
Energy-Efficient Content Delivery Networks using Cluster Shutdown

Vimal Mathewa, Ramesh K. Sitaramana,b, Prashant Shenoya

aUniversity of Massachusetts, Amherst
bAkamai Technologies Inc.

Abstract

Content delivery networks (CDNs) are an important class of Internet-scale distributed systems that deliver web, streaming, and
application content to end users. A commercial CDN could comprise hundreds of thousands of servers deployed in over thousand
clusters across the globe and incurs significant energy costs for powering and cooling their servers. Since energy costs are a
significant component of the total operating expense of a CDN, we propose and explore a novel technique called cluster shutdown
that turns off an entire cluster of servers of a CDN that is deployed within a data center. By doing so, cluster shutdown saves
not just the power consumed by the servers but also the power needed for cooling those servers. We present an algorithm for
cluster shutdown that is based on realistic power models for servers and cooling equipment and can be implemented as a part of
the global load balancer of a CDN. We evaluate our technique using extensive real-world traces from a large commercial CDN to
show that cluster shutdown can reduce the system-wide energy usage by 67%. Further, much of the energy savings are obtainable
without sacrificing either bandwidth costs or end-user performance. In addition, 79% of the optimal savings are attainable even if
each cluster is limited to at most one shutdown per day, reducing the required operational overhead. Finally, we argue that cluster
shutdown has intrinsic architectural advantages over the well-studied server shutdown techniques in the CDN context, and show
that it saves more energy than server shutdown in a wide range of operating regimes.

Keywords: Content Delivery Networks, Internet-Scale Distributed Systems, Power Management, Load Balancing, Energy
Efficiency

1. Introduction

Large Internet-scale distributed systems deploy hundreds of
thousands of servers in thousands of data centers around the
world. Such systems currently provide the core distributed in-
frastructure for many popular Internet applications that drive
business, e-commerce, entertainment, news, and social net-
working. The energy cost of operating an Internet-scale system
is already a significant fraction of the total cost of ownership
(TCO) [1]. The environmental implications are equally impor-
tant. A large distributed platform with 100,000 servers will ex-
pend roughly 190,000 MWH per year, enough energy to sus-
tain more than 10,000 households. In 2005, the total data cen-
ter power consumption was already 1% of the total US power
consumption while causing as much emissions as a mid-sized
nation such as Argentina. Further, with the deployment of new
services and the rapid growth of the Internet, the energy con-
sumption of data centers is expected to grow at a rapid pace of
more than 15% per year in the foreseeable future [2]. These fac-
tors necessitate rearchitecting Internet-scale systems to include
energy optimization as a first-order principle.

An important Internet-scale distributed system to have
emerged in the past decade is the content delivery network
(CDN, for short) that delivers web content, web and IP-based
applications, downloads, and streaming media to end-users
(i.e., clients) around the world. A large CDN, such as that of
a commercial provider like Akamai, consists of hundreds of
thousands of servers located in over a thousand data centers

around the world and account for a significant fraction of the
world’s enterprise-quality web and streaming media traffic to-
day [3]. The servers of a CDN are deployed in clusters where
each cluster consists of servers in a particular data center in a
specific geographic location. The clusters are typically widely
deployed on the “edges” of the Internet in most major geogra-
phies and ISPs around the world so as to be proximal to clients.
Clusters can vary in size from tens of servers in a small Tier-3
ISP to thousands of servers in a large Tier-1 ISP.

The primary goal of a CDN is to serve content such as web
pages, videos, and applications with high availability and per-
formance to end users. The key component that ensures avail-
ability and performance is the CDN’s load balancing system
that assigns each incoming request to a server that can serve
that request. To this end, a CDN’s load balancing system routes
each user’s request to a server that is live and not overloaded.
Further, to enhance performance, a CDN ensures that each user
request is routed to a server that is proximal to that user. The
proximity (in a network sense) ensures that the network path
between the user’s device and the CDN’s server has low la-
tency and loss. The process of routing user requests to servers
is a two stage process. A global load balancer (called GLB)
assigns the user to a cluster of servers based on the availability
of server resources in the cluster, performance, and bandwidth
costs. A local load balancer (called LLB) assigns the user to a
specific server that is capable of serving the requested content
within the chosen cluster. The choice of server is dictated by

Preprint submitted to Sustainable Computing May 7, 2014

server liveness, content footprint, and current server loads with
respect to their capacities. A comprehensive discussion of the
rationale and system architecture of CDNs is available in [3].

1.1. Cluster shutdown: a technique for energy reduction
A number of approaches are relevant to reducing the en-

ergy consumption of CDNs. In the past two decades, there
has been significant work in improving the energy efficiency
of servers and data centers. Such improvements yield energy
savings in any deployed distributed system, including CDNs.
For instance, the switch to multi-core architectures, the increas-
ing use of SSDs, static power management (SPM) to decrease
energy use when the servers are idle, use of low-power servers
[4], and power scaling techniques such as Dynamic Voltage and
Frequency Scaling (DVFS) [5, 6] all help reduce CDN energy
consumption. Similarly, the use of temperature controlled fans
and advances in air flow management have led to increases in
cooling efficiency[7, 8].

In addition to the above generic methods, there has been re-
cent work on CDN-specific techniques that incorporate the abil-
ity to turn off individual servers during periods of low load to
reduce the energy consumption [9]. Such a server shutdown
technique is implemented within the local load balancer (LLB)
of the CDN. The work in [9] shows that the availability, per-
formance, and operational costs of the CDN remain unaffected
when turning off servers to save energy.

In this paper, we propose and evaluate a novel CDN-specific
technique called cluster shutdown where an entire cluster of
servers in a CDN data center can be turned off. Cluster shut-
down is easily integrated into the global load balancer (GLB)
that will now have the ability to move all load away from a clus-
ter and shut it down. However, since the granularity of energy
management is to turn off entire clusters or leave them entirely
on, the technique does not have the ability to turn off individ-
ual servers (e.g., a fraction of a cluster). In contrast, the server
shutdown technique studied in [9] has the ability to shutdown
individual servers within the cluster depending on the load, but
has has no ability to control how much load enters a cluster.
Therefore, in this sense, the two techniques are complementary
and may be implemented together. While cluster shutdown has
not been studied before in the CDN context, it has certain nat-
ural advantages that make it worthy of consideration for CDN
energy reduction.

(1) Redundant deployments. Large CDNs such as Akamai
can have over a thousand clusters deployed in data centers
around the world [3] with more than a dozen redundant de-
ployments in any given geographical area. Thus, when some
clusters near a user are shutdown during off-peak hours, other
nearby active clusters can continue to provide CDN service to
users and ensure good availability and performance. In fact,
one of the contributions of this work is determining the impact
of cluster shutdowns on user performance.

(2) Cluster shutdown is consistent with the original CDN ar-
chitectural design. Each cluster in a CDN is often architected to
be a self-sufficient unit with enough processing and disk stor-
age to serve the content and application domains that are as-
signed to it [3]. In particular, there is limited data dependency

and resource sharing across clusters. Thus, cluster shutdown
can be implemented with little or no changes to the CDN’s
original architecture. In contrast, servers within a cluster are
closely linked in a fine-grained fashion and they cooperatively
cache and serve the incoming requests. For instance, servers
within the same cluster cooperatively store application state and
content for user requests served by that cluster. Thus, shutting
down individual servers for energy savings requires greater mi-
gration of state and content between servers in a cluster at levels
not customary in a CDN today. Cluster shutdown, in contrast,
does not require state migration and cached content is already
replicated across clusters for fault-tolerance purposes, which
ensures that availability is not impacted by shutting down a
cluster. In this sense, cluster shutdown is a better architectural
design choice for energy management than server shutdown.

(3) Cluster shutdown has the potential to save on cooling
power in addition to IT power. A key advantage of cluster shut-
down is that the all of the energy consumed by a cluster, which
includes energy consumed by the servers, the network equip-
ment, and the cooling within that cluster, can be saved when a
cluster is turned off. In contrast, a server shutdown technique
will typically turn off a fraction of the servers within the cluster
and will require the networking and cooling equipment to stay
on. The cooling equipment is not energy proportional—thus
turning off a fraction of the servers only saves energy consumed
by those servers and does not yield a proportionate reduction in
cooling costs.

For cluster shutdown to be effective, a CDN would need to
have control over all of its energy consumption, i.e., both IT
(such as servers) and cooling equipment. Such a scenario is
reasonable given the trend for CDN’s to opt for self-contained,
modular [10], or containerized [11] deployments. With such
deployments a CDN can manage the power consumption of its
own cluster, independent of other tenants in the data center – an
advantage for a CDN that wants manage its power consumption
closely. The savings that can be obtained from reducing cooling
costs can have a significant impact on the total energy expen-
diture of a cluster. The key reason is that the energy consumed
by cooling equipment is a significant fraction of the energy ex-
pended by the IT equipment1 such as servers. The ratio of total
energy to IT energy is a standard metric called PUE (Power
Usage Effectiveness) that has a typical value2 of about 2 im-
plying cooling energy is roughly equal to IT energy in typical
data center deployments. But in more recent energy-efficient
designs, PUE is smaller but cooling energy is still a significant
fraction of the IT energy. Further, cooling energy consumption
is not power-proportional since cooling still takes a significant
amount of energy even when the servers have low utilization
and are not producing much heat, resulting in disproportional
energy savings when cooling is shutdown entirely (cf. Fig-
ure 1a).

1IT energy expenditure is primarily the energy consumed by the servers,
since the networking equipment consume significantly less. Likewise, cooling
energy expenditure is dominated by the energy consumed by the chillers[12].

2In a survey by the Uptime Institute [13] in July 2012 , data centers reported
an average PUE between 1.8 to 1.89. Other estimates place PUEs even higher.

2

Despite these advantages, a cluster shutdown technique is not
without disadvantages when compared to server shutdown [9].
Shutting down a cluster and moving all its users to other clusters
might degrade performance for users if they have to go “farther
away” in the network sense for their content. Further, moving
traffic across clusters has the potential of increasing the band-
width cost, even if it reduces energy. A primary focus of our
work then is to evaluate the energy reduction provided by clus-
ter shutdown and how it trades off against potential degradation
in performance and increases in bandwidth costs.

1.2. Our Contributions
We propose algorithms for incorporating cluster shutdown in

the GLB of a CDN and quantify the energy savings achiev-
able by this technique. Our evaluation uses extensive real-
world traces collected from 22 geographically distributed clus-
ters over 25 days from one of the world’s largest CDNs. We
show how energy savings are impacted by the energy character-
istics of servers, cooling equipment, and data centers. Further,
we quantify the tradeoffs between three goals of CDN architec-
ture: saving energy, reducing bandwidth costs, and enhancing
end-user performance. Finally, we compare the relative efficacy
of cluster shutdown with the well-studied and complementary
approach of server shutdown. Our specific key contributions
are as follows.

• We propose a GLB algorithm that minimizes energy by rout-
ing traffic away from certain clusters and switching them off.
On production CDN workloads with typical assumptions for
server and cooling efficiencies, our algorithm achieved a sig-
nificant system-wide reduction in CDN energy consumption
of 67%.

• When servers and cooling equipment are energy inefficient,
the energy savings from cluster shutdown can be as large as
73%. These savings can decrease to 61% if the servers be-
come perfectly power proportional, and can further become
almost zero if the cooling also becomes perfectly efficient.

• The outside air temperature has an impact on cooling effi-
ciency and hence influences the energy savings achievable
by cluster shutdown. Energy savings are stable at about 67%
for outside temperatures less than 85◦F but tapers off as the
temperature rises to 44% at 100◦F.

• To obtain the maximum possible energy savings, bandwidth
costs of the CDN would have to increase by a factor of 2.
However, 73% of the maximum energy savings are obtain-
able with no change in bandwidth costs at all. Likewise, 93%
of the maximum energy savings is obtainable with no signif-
icant performance degradation with each user served from
clusters within an average distance of 500 km.

• Frequent cluster shutdowns and the operational overheads
that it would entail are not necessary to achieve significant
energy savings. Our technique is able to extract 79% of the
maximum savings even when limiting each cluster to at most
one shutdown per day and even when the incoming load is
not known in real-time and must be predicted.

• Realistic CDNs are required to operate under multiple con-
straints. We identify a sweet spot where our technique pro-
vides 22% of maximum savings while limiting each cluster to
at most one shutdown per day, allowing no increase in band-
width costs and serving users from clusters within an average
distance of 800 km.

• Cluster shutdown does better than server shutdown within a
broad operating range of outside air temperatures from 40◦F
to 90◦F, while server shutdown is better outside of this range.
In general, cluster shutdown performs better during lower pe-
riods of CDN utilization, while server shutdown has the edge
at higher utilization.

• Augmenting cluster shutdown with server shutdown has lim-
ited impact under relaxed performance or bandwidth con-
straints because the CDN is already nearly power propor-
tional under these conditions with just cluster shutdown.
However, if either latency or bandwidth costs need to be kept
low, server shutdown can provide significant additional gains
over a pure cluster shutdown strategy. If low latency is re-
quired, server shutdown can provide an additional 46% in
energy savings. Likewise, if no increase in bandwidth costs
are allowed, the additional energy savings is 34%.

2. Background, Models, and Methodology

2.1. Content Delivery Networks
Our work assumes a global content delivery network (CDN)

that comprises a very large number of servers that are grouped
into thousands of clusters. Each cluster is deployed in a single
data center and its size can vary from tens to many thousands
of servers. The incoming requests are forwarded to a particu-
lar server in a particular cluster by the CDN’s load balancing
algorithm. As outlined earlier, load balancing in a CDN is per-
formed in two stages: global load balancing (GLB) that routes
a user’s request to an “optimum” cluster, and local load bal-
ancing (LLB) that assigns the user request to a specific server
within the chosen cluster. Load balancing can be implemented
using many mechanisms such as IP Anycast, load balancing
switches, or most commonly, the DNS lookup mechanism [3].
We do not assume any particular mechanism, but we do assume
that those mechanisms allow load to be arbitrarily re-divided
and re-distributed among servers, both within a cluster (local)
and across clusters (global). This is a good assumption for typ-
ical web workloads that form a significant portion of a CDN’s
traffic.

Our proposed technique of cluster shutdown is implemented
in the GLB of a CDN. First, GLB moves away all the traf-
fic from a cluster, typically by setting the cluster capacity to
zero. Then, the cluster is shutdown by turning off all the rele-
vant components, inclusive of servers and cooling equipment.
Since our focus is on GLB algorithms that incorporate clus-
ter shutdown, unless mentioned otherwise, we assume that the
LLB evenly distributes the incoming load assigned by the GLB
across servers within that cluster. In contrast, the server shut-
down mechanism studied in [9] is incorporated within the LLB
system that turns off individual servers within a cluster.

3

2.2. Workload Model
The workload entering a CDN is generated by users around

the world accessing web pages, video content, and Internet-
based applications. To model the spatial distribution of the
users, we cluster them according to their geographical location.
In particular, we define M client locations where each location
is a compact geographical area, example, Massachusetts, USA.
The workload entering the CDN is modeled as a discrete se-
quence3 λt,i, 1 ≤ t ≤ T and 1 ≤ i ≤ M, where λt,i is the average
load in the tth time slot from users in client location i. We al-
ways express load in the normalized unit of actual load divided
by peak server capacity.4 Further, we assume that each time slot
is δ seconds long and is large enough for the decisions made by
the global load balancing algorithm to take effect. Specifically,
in our experiments, we consider δ = 5 minutes.

2.3. Algorithmic Model for Load Balancing
While a real-life load balancing system is complex [3], we

model only those aspects of such a system that are critical to
energy usage. For simplicity, our load balancing algorithms
redistribute the incoming load rather than explicitly route in-
coming requests from clients to servers. The major determi-
nant of energy usage is the number of clusters that need to re-
main active (i.e., turned on) at each time slot to effectively serve
the incoming load. Unless we mention otherwise, we assume
that local load balancer is not energy aware and does not turn
servers on and off on its own accord. But, rather, the LLB sim-
ply distributes the load assigned to each cluster evenly among
the servers in that cluster. However, the GLB is energy aware
and can turn clusters on or off. Therefore a cluster is either ac-
tive with all servers turned on, or inactive with all servers turned
off.

At each time slot, an energy aware GLB takes as input the
incoming load λi, 1 ≤ i ≤ M. The global load balancing al-
gorithm of a CDN routes the incoming load from each client
location i to clusters that are active at that time step, i.e., GLB
determines the values µi j that represents the load induced by
client location i on a server in the jth cluster, 1 ≤ j ≤ N, such
that ∑

1≤ j≤N

µi jc j = λi,∀i,

where c j is the number of servers in that cluster. Servers are
typically not loaded to capacity. But rather a target load thresh-
old µmax, 0 < µmax ≤ 1, is set such that the load balancing
algorithm attempts to keep the load on each server of the CDN
to no more than µmax. Mathematically,∑

1≤i≤M

µi j ≤ µmax,∀ j.

We assume a typical value of µmax = 0.75 in our work, i.e., the
target load for each server is 75% of its capacity.

3When the time slot is implicit, we often drop the time subscript from our
notation. For instance, we describe the incoming load simply λi, 1 ≤ i ≤ M.

4For simplicity, we assume that the servers in the CDN are homogeneous
with identical capacities, though our algorithms and results can be easily ex-
tended to the heterogeneous case.

2.4. Power consumption of clusters

We model both the power consumed directly by the servers
(IT power) and the power consumed for cooling those servers
(cooling power). By convention, we indicate power draw for
a single server by using a superscript “server”, while variables
without that superscript represent the power draw for the entire
cluster. Also, note that while we mostly discuss power draw
(in Watts), integrating power draws over time provides us the
energy consumed (in Joules).

2.4.1. Server power model
First, we model the power consumed by a single server as a

function of its load. Based on our own testing of typical off-
the-shelf server configurations used by CDNs, we use the stan-
dard linear model[1] where the power (in Watts) consumed by
a server is

PIT,server =
[
PIT, server

idle + (PIT, server
peak − PIT, server

idle)λ
]

(1)

where the load (0 ≤ λ ≤ 1) is the server load, and PIT
peak is

power consumed by the server when it is loaded to its capacity
(i.e., λ = 1). PIT,server

idle is the power consumed by an idle server
when it has no load (i.e., λ = 0). We define a quantity 0 ≤ α ≤ 1
called the server power proportionality factor where

α
∆
= 1 − PIT, server

idle /PIT,server
peak .

Note that α = 1 represents a perfectly power proportional
server—the ideal case for an energy-efficient server—while
α = 0 represents the opposite extreme. In our empirical work,
unless mentioned otherwise, we use PIT,server

peak = 92 Watts, α

=0.31, and PIT,server
idle = 63 Watts as typical values based on our

measurements of a typical deployed server today. However, we
also vary α over a wide range to study the impact of server
power proportionality on our conclusions.

2.4.2. Cooling power model
The cooling systems deployed to cool a server cluster consist

of a number of components. An air handler transfers heat out
of the server room. An air or water based chiller cools down
the hot air before it is pumped back into the server room. The
coolant, usually a combination of water and glycol5 is trans-
ferred from the chiller to cooling towers that exchange heat with
the outside air before returning it back to the chiller. The chiller
plant’s compressor accounts for the majority of the cooling cost
in most data centers [12].

To make our model assumptions realistic, we use a set of
benchmark regression curves provided by the California En-
ergy Commission (CEC) [14] to model our cooling power re-
quirements. Assuming efficient heat exchange at the cooling
towers, we take the outside air temperature as a proxy for the
temperature of the coolant on return. The power consumed by
the chiller PCOOL is a quadratic function of its utilization u as

5For the purposes of modeling a typical cooling system, we assume that the
chilled water coolant is at 44◦F.

4

0 20 40 60 80 100
0

20

40

60

80

100

Utilization (%)

P
ow

er
 (

%
 o

f r
at

ed
 c

ap
ac

ity
)

100 F
85 F
60 F
40 F

(a) The chiller power PCOOL

gets larger and steeper as out-
side temperature increases.

0 20 40 60 80 100
0

20

40

60

80

100

Utilization (%)

P
ow

er
 (

%
 o

f r
at

ed
 c

ap
ac

ity
)

β = 0.00
β = 0.33
β = 0.66
β = 1.00
β = 1.19

(b) As cooling efficiency β in-
creases the cooling power re-
quired PCOOL(β) is smaller.

Figure 1: Cooling power and its dependence on outside air tem-
perature and cooling efficiency.

shown below [14], where u ∆
=

Q
Qpeak

, Q is the heat removed by
the chiller, and Qpeak is maximum heat removal that the chiller
is rated for.

PCOOL = PCOOL
peak ×

(
A + B · u + C · u2

)
(2)

where u is the utilization of the chiller and the constants
A, B, and C are dependent on the capacity correction factor
(CAP FT) and the efficiency correction factor (EIR FT) that
vary quadratically with the outside air temperature. Given a
value for the outside air temperature the constants A, B, and C
can be derived from the regression curves provided in the CEC
manual [14]. It is worth noting that a chiller consumes dispro-
portionately more power at higher utilization than lower ones
due to the quadratic nature of the curve. Also, as shown in
Figure 1a, as the outside air temperature gets higher the power
required PCOOL gets larger and curve becomes more non-linear
and steeper.

The chillers deployed in practice vary greatly in terms of
their efficiency, ranging from less efficient older systems to
highly efficient next-generation ones. To study this wide varia-
tion, we propose a family of chiller models that have the same
quadratic functional form for the relationship between utiliza-
tion and power consumed as the CEC chiller described in Equa-
tion 2 but different values for the constants. Specifically, we
define a factor β that we call the chiller efficiency factor and
each value of β provides a different curve for the chiller power
consumption PCOOL(β) as described in the equation below.

PCOOL(β) = PCOOL
peak ×

(
Aβ + Bβ · u + Cβ · u2

)
, (3)

where Aβ = max{(βA + 1 − β), 0}, Bβ = βB, and Cβ = βC.
We study five chillers by setting β to five different values as

shown in Figure 1b. The first three curves (0 ≤ β < 1) repre-
sents chillers that are less efficient than CEC’s chiller. As can
be seen from Equation 3, the fourth curve with β = 1 models
the CEC chiller exactly. And, the fifth curve with β > 1 mod-
els a next-generation chiller that is more efficient than the CEC
chiller and has power consumption of zero when idle.

2.4.3. Total power consumed by a cluster
The total power consumed by a cluster is defined to the power

needed to run the servers and associated equipment and the

power needed to cool the servers. We define the IT power PIT

of a cluster to be the aggregate power consumed by the c servers
of the cluster. In addition to the servers themselves, a cluster in-
cludes other IT equipment such as network switches and power
distribution units. Typically the power consumed by network-
ing and power distribution equipment is a small fraction of that
consumed by the servers of the cluster (studies have shown this
portion to be around 5-10% [12]). Our power model currently
ignores the contribution of this other IT equipment to the to-
tal IT power, but it is straightforward to extend our models and
algorithms to incorporate its contribution through a small mul-
tiplicative constant.

Thus, the IT power PIT consumed by a server cluster consist-
ing of c servers, each running at utilization λ, is

PIT = c × PIT,server (4)

where PIT,server can be computed using Equation 1. And, the
peak IT power of a cluster PIT

peak = c × PIT,server
peak . Given the

PUE of the data center in which the cluster is deployed, we
determine the peak cooling power PCOOL

peak = (PUE − 1) × PIT
peak.

Since the chiller removes the heat produced by the servers, the
utilization of the chiller u = PIT

PIT
peak

. Now, given the value of β

that determines the cooling efficiency, we can compute the total
power consumed by the chiller PCOOL(β) using Equation 3. The
total power P consumed by the cluster is simply the sum of its
IT and cooling power:

P = PIT + PCOOL(β) (5)

Note that the quadratic and non-energy proportional nature of
the chiller-based cooling model has interesting implications on
cluster and server shutdown techniques. When a server shut-
down technique switches off a fraction of the servers within a
cluster, the non-energy proportional nature of the curve works
“against” it and does not yield a proportional reduction in cool-
ing energy usage, while a full cluster shutdown reduces the
cooling costs to zero for that cluster. In contrast, cluster shut-
down “packs” the load from a region onto a smaller number of
clusters (and turns off the remaining clusters), but the quadratic
nature of the curve yields more than linear increase in cooling
costs for the clusters that stay on; the higher the cluster utiliza-
tion due to such packing, the greater the increase in cooling cost
due to the quadratic nature of the curve. A similar effect comes
into play due to the outside air temperature, where increasing
cluster utilization in hotter outside temperature causes a dispro-
portionately larger increase in cooling costs due to the quadratic
curve.

3. GLB Algorithms with Cluster Shutdown

We now describe our algorithm for global load balancing that
routes traffic from client locations to clusters while turning clus-
ters on or off with the goal of minimizing the total energy con-
sumed by the CDN. At any given time, the algorithm takes as
input the load λi from each individual client location i. Here
we make the simplifying assumption that the GLB knows pre-
cisely the load that it needs to route at each time step and that

5

it can instantaneously turn clusters on or off to minimize en-
ergy usage. This is clearly not strictly true in practice where
both sensing the load and shutting down clusters incur a small
delay. However, our algorithm provides a baseline on what is
achievable with the cluster shutdown technique, leaving a more
complex model that incorporates delays for future work. The
output of our algorithm is two-fold. First, it computes a bi-
nary variable u j that indicates whether the jth cluster should be
turned on (u j = 1) or turned off (u j = 0) in that time step. Next,
it computes a quantity µi j that represents the load from client i
that must be routed to cluster j at the given time step.

Computing the assignment of load to clusters can be stated
as a convex optimization problem as follows. The IT power
required by cluster j is

PIT
j = c j

PIT,server
idle × u j +

∑
1≤i≤M

(PIT,server
peak − PIT,server

idle)µi j

 ,
where the value of u j is used to determine if the cluster is turned
on and idle power should be incurred. The chiller utilization of

cluster j can be computed as
PIT

j

PIT
peak

. The corresponding cooling

energy for cluster j denoted by PCOOL
j can be computed us-

ing Equation (3), given the chiller efficiency β. Our objective
function is simply the total power drawn by the CDN summed
across all its N clusters and is stated below.

min
∑

1≤ j≤N

(
PIT

j + PCOOL
j

)
(6a)

s.t.
∑

1≤ j≤N

µi jc j = λi, ∀i (6b)∑
1≤i≤M

µi j ≤ u jµmax, ∀ j (6c)

The quantities that are varied in the minimization are the output
variables µi, j and u j. Equation 6b ensures that the all of the
incoming load at the given time step is assigned to some cluster.
Further, Equation 6c ensures that no server is loaded by more
than the threshold µmax. We pick a typical value of µmax = 0.75
that implies that no server is loaded to more than 75% of its
capacity.

Besides the above constraints that always apply, we also
study tradeoffs between energy savings, performance and band-
width costs by adding one or both of the constraints below.∑

1≤i≤M
∑

1≤ j≤N µi jc jdi j∑
1≤i≤M λi

≤ D, (7a)∑
1≤i≤M

Bi
µi jc j

λi
≤ BWmax(j), ∀ j (7b)

Equation (7a) states that the average distance between the users
and the cluster to which they are assigned (weighted by load)
is no more than some specified value D, where di j is the geo-
graphical distance between client location i and cluster j. For
smaller values of D, this equation constrains the global load
balancer to assign users to server clusters that are proximal to
them, so as to ensure good performance. By making D larger,
we are loosening the performance requirement by allowing the

users to be assigned to clusters that are farther away. We are
particularly interested in how the performance requirement D
impacts energy savings. Note that as was assumed in earlier
work [15], we use geographical proximity as a rough proxy
for “network proximity” that governs user performance. Our
formulation could equally well accommodate network latency
instead of geographical distance without significant changes,
though our empirical CDN traces do not provide the required
network information for such an evaluation.

A CDN pays for the bandwidth that their deployed servers
utilize. Typically, CDNs use 95/5 contracts for paying for their
bandwidth use which works as follows [16]. For each cluster
j, the traffic from the CDN’s servers in the cluster is averaged
over 5 minute intervals. Then the 95th percentile of those 5-
minute averages over the billing interval is computed. The cost
of bandwidth for that cluster is proportional to the computed
95th percentile. Since 95th percentile cannot be modeled and
constrained within a convex programming framework, we use
the maximum value instead as a proxy. Equation (7b) above
is used to constrain the maximum bandwidth sent out of clus-
ter j to be no more than BWmax(j), hence also constraining the
bandwidth cost that is incurred by the CDN in cluster j. Choos-
ing higher values for BWmax(j) is tantamount to increasing the
allowable bandwidth cost at cluster j. We use the bandwidth
constraint to study the impact of varying the bandwidth costs
on energy savings.
Converting the convex program to a mixed integer program
(MIP). Note that as currently stated the objective of the opti-
mization function in Equation 6 contains the term PCOOL

j that
is quadratic in variables µi j. However, since MIPs are more
tractable than convex programs, we used a linear piecewise ap-
proximation of PCOOL

j to rewrite the optimization with only
linear constraints. The domain for the function PCOOL

j (u) was
split into equal sized segments. For each such segment [xi, xi+1]
we sampled the value of the function at its endpoints [yi, yi+1].
Computing the slope mi and intercept ki, the linear approxima-
tion between the points (xi, yi) and (xi+1, yi+1) takes the form
PCOOL

j,(xi,xi+1)(u) = PCOOL
j,peak × (mi · u + ki). For each such segment we

added a constraint

PCOOL
j ≥ PCOOL

j,(xi,xi+1)

with cluster j running at a chiller utilization of u =
PIT

j

PIT
peak

. PCOOL
j

is present in the objective and lower bounded by the piecewise
linear approximation. The absence of any other constraint on
the variable ensures that it equals its lower bound in the optimal
solution. Our implementation used 5 linear segments for an
approximation error of 0.25% at 85◦F.

4. Combining Cluster and Server Shutdown

Server shutdown is a complementary technique to cluster
shutdown and turns off individual idle servers within each clus-
ter to save energy [6, 9]. We now devise a combined approach
of using server shutdown in conjunction with our cluster shut-
down algorithm to potentially provide even more energy sav-
ings. Our combined approach first explores the possibility of

6

shutting down entire clusters, thereby saving both the IT and
cooling energy consumed by those clusters. Note that a cluster
shutdown algorithm must maintain a distributed set of clusters
in an active state at all times for reasons of user-perceived per-
formance. For instance, if all clusters in a geographical region
are shut down, GLB will be forced to assign users from that
region to distant clusters resulting in larger latencies and de-
graded performance. Server shutdown can provide additional
energy savings within clusters that are kept active by the cluster
shutdown algorithm. In particular, not all of the servers in an
active cluster may be required to serve its assigned load and a
subset of these servers can be turned off to save more energy.

To capture the additional benefit of server shutdown, we en-
hance the cluster shutdown algorithm of Section 3 by incorpo-
rating server shutdown algorithms within the LLB of individual
server clusters. We propose a hierarchical strategy that consists
of the following two steps.

1. GLB decides which clusters should remain active and
which need to be turned off using the algorithm described
in Section 3. GLB then reroutes global traffic away from
clusters that can be turned off and reassigns that traffic to
clusters that remain active.

2. The server shutdown algorithm is run independently and
in parallel by the LLB in each active cluster at each time
step. For each active cluster, the LLB of that cluster con-
solidates the load assigned to that cluster into the fewest
number of servers possible and turns off the remaining
servers. Specifically, for a cluster of c servers, a target
load threshold µmax and load λ, LLB computes the optimal
number of live servers ct =

⌈
λ

µmax

⌉
that is required to serve

the load. The algorithm keeps c− ct servers inactive while
keeping ct servers active to serve the load λ.

In step (2) of our above algorithm, we make the simplifying as-
sumption that servers can be shutdown in one time step, provid-
ing a baseline for the savings possible. A more complex server
shutdown algorithm that takes into account the delay for transi-
tioning servers between active and inactive states is provided in
[9].

5. Evaluation

To evaluate the benefits of integrating cluster shutdown in
a CDN’s global load balancer we used extensive traces from
Akamai, perhaps the largest commercial CDN, and ran the al-
gorithms presented in Section 3. In our experiments, unless
otherwise indicated, we model chillers with β = 1, i.e., the
same as CEC’s chiller model, and we assume that the outside
air temperature is 85◦F. Later, we vary these parameters and
show how energy savings vary with different parameter values.

5.1. Empirical Data from the Akamai Network
We used extensive load traces collected over 25 days from a

large set of Akamai clusters deployed in data centers in the US.
The 22 clusters captured in our traces are distributed widely
within the US and had 15439 servers in total, i.e., a represen-
tative sampling of Akamai’s US deployments. Our load traces

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50

Time (days)

L
o
a
d

Figure 2: Average load per server measured every 5 minutes
across 22 Akamai clusters in the US over 25 days.

account for a peak traffic of 800K requests/second and an ag-
gregate of 950 million requests delivered to clients. The traces
consist of a snapshot of total load served by each cluster col-
lected every 5-minute interval from Dec 19th 2008 to January
12th 2009, a time period that includes the busy holiday shop-
ping season for e-commerce traffic (Figure 2). In the figure,
one may note load variations due to day, night, weekday, week-
end, and holidays (such as low load on day no. 8, which was
Christmas) Since the clusters are restricted to the US, we also
restricted the trace to clients from North America. The trace
consists of samples taken every 5 minutes indicating the current
load on each cluster, along with a breakup of traffic from each
client location. Specifically, for every 5 minutes, we measured
the load induced by client location i on cluster j and the corre-
sponding bytes served by cluster j to users in client location i,
for all relevant pairs of i and j. In addition, we also measured
the number of servers present and total capacity of each clus-
ter. In the course of our optimization, we assume that the load
from a client can be shifted to any cluster as long as the capac-
ity constraints are met and no server is overloaded. Our traces
also capture the geographic location (city, state, and country) of
both the client location and cluster, which lets us estimate the
geographical distance between the users at a particular client
and location the cluster from which they are served. The geo-
graphical distance computed in this fashion is used as a proxy
for performance. The byte information captured in our traces is
used to compute the bandwidth usage of the CDN in each clus-
ter that in turn determine the bandwidth costs incurred by the
CDN that we study in our work.

0 5 10 15 20
0

20

40

60

80

100

E
ne

rg
y

sa
vi

ng
s

(%
)

Clusters

(a) Individual clusters save
between 37% to 84%. The
system-wide energy savings
is 67%.

0 20 40 60 80 100
0

20

40

60

80

100

S
ys

te
m

−
w

id
e

sa
vi

ng
s

(%
)

% of clusters

(b) Applying cluster shutdown to
the top 45% clusters is sufficient
to obtain 94% of the system-wide
energy savings.

Figure 3: CDN energy savings obtainable by cluster shutdown.
7

5.2. Overall energy savings

We emulated the GLB-based cluster shutdown algorithm in
Section 3 on the CDN traces described above. The algorithm
minimizes the energy consumption of the CDN in each time
step by orchestrating which clusters should be on and which
clusters should be turned off. Then the total energy consumed
by the CDN is computed by adding the energy consumed at
each time step across the entire trace. As a basis for compari-
son, we used as a baseline the energy consumed by the user-to-
cluster assignment in the trace with no cluster shutdown, i.e.,
all clusters are assumed to be on throughout the trace which is
consistent with how CDNs operate today.

The system-wide energy savings that is possible with cluster
shutdown incorporated into the CDN’s GLB is 67% in compar-
ison with the baseline where all clusters are always turned on.
In performing this analysis, we make typical assumptions about
the energy efficiency of the data centers (PUE = 2), servers
(α = 0.31) and chillers (β = 1). We also do not constrain perfor-
mance and bandwidth costs. Therefore, these are the best case
savings possible. However, we vary each of these assumptions
in subsequent sections to examine how these savings change
under different scenarios. To further breakdown the savings, in
Figure 3a we show savings obtained by individual server clus-
ters. Savings vary between 37% to 84% with the median clus-
ter saving 63%. Further, most of the savings can be obtained by
performing cluster shutdown in a few key clusters. As shown in
Figure 3b, applying cluster shutdown to top 45% of the clusters
is sufficient to obtain 94% of the optimal energy savings.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Server power proportionality (α)

E
ne

rg
y

sa
vi

ng
s

(%
)

β = 0.00
β = 0.50
β = 1.00
β = 1.19

(a) Energy savings decrease
as servers and cooling equip-
ment become more energy
efficient.

0 20 40 60 80 100
0

20

40

60

80

100

CDN utilization (%)

C
D

N
 P

ow
er

 (
%

 o
f p

ea
k)

Cluster shutdown
Baseline
Power proportional

(b) Cluster shutdown makes the
CDN power proportional by
aligning power values close to
the ideal 45-degree line.

Figure 4: Energy savings and power proportionality

5.3. Impact of server and cooling efficiency

CDNs operate with a wide range of server hardware and are
deployed in a wide range of data center facilities. Further, both
server and cooling efficiencies are constantly being improved
over time. To capture these effects, we varied the power pro-
portionality factor of the servers (α) as well as the cooling effi-
ciency of the chillers (β) to study how energy savings vary with
these parameters (cf., Figure 4a). When both the servers and
cooling are energy-inefficient (α = β = 0), the cluster shutdown
technique provides the most energy savings of 73%.

As servers become more energy-efficient the idle power us-
age gets lower, and thus lowers cooling energy. This results in
energy savings from cluster shutdown dropping to 61% when
servers are perfectly power proportional (α = 1). In fact for any

chiller efficiency β, energy savings decrease as servers become
more efficient.

Likewise, for any given server efficiency α, increasing cool-
ing efficiency β reduces the energy savings. For perfectly power
proportional servers (α = 1) energy savings fall as β increases,
dropping from 61% when β = 0 to 19% for β = 1. In the ideal
world with highly-efficient servers and cooling, e.g., α = 1 and
β > 1, the energy savings from cluster shutdown approaches
zero, i.e., if the “hardware” is itself highly-efficient there is no
need for an explicit shutdown mechanism to reduce energy.

5.4. CDN Power Proportionality

To visualize how server shutdown makes a CDN more power
proportional, it is instructive to view the instantaneous power
consumption of the entire CDN as a function of its overall uti-
lization. Specifically, in Figure 4b, we plot the CDN’s total
power consumption (as a percentage of its peak) and its over-
all utilization at each time step as a single point of a scatter
plot. Note that these plots are the exact analogue of server pro-
portionality described in Equation 1 that relates power to uti-
lization, but computed for the CDN as a whole. A perfectly
power proportional system would have all its points aligned
along the 45-degree line shown in the figure. The scatter plot
of the total CDN power without cluster shutdown deviates from
the ideal 45-degree line significantly as the CDN consumes a
lot of power even during periods of low utilization during the
non-peak hours. However, cluster shutdown makes the scatter
plot of the total CDN power much more closely aligned to the
ideal 45-degree line, i.e., cluster shutdown makes the CDN sig-
nificantly more power proportional.

20 40 60 80 100
0

20

40

60

80

100

Temperature (F)

Average active capacity (%)
Average active server util (%)

(a) Avg. active server utiliza-
tion falls as temperature rises

20 40 60 80 100
0

20

40

60

80

100

Outside temperature (F)

E
ne

rg
y

sa
vi

ng
s

(%
)

(b) Energy savings drop from
67% at 85◦F to 44% at 100◦F

0 20 40 60 80 100
0

20

40

60

80

100

CDN utilization (%)

C
D

N
 P

ow
er

 (
%

 o
f p

ea
k)

85° F
Power proportional

Best fit for 85° F

(c) At 85◦F, the CDN with
cluster shutdown is roughly
power proportional.

0 20 40 60 80 100
0

20

40

60

80

100

CDN utilization (%)

C
D

N
 P

ow
er

 (
%

 o
f p

ea
k)

100° F
Power proportional

Best fit for 100° F

(d) At 100◦F, cluster shutdown is
less effective.

Figure 5: Cluster shutdown is more effective in saving energy
at lower temperatures than higher ones.

8

5.5. Impact of Outside Air Temperature

The cooling equipment transfers heat from inside the server
room to the external atmosphere. Physical laws suggest that the
heat transfer rate through convection is larger when the tem-
perature differential between the inside and outside air temper-
atures are greater. Thus, it takes less energy to cool when the
outside temperature is cooler (say, in the winter) than when the
outside temperature is hotter (say, in the summer). Further, as
we saw in Figure 1a, the required power for cooling rises more
sharply in a quadratic fashion with increasing utilization when
the outside air temperature is hotter.

The interplay of outside air temperature with cooling power
impacts what energy savings are achievable by GLB via cluster
shutdown. Specifically, as outside air temperature increases,
the cluster (and server) utilization have to be kept low since
there is a greater cooling power penalty associated with higher
utilization. Thus, as shown in Figure 5a, at low temperatures
the algorithm runs all active servers at the maximum allowed
utilization of µmax = 75%. At high temperatures cooling costs
rise rapidly with utilization, and the optimal solution at 100◦F
corresponds to active servers running at 39% utilization. Note
that to continue to serve the same incoming load, a lower cluster
(or, server) utilization means more clusters (and, servers) need
to remain active. Thus, the fraction of total CDN capacity that is
kept active, rises from 27% at low temperatures, to 51% of total
capacity at 100◦F. The increase in active capacity with rising
temperatures combined with lower utilization of active servers
has a negative impact on savings. Figure 5b shows that energy
savings drop from 67% at 85◦F to 44% at 100◦F. The energy
savings achieved by cluster shutdown at different outside air
temperatures can also be viewed as a scatter plot of the total
CDN power versus its utilization. The scatter plots in Figures
5c and 5d correspond to 85◦F and 100◦F respectively. At 85◦F
the best linear fit to the power-utilization curve has a slope of
1.26, closer to the ideal 45-degree line with a slope of 1, i.e.,
the CDN with cluster shutdown is roughly power proportional.
At 100◦F the slope almost doubles to 2.46.

5.6. Tradeoff between Energy and Performance

CDNs host a wide range of applications. Some applications
such as dynamic web sites are highly sensitive to network la-
tency, with even small increases in latency causing significant
degradation in the performance experienced by the user. Other
applications such as software downloads are weakly sensitive
to latency and can even be performed in the background. As
in [15], we use geographical distance as a rough proxy for the
network latency between a user and the cluster assigned to that
user by GLB. To study the tradeoff between performance re-
quirement and energy savings we add Equation (7a) as a con-
straint where different latency requirements can be modeled by
varying the distance bound D. Specifically, larger values of D
allow a larger load-weighted average distance between the users
and their assigned clusters. Allowing larger user-cluster dis-
tances (and latencies) has the effect of degrading performance,
but allows for potentially more cluster-shutdown opportunities
for GLB and greater power savings. Figure 6 illustrates this

400 600 800 1000
0

20

40

60

80

100

Average distance (km)R
el

at
iv

e
sa

vi
ng

s
(%

 o
f o

pt
im

al
)

Figure 6: Relaxing performance results in greater energy sav-
ings. 46%, 93% and 99.9% of the optimal energy savings are
obtained at D values of 300 km, 500 km and 795 km respec-
tively

tradeoff where setting D = 300 km provides 46% of optimal
savings. Note that this distance bound is roughly the distance
between Boston and New York with network latencies often in
the 10-15 ms range that is adequate for even applications with
higher latency sensitive. When D = 500, one can achieve 93%
of the energy savings. This distance bound is roughly the dis-
tance between Boston and Philadelphia where typical latencies
are in the 20 ms range, suitable for most moderately latency-
sensitive applications. Finally, when D = 795 km, a suitable
limit for weakly latency-sensitive applications such as back-
ground downloads, we achieve 99.9% of optimal savings.

5.7. Tradeoff between Energy and Bandwidth Costs

The operating expenditure (OPEX) of a CDN includes two
major components: the energy costs for powering the servers
and the bandwidth cost for the traffic from the server clusters to
the users. Reducing energy usage by packing traffic into fewer
server clusters could cause increased bandwidth usage in those
clusters, which in turn could drive up the bandwidth cost at
those clusters. The primary question is whether energy savings
can be achieved without significant increase in the bandwidth
cost. Note that if energy savings are only obtainable by sig-
nificantly increasing the bandwidth cost, that would serve as a
disincentive for a CDN to implement cluster shutdown.

As noted in Section 3, the bandwidth cost incurred by the
CDN at each cluster can be approximated by the maximum
over all 5-minute time slots in the billing period6 of the aver-
age traffic (in Mbps) transmitted in that time slot. We constrain
(through Equation (7b)) the maximum bandwidth for each clus-
ter j to be at most (1 + r)BWmax(j), where BWmax(j) is the max-
imum bandwidth value observed in the trace and r is the BW
relaxation factor that determines how much extra bandwidth
costs we are willing to allow. Figure 7a shows energy savings
relative to optimal as the bandwidth constraints are relaxed by
varying r. With no increase in bandwidth cost (r = 0), clus-
ter shutdown can still achieve 73% of optimal savings. 47%
of the total CDN server capacity remains turned on, with ac-
tive servers running at an average utilization of 48%. Relaxing
bandwidth constraints allows active server utilization to rise to
µmax = 75% at r = 100%. This allows the CDN to run with 27%

6In our simulations, we assume that the billing period is length of the trace
which is 25 days, though in reality a billing period is typically one month.

9

of its server capacity turned on and achieve optimal energy sav-
ings. Overall, our results indicate that cluster shutdown can still
achieve significant energy savings with little or no increase in
bandwidth costs.

0 20 40 60 80 100
0

20

40

60

80

100

R
el

at
iv

e
sa

vi
ng

s
(%

 o
f o

pt
im

al
)

BW relaxation factor r (%)

(a) We get 73% of optimal en-
ergy savings with no increase
in bandwidth cost

0 20 40 60 80 100
0

20

40

60

80

100

BW relaxation factor r (%)

Average active capacity (%)
Avg active server utilization (%)

(b) Average active server utiliza-
tion increases from 49% to µmax =

75% as BW cost doubles (r=100%)

Figure 7: Energy savings versus Bandwidth cost

5 min 4 hrs 8 hrs 12 hrs 24 hrs
0

20

40

60

80

100

Decision period (τ)

R
el

. s
av

in
gs

 (
%

 o
pt

im
al

)

(a) Switching clusters
once a day still achieves
80% of optimal savings

5 min 4 hrs 8 hrs 12 hrs 24 hrs
0

20

40

60

80

100

Decision period (τ)

R
el

. s
av

in
gs

 (
%

 o
pt

im
al

)

(b) With load prediction we
achieve 79% of optimal savings
switching clusters once a day

Figure 8: Impact of decision period and traffic prediction

5.8. Impact of Limiting the Cluster Transitions
Frequently switching server clusters on and off can impact

the overall lifetime and reliability of the equipment. Further,
the mechanical nature of cooling equipment limits the rate at
which it can be switched on and off. Chillers, for example, re-
quire a warm up at partial load before they can be incrementally
ramped up to full capacity. Thus it is neither desirable nor fea-
sible to frequently turn entire clusters on and off, and we study
the amount of energy savings that can be extracted when limit-
ing the frequency of cluster shutdowns.

Suppose that cluster transitions are allowed to occur only
once every τ time slots, where τ is defined as the decision pe-
riod and is required to be an integral multiple of δ. In our ex-
periments we vary τ from 5 minutes to 1 day. In Figure 8a
the left-most point in the graph corresponds to τ = 5 minutes
which is the smallest time granularity at which the trace data
is collected. It is nearly infeasible to turn clusters on or off

every 5 minutes. However, the τ = 5 minutes measurement
provides the theoretical optimal of how much energy savings is
possible in the best case that can serve as a benchmark for com-
paring other values of τ. Increasing τ could decrease energy
savings as GLB has a lesser ability to turn clusters on or off in
response to load variations. However, as we see in Figure 8a,

even with τ = 1 day where clusters are transitions just once a
day, we achieve 80% of the optimal savings possible. Thus, we
establish that frequent cluster transitions are not necessary for
obtaining most of the benefits of cluster shutdown.

5.9. Impact of inaccurate real-time load information

Thus far, we have assumed that the load for the current deci-
sion period τ is accurately available and can be used for deci-
sion making for that period. This is a reasonable assumption for
smaller decision periods (say τ ≤ 30 minutes) but not so much
when the decisions are more infrequent and decision periods
are longer. Therefore we consider the situation where our algo-
rithm does not know the current load but would have to predict
it for the purpose of deciding which clusters are transitioned.
When cluster transitions are made based on a prediction of load
over any extent of time there always exists the chance of insuf-
ficient active capacity and users being denied service. We allow
active CDN clusters to run to 100% utilization before they drop
incoming workload. We define availability as the ratio of work-
load served to total workload. Under these assumptions, we de-
fine a simple algorithm that predicts the load and computes the
optimal cluster allocation under this prediction. The predicted
load equals the load at the previous decision period, for small
decision periods (τ ≤ 1 hour), or the load at the same decision
period from the previous day, for larger periods (τ > 1 hour).
Using this simple prediction algorithm, Figure 8b shows energy
savings for decision period 5 minutes ≤ τ ≤ 1 day. Energy sav-
ings dropped from 100% to 79% of optimal over this range.
In each case, the algorithm provided at least “three nines” of
availability (i.e. 99.9%).

5.10. Finding a sweet-spot

5 min 4 hrs 12 hrs 24 hrs
0

20

40

60

80

100

Decision period (τ)

R
el

. s
av

in
gs

 (
%

 o
pt

im
al

)

Without BW constraints
With BW constraints

Figure 9: We can achieve 22% of the optimal savings even with
switching each cluster no more than once a day, allowing no
increase in bandwidth costs, and limiting the average distance
from the user to the cluster to be no more than 800 km.

So far we looked at the impact of individual parameters on
the energy savings obtained through cluster shutdown. In a re-
alistic situation, we would expect CDNs to operate under multi-
ple constraints. In this section we look at the combined impact
of cluster transitions, performance and bandwidth constraints
on energy savings. Figure 9 shows energy savings as a function
of the decision period when the average user-cluster distance
is upper bounded at D = 800 km. With no increase in band-
width costs (corresponding to r = 0), for a decision period (τ)

10

of 5 minutes, and a performance constraint of 800 km we obtain
71% of optimal savings. This compares favorably with the 73%
savings without the performance constraints (Section 5.7). Sav-
ings fall to 22% of optimal as the decision period (τ) increases
to 1 day.

5.11. Cluster vs Server shutdown
We look at the relative energy savings of two complemen-

tary techniques: GLB that incorporates cluster shutdown and an
LLB that incorporates server shutdown. We assume that, given
a cluster with c servers getting incoming load λ, LLB always
keeps the exact number of servers dλ/µmaxe required to serve
the incoming load for that cluster and at every time step. This is
of course an optimistic assumption but it helps understand the
best possible savings achievable using LLB. However, unlike
GLB, LLB is unable to move traffic across clusters to shutdown
entire clusters. Figure 10 plots the difference between the en-
ergy savings of implementing cluster shutdown in GLB and the
corresponding savings from implementing server shutdown in
LLB. In Figure 10a, we see that at low outside air tempera-
tures when cooling is relatively inexpensive (cf., Fig 1a), LLB
with server shutdown performs better due to its greater impact
on server energy. At high temperatures GLB with cluster shut-
down runs active clusters at lower utilization to reduce cool-
ing energy. The limited ability of GLB to shutdown clusters at
higher temperatures implies that it performs worse than LLB.
Thus, GLB outperforms LLB at moderate temperatures out-
side of these two extremes. The relative performance of GLB
versus LLB also depends on the CDN utilization. Figure 10b
shows that when the CDN is lightly loaded, GLB has greater
flexibility to move traffic around and switch off clusters. There
are fewer such opportunities at higher system utilization, where
larger clusters need to be kept active for serving the incoming
CDN load. At 85◦F, GLB out performs LLB in all cases. But
the additional energy savings drop from 42% to 4% as CDN uti-
lization increases from 7% to 35%. This trend is exaggerated
when the temperature increases to 100◦F. In this case, LLB
is better than GLB but the additional savings provided by LLB
increases from 9% to 68% over the same range of utilization.

20 40 60 80 100
−60

−40

−20

0

20

Outside temperature (F)

R
el

at
iv

e
en

er
gy

 s
av

in
gs

 (
%

)

(a) GLB is better within a
broad temperature range

0 20 40 60 80 100
−150

−100

−50

0

50

CDN utilization (%)

R
el

at
iv

e
en

er
gy

 s
av

in
gs

 (
%

)

85 F
100 F

(b) GLB is better at lower utiliza-
tion and outside temperatures

Figure 10: GLB (cluster shutdown) vs LLB (server shutdown)

5.12. Integrating Server shutdown with Cluster shutdown
We evaluate the hierarchical strategy described earlier in Sec-

tion 4 that incorporates energy-awareness at both the local and

global load balancer by implementing cluster shutdown and
server shutdown. A pure cluster shutdown strategy is taken as
the baseline, and we study the incremental benefit of adding
server shutdown.

We saw earlier in Section 5.7 that with no increase in band-
width costs (r = 0), a pure cluster shutdown strategy kept more
clusters active with servers running below the allowable peak
utilization (µmax = 75%). Relaxing bandwidth constraints al-
lowed servers to run at higher utilizations and thus keeping a
smaller fraction of its clusters active. In fact, the CDN ap-
proached power proportionality for r = 100%. To study the im-
pact of adding server shutdown, we plot the incremental gains
obtained in Figure 11a. With no increase in bandwidth cost (r
= 0), the combined strategy saves 34% over pure cluster shut-
down. Relaxing bandwidth constraints causes savings to drop
to a negligible 0.72% at twice the bandwidth cost (r = 100%).

Figure 11b shows incremental gains obtained as a function
of performance. If low latency is required, the energy savings
over a pure cluster shutdown strategy is 46%, with an average
user-cluster distance of 300 km. These gains taper off as perfor-
mance constraints are relaxed and cluster shutdown approaches
power proportionality.

Tight constraints limit the performance of the pure cluster
shutdown strategy by requiring the CDN to keep more clusters
active and run at higher idle capacity. Server shutdown tar-
gets this idle capacity to obtain additional gains. We quantify
this in Figure 11c by plotting savings against average idle ca-
pacity of an active server (as a percentage of peak utilization
µmax). The roughly power proportional nature of the CDN after
adding server shutdown implies that any idle capacity previ-
ously present is converted directly into savings. This explains
the approximate linear nature of the graph.

6. Related Work

Data center energy management has emerged as an active
area of research in recent years. Several approaches have
emerged for reducing the energy consumption of data centers,
including server shutdown during off-peak periods [17, 18, 19,
20], the use of low-power server nodes [4], OS-level energy
management through methods such as DVFS, the use of re-
newable energy [21, 22], and routing requests to locations with
the cheapest or greener energy [15]. Separately, there has also
been work on designing cooling-aware or thermal-aware algo-
rithms for data centers. Cooling-aware workload management
techniques have been studied in [23]. Thermal-aware work-
load placement techniques that place load on cool portions of
the data center have been studied in [24, 25]. Models for air- or
chiller-based cooling data centers have been studied in [23, 12];
the cooling models used in our paper are inspired by this work
and also the data published by the California Energy Commis-
sion [14].

A key difference between the prior work and our work is our
focus on content delivery networks; the design choices made
by a CDN require these ideas to be customized to the CDN
case, for instance by integrating energy management with the
CDN’s load balancing algorithms. Another key CDN-specific

11

0 20 40 60 80 100
0

20

40

60

80

100

BW relaxation factor r (%)

E
ne

rg
y

sa
vi

ng
s

(%
)

(a) Additional energy
savings over pure cluster
shutdown falls off as
bandwidth constraints
are relaxed. 34% savings
are achieved without any
increase in BW costs

400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

Average distance (km)
E

ne
rg

y
sa

vi
ng

s
(%

)
(b) 46% additional energy
savings over pure cluster
shutdown can be achieved
at an average distance of
D = 300 km.

0 20 40 60 80 100
0

20

40

60

80

100

Idle cap. on avg. active server (% peak)

E
ne

rg
y

sa
vi

ng
s

(%
)

(c) Energy savings obtained
by adding server shutdown are
roughly linear to the idle capacity
of an active server under pure
cluster shutdown

Figure 11: Integrating server shutdown with cluster shutdown

issue is to design energy saving methods that minimize the im-
pact on user performance and bandwidth costs. Specifically we
use realistic power and cooling models for clusters, based on
prior work, and use them to design cluster shutdown algorithms
that can be implemented in the CDN’s global load balancing
algorithms. In this sense the approach also differs from, and
is complementary to, prior work on server shutdown technique
for CDN energy management [9].

7. Conclusions

We focused on the design of energy-efficient CDNs. Since
a CDN could comprise thousands of server clusters across the
globe consuming a significant amount of energy, we propose a
new technique called cluster shutdown to turn off entire clusters
to save energy. Our experimental results using extensive traces
from a commercial CDN shows that cluster shutdown can re-
duce system-wide energy usage by 67% in the optimal case,
and most of these savings can be achieved without sacrificing
end-user performance and bandwidth costs. In addition, the
technique works well even when shutdown is limited to once
per day for each cluster and when the load is not known in real-
time and must be predicted. We believe that cluster shutdown is
a strong candidate for implementation in an actual CDN, espe-
cially since it fits in more easily with current CDN architectural

principles in comparison with server shutdown techniques stud-
ied in the past.

References

[1] L. Barroso, U. Holzle, The case for energy-proportional computing, Com-
puter 40 (12) (2007) 33–37.

[2] J. Koomey, Worldwide electricity used in data centers, Environmental Re-
search Letters 3.

[3] E. Nygren, R. Sitaraman, J. Sun, The Akamai Network: A platform for
high-performance Internet applications, ACM SIGOPS Operating Sys-
tems Review 44 (3) (2010) 2–19.

[4] D. Anderson, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, V. Va-
sudevan, Fawn: A fast array of wimpy nodes, in: Proceedings of ACM
SOSP, 2009.

[5] M. Weiser, B. Welch, A. Demers, S. Shenker, Scheduling for reduced cpu
energy, Mobile Computing (1996) 449–471.

[6] A. Wierman, L. Andrew, A. Tang, Power-aware speed scaling in processor
sharing systems, in: INFOCOM 2009, IEEE, IEEE, 2009, pp. 2007–2015.

[7] H. Coles, S. Greenberg, C. Vita, Demonstration of intelligent control
and fan improvements in computer room air handlers, Tech. Rep. LBNL-
6007E, Lawrence Berkeley National Laboratory (November 2012).

[8] Lawrence Berkeley National Laboratory, Data Center Airflow Man-
agement Retrofit, http://hightech.lbl.gov/documents/data_

centers/airflow-doe-femp.pdf (September 2010).
[9] V. Mathew, R. K. Sitaraman, P. Shenoy, Energy-aware load balancing

in content delivery networks, in: INFOCOM, 2012 Proceedings IEEE,
IEEE, 2012, pp. 954–962.

[10] J. Rath, DCK Guide To Modular Data Centers: Why Modular?,
http://www.datacenterknowledge.com/archives/2011/10/

20/dck-guide-to-modular-data-centers-why-modular/

(October 2011).
[11] B. Pitchaikani, Strategies for the Containerized Data Center,

http://www.datacenterknowledge.com/archives/2011/

09/08/strategies-for-the-containerized-data-center/

(September 2011).
[12] S. Pelley, D. Meisner, T. F. Wenisch, J. W. VanGilder, Understanding and

abstracting total data center power, in: Proc. of ISCA 2009 Workshop on
Energy Efficient Design (WEED), 2009.

[13] M. Stansberry, J. Kudritzki, Uptime Institute 2012 Data Center Industry
Survey, Uptime Institute, http://www.uptimeinstitute.com/

images/stories/Uptime_Institute_2012_Data_Industry_

Survey.pdf (2012).
[14] California Energy Commission, Nonresidential Alternative Calculation

Method (ACM) approval manual for the 2008 building energy efficiency
standards (December 2008).

[15] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, B. Maggs, Cutting
the electric bill for internet-scale systems, in: Proceedings of the ACM
SIGCOMM 2009 conference on Data communication, ACM, 2009, pp.
123–134.

[16] M. Adler, R. K. Sitaraman, H. Venkataramani, Algorithms for optimiz-
ing the bandwidth cost of content delivery, Computer Networks 55 (18)
(2011) 4007–4020.

[17] J. Chase, D. Anderson, P. Thakar, A. Vahdat, R. Doyle, Managing energy
and server resources in hosting centers, in: Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles (SOSP), 2001, pp.
103–116.

[18] N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, X. Zhu, De-
livering energy proportionality with non energy-proportional systems-
optimizing the ensemble, in: Proc of Workshop on Power-aware Com-
puting Systems, San Diego, CA, 2008.

[19] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, R. Katz, Napsac:
Design and implementation of a power-proportional web cluster, in: Proc.
of ACM Sigcomm workshop on Green Networking, 2010.

[20] A. Chen, W. Das, A. Qin, A. Sivasubramaniam, Q. Wang, N. Gautam,
Managing server energy and operational costs in hosting centers, in: Pro-
ceedings of the ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, 2005.

[21] N. Sharma, S. K. Barker, D. E. Irwin, P. J. Shenoy, Blink: managing
server clusters on intermittent power, in: ASPLOS, 2011, pp. 185–198.

12

[22] I. Goiri, W. Katsak, K. Le, T. Nguyen, R. Bianchini, Parasol and
greenswitch: Managing datacenters powered by renewable energy, in: Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), 2013.

[23] Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, M. M. Z. Wang,
C. Hyser, Renewable and cooling aware workload management for sus-
tainable data centers, in: Proceedings of ACM Sigmetrics, 2012.

[24] J. Moore, J. Chase, P. Ranganathan, Making scheduling “cool”:
Temperature-aware workload placement in data centers, in: Proc.
USENIX ATC (USENIX ’05), 2005.

[25] N. Tolia, Z. Wang, P. Ranganathan, C. Bash, M. Marwah, X. Zhu, Unified
thermal and power management in server enclosures, in: Proceedings of
the ASME/Pacific Rim Technical Conference and Exhibition (InterPACK
’09), 2009.

13

