-one mapping φ : V → V ′ that maximizes the
matched links3. In our case, φ = {(a, 1), (b, 2), (c, 3), (d, 4)}.
Under the mapping, we see that all links, except link
(a, d) ∈ E and (1, 3) ∈ E′, can be matched. Thus, the
numerator in the NS score that corresponds to the total
number of matched links is 7. And, the denominator in
the NS score corresponds to the union of links in G and
G′ under the mapping φ, which evaluates to 9. Thus,
NS(G,G’) is 77%.

3In general, finding φ to maximize the NS score is itself a
computationally hard program that is related to the graph
isomorphism problem for which no polynomial time algo-
rithm is known. However, for our specific evaluations, we
exhaustively searched one-to-one mappings, V → V ′, and
choose the mapping with the best NS score. Optimizing the
evaluation process itself is beyond the scope of our work.

3.1.2 Path Edit Distance
The PED metric for path sets P and P ′ is the average

path edit distance between the corresponding paths in
P and P ′. Note that given the one-to-one function φ,
each path π ∈ P has a corresponding path π′ ∈ P ′ such
that the two corresponding paths connect the same host
pairs under φ. Path edit distance between two paths π
and π′ is simply the number node insertions, deletions
and substitutions required to convert one path to the
other. The overall PED is simply the average PED of
the individual path pairs.

As an example, we show the PED calculation for the
path from host A to host D in Figure 4. The path
P (A,C) in G is {A, a, d, c, C}, and the path P ′(A,C)
is {A, 1, 3, C}. Under the mapping, φ → V × V ′ :
{(a, 1), (b, 2), (c, 3), (d, 4)}, the path P (A,D) can be rewrit-
ten as {A, 1, 4, 3, D}, which is at an edit distance of 1
from P ′, since a single edit of the deletion of node 4 is
required.
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Figure 6: AT&T network inferred with an network sim-
ilarity of over 93%.
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3.2 Measurements from ground truth
In the first set of experiments described in this sec-

tion, we create the ground-truth communication net-
work N = (G,H,P ) by picking a real-world network
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Figure 9: TATA network inferred with an network sim-
ilarity of over 94%. The routing paths from source A
to the hosts are also shown.

from topology-zoo (see Table 5). To simulate the situ-
ation where an enterprise has a set of hosts attached to
the real-world network, we choose a set of nodes ran-
domly from the real-world network and attached a host
to each of these nodes. To create the routes P , we find
paths between the hosts by computing shortest paths
between every pair of hosts using Dijkstra’s algorithm
in a manner similar to OSPF [18]. The graph G is sim-
ply the set of nodes and edges used in one or more of
the shortest paths in P . Now that the ground-truth
network N is constructed, the measurement inputs to
OCCAM are derived by computing the PSM and DM
metrics from the ground truth P . Thus, this set of ex-
periments model the situation where the measurement
inputs to OCCAM have no errors, and only the ability
of OCCAM to perform the optimization and inference
is evaluated.

The ground truth and the inferred topology for AT&T
is shown in Figure 6. The inference is accurate with a
network similarity (NS) score of 93.75%, with the only
error being an extra link (6,2) in the inferred graph not
present in the original. The path edit distance (PED)
was 0.6, denoting the paths were also inferred accu-
rately requiring only a small number of edits to make
the inferred path identical to the corresponding path in

the ground truth.
Figure 7 shows the overall performance of OCCAM

across multiple networks. As can be seen, for a few net-
works we obtain a perfect inference, i.e., these networks
received an NS score of 100% and a PED of 0. This
means that both the inferred graph topology and the
paths completed agreed with ground truth. Across the
12 networks tested, we obtain an average NS score of
93%. The average PED score of 0.20, which means that
the average number of edits needed to make an inferred
path identical to the same path in ground truth is 0.20.
Thus, OCCAM provides a highly accurate inference of
the network, given accurate PSM and DM inputs from
ground truth.

Beyond numerical measures, it is instructive to vi-
sualize the inferred networks themselves in relation to
the ground truth in the cases where the inference was
not perfect. Figure 8 shows OCCAM’s output for the
COLUMBUS network that received one of the lower NS
scores. However, the inferred network and the ground
truth have a very similar topological structure, except
that internal nodes 5 and 6 in the ground truth are
merged into one node (node 6) in the inferred graph.
The merged internal node error is common since OC-
CAM attempts to find the “simplest” network that obeys
the PSMs and DMs, resulting in OCCAM positing fewer
internal nodes. Note that OCCAM does not infer a net-
work with even fewer internal nodes, e.g., only one in-
ternal node instead of 5, 6, 7, and 8 in the ground truth,
as such an inference will violate the DM and possibly
some PSM constraints.

As another example, Figure 9 shows the inferred net-
work and ground truth for the TATA network. OC-
CAM produces a nearly identical topology, except that
the link (9, 4) is omitted in the inferred graph. The
source tree rooted at A is identical between the two
graphs, though the path from A to E is longer in the
inferred graph by one link. The reason for OCCAM’s
inference can be understood by the fact that its objec-
tive function in Equation 1 is a weighted sum of the
number of links and shortest path distances. Since the
shortest path between only one host-pair is impacted
by not creating (9, 4) and since OCCAM was run with
α = 0.2 that favors link reduction over distance reduc-
tion, it chose not infer link (9, 4). Note that all the DM
constraints are still met without (9.4), so the inferred
network still meets all PSM and DM inputs.

3.2.1 Using DM inputs only
To observe the value of the DM inputs, we run OC-

CAM with only the DM constraints, without any PSM
constraints. As shown in Figure 10, the DM inputs by
themselves provide an NS score of around 85%. We
also see that DM inputs are sometimes fully sufficient
to obtain an accurate inference. For instance, on net-
works COLT, EVOLINK, SANET and SINET we ob-
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tain a 100% score on the NS metric. In a few other
networks, such as ATT and DFN, supplementing DMs
with PSMs improves the inference significantly. For in-
stance, NS score of the AT&T network improved from
78% to 94%. Also, using just DMs, OCCAM infers
the right number of internal nodes for 9 out of the 12
networks. Further, using the DMs alone provided an
average PED of 0.43 across the 12 networks that we
tested as compared to 0.20 when both PSM and DM
inputs are used. In conclusion, DMs by themselves pro-
vide powerful constraints for network inference, though
in several cases the PSMs improve inference quality.
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Figure 10: Network Inference using only DMs
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Figure 11: AT&T network inferred with only PSM in-
puts.

3.2.2 Using PSM inputs only
To observe the value of PSM metrics, we ran OC-

CAM with PSM inputs alone. Without the distance
information from the DMs, we observe that OCCAM
does not always guess the number of internal nodes cor-
rectly. Of the 12 networks, OCCAM with PSM alone
produced the right number of internal nodes in only
5 cases, significantly less than OCCAM with DM in-
puts alone. Figure 11 provides the OCCAM’s inference
for the AT&T network with PSM inputs only. Unlike
the case when both PSM and DM inputs are present
(see Figure 6) where OCCAM deduced the right num-
ber of internal nodes, two pairs of nodes in the ground
truth (nodes 7,3 and 6,9) are collapsed to a single node

each in the inferred network in Figure 11. This example
shows that DMs provide information for inferring inter-
nal nodes that cannot be inferred from PSMs alone.

If we allow the collapse of internal nodes in the ground
truth, OCCAM with PSM inputs does produce a high-
quality inference of the network. To illustrate this point,
we allowed up to two pairs of internal nodes to be col-
lapsed in the ground truth graph before evaluating the
NS and PED metrics. Figure 12 shows the NS score
and PED values after allowing up to two pairs of nodes
to be collapsed in the ground truth, where we choose
the best pairs to collapse so as to optimize the NS and
PED values. We observe that across 12 networks, we
obtain a NS score of 83% and a PED of 0.44. Thus,
besides the error of collapsing internal nodes, OCCAM
with PSMs alone can produce high-quality inferences.
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Figure 12: Network Inference using only PSMs

3.3 Measurements with random errors
Thus far, the PSMs and DMs derived from ground

truth had no errors. However, when PSMs and DMs are
derived from actual packet-level measurements in a real-
life scenario, we expect some of them to be erroneous.
Here, we study robustness of OCCAM’s inference to er-
roneous PSM and DM inputs. We chose three network
topologies (AT&T, SANET, and BANDCON). As be-
fore, the measurement inputs to OCCAM are accurate
PSM and DM metrics from ground truth. However, to
introduce an error with probability p% in the relative
PSM measurements, we chose each PSM constraint of
the form shown in (2) and flipped the LHS and RHS
of that constraint with probability p%. Likewise, we
also flip the LHS and RHS of each DM constraint of
the form shown in (3) with probability p%.

Since these errors could introduce inconsistencies in
the constraints leading to infeasibility, we use the PSM
and DM constraints as “soft” constraints that are made
a part of the objective function, as described in Sec-
tion 2.1. So, OCCAM finds the “simplest” network that
satisfies as many (but not necessarily all) of the PSM
and DM constraints as possible. Figures 13 and 14 show
the quality of OCCAM’s inference for the three net-
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works with increasing error probability. As expected,
the NS score decreases with increasing error. However,
the NS scores are surprisingly good for the three net-
works, even in the presence of 20-30% random input er-
rors. Likewise, PED stays below 1 for up to 40% errors.
Thus, the OCCAM approach allows accurate inputs to
compensate for the incorrect ones to maintain a high
inference quality.
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Figure 13: NS scores for varying error probabilities
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3.4 Measurements from a network emulator
In this set of experiments, we evaluate OCCAM with

its measurement inputs derived from a packet-level net-
work emulator called DETER [17]. We use the TATA
and 6et1 topologies used in the previous sections and
configured them on DETER by specifying the nodes and
links. DETER automatically sets up routing paths be-
tween the hosts that are specified, i.e., we do not specify
the routes. We obtain the PSMs and DMs from DETER
by sending packet probes. These experiments emulate
the real-world situation where the network provider(s)
set the routing paths and path metrics are derived from
actual packet flows.

PSM and DM metrics. We use a standard delay co-
variance technique to measure PSMs.For every source S
and receivers T1, T2 and T3, we compare PSM(S, T1, T2)
and PSM(S, T2, T3) by performing the following exper-
iment. A train of three back-to-back packets, pi1, pi2
and pi3 destined to receivers T1, T2 and T3 respectively
are sent from source S. At each receiver Tj , a record
of the delays experienced by packets pij is maintained.
We calculate the delay covariance C(S;Ti, Tj) between

packets received at receivers Ti and Tj . If it is ob-
served that C(S;T1, T2) > C(S;T2, T3), then a PSM
constraint PSM(S, T1, T2) > PSM(S, T2, T3) is added
to the optimization. The DMs are obtained from the
TTL field [19] of the IP Header in a standard way as
described in Section 1.2.

The results of the DETER experiments for TATA and
6et1 are shown in Figures 15 and 16 respectively. In
the case of TATA, OCCAM inferred extra links (8,2)
and (7,0), but rest of the inference was accurate, re-
ceiving an NS score of 89.4% and a PED of 0.7. In
the case of 6et1, nodes 8 an 6 in the ground truth were
merged in the inferred network, but rest of the inference
was accurate. The NS score was 88.8% and PED was
0.66. Notably, for the 6et1 (resp., TATA) network, 18%
(resp., 26 %) of the PSM constraints were incorrect due
to measurement error. However, despite the errors in
its input. OCCAM produced high quality inferences.
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Figure 15: TATA network on DETER achieved an NS
score of 89.4% and a PED of 0.7
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Figure 16: 6et1 network on DETER achieved an NS
score of 88.8% and PED of 0.66.

4. THE TREE STITCHING PROBLEM
A variant of the network inference problem that we

call the “tree-stitching problem” builds directly on clas-
sic network tomography results that infer source trees
from PSM metrics. In this variant, we use well-known
methods [11,12,22] to create source trees rooted at each
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source host S and provide these trees as measurement
inputs to OCCAM, in lieu of the PSM metrics. OC-
CAM “stitches” together these source trees to infer a
network as described below.
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Figure 17: A source tree can be viewed as a set of seg-
ments and branch points.

4.1 Optimization Step
The main challenge is to add constraints that ensure

that the inferred network N ′ = (G′, H, P ′) is consistent
with all the source trees provided as measurement in-
puts, i.e., the logical source tree formed by the paths in
P ′ from each source S is isomorphic to the given source
tree rooted at S.

A source tree can represented by a set of segments and
branch points (see Figure 17 for an example). Each seg-
ment s ∈ T S represents one or more links in the under-
lying graph. Segment s terminates at a unique branch
point bs ∈ BS and branches into a set of outgoing seg-
ments O(s). For instance, in Figure 17, s1 is the incom-
ing segment at branch point 1, and O(s1) = s2, s3, s4
are the outgoing segments. A source tree can be com-
pletely characterized by adding constraints to capture
the segments ending at each branch points bs ∈ BS . For
every segment s ∈ T S terminating at branch point bs,
we add the following constraint:

psi,j ≤
∑
k∈V

psj,k +
1

|O(bs)|
∑

s′∈O(bs)

∑
k∈V

ps
′

j,k = bsj

∀i ∈ V, ∀j ∈ V \H,
(16)

where psi,j is an indicator variable indicating whether
link (i, j) is present in segment s. The above con-
straint (16) ensures, if there exists an incoming link
at j which is part of s, then there must exist an out-
going link (j, k) which either belongs to same segment
s (first term above) or to one of the outgoing segments
s′ ∈ O(bs)(second term above). For every segment s in
T S that ends at a host T ∈ H, we add the following
constraint.

psi,j ≤
∑
k∈V

psj,k ∀i ∈ V, ∀j ∈ V \ T, (17)

If segment s terminates at a host T ∈ H, the above
constraint ensures there exists an outgoing link (j, k)
which belongs to same segment s, if there exists an in-
coming link at j which is part of s, unless j = T . At
each node j ∈ V , we ensure that there could be at most
1 outgoing link that belongs to a segment s.∑

k∈V

psj,k ≤ 1 ∀j ∈ V (18)

Boundary Conditions. For a segment s ∈ T S orig-
inating at root S we add the following constraint,∑

k

psS,k = 1, (19)

which ensures that the segment will always contain an
outgoing link (S, k) for some k ∈ V . For a segment
s ∈ T S terminating at host T ∈ H, we add the following
constraints, ∑

j

psj,T = 1 ∀T ∈ H \ S, (20)

∑
i

psT,i = 0 ∀T ∈ H \ S, (21)

where, constraints in (20) ensures there always exists
an incoming link at T that belongs to segment s and
constraints in (21) ensures that segment terminating at
the terminal T ∈ H will not contain an outgoing link
(T, k) for any k ∈ V .

Algorithm 2: GRAPH-CONSTRUCT-II

1 Input : Set of hosts H and solution variables ;
2 Output : Network N ′ = (G′, H, P ′). ;

3 Initialize: V ′ ← φ, E′ ← φ, P ′ ← φ ;

4 foreach S ∈ H do

5 PS ← φ ;

6 foreach s in T S do
7 L = {(i, j) : psi,j = 1 } ;

8 PS ← PS ∪ L ;

9 end

10 foreach (i, j) ∈ PS do
11 E′ ← E′ ∪ (i, j) ;
12 V ′ ← V ′ ∪ {i} ∪ {j} ;

13 end
14 foreach T ∈ H do
15 π(S, T )← shortest path from S to T in PS ;
16 P ′ ← P ′ ∪ π(S, T ) ;

17 end

18 end
19 G′ ← (V ′, E′) ;
20 return N ′ = (G′, H, P ′) ;

To maintain consistency, we need to make sure that
if link (i, j) belongs to any of the segments in T S , it
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should also belong to PS . Further, we want to ensure
that each link (i, j) is part of at most one segment. To
enforce these properties, we add the following constraint∑

s∈T S

psi,j = sSi,j ∀(i, j) ∈ E, (22)

where sSi,j is a binary variable indicating if link (i, j)

belongs to PS . The LHS of the above equation counts
the number of segments in T S in which link (i, j) is
present. The above equation forces the number of such
segments to be at most 1 (as RHS is a binary variable),
and if such a segment exists, sSi,j is set to 1.

For the tree-stitching version of the problem, OC-
CAM’s optimization step is modified to use (1) as the
objective function and (3),(5)-(13), (16)-(22) as the con-
straints.

4.2 Inference step
Algorithm GRAPH-CONSTRUCT-II infers a network

N ′ = (G′, H, P ′) using the values of the psi,j variables
in the solution of the optimization step. For every host
S ∈ H, lines 6-9 in the algorithm finds the set of links
PS such that each link (i, j) ∈ PS belongs to some
segment s ∈ T S (i.e., psi,j = 1 ). Now, for every host
T ∈ H, π(S, T ) is computed as the shortest path from
S to T in PS . Each link (i, j) ∈ PS and the corre-
sponding nodes i and j are added to the set of links E′

and the set of nodes V ′ respectively. Thus at the end
of the for loop in line 19, the algorithm infers rout-
ing paths π(S, T ) ∈ P ′ between every pair of hosts
(S, T ) ∈ H×H, the set of links E′ and the set of nodes
V ′ in G′.

4.3 Correctness of Tree Stitching
We prove that the modified version of OCCAM pre-

sented in this section performs tree stitching correctly.

Theorem 3. Given source trees and DMs as inputs,
OCCAM infers a network N ′ = (G′, H, P ′); such that
the routing paths P’ satisfy the following properties

1. Each routing path π(S, T ) ∈ P ′ is an acyclic path
from host S to T ; and

2. G’ and P’ is consistent with the given source trees
and DM measurement inputs.

Proof Sketch Consider a host S ∈ H. Let s1 ∈ T S
be a segment beginning at host S. Constraints in (19)
ensure there exists a link (S, i) that belongs to segment
s1, i.e., ps1S,i equals 1. Now constraints in (16) ensures
that there exists a path π(S, in) such that each link in
π(S, in) belongs to segment s1. Thus, path π(S, in) can
be mapped to segment s1 and node in can be mapped to
the branch-point bs1 . The constraint (16) also ensures
that there exist outgoing links at node in, such that

each such outgoing link belongs to a segment s′ ∈ O(s).
Now for each segment s′ ∈ O(s), the constraint ensures
that there exists a path π(in, ins′ ) such that each link in
π(in, ins′ ) belongs to segment s′. Thus, path π(in, ins′ )
can be mapped to segment s′ and branch-point bs′ can
be mapped to node ins′ . Thus, each segment s ∈ T S
can be mapped to a path in G′ and each branch-point bs
can be mapped to a node v ∈ V ′. This shows that the
source trees derived from P ′ is isomorphic to the source
trees provided as inputs. Constraints in (3) ensure that
DMs are satisfied. We provide the complete proof in
Appendix B.

4.4 Empirical results
We ran OCCAM with the source trees and DM in-

puts. Figure 18 shows the results where OCCAM achieves
an average NS score of 92.9% and PED of 0.22, across
the 12 tested networks. Thus, comparing Figures 7 and
18, using source trees and DMs as inputs yields similar
results to using PSM metrics and DMs, i.e., source trees
can take the place of PSM measurements and vice-versa.

We also ran OCCAM with the source trees only as
input, without DM inputs. Our results were similar
to the case described in Section 3.2.2 where only PSM
inputs were used. As in Section 3.2.2, the NS score
and PED score was computed after allowing at most
two node pairs to be contracted in the ground truth
network. The results shown in Figure 19 shows the
results where OCCAM achieves an average NS score of
81.5% and PED of 0.48 across the 12 tested networks.
These results indicate that just source trees as inputs
yields similar results as using just the PSM inputs.
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Figure 18: Tree stitching with DM

5. CONCLUSION
Our work is the first to demonstrate the feasibility

of inferring the complete network topology and routing
paths using path sharing and path distance informa-
tion measured at the hosts. However, many questions
remain open. An interesting question is how much path
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Figure 19: Tree stitching without DM

sharing information is needed to infer the complete net-
work. Our preliminary work suggests that highly accu-
rate inference is possible even with partial and/or in-
correct path sharing information. Another natural ex-
tension of our work is whether the topology and path
inference can be extended to infer the link capacities in
the network.
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APPENDIX
A. CORRECTNESS OF OCCAM

We prove the correctness of OCCAM by formally
showing that it provides a solution that satisfies all PSM
and DM observations.

Lemma 4. For a host S ∈ H, if LS = {(i, j) : sSi,j =

1}, then LS does not contain a cycle.

Proof. (Proof by Contradiction) Let L ⊂ LS consist
of n links (i1, i2),(i2, i3),...., (in−1, in), (in, i1) that form
a cycle. Constraint in (8) ensures,

mS
i2 =

∑
j∈V

sSj,i2(mS
j + 1)

Now constraints in (5) ensure there exists at most 1
incoming link at node i2 (i.e,

∑
j∈V s

S
j,i2

equals 1) ; and

as link (i1, i2) ∈ L, sSi1,i2 = 1. The above equation thus
reduces to,

mS
i2 = mS

i1 + 1,

Similarly,

mS
i3 = mS

i2 + 1 = mS
i1 + 2,

mS
in = min−1

+ 1 = mS
i1 + n− 1,

As link (in, i1) ∈ LS ,

mS
i1 = mS

in + 1 = mS
i1 + n,

=⇒ n = 0

This contradicts our assumption of existence of a cycle
in LS and thus completes the proof.

Lemma 5. For a pair of hosts (S, T ) ∈ H×H, mS
T is

assigned a value equal to the length of the routing path
π(S, T ) ∈ P ′.

Proof. Let π(S, T ) = {i0, i1, i2, ....., in−1, in} be a
path of length n. We will first prove that for any node
ik on path π(S, T ), mS

ik
= k. We prove by induction.

By definition mS
S = mS

i0
= 0. Constraints in (8)

ensures,

mS
i1 =

∑
j∈V

sSj,ii(m
S
j + 1)

Now constraints in (5) ensure there exists at most 1
incoming link at node i1 (i.e.,

∑
j∈V s

S
j,ii

equals 1); and

as link (i0, i1) ∈ π(S, T ), sSi0,i1 = 1. The above equation
reduces to,

mS
i1 = mS

i0 + 1 = 1

Thus mS
i1

= 1. Now lets assume mS
ik

= k for some
k ∈ [1, n). With a similar argument as above,

mS
ik+1

= mS
ik

+ 1 = k + 1

By induction, the statement mS
ik

= k is true. Thus,

mS
in = mS

T = n

This concludes the proof.

Lemma 6. For a pair of hosts (S, T ) ∈ H×H, vS,Ti =
1, if and only if, node i is on the routing path π(S, T ) ∈
P ′.

Proof. Let π(S, T ) = {S, in−1, in−2, ....., i1, T}. We

first prove that for each node i ∈ π(S, T ), vS,Ti equals

1. We prove by induction. By definition vS,TT equals 1.
Constraints in Equation 9 ensure,

vS,Ti1 =
∑
j∈V

vS,Tj sSi1,j ,

We know vS,TT equals 1; and sSi1,T equals 1 as link (i1, T )
exists on path π(S, T ). Consequently, for j = iT , the

above equation ensures vS,Ti1 equals 1. Now for some

k ∈ [1, n− 1) lets assume vS,Tik equals 1. Constraints in
(9) ensure,

vS,Tik+1
=
∑
j∈V

vS,Tj sSik+1,j
.
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Now we know vS,Tik equals 1; and sSik+1,k
equals 1 as

link (ik+1, k) exists on path π(S, T ). Consequently, for

j = ik, the above equation ensures vS,Tik+1
equals 1. Thus

by induction vS,Tk equals 1 for all k ∈ [1, n).

We now prove that for a node k /∈ π(S, T ), vS,Tk equals
0. We prove by contradiction. Constraints in (9) ensure,

vS,Tk =
∑
j∈V

vS,Tj sSk,j ,

now if vS,Tk equals 1, there exists some node j such that

vS,Tj equals 1 (i.e., there exists a link (i, j) which is on

the path π(S, T )); and sSk,j equals 1 (there exists a link
(ik, j) which is not on the path π(S, T )). Thus there
exists two incoming links at node j, which violates the
constraints in (5). Thus, for any node k /∈ π(S, T ), vS,Tk
equals 0. This concludes the proof.

Theorem 7. Given PSMs and DMs as inputs, OC-
CAM infers a network N ′ = (G′, H, P ′); such that the
routing paths P’ satisfy the following properties:

1. The set of routing paths P ′ contains an unique acyclic
path between each pair of hosts; and

2. G′ and P ′ satisfies all the given PSM and DM con-
straints.

Proof. 1. Consider a pair of hosts (S, T ) ∈ H ×
H. The corresponding routing path π(S, T ) ∈ P ′
is constructed in Line 10 of Algorithm GRAPH-
CONSTRUCT-I. For each (S, T ) ∈ H × H, the
algorithm starts at destination T and builds the
path back towards source S. A node i0 is initiated
to T in line 5 of the algorithm. In each iteration
j ∈ [1, k] of the while loop, a node ij is found such
sSij ,ij−1

equals 1. Now there exists a path π(ij , T )

which is a subpath of path π(S, T ). We will prove
by induction that π(ij , T ), exists, is unique and is
acyclic. In the first iteration of the while loop, a
node i1 is found such that sSi1,T equals 1, i.e, link
(i1, T ) is on any of the paths from S. Constraints
in (11), ∑

j∈V
sSj,T = 1,

ensures the presence of such a link. Thus π(i1, i0)
exists, is unique and is acyclic. Now for some j ∈
[1, k], let’s assume π(ij , i0) exists, is unique and is
acyclic. Constraints in (14),

sSij ,ij−1
≤
∑
i∈V

sSi,ij ,

ensure there exists an incoming link at node ij
from some node ij+1 such that sSij+1,ij

equals 1.

Now constraints in (5) ensures there exists at most
1 incoming link at node j; thus path π(ij+1, i0)
is unique. The path is acyclic because otherwise

Lemma 4 is violated. Thus π(ij+1, i0) exists, is
unique and is acyclic.

We now show that there exists some k such that in
the kth iteration, ik = S and the loop terminates.
As the number of nodes, i.e, |V | is finite, there must
exist some k such that in the kth iteration,

(a) Node ik is already on the path π(S, T ). This is
not possible as we know π(ik, i0) is acyclic, or

(b) Node ik = S and the loop terminates.

Thus the path π(S, T ) constructed in line 10 of Al-
gorithm GRAPH-CONSTRUCT-I is a path from S
to T, and π(S, T ) is acyclic and unique.

2. Given that Lemma 5, 6 hold, constraints in (3)
and (2) ensures P satisfy the given PSM and DM
constraints.

B. CORRECTNESS OF TREE STITCHING

Lemma 8. If there exists a link (i1, i2) that belongs
to a segment s ∈ T S, then there exists a set of links Ls

that forms a path from node i1 to some node in ∈ V
that marks the end of segment s in G. If s terminates
at host T ∈ T S, then in = T .

Proof. If there exists a link (i1, i2) belonging to seg-
ment s (i.e, psi1,i2 equals 1), then constraint in (16),

psi1,i2 ≤
∑
k∈V

psi2,k +
1

|O(bs)|
∑

s′∈O(bs)

∑
k∈V

ps
′

i2,k = bsi2

is satisfied if RHS of the inequality is 1. RHS is a sum of
two terms (

∑
k∈V p

s
i2,k

) and ( 1
|O(bs)|

∑
s′∈O(bs)

∑
k∈V p

s′

i2,k

). Thus, either (i) there exists an outgoing link (i2, i3)
for some i3 ∈ V that belongs to the same segment s ie.
psi2,i3 = 1 (satisfying the first term) or, (ii) i2 marks the
end of the segment and there exist outgoing links which
belong to s′ ∈ O(s) (satisfying the second term). If the
first case is true, constraint in (16) imposes the same
constraints on link (i2, i3). If the second case is true,
node i2 marks the end of segment s. Thus at each step,
we either find an outgoing link (in, in+1) that belongs
to segment s or node in marks the end of segment s.
At each step, if the outgoing link belongs to the same
segment s, link (in, in+1) would form a cycle at some
finite n. Now, constraints in (22) ensure that if link
(in, in+1) belongs to segment s, then sSin,in+1

equals 1.
Lemma 4 ensures such links do not form a cycle. Thus,
there exists a finite n such that segment s terminates
at node in.

Now, if there exists a link (i1, i2) that belongs to a
segment s that terminates at some host T ∈ H (i.e,
psi1,i2 equals 1), then constraint in (17),

psi1,i2 ≤
∑
k∈V

psi2,k = bsi2
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ensures there exists an outgoing link (i2, i3) that belongs
to segment s. Now, constraints in (17) imposes the same
constraint on link (i2, i3) and there exists an outgoing
link at node i3 that belongs to segment s. Thus, at
each step if there exists an incoming link (in−1, in) that
belongs to segment s, then there exists an outgoing link
(in, in+1) that belongs to segment s. Now, as the num-
ber of nodes , i.e., |V | is finite, there must exist some n
such that,

1. Node in already belongs to segment s. This is not
possible as it forms a cycle and violates Lemma 4,
or

2. Node in = T . In this case, constraints in (17) does
not require the presence of an outgoing link at node
in.

This concludes the proof.

Lemma 9. If node in ∈ V marks the end of segment s
in G′, then in marks the start of each segment s′ ∈ O(s),
i.e., there exist outgoing links at node in, such that each
outgoing link belongs to a segment s′ ∈ O(s).

Proof. As in marks the end of segment s, there ex-
ists a link (in−1, in) that belongs to segment s (i.e.,
pSin−1,in

= 1). Now, consider the constraint in (16),

psin−1,in ≤
∑
k∈V

psin,k +
1

|O(bs)|
∑

s′∈O(bs)

∑
k∈V

ps
′

in,k = bsin

As the number of incoming links at in belonging to seg-
ment s evaluates to 1, LHS in (16) equals 1. Now the
RHS in the above inequality (16) is equated to a binary
variable, thus RHS must evaluate to 1. The RHS is
a sum of two parts. The first part counts the number
of outgoing links at node in which belongs to segment
s. And the second part counts the number of outgoing
links at node in, which belong to any of the segments
s′ ∈ O(s), and divides the value by |O(s)|. The first
part equals 0 as in marks the end of segment s, forcing
the second part to evaluate to 1. This implies that there
must exist |O(s)| number of outgoing links at node in,
and each such link should belong to any of the segments
s′ ∈ O(s). Let LS be a set of such links. Now each link
in LS belongs to a unique segment s′ ∈ O(s), i.e., (i)
link l ∈ LS belongs to at most one segment (as enforced
by constraints (22)), (ii) no two links l1 and l2 in L be-
longs to the same segment s′ ∈ O(s), (as enforced by
constraints in (18)). Thus there exist |O(s)| outgoing
links at node in, and each such link belongs to a unique
segment s′ ∈ O(s).

Theorem 10. Given source trees and DMs as in-
puts, OCCAM infers a network N ′ = (G′, H, P ′); such
that the routing paths P’ satisfy the following properties

1. Each routing path π(S, T ) ∈ P ′ is an acyclic path
from host S to T ; and

2. G’ and P’ is consistent with the given source trees
and DM measurement inputs.

Proof. Algorithm GRAPH-CONSTRUCT-II constructs
the network N = (G,H,P ) using the values assigned by
the optimization to variables in Figure 3. For a host S ∈
H, Lines 3 to 7 in Algorithm GRAPH-CONSTRUCT-
II finds a set of links PS that belong to any of the
segments s ∈ T S . We will show that links in PS con-
tains a path from S to each host T ∈ H, and PS is
consistent with the source tree T S . Let s1 be the seg-
ment in T S that originates at source host S. Now,
constraints in (19) ensure there exists a link (S, k) for
some k ∈ V such that link (S, k) belongs to segment
s1, i.e. , variable ps1S,k equals 1. In the presence of such
a link, Lemma 8 proves there exists a set of links that
forms a path π(S, in) from host S to some node in, such
that each link in π(S, in) belongs to segment s1. The
path π(S, in) corresponds to segment s1, and branch
point bs1 can be mapped to node in. Now Lemma 9 en-
sures there exist |O(s1)| outgoing links at node in such
that that each such link belongs to a unique segment
s′ ∈ O(s1). Lemma 8 can now be applied for each seg-
ment s′ ∈ O(s) to find a path π(in, in′s) corresponding
to segment s′, and branch point bs′ can be mapped to
node ins′ . If segment s′ ends at some host T ∈ H, then
Lemma 8 proves there exists a set of links that form the
path π(ins′ , T ) which corresponds to segment s′. Thus,
we showed that each segment s ∈ T S corresponds to
a path in G′, and each branch point bs ∈ BS can be
mapped to a node v ∈ V ′ making PS consistent with
T S .

Now as PS forms a tree rooted at host S with each
T ∈ H as a leaf, the path from source S to each host
T ∈ H is unique and acyclic. Lemma 5 still holds and
thus constraints in Equation 3 ensure that G’ and P’ is
consistent with the DM measurements.
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